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1

Introduction

Why did I write this book?

I see, and teach, mathematical biology and, in particular, population theory, as a part of mathematical
modelling; that is, translating the rules of nature into mathematical formulae (most often equations), applying
mathematical methods to analyse them and then trying to understand the implications of the obtained results
for the original problems. There are many textbooks on mathematical biology or population theory, ranging
from excellent to weak. Most of them have, in my opinion, a certain drawback: their main focus is on the
biological content, while the mathematics is often ornamental or, at best, sketchy and relegated to appendices
or to more advanced textbooks. Also, many textbooks devoted to population dynamics and mathematical
biology use very sophisticated mathematics but it is very difficult to find precise references linking this
level of sophistication with standard undergraduate education. My experience as an external examiner,
referee and editor dealing with courses, theses and articles on mathematical biology, is that postgraduate
students and young researchers entering the field make appalling mistakes trying work on biologically relevant
problems with hopelessly limited mathematical skills. When I started teaching mathematical biology to
mathematicians, I found this situation quite frustrating. Thus, I decided to design a course which will be
focused more on developing and presenting mathematics inspired by biology than on biology itself. Following
this, I have tried to write these notes in such a way that the lecturer using them will be able to present
mathematical results which are relevant to biological application but with full mathematical rigour without
having to look for proper statements and their proofs elsewhere or to prove them him/herself. Thus, the book
mostly is addressed to students and researchers primarily interested in mathematical methods of analysing
biological models and in developing these methods for their own sake, as a mathematical theory, and not as
just a tool for a particular biological application. In other words, the main topic of this book is mathematics
inspired by biology. Such books do exists, but mostly at a much higher level, and thus I hope that this
volume will fill some existing gap in the literature and find readers also outside the mathematical circles.

What this book is about?

Population dynamics is a fast growing discipline spanning biology and mathematics. However, in many
existing textbooks the authors do not provide any mathematically sound introduction to it focusing, instead,
on apparently more accessible biological content. Even though the analysis of it requires quite sophisticated
mathematical tools, even if the biology of the model is simples, the explanation of the involved mathematics
is relegated to appendices or more advanced texts. We hope that this book will provide some bridge between
introductory texts in population dynamics and more advanced texts. Hence, the book is predominantly
concerned with mathematical analysis of known models, which have been drawn from a wide range of very
good books in the field, and then with the interpretation of the obtained mathematical results. Usually we
will not go deeper into the construction of models. However, within the space limitation, we will try show
that the discussed models are not purely phenomenological; that is, constructed just to fit the data, but that
they can be derived from more fundamental principles.
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As we said, mathematical population dynamics deals with techniques and methods of solving and/or
analysing time behaviour of models describing populations of living entities, ranging from cells or bacteria (or
even genes) through plants, animals to humans. The description can be stochastic or deterministic at the in-
dividual, population, or community level. In this book we shall focus on deterministic models. We begin with
unstructured single population models in discrete and continuous time and go through exponential, logistic,
Ricker, Gompertz and Allee models. Next we analyse discrete and continuous structured models discussing,
in particular, Leslie and Usher matrices, general projection matrices, Lotka’s renewal equation and extending
some of these results to the nonlinear cases. Mathematically, we will discuss eigenvalue-eigenvector method
of solving discrete and continuous systems of equations, spectral decomposition and the Perron-Frobenius
theory leading to asynchronous exponential growth property. In the nonlinear case we will focus on stability
results beginning from the one dimensional theory, through the stability by linearization in both discrete and
continuous case and the Lyapunov functions method. We provide basics of phase-plane analysis for classical
problems and show its applicability to analysis of travelling waves. Next we shall provide a brief introduction
to dynamics in infinite dimensional spaces. Here we discuss the birth-and-death problems and provide its
solution using the generating function method. Next we introduce the McKendrick model, formally deriving
it from the Leslie model. We discuss some explicitly solvable cases and provide general well-posedness theory
in the linear case. Staying with the linear case, we discuss the asynchronous exponential growth property
using the Laplace transform technique (following the method in the lecture notes [15] which are not widely
available). Next we move to nonlinear models, beginning with the so called linear chain trickery. Further, we
introduce the concept of a semigroup and, using the semigroup approach, we provide theory of solvability of
models of age structured epidemiology by casting them into the form of abstract semilinear equation. The
book is concluded with several appendices which provide some longer proofs of results used in the text.

The book is based on lectures given by the author at the Honours (4th year) level at the University of
KwaZulu-Natal in Durban (Mathematical Biology), 4th year level at the Technical University of  Lódź (Intro-
duction to Mathematical Ecology), for postgraduate students at the SA Centre for Epidemiological Modelling
and Analysis in Stellenbosch and at the African Institute for Mathematical Sciences in 2012 (Introduction to
Population Theory) and at the 2011 CIMPA-UNESCO School on Modelling and Simulation in Population
Biology in Muizenburg (SA). It is written mostly for senior undergraduate and postgraduate students with
working knowledge of advanced calculus and linear algebra, who are interested in applications of mathemat-
ics in biology. The main body of the it can be used for a course for such an audience. However, selected parts
of the book touch some aspects of functional analysis and, being of interest for senior postgraduate students
and researchers, do not have to be included in the basic course. It is my hope that the the book will equip
the students with mathematical grammar of the language of population dynamics and will allow them to
enter into the research field without too many disasters.
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Unstructured models

1 Mathematical modelling

Population dynamics is about analysis of models arising in real life and thus it is related to a large field
of mathematical modelling. Therefore we begin by briefly describing the process of mathematical modelling
(that not only applies to biology or population theory).

First, we must have a phenomenon of interest that one wants to describe or, more importantly, to explain
and make predictions about. Observing this phenomenon, we to make hypotheses about the quantities
that are most relevant to the problem and about the relations between them. In this way we can devise a
possible mechanism that can explain the phenomenon. At this stage we have to decide how to quantify the
observations; that is, for instance, whether time should be continuous or discrete or whether we will consider
discrete or continuously distributed attributes of individuals, such as age or position in space. This choice is
not always obvious or unique but one needs to decide on a particular approach before one begins to build
a model. Sometimes it is worthwhile to build several models with various configurations and then compare
the results delivered by each of them.

The main purpose of building the model is to quantify a description of the mechanism driving the phenomenon
of interest; that is, write it as mathematical equations which can be mathematically analysed. Once the
equations are solved or analysed, it is necessary to interpret the solution, or any other information extracted
from the equations, as statements about the original problem so that they can be tested against observations.
Ideally, the model also leads to predictions which, if verified, serve as a further validation of the model. It
is important to realize that modelling is usually an iterative procedure as it is very difficult to achieve a
proper balance between the simplicity and meaningfulness of the model. Indeed, usually the first model is
built using the Ockham razor, or parsimony, principle which states that among possible equations satisfying
the requirements of the model, we select the simplest one. However, often such a model turns out to be over-
simplified so that there is insufficient agreement between the actual experiment and the results predicted from
the model. This indicates that in the modeling process we must have overlooked some important features of
the described phenomenon and we haves to return to the first step of modelling process and construct a new
equations which, again, should be the simplest one that allows to cater for the enlarged set of requirements.
On the other hand, sometimes the model is over complicated to yield itself to any meaningful analysis and
then again we have to construct a simpler model which can be analysed but which, nevertheless, still reflects
the main features of the phenomenon under investigation.

This first step in modelling is the most creative but also the most difficult, often involving a concerted effort
of specialists in many diverse fields. Hence, as we said earlier, though we describe a number of models in
detail, starting from first principles, the main emphasis of the course is on the later stages of the modelling
process; that is, on analysing and solving the derived equations, interpreting their solutions in the language
of the original problem and reflecting on whether the answers seem reasonable.

In all cases discussed in this book, the model is a representation of a process; that is, it describes a change in
the states of some system in time. This description could be discrete and continuous. The former corresponds
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to the situation in which we observe a system at regular finite time intervals, say, every second or every year,
and relate the observed state of the system to the states at the previous instants. Such a system typically
will be modelled by difference equations. On the other hand, in the continuous cases we treat time as a
continuum allowing for observations of the system at any time. In such a case the model expresses relations
between the rates of change of various quantities rather than between the states at various times, as was
the case in discrete time modelling. Then, since the rates of change are given by derivatives, the model is
represented by differential equations.

Furthermore, models can describe the evolution of a given system either in a non-interacting environment,
such as a population of bacteria in a Petri dish, or else engaged in interactions with other systems. In the
first case the model consists of a single equation and we say that the model is one-dimensional, while in the
second case we have to deal with several (sometimes infinitely many) equations describing the interactions;
then the model is said to be multidimensional. We observe that often we try to describe a real population
interacting with its environment by a single equation. Then the impact of the environment on the population
is reflected in the parameters of the equation which are supposed to contain an averaged information of the
environment. While such an approach is often successful and useful, especially for short term predictions,
one always should be aware of its limitations.

2 Discrete models

We begin our course with discrete time models of single populations in a non-interactive environment;
that is, as explained in the introduction, when the impact of the environment on the observed population
is modelled by parameters appearing in the equations. For instance, in many models described below we
recognize that there is a reaction of the environment to overpopulation. However, we do not model this
reaction explicitly but by modifying the vital parameters of the populations, such as the birth and death
rates, where the environment is represented by a certain parameter, for instance the carrying capacity in the
logistic equation.

2.1 Background

Many plants and animals breed only during a short, well-defined, breeding season. Also, often the adult
population dies soon after breeding. Such populations are ideal for modelling using discrete time. Let us
consider a few typical examples, [6].

(i) So called monocarpic plants flower once and then die. Such plants may be annual but, for instance,
bamboos grow vegetatively for 20 years and then flower and die.

(ii) Animals with such a life cycle are called semelparous.

a) Insects typically die after lying eggs but their life-cycle may range from several days (e.g. house
flies) to 13–17 years (cicads).

b) Similar life cycle is observed in some species of fish, such as the Pacific salmon or European eel. For
instance, the latter lives 10-15 years in freshwater European lakes, migrates to the Sargasso Sea, spawns
and dies.

c) Some mammals, such as marsupials, ovulate once per year and produce a single litter. There occurs
abrupt and total mortality of males after mating. The births in the population are synchronized to within
a day or two, which is related to the environment with predictable ’bloom’ of insects in a given season
of the year.

(iii) On the other hand, a species is called iteroparous if it is characterized by multiple reproductive cycles
over the course of its lifetime. Such populations can be modelled by difference equations if the breeding
only occurs during short, regularly spaced breeding periods. It is typical for birds. For instance, females
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of the Greater Snow Geese lay eggs between 8th–20th of June (peak occurs at 12th–17th of June) and
practically all eggs hatch between 8th and 13th of July.

From the modelling point of view it is important to distinguish between populations in which all adults die
immediately after the breeding season and populations in which individuals can survive several generations.
As we said earlier,

• monocarpic plants, cicads, most insects and some fish species have non-overlapping generations,

• in birds’ populations, such as the Snow Geese we observe overlapping generations.

In the first case as well as in the cases with overlapping generations, but with no significant differences
between generations, we often can model the population by a single, first order in time, equation. Occurrence
of significant differences between generations leads to the so-called structured models which will be discussed
later.

2.2 Exponential growth

Possibly the simplest way to describe a population is to provide information of how its size (number of
individuals) changes in time. If we take the census of adults in a population in fixed time intervals, say,
immediately after the breeding season, then we obtain a sequence of numbers

P (0), P (1), . . . , P (k)

where P (k) is the number of adults just after the k-th breeding season. This approach makes sense in the
models described above; that is, if the population has well defined breeding seasons.

The simplest assumption to make is that there is a functional dependence between subsequent generations

P (k + 1) = R(P (k))P (k), k = 0, 1, . . . , (2.2.1)

where R(P (k)) is the (density dependent) net growth rate. Then the simplest case of (2.2.1) is when R(P ) =
R0, that is,

P (k + 1) = R0P (k), k = 0, 1, . . . (2.2.2)

The exponential (or Malthusian) equation (2.2.2) well describes populations which are completely homoge-
neous with characteristics of the environment and individual members constant over time. Moreover, the
ratio of females to males remains the same in each breeding season. This allows to describe the population
by only giving the number of females. Further

• Each member of the population produces on average the same number of offspring;

• Each member has an equal chance of dying and death only can occur after giving birth;

• Age differences between members of the population can be ignored;

• The population is isolated - there is no immigration or emigration.

Under these assumptions the net growth rate R0 is given as

R0 = 1 + β − µ.

Here β is the average number of offspring per member of the population in each season; it is called the
fecundity or fertility. The constant µ is the probability that an individual will die after giving birth and
before the next census; it is called the per capita death rate. Thus, (2.2.2) can be written as

P (k + 1) = P (k) + βP (k) − µP (k), (2.2.3)

which expresses the basic principle of population modelling in discrete time:
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The number of individuals in the k + 1th census equals the population in the kth census + the
total number of births in the population between the censuses − the total number of deaths in the
population between the censuses.

Remark 2.1. Note that, strictly speaking, the model (2.2.3) describes the situation in which all neonates
survive till the breeding season. It is an unrealistic assumption but the model allows for some flexibility.
We can accommodate the situation in which any individual can die between breeding seasons by modifying
(2.2.3)

P (k + 1) = P (k) + β(1 − µ0)P (k) − µ0(1 − µ1)P (k) − µ1P (k), (2.2.4)

where µ0 is the probability that an individual will die from natural causes before the breeding season while
µ1 is the per capita death rate due to giving birth. The constant β(1 − µ0) is the (effective) per capita
birth rate. It is a very important parameter from the population point of view since for the survival of the
population it is not only important what is the natural fertility of a female; that is, how many births she
can give each season, but also how many of the survive on average till the next breeding season. We note
that (2.2.3) will describe a population with no overlapping generations if µ1 = 1; that is, if all adults die just
after giving birth.

It is important to recognize that mathematically this model is the same (2.2.2) the interpretation of R0,
however, changes. This becomes important when we try to validate the model using experimental data.

Changes due to migrations can be incorporated but the structure of the equation may not persist – e.g. they
are not necessarily proportional to the total population.

Clearly,
P (k) = Rk

0P (0), k = 0, 1, 2 . . . (2.2.5)

and if R0 < 1, then the population decreases towards extinction, but with R0 > 1 it grows indefinitely.
Such behaviour over long periods of time is not observed in any population so it is clear that the model is
over-simplified and requires corrections. However, it is often valid over short time intervals and can bring
some demographical insights.

2.3 The death rate µ and the average lifespan of an individual

Using the concept of the death rate we can derive an important characteristic of a population – the expected
life span of its individuals. Denote by p(k) the probability that an individual, born at k = 0 is alive at time
k. In order to be alive at time k, it had to be alive at time k − 1 and could not die between k − 1 and k.
Assuming that the probability of dying is constant in time and using the conditional probability formula we
arrive at

p(k) = (1 − µ)p(k − 1), p(0) = 1,

where µ is the probability that an individual dies, for whatever reason, between the censuses (in model
(2.2.4), µ = µ0(1 − µ1) + µ1). Thus

p(k) = (1 − µ)k. (2.2.6)

The average lifespan L is the expected duration of life. To find it we observe that to die exactly at time k,
an individual must be alive at time k − 1 and die in the interval (k − 1, k], which occurs with probability
µp(k−1) = µ(1−µ)k−1. It also can be explained as follows: in the first year a proportion µ of the population
dies and 1 − µ survives, then after the second year a proportion µ of them die; that is, µ(1 − µ) fraction of
the initial population dies before the 2nd census while (1 − µ)2 survives beyond the second birthday, etc.
Thus, the average life span is given by

L = µ

∞
∑

k=1

k(1 − µ)k−1 = −µ d

dµ

1 − µ

1 − (1 − µ)
=

1

µ
, (2.2.7)

where we used
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∞
∑

k=1

kzk−1 =
d

dz

∞
∑

k=1

zk =
d

dz

z

1 − z

for z = 1 − µ.

2.4 Basic nonlinear models

In real populations, some of the β offspring produced by each adult will not survive to be counted as adults
in the next census. Let us denote by S(P ) the survival rate; that is, the fraction of newborns that survives
till the next breeding season.

If we consider, for simplicity, populations with no overlapping generations, then the Malthusian equation
will is replaced by

P (k + 1) = βS(P (k))P (k), k = 0, 1, . . . (2.2.8)

which may be alternatively written as

P (k + 1) = R(P (k))P (k) = f(P (k)), k = 0, 1, . . . (2.2.9)

where R(P ) is the (effective) per capita production of a population of size P . If S(P ) is independent of P ,
then (2.2.8) is the same as (2.2.4) with S = 1 − µ0; that is, with an adjusted birth rate, and with µ1 = 1.
However, in general we have a density dependent S which leads to nonlinear equations. However, before
introducing basic examples, we discuss typical types of behaviour in such populations.

The survival rate S in (2.2.8) reflects the intraspecific (within-species) competition for some resource (typi-
cally, food or space) which is in short supply. The three main (idealized) forms of intraspecific competition
are, [6],

• No competition; then S(P ) = 1 for all P .

• Contest competition: here there is a finite number of units of resource. Each individual who obtains one
of these units survives to breed, and produces β offspring in the subsequent generations; all others die
without producing offspring. Thus S(P ) = 1 for P ≤ Pc and S(P ) = Pc/P for P > Pc for some critical
value Pc.

• Scramble competition: here each individual is assumed to get equal share of a limited resource. If this
amount is sufficient for survival to breeding, then all individuals survive and produce β offspring each;
if its is not sufficient, then all of them die. Thus, S(P ) = 1 for P ≤ PC and S(P ) = 0 if P > PC for a
critical value PC (PC is different from Pc).

These ideal situations do not occur in real populations: real data are not easily classified in terms of the
contest or scramble competition. Threshold density is not usually seen, zero survival is unrealistic, at least
for large populations. Thus, a similar classification is done on the basis of asymptotic behaviour of S(P ) (or
f(P )) as P → ∞.

1. Contest competition corresponds to exact compensation:

lim
P→∞

f(P ) = c (2.2.10)

for some constant c (or S(P ) ∼ cP−1 for large P ). This describes the situation if the increased mortality
compensates exactly any increase in numbers and thus only the predetermined number of individuals in
the population can survive.

2. The other case is when
S(P ) ∼ c/P b, P → ∞. (2.2.11)

Here we have
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Under-compensation if 0 < b < 1; that is, when the increased mortality less than compensates for the
increase for increase in numbers;

Over-compensation if b > 1.

In general, if b ≈ 1, then we say that there is a contest, and a scramble if b is large. Indeed, in the first
case, f(P ) eventually levels-out at a nonzero level for large populations which indicates that the population
stabilizes by rejecting too many newborns. On the other hand, for b > 1, f(P ) tends to zero for large
populations which indicates that the resources are over-utilized leading to eventual extinction.

We note that the linear case, S(P ) = 1 − µ0 ≥ 0, does not really fit into this description which is designed
to model the response of the environment to the increasing population. However, we see that the case
1 − µ0 < 1/β is over-compensatory, as the population eventually dies out. On the other hand, the case
1 − µ0 > 1/β is under-compensatory as the population grows indefinitely.

We introduce most typical nonlinear models.

Beverton-Holt type models

Let us look at the model (2.2.9)

P (k + 1) = R(P (k))P (k), k = 0, 1, . . . ,

where R(P (k)) = βS(P (k)). To exhibit compensatory behaviour, we should have PS(P ) ≈ const. Also,
for small P , S(P ) should be approximately 1 as we expect very small intra-species competition so that the
growth should be exponential with the effective birth rate given by fertility β. A simple function of this form
is

S(P ) =
1

1 + aP

leading to

P (k + 1) =
βP (k)

1 + aP (k)
. (2.2.12)

If we introduce the concept of carrying capacity of the environment K and assume that the population
having reached K, will stay there; that is, if P (k) = K for some k, then P (k +m) = K for all m ≥ 0, then

K(1 + aK) = βK (2.2.13)

leading to a = (β − 1)/K and the resulting model, called the Beverton-Holt model, takes the form

P (k + 1) =
βP (k)

1 + β−1
K P (k)

. (2.2.14)

As we said earlier, this model is compensatory.

A generalization of this model is called the Hassell or again Beverton-Holt model, and reads

P (k + 1) =
βP (k)

(1 + aP (k))b
. (2.2.15)

It exhibits all types of compensatory behaviour, depending on b. For b > 1 the models describes scramble
competition, while for b = 1 we have contest.

Substitution x(k) = aP (k) reduces the number of parameters giving

x(k + 1) =
βx(k)

(1 + x(k))b
(2.2.16)

which will be analysed later.

If the justification of the Beverton-Holt equation given in this section seems not very convincing, an alter-
native derivations will be presented in Subsection 3.2 and also in Subsection 5.2.
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The logistic equation

The Beverton-Holt models are best applied to semelparous insect populations but was also used in the
context of fisheries. For populations surviving to the next cycle it it more informative to write the difference
equation in the form

P (k + 1) = P (k) +R(P (k))P (k), (2.2.17)

so that the increase in the population is given by R(P ) = βS(P ). Here we assume for simplicity that no
adults die (such deaths can be incorporated by subtracting the term µP (k) from the right hand side of
the equation but this will not change the structure of the equation). Below we will show another way of
incorporating death into the equation.

As with the Beverton-Holt model, we will use the Ockham razor principle to write down the equation. Indeed,
the function R can have different forms but must satisfy the requirements:

(a) Due to overcrowding, R(P ) must decrease as P increases until P equals the carrying capacity K; then
R(K) = 0 so that, as above, P = K stops changing.

(b) Since for P much smaller than K there is small intra-species competition, we should observe an expo-
nential growth of the population so that R(P ) ≈ β as P → 0; here R0 is called the unrestricted birth
rate of the population.

Constants β and K are usually determined experimentally.

The simplest function satisfying these requirements is a linear function which, to satisfy (a) and (b), must
be chosen as

R(P ) = − β

K
P + β.

Substituting this formula into (2.2.17) yields the so-called discrete logistic equation

P (k + 1) = P (k) + βP (k)

(

1 − P (k)

K

)

, (2.2.18)

which is still one of the most often used discrete equations of population dynamics.

In the context of insect population, where there are no survivors from the previous generation, the above
equation reduces to

P (k + 1) = βP (k)

(

1 − P (k)

K

)

. (2.2.19)

Both equations are mathematically equivalent. Indeed,

P (k) + βP (k)

(

1 − P (k)

K

)

= (1 + β)P (k)

(

1 − P (k)
1+β
β K

)

which is the right hand side of (2.2.19) with just different constants. Conversely, the right hand side of
(2.2.19) can be transformed to (2.2.18) provided β > 1.

While the above arguments may seem to be of bunny-out-of-the-hat type, it could be justified by generalizing
(2.2.3). Indeed, assume that the mortality µ is not constant but equals

µ = µ0 + µ1P,

where µ0 corresponds to death of natural caused and µ1 could be attributed to cannibalism where one adult
eats/kills on average µ1 portion of the population. Then (2.2.3) can be written as

P (k + 1) = (1 + β − µ0)P (k)

(

1 − P (k)
1+β−µ0

µ1

)

(2.2.20)



16 2 Unstructured models

which is (2.2.19), with β modified as β − µ0 and the carrying capacity K = 1 + β − µ0/µ1. A generalization
of this equation, obtained by a more flexible formula for the death rate,

µ = µ0 + µ1P
θ, θ > 0,

is the Bernoulli equation

P (k + 1) = P (k) + βP (k)

(

1 −
(

P (k)

K

)θ
)

, (2.2.21)

By substitution

x(k) =
β

1 + β

P (k)

K
, γ = 1 + β

we can reduce (2.2.18) to a simpler form

x(k + 1) = γx(k)(1 − x(k)) (2.2.22)

The problem with the discrete logistic equation is that large (close to K) populations can become negative
in the next step. For instance, for

P (k + 1) = P (k) + 4P (k)(1 − P (k))

beginning with P (0) = 0.9, we obtain P (1) = 1.26 and P (2) = −0.0504.

Although we could interpret a negative populations as extinct, this may not be the behaviour that would
actually happen. Indeed, the model was constructed so as to have P = K as a stationary population. Thus, if
we happen to hit exactly K, then the population survives but if we even marginally overshot, the population
becomes extinct.

One way to avoid such problems with negative population is to replace the density dependent survival rate
by

S(P (k)) =

(

1 − P (k)

K

)

+

. (2.2.23)

to take into account that S cannot be negative. However, this model also leads to extinction of the population
if it exceeds K which is not always realistic. We shall discuss other ways to circumvent this difficulty in the
following subsection.

Here, to conclude, we only observe that the logistic equation, especially with S given by (2.2.23), is an
extreme example of the scramble competition.

Ricker equation

Here we will try to find a model in which large values of P (k) produce very small, but still positive, values
of P (k + 1). Thus, a population well over the carrying capacity crashes to a very low levels, but survives.
Let us find a way in which this can be modelled. Consider the per capita population change

∆P

P
= R(P ).

First we note that it is impossible for R to be less than −1 - this would mean that an individual could
die more than once. We also need a decreasing R which is non-zero (= β) at 0. One such function can be
recovered from the Beverton-Holt model, another simple choice is an exponential shifted down by 1; that is,

∆P

P
= ae−bP − 1,

which leads to
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Fig. 2.1. The function f(x) = er(1−x/K) for r = 1.1 and K = 1.5.

P (k + 1) = aP (k)e−bP (k). (2.2.24)

If, as before, we introduce the carrying capacity K and require it to give stationary population, we obtain

b =
ln a

K

and, letting for simplicity ξ = ln a, we obtain the so-called Ricker equation

P (k + 1) = P (k)eξ(1−
P(k)
K

). (2.2.25)

We note that if P (k) > K, then P (k + 1) < P (k) and if P (k) < K, then P (k + 1) > P (k). The intrinsic

0.5 1.0 1.5 2.0 2.5 3.0
xk

0.5

1.0

1.5

2.0

2.5

3.0

xk+1

Fig. 2.2. The relation x(k + 1) = x(k)eξ(1−x(k)/K). The intersection of the graph of the function and the diagonal
gives the carrying capacity K.

growth rate β is given by β = eξ − 1 but, using the Maclaurin formula, for small ξ we have β ≈ ξ.

3 Discrete nonlinear population models from first principles

3.1 The Ricker equation in a continuous space framework, [3, 20].

The way we have introduced the Ricker equation may seem completely ad hoc. It follows, however, that it can
be derived from a set of assumptions describing a uniformly distributed population in which the reproductive



18 2 Unstructured models

success of an individual is adversely affected by other individuals staying in its close proximity. To do this,
first we must describe how to model the situation in which one may have various numbers of neighbours in
a fixed neighbourhood. The simplest way to do this is to use the so-called Poisson distribution.

Interlude – Poisson distribution.

Let us first assume that there are n individuals in a population and let p be the probability that one of them
happens to be in your neighbourhood. Under usual assumption of independence of individuals occurring in
the neighbourhood, the probability of having exactly r neighbours is given by the binomial formula

b(n, p; r) =

(

n
r

)

pr(1 − p)n−r.

Average number of neighbours is thus ω = np. This is intuitively clear and also can be checked by direct
calculation

ω =

n
∑

r=0

r

(

n
r

)

pr(1 − p)n−r = np

n−1
∑

r=0

(

n− 1
r − 1

)

pr−1(1 − p)n−r = np.

If we consider a potentially infinite population so that n grows to infinity in such a way that the average
number of neighbours ω stays constant (so p goes to zero), then the probability of having exactly r neighbours
is given by

p(r) = lim
n→∞

b(n, ω/n; r) = lim
n→∞

n!

r!(n− r)!

ωr

nr

(

1 − ω

n

)n−r

=
ωr

r!
lim
n→∞

n(n− 1) · . . . · (n− r + 1)

nr

(

1 − ω

n

)−r
(

(

1 − ω

n

)
n
ω

)ω

=
e−ωωr

r!
,

which is called the Poisson distribution.

Returning to our problem, we consider a population the size of which at time k is given by P (k). The
standard growth equation is (2.2.1)

P (k + 1) = R(P (k))P (k), k = 0, 1, . . . , (2.3.26)

where R gives the average number of offspring in the cycle. As mentioned before, we assume that the number
of offspring per individual decreases with the number of individuals living in its region, say, a disc D of area
s. A simple possible model is that the number of offspring per capita is given by bcr where b ≥ 0, 0 < c < 1,
where r is the number of neighbours in D. If we assume that the population is uniformly distributed in an
environment with area A, then the average number of individuals in D at time k is given by sP (k)/A and,
using the Poisson distribution, the probability of having r neighbours in D is

(sP (k))re−
sP (k)

A

Arr!

and the average number of offspring per individual is

R(P (k)) = be−
sP (k)

A

∞
∑

r=0

(csP (k))r

Arr!
= be−

s(1−c)P (k)
A .

Hence we obtain the Ricker model
P (k + 1) = bP (k)e−

s(1−c)P (k)
A .

Comparing this expression with (2.2.25) we see that the carrying capacity K can be expressed as

K =
A ln b

s(1 − c)
.

Since R(P ) tends to zero faster than any power of P , we see that the Ricker model describes a scramble
competition.



3 Discrete nonlinear population models from first principles 19

3.2 Ricker and Beverton-Holt models via site-based approach, [3].

There is a general framework which allows to derive most of the single species unstructured models by
assigning the probability distribution of resource sites’ occupation. Let us consider a habitat consisting of
N discrete resource sites. At time n a population of P (n) individuals is distributed and then reproduce.
Let hk be the proportion of sites accommodating k individuals. In general, it will be a function of both
P (n) and N . Once on site, the individuals reproduce and the success of reproduction; that is, the number
of offspring, denoted by φ(k), only depends on the number of individuals at the site. Then the difference
equation governing the growth of the population is

P (n+ 1) = N
∞
∑

k=0

hkφ(k). (2.3.27)

To be able to make use of this equation, we must specify the site occupation function hk and the maternity
function φ(k).

We consider two types of the site occupation function: uniform and preferential. In what follows we assume a
large population with a large number of sites, so that we can write the expected occupation to equal P (k)/N .

Uniform distribution. If individuals are uniformly distributed then, as in the above section, the probability
of finding k individuals at any given site is Poisson distributed:

hk =

(

P (n)
N

)k

e−
P(n)
N

k!

and (2.3.27) can be written as

P (n+ 1) = Ne−
P(n)
N

∞
∑

k=0

(P (n))
k

Nkk!
φ(k). (2.3.28)

Preferential distribution. To shorten notation, denote ω = P (k)/N . Assume that the sites are allocated at
random a value, say t ∈ R+, representing e.g. accessibility. We assume that the random variable defined as
the value of the site has a continuous probability density f . Then, we assume that the average occupation
of a site with value t is tω. If t was known then, as before, the number hk of occupants of the site would be
given by Poisson distribution (ωt)ke−ωt/k!. Since, however, the value of t is not known, hk will be given by

hk =

∞
∫

0

f(t)
(ωt)ke−ωt

k!
dt. (2.3.29)

The function f(t) is the probability density of the number of sites with value t and must be selected for each
particular case. Quite often it is assumed to be Gamma distributed; that is,

f(t) =
λλ

Γ (λ)
tλ−1e−λt

where λ is a positive parameter. Then

hk =

∞
∫

0

f(t)
(ωt)ke−ωt

k!
dt =

λλ

k!Γ (λ)ωλ

∞
∫

0

tλ+k−1e−tλ+ω
ω dt (2.3.30)

=
λλωk

k!Γ (λ)(λ + ω)λ+k

∞
∫

0

sλ+k−1e−sds =
λλωkΓ (k + λ)

k!Γ (λ)(λ + ω)λ+k
(2.3.31)

which is the so called negative binomial distribution. The formula for the growth of the population is then
given by
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P (n+ 1) = N
λλ

Γ (λ)(λ + P (n)/N)λ

∞
∑

k=0

(P (n)/N)kΓ (k + λ)

k!(λ+ P (n)/N)k
φ(k). (2.3.32)

The next step is to specify the offspring outcome at each site.

Scramble competition. Let as assume that each site contains resources to support one individual. Then

φk =

{

b ifk = 1,
0 otherwise,

where b is the number of offspring produced by a site containing only one individual. Substituting this into
(2.3.28), we obtain

P (n+ 1) = bP (n)e−
P(n)
N , (2.3.33)

which is the Ricker model. On the other hand, the negative binomial distribution gives

P (n+ 1) = b
λλ+1P (n)

Γ (λ)(λ+ P (n)/N)λ+1
, (2.3.34)

where we used Γ (λ + 1) = λγ(λ). Since λ > 0, this is the Hassel model (2.2.14). Note, that since we have
scramble competition, we cannot get here the basic Beverton-Holt model which is compensatory and thus
describes a contest competition.

Contest competition. Again we assume that each site can support one individual but, in contrast to the
scramble competition, if there are more individuals at the site, only one emerges victorious and the others
perish. Thus, the function φk is given by

φk =

{

b if k ≥ 1,
0 if k = 0,

where, as before, b is the number of offspring produced by one individual. Then the uniform distribution
gives

P (n+ 1) = bNe−
P(n)
N

∞
∑

k=1

(P (n))
k

Nkk!
= bN

(

1 − e−
P(n)
N

)

, (2.3.35)

which is the so-called Skellam model (not discussed in this book).

Let us consider the negative binomial distribution. We have

P (n+ 1) = bN
λλ

Γ (λ)(λ + P (n)/N)λ

∞
∑

k=1

(P (n)/N)kΓ (k + λ)

k!(λ+ P (n)/N)k
. (2.3.36)

Now, using the fact that Γ (k+λ) = λ(λ+1) · . . . · (λ+k−1)Γ (λ) and denoting z = (P (n)/N)/(λ+P (n)/N),
we get

∞
∑

k=0

Γ (k + λ)

k!
zk = Γ (λ)

∞
∑

k=0

λ(λ + 1) · . . . · (λ+ k − 1)

k!
zk = Γ (λ)(1 − z)−λ.

Now,

1 − z = 1 − P (n)/N

λ+ P (n)/N
=

λ

λ+ P (n)/N

and thus (2.3.36) can be written as

P (n+ 1) = bN
λλ

Γ (λ)(λ+ P (n)/N)λ
(

Γ (λ)λ−λ(λ+ P (n)/N)λ − Γ (λ)
)

= bN

(

1 − λλ

(λ+ P (n)/N)λ

)

.

Questions:
i) Think about the interpretation of λ in the context of this model.
ii) If the model represents a pest population, what interventions could you undertake to decrease the its size?
iii) For what λ the above equation gives to the Beverton-Holt model.
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If λ = 1, the above equation corresponds to the Beverton-Holt model (2.2.14). Indeed, in this case

P (n+ 1) = bN

(

1 − 1

(1 + P (n)/N)

)

=
bP (n)

1 + P (n)/N
.

We see that the carrying capacity is given by K = N(b− 1); that is, it is proportional to the number of sites
as well as to the per capita birth rate above the simple reproduction.

3.3 Allee type equations

In all previous models with density dependent growth rates the bigger the population (or the higher the
density), the slower the growth. However, in 1931 Warder Clyde Allee noticed that in small, or dispersed,
populations the intrinsic growth rate in individual chances of survival decrease which can lead to extinction of
the populations. This could be due to the difficulties of finding a mating partner or more difficult cooperation
in e.g., organizing defence against predators. Models having this property can also be built within the
considered framework by introducing two thresholds: the carrying capacity K and a parameter 0 < L < K
at which the behaviour of the population changes so that ∆P/P < 0 for 0 < P < L and P > K and
∆P/P > 0 for L < P < K. If

∆P/P = R(P ),

then the resulting difference equation is
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P (k + 1) = P (k) + P (k)R(P (k))

and the required properties can be obtained by taking R(P ) ≤ 0 for 0 < P < L and P > K and R(P ) ≥ 0
for L < P < K. To avoid negative populations we have to assume that PR(P ) + P ≥ 0, that is, R(P ) ≥ −1
for 0 ≤ P ≤ L.

A simple model like that is offered by choosing R(P ) = r(L− P )(P −K), where r is a parameter satisfying
0 < r < 1/LK so that

P (k + 1) = P (k)(1 + r(L − P (k))(P (k) −K)). (2.3.37)

A more detailed analysis of this model is referred to Section 6.6

An Allee type model by multiple time scales

Another model of this type, which can be justified by modelling looking of a mating partner or introducing a
generalist predator (that is, preying also on other species). Let us consider the latter, while the former model
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Fig. 2.4. The relation P (k + 1) = P (k) + P (k)R(P (k)

in continuous time is discussed in a subsection of Section 6.2. Assume that N(k) describes a population of
prey and H(k) describes the population of active predators at time k. The total population of predators P
is supposed to be constant in time and is subdivided into H(k) active (hungry) predators and S(k) satiated
predators

P = H(k) + S(k).

We assume that the prey population without the predator follows the logistic law with carrying capacity C
and unrestricted growth rate λ = β − µ. To model the predation process is modelled by the law of mass
action. It is the simplest and thus most often used way of describing nonlinear interactions and thus it
warrants a closer look. In the current context, it amounts to saying that one hungry predator in the unit
time can eat on average a fraction ξ of the prey population. Thus, H predators will consume ξNH prey. In
real modelling the the determining of the coefficient ξ is of paramount importance: it includes the probability
of a predator meeting a prey, efficacy of killing etc. Clearly, the model has many shortcomings, such as taking
account interactions between predators pursuing the same pray or finite capacity of the predator’s stomach,
but it has been successfully used in many a situation. With this understanding we write down the equation
for the prey population as

N(k + 1) = N(k) + λN(k)

(

1 − N(k)

C

)

− ξN(k)H(k).

We assume that the life cycle of predators is much longer than that of prey and we neglect the vital processes
in the predator population. Thus, the evolution of active predators is governed by the equation

H(k + 1) = H(k) + σS(k) − θN(k)H(k) − ζH(k)

= H(k) + σ(P −H(k)) − θN(k)H(k) − ζH(k).

Here σ is the proportion the satiated predators becomes hungry again (so that, as in (2.2.7), 1/σ is the
average duration of satiation). The second term gives the number of active predators becoming satiated due
to catching the prey from the prey population (note that we used a coefficient different than ξ – while ξNH
is the total amount of prey killed in one cycle, this amount can feed more or (less) than ξNH predators.
The last terms gives the number of active predators becoming inactive due to predation on other species. If
we introduce new variables as fractions of C and P , respectively, by N = xC and H = yP , then we obtain
the system

x(k + 1) = x(k) + λx(k)(1 − x(k)) − ξPx(k)y(k),

y(k + 1) = y(k) + σ(1 − y(k)) − θCx(k)y(k) − ζy(k). (2.3.38)

Note that the second equation only describes the changes in the number of predators due to hunting. If we
assume that the reproductive cycle of prey is, say, one year (e.g. antelopes), it is clear that the predator will
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hunt many times during this period. In other words, the state of y will change many times when k changes
to k + 1. It is then plausible to introduce another time scale for predators, say, n and write

y(n+ 1) = y(n) + σ(1 − y(n)) − θCx(k)y(n) − ζy(n). (2.3.39)

Note that here x(k) is treated as a constant. Assuming that y quickly settles close to the equilibrium
determined by solving

ȳ = ȳ + σ(1 − ȳ) − θCx(k)ȳ − ζȳ;

that is,

ȳ =
σ

σ + θCx(k) + ζ
, (2.3.40)

Substitution this into the first equation of (2.3.38) gives

x(k + 1) = x(k) + λx(k)(1 − x(k)) − σξPx(k)

σ + ζ + θCx(k)
(2.3.41)

which, returning to the old variable x(k) = N(k)/C

N(k + 1) = N(k)

(

1 + λ

(

1 − N(k)

C
− A

1 +BN(k)

))

(2.3.42)

where A = σξP/λ(σ + ζ) and B = θ/(σ + ζ).

Example 2.2. Using the results of Subsection 6.6 to guide our choice, we consider the following coefficients:
λ = 1.2, σ = ζ = 0.01, P = C = 1, θ = 0.1 and ξ = 3 so that (2.3.38) takes the form

x(k + 1) = x(k) + 1.2x(k)(1 − x(k)) − 3x(k)y(k),

y(k + 1) = y(k) + 0.01(1 − y(k)) − 0.1x(k)y(k) − 0.01y(k). (2.3.43)

Then the approximation (2.3.41) is given by

x(k + 1) = x(k) + 1.2x(k)(1 − x(k)) − 0.03x(k)

0.02 + 0.1x(k)
. (2.3.44)

Plotting the graph of

f(x) = 1.2x(1 − x) − 0.03x

0.02 + 0.1x
(2.3.45)

we get a graph of the required shape. Finally, we provide a numerical illustration that, in this case, the
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Fig. 2.5. Function f of (2.3.45): we see three equilibria, as required by the Allee model.

solution to (2.3.44) indeed is an approximation to the x-component of the solution to (2.3.43).
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Fig. 2.6. Comparison of the solution to (2.3.44) (large dots) with the x-component of the solution to (2.3.43) (small
dots). The initial conditions in both cases were x(1) = 0.5 and y(1) = 0.1.

3.4 Some explicitly solvable nonlinear population models

We complete this chapter by presenting some nonlinear models which can be explicitly solved by appropriate
substitutions. An important role is played, however, by the formula for solutions of linear equations.

Solvability of linear difference equations

The simplest difference equations are these defining geometric and arithmetic progressions:

x(n+ 1) = ax(n),

and
y(n+ 1) = y(n) + a,

respectively, where a is a constant. The solutions of equations are known to be

x(n) = anx(0),

and
y(n) = y(0) + na.

We shall consider the generalization of both these equations: the general first order difference equation,

x(n+ 1) = a(n)x(n) + g(n) (2.3.46)

with an initial condition x(0) = x0. Calculating first few iterates, we obtain

x(1) = a(0)x(0) + g(0),

x(2) = a(1)x(1) + g(1) = a(1)a(0)x(0) + a(1)g(0) + g(1),

x(3) = a(2)x(2) + g(2) = a(2)a(1)a(0)x(0) + a(2)a(1)g(0) + a(2)g(1) + g(2),

x(4) = a(3)x(3) + g(3)

= a(3)a(2)a(1)a(0)x(0) + a(3)a(2)a(1)g(0) + a(3)a(2)g(1) + a(3)g(2) + g(3).

At this moment we have enough evidence to conjecture that the general form of the solution could be

x(n) = x(0)

n−1
∏

k=0

a(k) +

n−1
∑

k=0

g(k)

n−1
∏

i=k+1

a(i) (2.3.47)
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where we adopted the convention that
n−1
∏

n
= 1. Similarly, to simplify notation, we agree to put

j
∑

k=j+1

= 0.

Then

x(n+ 1) = a(n)x(n) + g(n)

= a(n)

(

x(0)

n−1
∏

k=0

a(k) +

n−1
∑

k=0

g(k)

n−1
∏

i=k+1

a(i)

)

+ g(n)

= x(0)
n
∏

k=0

a(k) + a(n)
n−1
∑

k=0

g(k)
n−1
∏

i=k+1

a(i) + g(n)

= x(0)

n
∏

k=0

a(k) +

n−1
∑

k=0

g(k)

n
∏

i=k+1

a(i) + g(n)

n
∏

i=n+1

a(i)

= x(0)

n
∏

k=0

a(k) +

n
∑

k=0

g(k)

n
∏

i=k+1

a(i)

which proves that (2.3.47) is valid for all n ∈ N.

Two special cases

There are two special cases of (2.3.46) that appear in many applications. In the first, the equation is given
by

x(n+ 1) = ax(n) + g(n), (2.3.48)

with the value x(0) given. In this case
k2
∏

k=k1

a(k) = ak2−k1+1 and (2.3.47) takes the form

x(n) = anx(0) +
n−1
∑

k=0

an−k−1g(k). (2.3.49)

The second case is a simpler form of (2.3.48), given by

x(n+ 1) = ax(n) + g, (2.3.50)

with g independent of n. In this case the sum in (2.3.49) can be evaluated in an explicit form giving

x(n) =

{

anx(0) + g an−1
a−1 if a 6= 1,

x(0) + gn.
(2.3.51)

The Hassel–Beverton–Holt model

We recall that the Beverton–Holt equation, Eq. (2.2.15), can be simplified to

x(n+ 1) =
βx(n)

(1 + x(n))b
. (2.3.52)

While for general b this equation can display very rich dynamics, for b = 1 it can be solved explicitly. So, let
us consider

x(n+ 1) =
βx(n)

1 + x(n)
. (2.3.53)

The substitution y(n) = 1/x(n) converts (2.3.53) into

y(n+ 1) =
1

β
+

1

β
y(n).
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Using (2.3.51), we find

y(n) =
1

β

β−n − 1

β−1 − 1
+ β−ny0 =

1 − βn

βn(1 − β)
+ β−ny0

if β 6= 1 and
y(n) = n+ y0

for β = 1. From these equations, we see that x(n) → β − 1 if β > 1 and x(n) → 0 if β ≤ 1 as n → ∞.
It is maybe surprising that a population faces extinction if β = 1 (which corresponds to every individual
giving birth to one offspring on average). However, the density depending factor causes some individuals to
die between reproductive seasons which means that the population with β = 1 in fact decreases with every
cycle.

The logistic equation

In general, the discrete logistic equation does not admit closed form solutions and also displays a very rich
dynamics. However, some special cases can be solved by an appropriate substitution. We will look at two
such cases. First consider

x(n+ 1) = 2x(n)(1 − x(n)) (2.3.54)

and use substitution x(n) = 1/2 − y(n). Then

1

2
− y(n+ 1) = 2

(

1

2
− y(n)

)(

1

2
+ y(n)

)

=
1

2
− 2(y(n))2,

so that y(n+ 1) = 2(y(n))2. We see that if y0 = 0, then y(n) = 0 for all n ≥ 1. Furthermore, the solution y(n)
for n ≥ 1 does not change if we change the sign of y0. Thus, we can take |y0| > 0 as the initial condition. Then
y(n) > 0 for n ≥ 1 and we can take the logarithm of both sides getting, for n ≥ 1, ln y(n+1) = 2 ln y(n)+ln 2
which, upon substitution z(n) = ln y(n), becomes the inhomogeneous linear equation z(n+ 1) = 2z(n)+ln 2.
Using (2.3.51), we find the solution to be z(n) = 2nz0 + ln 2(2n − 1). Hence

y(n) = ez(n) = e2
n ln |y0|eln 2(2n−1) = y2

n

0 22
n−1,

where we dropped the absolute value bars as we rise y0 to even powers. Thus

x(n) =
1

2
−
(

1

2
− x0

)2n

22
n−1.

We note that for x0 = 1/2 we have x(n) = 1/2 for all n, so that we obtain a constant solution. In other
words, x = 1/2 is an equilibrium point of (2.5.83).

Another particular logistic equation which can be solved by substitution is

x(n+ 1) = 4x(n)(1 − x(n)). (2.3.55)

First we note that since f(x) = 4x(1 − x) ≤ 1 for 0 ≤ x ≤ 1, we have 0 ≤ x(n + 1) ≤ 1 if x(n) has this
property. Thus, assuming 0 ≤ x0 ≤ 1, we can use the substitution

x(n) = sin2 y(n) (2.3.56)

which yields

x(n+ 1) = sin2 y(n+ 1) = 4 sin2 y(n)(1 − sin2 y(n))

= 4 sin2 y(n) cos2 y(n) = sin2 2y(n).

This gives the family of equations

y(n+ 1) = ±2y(n) + kπ, k ∈ Z.
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However, bearing in mind that our aim is to find x(n) given by (2.3.56) and using the periodicity and
symmetry of the function sin2, we can discard kπ as well as the minus sign and focus on y(n+ 1) = 2y(n).
This is a geometric progression and we get y(n) = C2n, where C ∈ R is arbitrary, as the general solution.
Hence

x(n) = sin2 C2n,

where C is to be determined from x0 = sin2 C. What is remarkable in this example is that, despite the
fact that there is an explicit formula for the solution, the dynamics generated by (2.3.55) is very irregular
(chaotic).

4 Continuous in time single species unstructured models

At a first glance it appears that it is impossible to model the growth of species by differential equations
since the population of any species always change by integer amounts. Hence the population of any species
can never be a differentiable function of time. However, if the population is large and it increases by one,
then the change is very small compared to a given population. Thus we make the approximation that large
populations change continuously (and even in a differentiable)in time and, if the final answer is not an integer,
we shall round it to the nearest integer. A similar justification applies to our use of t as a real variable: in
absence of specific breeding seasons, reproduction can occur at any time and for sufficiently large population
it is then natural to think of reproduction as occurring continuously.

In this section we shall introduce continuous models derivation of which parallels the derivation of discrete
models above. We commence with exponential growth.

Let P (t) denote the size of a population of a given isolated species at time t and let ∆t be a small time
interval. As in the discrete case, the population at time t+ ∆t can be expressed as

P (t+∆t) − P (t) = number of births in ∆t− number of deaths in ∆t.

It is reasonable to assume that the number of births and deaths in a short time interval is proportional
to the population at the beginning of this interval and proportional to the length of this interval, so that
introducing birth and death rates β and µ, respectively, we obtain

P (t+∆t) − P (t) = β(t, P (t))P (t)∆t − µ(t, P (t))P (t)∆t. (2.4.57)

Taking r(t, P ) to be the difference between the birth and death rate coefficients at time t for the population
of size P we obtain

P (t+∆t) − P (t) = r(t, P (t))∆tP (t).

If we fix ∆t and take it as a unit time interval and drop the dependence on t, then the above equation is
exactly (2.2.9) with R(P ) = 1 + r(P ). Here, however, we assume that the change happens continuously, so
dividing by ∆t and passing with ∆t → 0 we arrive at the continuous in time counterpart of (2.2.9):

dP

dt
= r(t, P )P. (2.4.58)

To proceed, we have to specify the form of r.

4.1 Exponential growth

As before, the simplest possible r(t, P ) is a constant and in fact such a model is used in a short-term
population forecasting. So let us assume that r(t, P (t)) = r so that

dP

dt
= rP. (2.4.59)
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which has a general solution given by
P (t) = P (t0)er(t−t0), (2.4.60)

where P (t0) is the size of the population at some fixed initial time t0.

To be able to give some numerical illustration to this equation we need the coefficient r and the population
at some time t0. We use the data of the U.S. Department of Commerce: it was estimated that the Earth
population in 1965 was 3.34 billion and that the population was increasing at an average rate of 2% per year
during the decade 1960-1970. Thus P (t0) = P (1965) = 3.34× 109 with r = 0.02, and (2.4.60) takes the form

P (t) = 3.34 × 109e0.02(t−1965). (2.4.61)

To test the accuracy of this formula let us calculate when the population of the Earth is expected to double.
To do this we solve the equation

P (T + t0) = 2P (t0) = P (t0)e0.02T ,

thus
2 = e0.02T

and
T = 50 ln 2 ≈ 34.6 years.

This gives a good agreement with the estimated value of the Earth population in 2000, which was 6070 billion
(though we already observe that is is an overestimate). We see that it also agrees relatively well with the
observed data if we don’t go too far into the past. On the other hand, if we try to extrapolate this model into
a distant future, then we see that, say, in the year 2515, the population will reach 199980 ≈ 200000 billion.
To realize what it means, let us recall that the Earth total surface area 510072000 square kilometers, 70.8%
of which is covered by water, thus we have only 148940000 square kilometers to our disposal and there will
be only 0.7447m2 (86.3 cm × 86.3 cm) per person. Therefore we can only hope that this model is not valid

Fig 1.1. Comparison of actual population figures (points) with those obtained from equation (2.4.61).

for all times. Indeed, as for discrete models, it is observed that the linear model for the population growth
often is in good agreement with observations as long as the population is not too large. When the population
gets very large (with regard to its habitat), these models cannot be very accurate, since they don’t reflect
the fact that the individual members have to compete with each other for the limited living space, resources
and food available. It is reasonable that a given habitat can sustain only a finite number K of individuals,
and the closer the population is to this number, the slower is it growth.
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4.2 Logistic equation

Again, the simplest way to take this into account is to take r(t, P ) = r(K − P ) and then we obtain the
so-called continuous logistic model

dP

dt
= rP

(

1 − P

K

)

, (2.4.62)

which proved to be one of the most successful models for describing a single species population. Alternatively,
as in the discrete case, we can obtain (2.4.62) by taking in (2.4.57) constant birth rate β but introduce density
dependent mortality rate

µ(P ) = µ0 + µ1P.

The increase in the population over a time interval ∆t is given by

P (t+∆t) − P (t) = βP (t)∆t − µ0P (t)∆t− µ1P
2(t)∆t

which, upon dividing by ∆t and passing with it to the limit, gives

dP

dt
= (β − µ0)P − µ1P

2

which is another form of (2.4.62).

A more general form of this equation is obtained by taking µ(P ) = µ0 + µ1P
θ for some positive constant θ

which leads to a continuous Bernoulli equation

dP

dt
= (β − µ0)P − µ1P

θ+1 (2.4.63)

Let us focus on the logistic equation (2.4.62). Since the right-hand side does not contain t, it is a separable
equation which, unlike its discrete counterpart, can be solved explicitly.

Let us start with some qualitative features. The constant in time solutions, corresponding to (2.2.13), are
obtained by solving (2.4.63) with the right-hand side equal to zero. This gives P = 0 and P = K. In other
words, the constant functions P (t) = 0 and P (t) = K are equilibria. We shall discuss them in more detail
in Section 6.1. We shall focus on solutions with the initial condition P (t0) > 0. Then, from general theory
(see Lemma 2.5) if P (t0) < K, then P (t) stays between 0 and K. Similarly, if P (t0) > K, then the solution
stays always above K. With this information, we can proceed with solving the related Cauchy problem

dP

dt
= rP

(

1 − P

K

)

,

P (t0) = P0 (2.4.64)

Separating variables and integrating we obtain

K

r

P
∫

P0

ds

(K − s)s
= t− t0.

To integrate the left-hand side we use partial fractions

1

(K − s)s
=

1

K

(

1

s
+

1

K − s

)

which gives

K

r

P
∫

P0

ds

(K − s)s
=

1

r

P
∫

P0

(

1

s
+

1

K − s

)

ds

=
1

r
ln
P

P0

∣

∣

∣

∣

K − P0

K − P

∣

∣

∣

∣

.
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From the considerations preceding (2.4.64), if P0 < K, then P (t) < K for any t, and if P0 > K, then
P (t) > K for all t > 0. Therefore (K − P0)/(K − P (t)) is always positive and

r(t − t0) = ln
P

P0

K − P0

K − P
.

Exponentiating, we get

er(t−t0) =
P (t)

P0

K − P0

K − P (t)

or
P0(K − P (t))er(t−t0) = P (t)(K − P0).

Bringing all the terms involving P to the left-hand side and multiplying by −1 we get

P (t)
(

P0e
r(t−t0) +K − P0

)

= P0Ke
r(t−t0),

thus finally

P (t) =
P0K

P0 + (K − P0)e−r(t−t0)
. (2.4.65)

Let us examine (2.4.65) to see whether we obtained the population’s behaviour predicted by qualitative
analysis (which helps to ensure that we havn’t made any mistake solving the equation). First observe that
we have

lim
t→∞

P (t) = K,

hence our model correctly reflects the initial assumption that K is the maximal capacity of the habitat.
Next, we obtain

dP

dt
=

rP0K(K − P0)e−r(t−t0)

(P0 + (K − P0)e−r(t−t0))2

thus, if P0 < K, the population monotonically increases, whereas if we start with the population which is
larger then the capacity of the habitat, then such a population will decrease until it reaches K. Also

d2P

dt2
= r

d

dt
(P (K − P )) = P ′(K − 2P ) = P (K − P )(K − 2P )

from which it follows that, if we start from P0 < K, then the population curve is convex down for P < K/2
and convex up for P > K/2. Thus, as long as the population is small (less then half of the capacity), then the
rate of growth increases, whereas for larger population the rate of growth decreases. This results in the famous
logistic or S-shaped curve which is presented below for particular values of parameters r = 0.02,K = 10 and
t0 = 0, resulting in the following function:

P (t) =
10P0

P0 + (10 − P0)e−0.2t
.
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Fig 2.3 Logistic curves with P0 < K (dashed line) and P0 > K (solid line) for K = 10 and r = 0.02.

To show how this curve compare with the real data and with the exponential growth we take the experimental
coefficients K = 10.76 billion and r = 0.029. Then the logistic equation for the growth of the Earth population
will read

P (t) =
P0(10.76 × 109)

P0 + ((10.76 × 109) − P0)e−0.029(t−t0)
.

We use this function with the value P0 = 3.34 × 109 at t0 = 1965. The comparison is shown on Fig. 2.4.

Fig 2.4 Human population on Earth. Comparison of observational data (points), exponential growth (solid line) and
logistic growth (dashed line).

4.3 Continuous Allee model

The argument used in deriving discrete Allee models can be used to derive equations describing a similar
behaviour in continuous time. In this way we can obtain the simplest model

dP (t)

dt
= r(L − P (t))(P (t) −K))P (t). (2.4.66)

To derive a more complex model corresponding to (2.3.42), we provide an analogue of the quasi steady state
argument in continuous time. However, for diversity, we consider a different model in which females search
for a mate, see e.g. [24].

An Allee model from a ‘female searching for a mate’ model

We consider a spatially homogeneous population inhabiting a certain area. We assume the constant one-to-
one sex ratio so that we are not going to model explicitly the male population. The density of the female
population is denoted by P.

As mentioned earlier, in many cases the population models, in which only the increase in the density of
the population has a negative impact on the demography of the population, are inadequate. For instance,
it has been observed that often the sparsity of the population may have a detrimental effect. Earlier we
presented an example of such a population in which the Allee effect was a result of being preyed upon by a
fast generalist predator. Here we will present another model of this type, describing a population of females
who have to look for a mate. The total population density is subdivided as
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P = P1 + P2,

where P1 denotes the density of females who recently have mated and P2 denotes the density of females who
are searching for a mate. We assume that females reproduce in a very short time after mating. Then the
population can be described by a typical mass action coupled model

dP1

d t
= βP1 − (µ+ νP )P1 − σP1 + ξPP2,

d P2

d t
= −(µ+ λ+ νP )P2 + σP1 − ξPP2.

(2.4.67)

Here β denotes the per capita reproduction rate of recently mated females, µ + νP denotes the per capita
mortality rate of recently mated females, µ+λ+νP denotes the per capita mortality rate of females searching
for a mate, σ denotes the rate at which the females switch from the reproductive stage to the searching stage
and ξP denotes the per capita rate at which a searching female finds one out of P potential mates. Note the
increased mortality rate of the searching females, which is attributed to the fact that such females have to
leave their shelters and travel, increasing thus risk of being, say, killed by predators.

Identifying different time scales is a little different than in the discrete case. Here, the ratio of the time scales
will appear as a small parameter in the system. However, the first step in both cases is adimensionalization
of the system; that is, finding typical time and size scales. Arguing as in the discrete case, Section 2.3, since
µ is the natural mortality rate, 1/µ is the average life span of individuals without external influence. Hence
it is natural to measure time in the units of the average life span and to do this, we introduce new time
s = µt; that is, the average life span of an individual is of order 1. Using this time, we obtain d

dt = µ d
ds and

the system can be written as

µṖ1 = βP1 − (µ+ νP )P1 − σP1 + ξPP2,

µṖ2 = −(µ+ λ+ νP )P2 + σP1 − ξPP2,

where now ˙ denotes the differentiation with respect to s. Similarly, thinking about the population without
searching females, P = P1, we see that the carrying capacity K can be taken as

K =
β − µ

ν
,

where we assume β − µ > 0. Then we have

µṖ1 = (β − µ)P1

(

1 − P

K

)

− σP1 + ξPP2,

µṖ2 = −(µ+ λ+ νP )P2 + σP1 − ξPP2.

(2.4.68)

Taking the carrying capacity as our reference population size and setting P1 = xK and P2 = yK, we obtain
our system in dimensionless form,

µẋ = (β − µ)x(1 − (x+ y)) − σx+ ξKy(x+ y),

µẏ = −(µ+ λ+ νK(x+ y))y + σx − ξKy(x+ y).

Let us denote ε = µ
σ . Arguing as with µ, we see that 1

σ is the average time of satiation after mating; that is,
the average time a female stays in the first population. Thus

ε =
1
σ
1
µ

;

that is, ε is the ratio of average time of satiation to the average life span. Hence, in many cases ǫ can be
considered to be a very small parameter. Denoting further R0 = β

µ , we can write our system in the form

ẋ = (R0 − 1)x(1 − (x+ y)) +
ξK

µ
y(x+ y) − 1

ǫ
x,

ẏ = −
(

1 +
λ+ νK(x+ y)

µ

)

y − ξK

µ
y(x+ y) +

1

ǫ
x,

(2.4.69)
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supplemented by the initial conditions

x(0) =
◦
x, y(0) =

◦
y . (2.4.70)

Adding equations in (2.4.69) and denoting z = x+ y, we obtain

ż = x(R0 − 1)(1 − z) −
(

1 +
λ+ νKz

µ

)

(z − x),

ǫẋ = ǫ(R0 − 1)x(1 − z) + ǫ
ξK

µ
(z − x)z − x

z(0) =
◦
z=

◦
x +

◦
y, x(0)=

◦
x, (2.4.71)

The so-called quasi steady state approximation amounts to saying that since ǫ is very small, we can set it
equal to zero. This converts the second equation of (2.4.71) into an algebraic equation the solution of which
(here x = 0) is substituted into the first equation creating a simpler dynamical system which, under certain
conditions, provides a reasonable approximation of the original system. We shall proceed with the quasi
steady approximation in a purely formal manner; the justification of the presented steps is based on the
Tikhonov theorem, see [1].

Hence, setting ǫ = 0 in the second equation of (2.4.71), getting x = 0 and thus the first equation becomes

ż = −
(

1 +
λ+ νKz

µ

)

z, z(0) =
◦
z . (2.4.72)

While it can be proved that the solution of (2.4.72), together with x = 0, provide a good approximation of
(2.4.71), they describe rather uninteresting dynamics in which the population P1 disappears and the total
population has only one equilibrium, equal to zero, and hence cannot display the Allee effect. A biological
reason for this is that our assumption of ǫ means that the mated females quickly return to active life, but
cannot easily find a new mate. This creates a significant imbalance between P1 and P2, with P1 becoming
small. Since only the P1 population produces offspring, the population could become extinct. We can surmise
that for a balanced population, the rate at which a searching female finds a mate should be comparable with
the rate she rests after reproduction. In other words, a female should be able to find a mate soon after she
is ready for reproduction. Thus, a good candidate for another small parameter is ξ. We also note that the
parameters R0,K, ν refer to the demography of the whole population and therefore they should not have
any relation to σ. Another parameter which could be related to σ is λ – it is not unnatural to consider the
additional death rate due to searching for a mate to have the same order as σ. We shall look at this case
later.

Thus, writing ξ/µ = ξσ/µσ = ξ/σǫ = ξ̄/ǫ , we consider

ż = (z − y)(R0 − 1)(1 − z) −
(

1 +
λ+ νKz

µ

)

y,

ẏ = −
(

1 +
λ+ νKz

µ

)

y − ξ̄K

ǫ
yz +

1

ǫ
(z − y),

z(0) =
◦
z, y(0)=

◦
y . (2.4.73)

The right hand side of the first equation can be simplified as follows

(z − y)(R0 − 1)(1 − z) −
(

1 +
λ+ νKz

µ

)

y = (R0 − 1)z(1 − z) − β + λ

µ
y

so that we finally consider

ż = (R0 − 1)z(1 − z) − β + λ

µ
y,

εẏ = −ǫ
(

1 +
λ+ νKz

µ

)

y − ξ̄Kyz + z − y,

z(0) =
◦
z, y(0) =

◦
y . (2.4.74)
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Using the quasi steady state approximation and setting ǫ = 0, we get

y =
z

1 + ξ̄Kz
. (2.4.75)

Hence, approximating equation for z is given by

ż = (R0 − 1)z(1 − z) − β + λ

µ

z

1 + ξ̄z
. (2.4.76)

Returning to the original notation, we find that (2.4.76) can be written as

dP (t)

dt
= λP (t)

(

1 − P (t)

C
− A

1 +BP (t)

)

, (2.4.77)

where

λ = µ(R0 − 1) = β − µ, C = K =
β − µ

ν
, A =

β + λ

µ(R0 − 1)
=
β + λ

β − µ
, B =

ξ̄

K
=

νξ̄

β − µ
.

As we shall see in Section 6.2, there is a range of parameters for which (2.4.77) describes an Allee dynamics.
The accuracy of the approximation is illustrated on Fig. 2.7. As we noted earlier, one can argue that the
additional death rate λ, corresponding to the searching of mates, could be of the same order as σ. Then
(2.4.69) can be written as

ẋ = (R0 − 1)x(1 − (x+ y)) +
ξ̄K

ǫ
y(x+ y) − 1

ǫ
x,

ẏ = −
(

1 +
νK

µ
(x+ y)

)

y − λ̄+ ξ̄K(x+ y)

ǫ
y +

1

ǫ
x,

(2.4.78)

with
x(0) =

◦
x, y(0) =

◦
y, (2.4.79)

where λ = λ̄σ so that λ̄/ǫ = λ/µ. If we multiply both equations by ǫ and let ǫ = 0 we find

ξ̄Ky(x+ y) − x = 0,

−(λ̄+ ξ̄K(x+ y))y + x = 0 (2.4.80)

which has the unique solution (x, y) = (0, 0). It is not exactly the situation we encountered earlier, but it
can be indeed proved that the solution to (2.4.78) converges exponentially to (0, 0) as ǫ→ 0. This is not an
unreasonable result - the increasing death rate in the N2 population combined with the fast rate of transfer
of females from N1 to N2 drives the population to zero even faster than in the first case, when the reason
for the extinction was the non-breeding N1 part of the population becoming too large.

5 From discrete to continuous models and back.

5.1 Discretization of continuous models

As we have seen, continuous models are obtained using the same principles as corresponding discrete mod-
els. In fact, a discrete model (represented by a difference equation) is an intermediate step in deriving a
corresponding differential equation. The question arises whether, under reasonable circumstances, discrete
and continuous models are equivalent in the sense that they give the same solutions (or at least, the same
qualitative features of the solution) and whether there is one-to-one correspondence between continuous and
discrete models.
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Fig. 2.7. Comparison of the total female population z, given by (2.4.74) with the approximation provided by (2.4.76)
for ǫ = 0.018 (top) and ǫ = 0.014 (bottom).

There are several ways of discretization of differential equations. We shall use two most commonly used.
The first one is similar to standard numerical analysis practice of replacing the derivative by a difference
quotient:

df

dt
≈ f(t+∆t) − f(t)

∆t
.

Another one is based on the observation that solutions of autonomous equations display the so-called semi-
group property: Denote by x(t, x0) the solution to the equation

x′ = g(x), x(0) = x0,

then
x(t1 + t2, x0) = x(t1, x(t2, x0)).

Thus,
x((n + 1)∆t, x0) = x(∆t, x(n∆t, x0)). (2.5.81)

This amounts to saying that the solution after n+1 time steps can be obtained as the solution after one time
step with initial condition given as the solution after n time steps. In other words, denoting x(n) = x(n∆t, x0)
we have
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x(n+ 1) = f∆t(x(n))

where f is an operation of getting solution of the Cauchy problem at ∆t with initial condition as its argument.

In further applications we shall take ∆t = 1.

Exponential growth

Let us start with the exponential growth

P ′ = rP, P (0) = P0

having the solution
P (t) = P0e

rt.

Let us denote by (p(k))k≥0 the solution of the discrete equation obtained by the Euler discretization

p(k + 1) − p(k) = rp(k)

with the solution
p(k) = (1 + r)kP0.

Clearly, this solution does not coincide with the solution P0e
rt for any value t = 1, 2, . . .. However, quali-

tatively these solutions are similar as both grow exponentially and one can be transformed to the other by
rescaling the growth rate. In other words the discrete Malthusian process with growth rate R0, see (2.2.5),
coincides with the continuous Malthusian growth with the growth rate r at any time t ∈ P if, instead of
R0 = 1 + r as above, we take R0 = er.

On the other hand, consider the second discretization, which amounts to assuming that we take census of
the population in evenly spaced time moments t0 = 0, t1 = 1, . . . , tk = k, . . . so that

p(k) = P (k) = erkP0 = (er)
k
P0. (2.5.82)

Comparing this equation with (2.2.5), we see that it corresponds to the discrete model with intrinsic growth
rate

R0 = er,

as before. However, with this discretization we do not need any rescaling.

Thus we can state that if we observe a continuously growing population in discrete unit time intervals and the
observed (discrete) intrinsic growth rate is R0, then the real (continuous) growth rate is given by r = lnR0.
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Logistic growth

Consider now the logistic equation

P ′ = rP

(

1 − P

K

)

.

Euler scheme for the logistic equation

The first discretization immediately produces the discrete logistic equation (2.2.18)

p(k + 1) = p(k) + rp(k)

(

1 − p(k)

K

)

,

solutions of which, as we shall see, behave in a dramatically different way that those of the continuous
equation, unlike the exponential growth equation.

We shall work with the simplified logistic differential equation

Y ′ = aY (1 − Y ), Y (0) = y0. (2.5.83)

We know that for, say, a = 4, the dynamics of the corresponding difference equation

y(n+ 1) = y(n) + 4y(n)(1 − y(n)) (2.5.84)

is chaotic and thus the latter cannot be used for numerical calculations of (2.5.83) as the solutions to (2.5.83)
are monotonic. This is shown in Fig. 2.8. Let us, however, write down the complete Euler scheme:

æ
æ

æ

æ
1 2 3 4

t

-20

-15

-10

-5

y

Fig. 2.8. Comparison of solutions to (2.5.83) with a = 4 and (2.5.84).

y(n+ 1) = y(n) + a∆ty(n)(1 − y(n)), (2.5.85)

where y(n) := y(n∆t) and y(0) = y0. Then

y(n+ 1) = (1 + a∆t)y(n)

(

1 − a∆t

1 + a∆t
y(n)

)

.

Substitution

x(n) =
a∆t

1 + a∆t
y(n) (2.5.86)

reduces (2.5.85) to
x(n+ 1) = γx(n)(1 − x(n)), (2.5.87)
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where γ = 1+a∆t. Thus, the parameter γ, which controls the long time behaviour of solutions to the discrete
equation (2.5.87), depends on ∆t and, by choosing a suitably small ∆t we can get solutions of (2.5.87) to
mimic the behaviour of solutions to (2.5.83). Indeed, by taking 1 + a∆t ≤ 3 we obtain the convergence of
solutions x(n) to the equilibrium

x = 1
a∆t

1 + a∆t
,

see Section 6.8. Reverting (2.5.86 ), we get the discrete approximation y(n) which converges to 1, as the
solution to (2.5.83). However, as seen on Fig 2.9, this convergence is not monotonic which shows that the
approximation is rather poor. This can be remedied by taking 1 + a∆t ≤ 2 in which case the qualitative
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Fig. 2.9. Comparison of solutions to (2.5.83) with a = 4 and (2.5.87) with γ = 3 (∆t = 0.5).

features of y(t) and y(n) are the same, see Fig. 2.10. This fact is proved in more detail in Remark 2.18.
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Fig. 2.10. Comparison of solutions to (2.5.83) with a = 4 and (2.5.87) with γ = 2 (∆t = 0.25).

These features of the discrete logistic model can, to a certain extent, be explained by interpreting it as a game
between the population and the environment, in which the response of the environment to the population
size y(n) comes only after the full time step, resulting in the population of y(n+ 1). It is then natural to
expect that the system is more likely to lose stability if the response times are long. On the other hand, in the
continuous logistic model the responses are instantaneous, resulting in its monotonic and smooth behaviour.

We note that above problems can be also solved by introducing the so-called non-standard difference schemes
which consists in replacing the derivatives and/or nonlinear terms by more sophisticated expressions which,
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though equivalent when the time step goes to 0 produce, nevertheless, qualitatively different discrete picture.
In the case of the logistic equation such a non-standard scheme can be constructed by replacing y2 not by
y2(n) but by y(n)y(n+ 1).

y(n+ 1) = y(n) = a∆t(y(n) − y(n)y(n+ 1)).

In general, such a substitution yields an implicit scheme but in our case the resulting recurrence can be
solved for y(n+ 1) producing

y(n+ 1) =
(1 + a∆t)y(n)

1 + a∆ty(n)

and we recognize the Beverton-Holt-Hassel equation with β = 1 + a∆t (and K = 1). We have seen in
Section 3.4 that (y(n))n∈N monotonically converges to an equilibrium and, as we shall see below, it exactly
follows the solution of the continuous logistic equation. In the spirit of the game interpretation of the model,
discussed above, this stability can be attributed to the fact that the environment response is based on the
input y(n)y(n+ 1) combining the previous and the current time instants, in contrast to (y(n))2 in the case
of the Euler discretization above.

To use the time-one map discretization, we re-write (2.4.65) as

P (t) =
P0e

rt

1 + ert−1
K P0

.

which, upon denoting er = β, gives the time-one map

P (1, P0) =
P0β

1 + β−1
K P0

,

which, according to the discussion above, yields the Beverton-Holt model

p(k + 1) =
βp(k)

1 + β−1
K p(k)

,

with the discrete intrinsic growth rate related to the continuous one in the same way as in the exponential
growth equation.

5.2 Discrete equations in continuous time models

In the previous section we have seen that often it is difficult to describe processes occurring in continuous
time using difference equations which, on the other hand, usually are easier to handle. Here we shall describe
two situations in which it is possible. First we discuss models with periodic coefficients. They yield to a
discrete time description, provided one is satisfied with only knowing the state of the system in time instants,
corresponding to the period of the coefficients. The second case concerns hybrid models, in which we have a
continuous repetitive process interspersed with instantaneous events at evenly spaced time intervals.

Discrete models of seasonally changing populations

So far we have considered models in which the laws of nature are independent of time. In most real processes
we have to take into account phenomena which depend on time, such as the seasons of the year. Here we use
the same modelling principles as in Section 4, but with time dependent birth and death coefficients β(t) and
µ(t). We also consider emigration, which also is supposed to be proportional to the total population, and
immigration, which is just a given flux of individuals into the system. Then, instead of (2.4.59), we have

N ′(t) = (β(t) − µ(t))N(t) − e(t)N(t) + c(t), (2.5.88)

where e is a (time dependent) per capita emigration rate and c is the global immigration rate.
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Closed systems.

Here we are interested in populations in which the coefficients change periodically with the same period,
e.g., with the seasons of the year. As we shall see, contrary to naive expectations, in general this assumption
does not yield periodic solutions. We start with a closed population, that is, we do not consider emigration
or immigration processes. As in Section 4, we define r(t) = β(t) − µ(t) to be the net growth rate of the
population and assume that it is a periodic function with a period T . Under this assumption, we introduce
the average growth rate of the population by

r̄ =
1

T

T
∫

0

r(t)dt. (2.5.89)

Hence, let us consider the initial value problem

P ′(t) = r(t)P (t), P (t0) = P0, (2.5.90)

the solution of which is given by

P (t) = P0e

t∫

t0

r(s)ds

. (2.5.91)

Since, by the periodicity of r,

t+T
∫

t0

r(s)ds =

t
∫

t0

r(s)ds+

t+T
∫

t

r(s)ds =

t
∫

t0

r(s)ds + r̄T,

we have
P (t+ T ) = P (t)er̄T

and hence the solution is not periodic. However, we may provide a better description of the evolution by
identifying a periodic component in it. In other words, let us try to find what is ‘missing’ in the function
R(t) :=

∫ t

t0
r(s)ds so that it is not periodic. We observe that

R(t+ T ) =

t+T
∫

t0

r(s)ds =

t
∫

t0

r(s)ds +

t+T
∫

t

r(s)ds = R(t) + r̄T,

so that
R(t+ T ) − r̄(t+ T − t0) = R(t) − r̄(t− t0),

and therefore the function R(t), complemented by −r̄(t− t0), becomes periodic.

Using this result, we can write

P (t) = P0e

t∫

t0

r(s)ds

= P0e
r̄(t−t0)Q(t), (2.5.92)

where

Q(t) = e

t∫

t0

r(s)ds−r̄(t−t0)

(2.5.93)

is a periodic function satisfying Q(t0) = 1.

In particular, if we observe the population in discrete time intervals of the length T , we get

p(k) := P (t0 + kT ) = P0e
r̄kTQ(t0) = P0[er̄T ]k,

which is the exponential discrete model with the growth rate given by er̄T .
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Remark 2.3. What we presented above is a simple case of the Floquet theory, see [10, 13], which deals with
systems of linear equations with periodic coefficients. The number er̄T is called the Floquet multiplier while
the exponent r̄ is called the Floquet exponent.

Since the function Q in (2.5.92) is periodic and continuous, it is bounded. Hence the solutions P (t) are
bounded if the Floquet exponent is non-positive and tend to the stationary point P = 0 if the Floquet
exponent is negative.

Open systems.

Consider next an open population described by

P ′(t) = r(t)P (t) + c(t), (2.5.94)

where r(t) = β(t)−µ(t)−e(t) and c(t) are continuous and periodic functions with period T . Let the constant
r̄ and the periodic function Q(t) be defined as in (2.5.89) and (2.5.93). Using the integrating factor, we find
the general solution to (2.5.94) to be

P (t) = e

t∫

t0

r(s)ds

P (t0) + e

t∫

t0

r(s)ds
t
∫

t0

e
−

u∫

t0

r(s)ds

c(u)du. (2.5.95)

If there is a periodic solution of period T , say P̄ , there should be an initial condition Po satisfying Po =
P̄ (t0) = P̄ (t0 + T ). Using (2.5.95), we obtain

Po = P̄ (t0) = e

t0+T∫

t0

r(s)ds

P̄ (t0)

+e

t0+T∫

t0

r(s)ds
t0+T
∫

t0

e
−

u∫

t0

r(s)ds

c(u)du.

For simplicity we assume r̄ 6= 0 (see [10] for a discussion of this case in full generality) . By (2.5.93),

P̄ (t0) =
er̄T

1 − er̄T

t0+T
∫

t0

e−r̄(u−t0)c(u)

Q(u)
du.

Let us define P̂ (t) = P̄ (t+ T ), where P̄ (t0) = Po. Then

P̂ ′(t) = P̄ ′(t+ T ) = r(t + T )P̄ (t+ T ) + c(t+ T )

= r(t)P̂ (t) + c(t)

and, since P̂ (t0) = P̄ (t0 +T ) = P̄ (t0) = Po, the uniqueness of solutions of linear differential equations yields

P̄ (t+ T ) = P̂ (t) = P̄ (t)

for any t ∈ R. Hence P̄ is periodic.

We know that the general solution to an inhomogeneous linear equation can be expressed as a sum of an arbi-
trary solution of the inhomogeneous equation and the general solution of the homogeneous equation. Hence,
since P̄ is a solution of the inhomogeneous equation (2.5.94) and the general solution of its homogeneous
version is given (2.5.92), we have

P (t) = Ker̄(t−t0)Q(t) + P̄ (t),

where K = P (t0) − Po. Finally

P (t) = (P (t0) − Po)er̄(t−t0)Q(t) + P̄ (t). (2.5.96)

This formula yields, in particular, that if r̄ < 0, then

lim
t→∞

(P (t) − P̄ (t)) = 0,

that is, with negative average growth rate, an arbitrary solution is asymptotically periodic.



42 2 Unstructured models

Hybrid models

In many cases the observed process appears as a combination of two different ones: one occurring continually
and the other in discrete time intervals. For instance, breeding happens in evenly spaced intervals but
an unrelated death may happen any time. Similarly to the periodic cases, such combined processes can
be described by discrete equations. We shall consider two such models, one leading to the Beverton-Holt
equation, while the other providing yet another derivation of the Ricker equation from more basic principles.

The Hassel-Beverton-Holt equation model.

Consider a population which reproduces once a year and the reproductive season is of a negligible length.
Let P (n) be the population size in the nth year immediately after the reproductive season. During the year,
outside the reproductive season, the population only is subjected to mortality and then the size p of the
population obeys the equation

p′ = −µ(p)p = −(µ0 + µ1p)p, p(0) = P (n), µ0, µ1 > 0,

where t denotes the time that has elapsed since the end of the previous reproductive season (with one year as
the time unit). Here, the death process is split into two parts: death from natural causes (aging) represented
by the death rate µ0 and death due to overcrowding, the per capita rate of which is given by µ1p. Thus, p(1)
gives the population after one year, immediately before the reproductive season. Then, after the reproductive
season, the population enters the next year with P (n+ 1) = βp(1) individuals, where β is the birth rate. To
solve the above equation, we separate variables and, integrating, we obtain

−t =

p(t)
∫

P (n)

ds

s(µ0 + µ1s)
=

1

µ0
ln
p(t)(µ0 + µ1P (n))

(µ0 + µ1p(t))P (n)
.

Exponentiating and solving for p(t) gives

p(t) =
µ0P (n)

µ0eµ0t + µ1P (n)(eµ0t − 1)

and, using the reproduction law,

P (n+ 1) = βp(1) =
βµ0P (n)

µ0eµ0 + µ1P (n)(eµ0 − 1)
.

We can rewrite it as

P (n+ 1) =
βe−µ0P (n)

1 + µ1(1−e−µ0 )
µ1

P (n)
. (2.5.97)

Question: Find the carrying capacity in this model and the condition on β that ensure the survival of the
population. Further, find the continuous logistic equation corresponding to this model.

The Ricker equation from a hybrid model.

We consider a model describing the size of a salmon population at the end of each spawning cycle. We
adopt the notation from the previous paragraph. However, the construction of the model is slightly different.
For simplicity, we assume that the breeding occurs at yearly intervals, numbered n = 0, 1, 2, . . . . The time
between breeding seasons will be denoted by t ∈ [0, 1]. We assume that the adults live for a short time
t ∈ [0, τ ], with τ << 1, after each breeding. This is the case for Pacific salmon (but not Atlantic salmon).
So, let P (n) denotes the population of adult salmon immediately after the and of the spawning season n
and thus at the beginning of the season n+ 1. Let us look at this season. During spawning the adult salmon
produce larvae which become adult by the end of the cycle; that is, at t = 1. The size of the population of
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larvae is denoted by pn(t) with 0 ≤ t ≤ 1. Let us assume that the number of produced larvae is proportional
to the adult population at the end of the previous season; that is,

pn(0) = βP (n).

Not all of these larvae become adult. The prevalent cause during 0 ≤ t ≤ τ is cannibalism by the adult salmon.
Again, a simple assumption is that the rate the larvae are eaten is proportional to the adult population and
to the larvae population (law of mass action) but here the number of adults by P (n) (we assume that during
this short time the death of natural causes is negligible). Thus, for t ∈ [0, τ ],

dpn(t)

dt
= −λP (n)pn(t), (2.5.98)

where λ > 0 is a constant. Using the initial condition above, we find

pn(t) = βP (n)e−λP (n)t. (2.5.99)

Even when all adults are gone, not all larvae survive till the next breeding season. Again, the simple assump-
tion is that a fraction γ of them will become adults. Thus

P (n+ 1) = γpn(τ) = γβP (n)e−λτP (n) (2.5.100)

which we recognize as the Ricker equation (2.2.24).

Let us modify the equation to cater for the Atlantic salmon. In this case, the adults do not die shortly after
spawning. Assume instead that they die at the constant rate µ (per capita per year). In such a case, equation
(2.5.99) is no longer correct as we cannot assume that the number P (n) is constant. Let Pn(t) be the amount
of adults alive at time t ∈ [0, 1] in the n-th cycle. Using the assumption, we find that

dPn(t)

dt
= −µPn(t), Pn(0) = P (n)

so that
Pn(t) = e−µtP (n). (2.5.101)

We no longer can separate the natural death of larvae from the death through cannibalism. Hence, using the
law of mass action and the exponential death rate γ as before, we rewrite (2.5.99) as

dpn(t)

dt
= −λP (n)pn(t)e−µt − γpn(t), pn(0) = βP (n). (2.5.102)

This is a separable equation whose solution is

pn(t) = βP (n)e−
λ
µ
P (n)(1−e−µt)e−γt. (2.5.103)

Thus, using the fact that at the beginning of the n+ 1 cycle the number of adults is given by the number of
surviving larvae (changing into adults) and the surviving adults (note that the surviving adults give birth
to larvae which are not adults!), we have

P (n+ 1) = pn(1) + Pn(1)

we find

P (n+ 1) = βP (n)e−
λ
µ
P (n)(1−e−µ)e−γ + e−µP (n) = e−µP (n)(e−

λ
µ
P (n)(1−e−µ) + 1) = e−µP (n)(Ae−BP (n) + 1)

for appropriate constants A and B.

Question: Find the carrying capacity of the environment and conditions ensuring the survival of the pop-
ulation in both cases.
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6 Qualitative theory for a single equation

In most cases it is impossible to find an explicit solution to a given differential, or difference, equation.
However, the power of mathematics lies in the fact that one often can deduce properties of solutions and
answer some relevant questions just by analyzing the right hand side of the equation.

6.1 Equilibria of first order equations

One of the typical problems in the theory of differential and difference equations is to determine whether
the system is stable, that is, whether if we allow it to run for a sufficiently long time (which, in the case
of difference equations, means many iterations), it will eventually settle at some state, which should be an
equilibrium.

In both difference and differential equations, by equilibria or stationary solutions we understand solutions
which are constant with respect to the independent variable. Since, however, in the differential equation

x′ = f(x) (2.6.1)

the right hand side describes the rate of change of a given quantity, whereas in the difference equation

x(n+ 1) = f(x(n)) (2.6.2)

the right hand side gives the amount of the quantity in the state n+ 1 in relation to the amount present in
the previous state, the theories are different and will be treated in separate subsections.

As we will see below, finding equilibria of equations is considerably easier than solving them. Thus, know-
ing that the system will converge to a particular equilibrium allows us to regard this equilibrium as an
approximation of solutions originating in its neighbourhood.

In the next subsections we will make these notions precise.

6.2 Stability of equilibria of autonomous differential equations

We recall that the word autonomous refers to the fact that f in (2.6.1) does not explicitly depend on time.
To have anything to talk about, we must ensure that (2.6.1) has solutions different from the equilibrium
solutions. This is settled by the Picard–Lindelöf theorem which asserts that if f is sufficiently regular, for
instance, differentiable on R, then the initial value problem

x′ = f(x), x(t0) = x0 (2.6.3)

has exactly one solution defined for t on some interval (tmin, tmax) containing t0. Furthermore, if the solution
is bounded at the endpoints, then it can be extended to a larger interval. It is possible that the solution only
is defined on a finite interval. However, if we can show that the solution is bounded on each finite interval of
its existence, then it is defined on R. In other words, if a solution to (2.6.3) with differentiable f is defined
only on an interval with a finite endpoint, then it must be unbounded at this endpoint.

For further discussion we fix attention by assuming that f is an everywhere defined function satisfying all
assumptions of the Picard–Lindelöf theorem on R.

In many problems it is important to emphasize the dependence of the solution on the initial conditions.
Thus we introduce the notion of the flow x(t, t0, x0) of (2.6.1), which is the solution of the Cauchy problem
(2.6.3). Here we only use t0 = 0 and then we write x(t, 0, x0) = x(t, x0).

If (2.6.1) has a stationary solution x(t) ≡ x∗ that, by definition, is constant in time, then such a solution
satisfies x′(t) ≡ 0 and consequently

f(x∗) = 0. (2.6.4)
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Conversely, if the equation f(x) = 0 has a solution, which we call an equilibrium point then, since f is
independent of time, such a solution is a number, say x∗. If we now consider a function defined by x(t) ≡ x∗,
then x′(t) ≡ 0. Consequently,

0 ≡ x′(t) ≡ (x∗)′ = f(x∗)

and such a function is a stationary solution. Summarizing, equilibrium points are solutions to the algebraic
equation (2.6.4) and, treated as constant functions, they are (the only) stationary, or equilibrium, solutions
to (2.6.1). Therefore usually we will not differentiate between these terms.

Next we give a definition of stability of an equilibrium.

Definition 2.4. 1. The equilibrium x∗ is stable if for given ǫ > 0 there is δ > 0 such that for any x0
|x0 − x∗| < δ implies |x(t, x0) − x∗| < ǫ for all t > 0. If x∗ is not stable, then it is called unstable.

2. A point x∗ is called attracting if there is η > 0 such that |x0 − x∗| < η implies lim
t→∞

x(t, x0) = x∗. If

η = ∞, then x∗ is called a global attractor or a globally attracting equilibrium.

3. The equilibrium x∗ is called asymptotically stable if it is both stable and attracting. If x∗ is globally
attracting, then it is said to be a globally asymptotically stable equilibrium.

Equilibrium points play another important role for differential equations – they are the only limit points of
bounded solutions as t→ ±∞. To make this precise, we begin with the following lemma.

Lemma 2.5. If x0 is not an equilibrium point of (2.6.1), then x(t, x0) is never equal to an equilibrium point.
In other words, f(x(t, x0)) 6= 0 for any t for which the solution exists.

Proof. An equilibrium point x∗ generates a stationary solution, given by x(t) ≡ x∗. Thus, if x(t1, x0) = x∗

for some t1, then (t1, x0) belongs to two different solutions, which contradicts the Picard theorem. ✷

From the above lemma it follows that if f has several equilibrium points, then the stationary solutions
corresponding to these points divide the (t, x) plane into horizontal strips having the property that any
solution always remains confined to one of them. We shall formulate and prove a theorem that strengthens
this observation.

Theorem 2.6. Let x(t, x0) be a non-stationary solution of (2.6.1) with x0 ∈ R and let Imax = (t−, t+) be its
maximal interval of existence. Then x(t, x0) is either a strictly decreasing or a strictly increasing function of
t. Moreover, x(t, x0) either diverges to +∞ or to −∞, or converges to an equilibrium point, as t → t±. In
the latter case t± = ±∞.

Proof. Assume that for some t∗ ∈ Imax the solution x(t) := x(t, x0) has a local maximum or minimum
x∗ = x(t∗). Since x(t) is differentiable, we must have x′(t∗) = 0 but then f(x∗) = 0 which makes x∗ an
equilibrium point of f . This means that a non-stationary solution x(t, x0) reaches an equilibrium in finite
time, which contradicts Lemma 2.5. Thus, if x(t, x0) is not a stationary solution, then it cannot attain local
maxima or minima and thus must be either strictly increasing or strictly decreasing.

Since the solution is monotonic, it either diverges to ±∞ (depending on whether it decreases or increases)
or converges to finite limits as t → t±. Let us focus on the right end point t+ of Imax. If x(t, x0) converges
as t → t+, then t+ = ∞, by the property of the maximal interval of existence. Thus

lim
t→∞

x(t, x0) = x̄.

Without compromising generality, we further assume that x(t, x0) is an increasing function. If x̄ is not an
equilibrium point then, by continuity, we can use the intermediate value property to claim that the values
of x(t, x0) must fill the interval [x0, x̄). This interval cannot contain any equilibrium point as the existence
of such points would violate the Picard-Lindelöf theorem. Thus, for any x ≤ x̄, f(x) is strictly positive and
hence, separating variables and integrating, we obtain
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t(x) − t(x0) =

x
∫

x0

ds

f(s)
. (2.6.5)

Passing with t to infinity (since t(x̄) = ∞), we see that the left hand side becomes infinite and so

x̄
∫

x0

ds

f(s)
= ∞.

By assumption, the interval of integration is finite so that the only way the integral could become infinite
is if 1/f(s) = ∞, that is, f(s) = 0, for some s ∈ [x0, x̄]. The only such point can be s = x̄, thus x̄ is an
equilibrium point. ✷

Remark 2.7. We note that Eq. (2.6.5) is of independent interest as it gives a formula for the blow up time
of the solution x(t, x0). To wit, let the interval [x0,∞) be free of equilibria and let x(t, x0) be increasing for
t > 0. Then limt→t+ x(t, x0) = ∞ so that, by (2.6.5),

t+ − t(x0) =

∞
∫

x0

ds

f(s)

and, in particular, we see that if 1/f is integrable at +∞ (precisely, if the improper integral above exists),
then the maximal interval of existence is finite and we have the blow up of the solution in finite time. On
the other hand, if 1/f is not integrable, then tmax = +∞. We note that the latter occurs if f(s) does not
grow faster than s as s → ∞. This occurs, e.g., if the derivative of f bounded on R. On the other hand, If
f(s) behaves, say, as s2 for large s, then the integral on the right hand side is finite and thus tmax <∞.

Remark 2.8. Theorem 2.6 shows that for scalar differential equations with regular right hand sides, the
distinction between different properties of an equilibrium made in Definition 2.4 is superfluous. Indeed, if an
equilibrium x∗ is stable, then solutions originating close to it stay close to it. However, by Theorem 2.6, these
solutions are monotonic. Hence, the solutions are closer to x∗ than their initial conditions are. In particular,
they must be bounded and, being monotonic, they must converge as t → ∞. From the proof of Theorem
2.6 it follows that the limit point must be the equilibrium x∗. This implies that x∗ is attracting and hence
asymptotically stable. Also, by monotonicity of solutions, any attracting equilibrium must be stable and thus
asymptotically stable.

Remark 2.9. Theorem 2.6 usually is used in the following weaker form. Let f be continuously differentiable
function. Then the equilibrium x∗ is stable provided f ′(x∗) < 0 and unstable provided f ′(x∗) > 0. The proof
is obvious–if f ′(x∗) < 0, then f ′(x) < 0 in some neighbourhood of x∗, by continuity of f ′. Thus, f > 0
to the left and f < 0 to the right of x∗ and any solution originating in such a left neighbourhood of x∗

is increasing and must converge to x∗. Similarly, any solution originating in such a right neighbourhood of
x∗ is decreasing and also must converge to x∗. Thus x∗ is asymptotically stable. An analogous argument
shows that f ′(x∗) > 0 means that x∗ is unstable. However, Theorem 2.6 is much more general and allows to
ascertain stability or instability in the so called nonhyperbolic cases when f ′(x∗) by considering the sign of
f to the left and to the right of x∗.

Application to the logistic equation

Consider the Cauchy problem for the logistic equation

y′ = y(1 − y), y(0) = y0. (2.6.6)
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Fig. 2.11. Monotonic behaviour of solutions to (2.6.3) depends on the right hand side f of the equation.

We have solved this problem in Subsection 4.2. Let us now get as much information as possible about the
solutions to this problem without actually solving it. First, we observe that the right hand side is given
by f(y) = y(1 − y), which is a polynomial, and therefore at each point of R2 the assumptions of Picard’s
theorem are satisfied, that is, only one solution of (2.6.6) passes through each point (t0, y0). However, f is
not a globally Lipschitz function, so that this solution may be defined only on a finite time interval.

The equilibrium points are found solving y(1 − y) = 0, hence y ≡ 0 and y ≡ 1 are the only stationary
solutions. Moreover, f(y) < 0 for y < 0 and y > 1 and f(y) > 0 for 0 < y < 1. Hence, from Lemma 2.5, it
follows that the solutions starting from y0 < 0 will stay strictly negative, those starting from 0 < y0 < 1 will
stay in this interval and those with y0 > 1 will be larger than 1, for all times of their respective existence, as
they cannot cross the equilibrium solutions. Then, from Theorem 2.6, we see that the solutions with negative
initial condition are decreasing and therefore tend to −∞ if time increases. In fact, they blow up in finite
time since, by integrating the equation, we obtain

t(y) =

y
∫

y0

dη

η(1 − η)

and we see, passing with y to −∞ on the right hand side, that we obtain a finite time of the blow up.

Next, solutions with 0 < y0 < 1 are bounded and thus they are defined for all times. They are increasing
and thus they must converge to the larger equilibrium, that is, limt→∞ y(t, y0) = 1. Finally, if we start with
y0 > 1, then y(t, y0) decreases and thus is bounded from below, satisfying again limt→∞ y(t, y0) = 1. The
shape of the solution curves can be determined as in Subsection 4.2. By differentiating Eq. 2.6.6 with respect
to time, we obtain

y′′ = y′(1 − y) − yy′ = y′(1 − 2y).

Since for each solution (apart from the stationary ones), y′ has a fixed sign, we see that an inflection point
can exist only for solutions starting at y0 ∈ (0, 1) and it occurs at y = 1/2, where the solution changes from
being convex downward to being convex upward. In the two other cases, the second derivative is of constant
sign, giving the solution convex upward for negative solutions and convex downward for solutions larger than
1.



48 2 Unstructured models

We see that we got the same picture as when solving the equation but with much less work.

Application to the Allee model

Let us consider the model (2.4.77),

dP

dt
= λP

(

1 − P

C
− A

1 +BP

)

,

λ, C,A,B > 0, and finally prove that it indeed describes a behaviour required from the Allee model. Let us
recall that for this, the equation must have three equilibria, 0 and, say, 0 < L < K such that if the size of
the population P satisfies 0 < P < L, then P decreases to 0 and if L < P < K, then P increases to K. In
the terminology of this section, 0 and K should be asymptotically stable equilibria of (2.4.77) and L should
be its unstable equilibrium.

Since (2.4.77) is difficult to solve explicitly (though it is possible as it is a separable equation), we use
Theorem 2.6 to analyse it. The equilibria are solutions to

f(P ) := P

(

1 − P

C
− A

1 +BP

)

= 0. (2.6.7)

Clearly, P ≡ 0 is an equilibrium so, in particular, any solution originating from P (0) = P0 > 0 satisfies
P (t) > 0. We see that

f ′(P ) = 1 − 2P

C
− A

(1 +BP )2
(2.6.8)

and since f ′(0) = 1 − A we obtain that if A > 1, then P = 0 is an asymptotically stable equilibrium. By
analysing the second derivative we can also state that if A = 1 and BC < 1, then P = 0 is semi-stable, that
is, it attracts trajectories originating from positive initial conditions but this case is not relevant in studying
the Allee type behaviour. Now we can focus on the other equilibria. For (2.4.77) to describe an Allee model
first we must show that

1 − P

C
− A

1 +BP
= 0 (2.6.9)

has two positive solutions. It could be done directly but then the calculations become little messy so that
we follow a more elegant approach of [24] and use the above equation to define a function A(P ) by

A(P ) =
1

C
(C − P )(1 +BP )

and analyse it. It is an inverted parabola satisfying A(0) = 1. A(P ) takes its maximum at the point P ∗,
where

A′(P ) = − 1

C
+B − 2B

C
P = 0.

This gives

P ∗ =
BC − 1

2B

with the maximum

A∗ =
(BC + 1)2

4BC
.

Now, the nonzero equilibria of (2.4.77) are the points at which the horizontal line A = const cuts the the
graph of A(P ), see Fig. 2.12. First, we note that if BC < 1, then the stationary point P ∗ is negative and
thus there is a positive and a negative solution for 0 < A < 1, a negative and 0 solution for A = 1, two
negative solutions if 1 < A < A∗, one (double) negative solution if A = A∗ and no solutions if A > A∗. If
BC = 1, then we have one positive, one negative solution for 0 < A < 1, double 0 solution for A = A∗ = 1
and no solutions for A > 1. Thus, in none case with BK ≤ 1 we can expect the Allee type behaviour. Let
us focus then on the case BK > 1. Since A > 0, we have the following cases
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Fig. 2.12. The equilibria as a function of A.

(a) If 0 < A < 1, then there are two solutions to (2.6.9), but only one is positive while the other is negative;

(b) If A = 1, then there is one 0 and one positive solution to (2.6.9);

(c) If 1 < A < A∗, then there are two distinct positive solutions to (2.6.9);

(d) If A = A∗, then there is a double positive solution to (2.6.9);

(e) If A > A∗, then there are no solutions to (2.6.9).

To determine the stability of the equilibria, we re-write (2.4.77) in the following form

dP

dt
= λP

(

1 − P

C
− A

1 +BP

)

=
λBP

C(1 +BP )

(

−P 2 + P
BC − 1

B
+
C(1 −A)

B

)

=
λBP

C(1 +BP )
(P − L)(K − P ). (2.6.10)

Using the results of the first part of this section and Theorem 2.6 we can describe the dynamics of (2.4.77)
as follows. Let BC > 1. Then

(i) For 0 < A < 1, there is one negative, L, and two nonnegative equilibria of (2.4.77), 0 and K. Zero is
unstable and K is asymptotically stable;

(ii) At A = 1, the negative equilibrium L merges with 0. Zero becomes semi-stable (unstable for positive
trajectories) and K is asymptotically stable;

(iii) For 1 < A < A∗, there are three nonnegative equilibria, 0 and 0 < L < K. 0 becomes a stable
equilibrium, L is unstable and K is asymptotically stable negative equilibrium L merges with 0. Zero
becomes semi-stable (unstable for positive trajectories) and K is asymptotically stable;

(iv) At A = A∗, there are two nonnegative equilibria, 0 and double L = K. 0 is stable and L = K becomes
semistable attracting trajectories from the right and repelling those from the left.

(v) For A > A∗, there is only one equilibrium at 0 which is globally attracting.

If BC ≤ 1, then we cannot have two positive equilibria so that the Allee effect cannot occur in this case.
However, to complete analysis, we note that if 0 < BC ≤ 1 then the only case in which there is a positive
equilibrium K is for 0 < A < 1 and in this case K is asymptotically stable while 0 is unstable. For all other
cases the only biologically relevant equilibrium is 0 and it is stable if 1 < A, semistable (attracting positive
trajectories) if A = 1 and BC < 1 and stable if A = 1 = BC. Summarizing, (2.4.77) describes the Allee
effect if and only if

BC > 1 and 1 < A <
(BC + 1)2

4BC
. (2.6.11)

In any other case with a positive equilibrium the dynamics described by (2.4.77) is similar to the dynamics
described by the logistic equation.
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Fig. 2.13. Trajectories P (t) of (2.4.77) for various initial conditions. Here A = 4, C = 10, B = 2, L = 2 (lower
dashed line), K = 7.5 (upper dashed line).

Another way of looking at the problem is to consider the number and stability of the equilibria as a function
of a parameter. This approach is known as the bifurcation theory. Here we focus on the case BC > 1 and
we select the parameter A, which can be regarded as representing the extra mortality, over the mortality
due to the overcrowding characteristic for the logistic model. Then, for small A ∈ (0, 1), 0 is an unstable
equilibrium and K is stable, as in the logistic model. When A moves through 1, a new positive equilibrium
L ‘bifurcates’ from 0 and the latter changes from being repelling to being attractive; K stays attractive and
we are in the ‘Allee region’. Finally, when A moves across A∗, K vanishes and 0 becomes globally attractive
– large mortality drives the population to extinction. The Allee phenomenon is of concern in many practical
applications. For instance, if we try to eradicate a pest whose population can be modelled by an Allee type
equation, then it is enough to create conditions if which the size of the population will be below L; the
population will then die out without any external intervention. Similarly, if by overhunting or overfishing we
drive a population below L, then it will become extinct even if we stop its exploitation.

6.3 Equilibrium points of difference equations

Consider the autonomous first order difference equation

x(n+ 1) = f(x(n)), n ∈ N0, (2.6.12)

with the initial condition x0. In what follows we shall assume that f is at least continuous. It is clear that
the solution to (2.6.12) is given by iterations

x(n) = f(f(. . . f(x0))) = fn(x0) (2.6.13)

and henceforth we will be using both notations.

A point x∗ in the domain of f is said to be an equilibrium point of (2.6.2) if it is a fixed point of f, that is,
if f(x∗) = x∗. In other words, the constant sequence (x∗, x∗, . . .) is a stationary solution of (2.6.2). As in the
case of differential equations, here also we shall not differentiate between these concepts.

Example 2.10. Consider the logistic equation

x(n+ 1) = 3x(n)(1 − x(n)). (2.6.14)

The equation for the equilibrium points is x = 3x(1−x), which gives x0 = 0 and x1 = 2/3. Clearly, if x0 = 0,
then xn = 0 for any n ∈ N. Similarly, if x0 = 2/3, then x1 = 3 · (2/3) · (1 − 2/3) = 2/3 and, by iteration,
xn = 2/3 for any n ∈ N.

Graphically, an equilibrium is the x-coordinate of a point, where the graph of f intersects the diagonal y = x.
This is the basis of the cobweb method of finding and analysing equilibria, described in the next subsection.
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Definition 2.11. 1. The equilibrium x∗ is stable if for given ǫ > 0 there is δ > 0 such that for any x and
for any n > 0, |x − x∗| < δ implies |fn(x) − x∗| < ǫ for all n > 0. If x∗ is not stable, then it is called
unstable (that is, x∗ is unstable if there is ǫ > 0 such that for any δ > 0 there are x and n such that
|x− x∗| < δ and |fn(x) − x∗| ≥ ǫ.)

2. A point x∗ is called attracting if there is η > 0 such that |x0 − x∗| < η implies lim
n→∞

fn(x0) = x∗. If

η = ∞, then x∗ is called a global attractor or globally attracting.

3. The point x∗ is called an asymptotically stable equilibrium if it is stable and attracting. If η = ∞, then
x∗ is said to be a globally asymptotically stable equilibrium.

Remark 2.12. We note an important difference between discrete and continuous time systems. In Lemma
2.5 we showed that no non-equilibrium solution to a differential equation with Lipschitz right hand side can
reach the equilibrium in finite time. On the other hand, such behaviour is possible for solutions to difference
equations, see Example 2.17. The points, which lie on a trajectory which reaches an equilibrium in finite
time are called eventual equilibria.

6.4 The cobweb diagrams

We describe an important graphical method for analysing the stability of equilibrium (and periodic) points
of (2.6.2). Since x(n+ 1) = f(x(n)), we may draw a graph of f in the (x(n), x(n + 1)) system of coordinates.
Then, given x(0) = x0, we pinpoint the value x(1) by drawing a vertical line through x(0) so that it also
intersects the graph of f at (x(0), x(1)). Next, we draw a horizontal line from (x(0), x(1)) to meet the diagonal
line y = x at the point (x(1), x(1)). A vertical line drawn from the point (x(1), x(1)) will meet the graph
of f at the point (x(1), x(2)). In this way we may find any x(n). This is illustrated in Fig. 2.14, where we
presented several steps of drawing the cobweb diagram for the logistic equation (2.6.14) with x0 = 0.2. On
the basis of the diagram we can conjecture that x(1) = 2/3 is an asymptotically stable equilibrium as the
solution converges to it as n becomes large. However, to be sure, we need to develop analytical tools for
analysing stability.
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Fig. 2.14. Cobweb diagram of a logistic difference equation
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6.5 Analytic criterion for stability

Theorem 2.13. Let x∗ be an isolated equilibrium point of the difference equation

x(n+ 1) = f(x(n)), (2.6.15)

where f is continuously differentiable in some neighbourhood of x∗. Then,

(i) if |f ′(x∗)| < 1, then x∗ is asymptotically stable;

(ii) if |f ′(x∗)| > 1, then x∗ is unstable.

Proof. Suppose |f ′(x∗)| < M < 1. Then |f ′(x)| ≤ M < 1 over some interval J = (x∗ − γ, x∗ + γ) by the
property of local preservation of sign for continuous functions, [7]. Let x0 ∈ J . We have

|x(1) − x∗| = |f(x0) − f(x∗)|

and, by the mean value theorem, for some ξ ∈ [x0, x
∗],

|f(x0) − f(x∗)| = |f ′(ξ)||x0 − x∗|.

Hence, |x(1) − x∗| = |f(x0) − f(x∗)| ≤M |x0 − x∗|. Since M < 1, the inequality shows that x(1) is closer to
x∗ than x0 and consequently x(1) ∈ J . By induction,

|x(n) − x∗| ≤Mn|x0 − x∗|.

For given ǫ, define δ = ǫ. Then |x(n) − x∗| < ǫ for n > 0 provided |x0 − x∗| < δ (since M < 1). Furthermore
x(n) → x∗ and n→ ∞ so that x∗ is asymptotically stable.

To prove the second part of the theorem, we observe that, as in the first part, there is ǫ > 0 such that on
J = (x∗ − ǫ, x∗ + ǫ) we have |f ′(x)| ≥M > 1. Take an arbitrary δ > 0 smaller than ǫ and choose x satisfying
|x − x∗| < δ. Again using the mean value theorem, we get |f(x) − x∗| = |f ′(ξ)||x − x∗| for some ξ between
x∗ and x so that |f(x) − x∗| ≥ M |x− x∗|. If f(x) is outside J , then we are done. If not, we can repeat the
argument getting |f2(x) − x∗| ≥ M2|x − x∗|, that is, f2(x) is further away from x∗ than f(x). If f2(x) is
still in J, we continue the procedure till |fn(x) − x∗| ≥Mn|x− x∗| > ǫ for some n. ✷

Equilibrium x∗ with |f ′(x∗)| 6= 1 is called hyperbolic.

What happens if the equilibrium point x∗ is not hyperbolic? To simplify the considerations, we assume that
f is at least three times continuously differentiable in a neighbourhood of x∗. First, let us reflect on the
geometry of the situation. In this discussion we assume that f ′(x∗) > 0. The equilibrium x∗ is stable if the
graph of y = f(x) is less steep than the graph of y = x, that is, if the graph of f crosses the line y = x from
above to below as x increases. This ensures that the cobweb iterations from the left are increasing, and from
the right are decreasing, while converging to x∗. On the contrary, x∗ is unstable if the graph of f crosses
y = x from below – then the cobweb iterations will move away from x∗. If f ′(x∗) = 1, then the graph of f
is tangent to the line y = x at x = x∗, but the stability properties follow from the geometry. If f ′′(x∗) 6= 0,
then f is convex (or concave) close to x∗ and the graph of f will be (locally) either entirely above or entirely
below the line y = x. Therefore the picture is the same as in the unstable case either to the left, or to the
right, of x∗. Hence, x∗ is unstable in this case (remember that for instability it is sufficient to display, for
any neighbourhood of x∗, only one diverging sequence of iterations emanating from this neighbourhood). On
the other hand, if f ′′(x∗) = 0, then x∗ is an inflection point and the graph of f crosses the line y = 0. This
case is essentially the same as when |f ′(x∗)| 6= 1: the equilibrium is stable if the graph of f crosses y = x
from above and unstable if it does it from below. A quick reflection ascertains that the former occurs when
f ′′′(x∗) < 0, while the latter if f ′′′(x∗). Summarizing, we have:

Theorem 2.14. Let x∗ be an isolated equilibrium with f ′(x∗) = 1 and let f be at least three times continu-
ously differentiable in a neighbourhood of x∗. Then,
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(i) if f ′′(x∗) 6= 0, then x∗ is unstable,

(ii) if f ′′(x∗) = 0 and f ′′′(x∗) > 0, then x∗ is unstable,

(iii) if f ′′(x∗) = 0 and f ′′′(x∗) < 0, then x∗ is asymptotically stable.

The case of f ′(x∗) = −1 is more difficult. First we note that if g(x) = −x + 2x∗, that is, if g is a linear
function giving an equilibrium at x = x∗ with f ′(x∗) = −1, then the iterations starting from x0 6= x∗ produce
a solution taking on only two values oscillating around x∗. Thus, if −1 < f ′(x∗) < 0, then f passes from
below the line y = −x+2x∗ to above as x increases. Hence, the stability follows from the fact that subsequent
iterations oscillate around x∗ getting closer to x∗ with each iteration. If, on the contrary, f ′(x∗) < −1, then
the oscillating iterations move away from x∗. If f ′(x∗) = −1, then the graph of f crosses the line y = x
at the right angle. Hence, the stability depends on fine details of the shape of f close to x∗. Unfortunately,
using an argument similar to the case with f ′(x∗) = 1 and, considering the relation of the graph of f with
the graph of y = −x + 2x∗, only produces a partial result: x∗ will be stable if f ′′(x∗) = 0 and f ′′′(x∗) > 0
(as then the graph of f will have the same shape as in the stable case, crossing the line y = −x+ 2x∗ from
below). However, the stability of x∗ can be achieved in a more general situation. First, we note that x∗ is
also an equilibrium of g(x) := f(f(x)) and it is a stable equilibrium of f if and only if it is stable for g. This
statement follows from the continuity of f : if x∗ is stable for g, then |gn(x0) − x∗| = |f2n(x0) − x∗| is small
for x0 sufficiently close to x∗. But then |f2n+1(x0) − x∗| = |f(f2n)(x0) − f(x∗)| is also small by continuity
of f . The reverse is obvious. Since g′(x) = f ′(f(x))f ′(x) with g′(x∗) = 1, we can apply Theorem 2.14 to the
function g. The second derivative of g is given by

g′′(x) = f ′′(f(x))[f ′(x)]2 + f ′(f(x))f ′′(x)

and, since f(x∗) = x∗ and f ′(x∗) = −1, we have g′′(x∗) = 0. Using again the chain rule, we find

g′′′(x∗) = −2f ′′′(x∗) − 3[f ′′(x∗)]2.

Hence, we can write

Theorem 2.15. Suppose that at an equilibrium point x∗ we have f ′(x∗) = −1. Define S(x∗) = −f ′′′(x∗) −
3(f ′′(x∗))2/2. Then x∗ is asymptotically stable if S(x∗) < 0 and unstable if S(x∗) > 0.

Example 2.16. Consider the equation

x(n+ 1) = x2(n) + 3x(n).

Solving f(x) = x2 + 3x = x, we find that x = 0 and x = −2 are the equilibrium points. Since f ′(0) = 3 > 1,
we conclude that the equilibrium at x = 0 is unstable. Next, f ′(−2) = −1. We calculate f ′′(−2) = 2 and
f ′′′(−2) = 0 so that S(−2) = −12 < 0. Hence, x = −2 is an asymptotically stable equilibrium.
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Fig. 2.15. Unstable character of the equilibrium x = 0 in Example 2.16. Initial point is x0 = 0.5 and we observe
divergence to the right.
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Example 2.17. Consider the equation x(n+ 1) = Tx(n), where

T (x) =

{

2x for 0 ≤ x ≤ 1/2,
2(1 − x) for 1/2 < x ≤ 1.

is the so-called tent map. here are two equilibrium points, 0 and 2/3. Looking for eventual equilibria is not
as simple. Taking x(0) = 1/8, we find x(1) = 1/4, x(2) = 1/2, x(3) = 1 and x(4) = 0, and hence 1/8 (as
well as 1/4, 1/2 and 1) are eventual equilibria. It can be checked that all points of the form x = n/2k, where
n, k ∈ N satisfy 0 < n/2k < 1 are eventual equilibria.
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Fig. 2.16. Eventual equilibrium x = 1/8 for the tent map.

Remark 2.18. We can provide a fine-tuning of the notion of stability by noting that if f ′(x∗) < 0, then the
solution behaves in an oscillatory way around x∗ and if f ′(x∗) > 0, then it is monotonic. Indeed, consider
(in a neighbourhood of x∗ where f ′(x) < 0) f(x) − f(x∗) = f(x) − x∗ = f ′(ξ)(x − x∗), ξ ∈ (x∗, x). Since
f ′ < 0, f(x) > x∗ if x < x∗ and f(x) < x∗ if x > x∗, hence each iteration moves the point to the other side
of x∗. If |f ′| < 1 over this interval, then fn(x) converges to x∗ in an oscillatory way, while if |f ′| > 1, the
iterations will move away from the interval, also in an oscillatory way.

Based on this observation, we may say that the equilibrium is oscillatory unstable or stable if f ′(x∗) < −1 or
−1 < f ′(x∗) < 0, respectively, and monotonically stable or unstable depending on whether 0 < f ′(x∗) < 1
or f ′(x∗) > 1, respectively.

What happens if f ′(x∗) = 0? Clearly, if this is a local extremum, then in some neighbourhood the derivative
will have a fixed sign and thus the behaviour of the iterates will be as above. Let, on the other hand, f ′(x) < 0
is some one-sided neighbourhood of x∗ and f ′(x) > 0 on the other side. Then if the iterates start in the latter,
they will stay there, converging to x∗, while if the iterates start in the former, they will begin converging
to x∗ in an oscillatory way until they reach the neighbourhood in which the derivative is positive and then
they will converge monotonically.

6.6 Some applications

In this subsection we shall present applications of the above considerations to the problem of sustainable
fishing, the biological pest control and the discrete Allee model.
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Sustainable fishing

Let us consider a population of fish living in a pond, which grows according to the logistic equation (2.2.18),

N(k + 1) = N(k) + rN(k)

(

1 − N(k)

K

)

.

This equation only can be solved in some particular cases, see Section 3.4. However, even without solving it,
we can draw a conclusion of some importance for fisheries.

The basic idea of a sustainable economy is to find an optimal level of fishing: too much harvesting would
deplete the fish population beyond recovery and too little would provide insufficient return for the community.
To maintain the population at a constant level, only the increase in the population should be harvested during
any one season. In other words, the harvest should be H(k) = N(k + 1)−N(k). Using the logistic equation,
we find

H(k) = rN(k) (1 −N(k)/K) .

Hence, to maximize the harvest at each k, the population should be kept at the size N(k) = N for which
the right hand side attains the absolute maximum. We note that the right hand side is a quadratic function,
f(N) = rN (1 −N/K) , and it is easy to find that the maximum is attained at N = K/2, that is, the
population should be kept at around half of the carrying capacity of the environment. Thus, the maximum
sustainable harvest is

H = rK/4. (2.6.16)

The considered model does not include the actual fishing – it simply says that to sustain a population we
cannot harvest more fish than there are borne and indicates the size of the population giving the maximum
yield but it does not specify how to organize the fishing. We can generalize the model to

N(k + 1) = N(k) + rN(k)

(

1 − N(k)

K

)

− qEN(k), (2.6.17)

where E is the so-called fishing effort, for instance the number of fishing boats at sea, and q is the fishing
efficiency, that is, the fraction of the population caught by one boat in the unit time. The concept of
sustainable fishing is the same as above. We should find find the amount of fish that can be caught during
a year to maintain the population at a constant level and hence find the population for which the yield is
optimal.

To find the possible constant population level for a given level of fishing we solve

N = N + rN

(

1 − N

K

)

− qEN (2.6.18)

This gives N = 0 or

N∗ = K

(

1 − qE

r

)

. (2.6.19)

The first solution is trivial and not interesting. The second solution is positive if

qE < r.

This is consistent with the first part by showing that the fishing rate cannot exceed the unrestricted net
growth of the population. However, this model can furnish further information. Let us suppose that for the
given fishing rate qE the population is kept at N∗ given by (2.6.19). Then the yield is Y (qE) = qEN∗ or

Y (qE) = qEK

(

1 − qE

r

)

.

Thus the yield is a quadratic function of the fishing rate qE and and thus its maximum can be found as in

the first part of the section. Maximum of Y (qE) is attained at E =
r

2q
which gives the maximum sustainable

yield as
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Ymax(qE) =
rK

4
,

as in (2.6.16). Clearly, if we increase the fishing effort, E > r/2q, then the yield will decrease (greed does
not pay!). To understand why, let us summarize the mechanism described by the model. For a given fishing
rate qE, we find that the equilibrium N∗, given by (2.6.19), is asymptotically stable provided

∣

∣

∣

∣

d

dN

(

N + rN

(

1 − N

K

)

− qEN

)∣

∣

∣

∣

N=N∗

∣

∣

∣

∣

=

∣

∣

∣

∣

1 + r − 2rN∗

K
− qE

∣

∣

∣

∣

< 1.

Using (2.6.19), this gives
−1 < 1 − r + qE < 1

or
r − 2 < qE < r.

Thus, if the fishing rate satisfies the above condition, then the fish population eventually will stabilize at
N∗ and N∗ decreases if the fishing rate increases. The yield is the product of the fishing rate and the size
of the population. Thus, if the fishing rate is too low, then though N∗ is large, the product is not optimal.
Similarly, overfishing results in the population settling at a lower N∗ again resulting in a suboptimal yield.

Remark 2.19. One may wonder what is the significance of the condition r − 2 < qE which puts an upper
bound on r. A common sense would suggest that the higher net growth rate, the better the yield. To explain
this, we observe that then (2.6.18) can be written as

N(k + 1) = (1 + r − qE)N(k)

(

1 − N
K(1+r−qE)

r

)

.

The results of Section 6.8 show that the positive equilibrium of a discrete logistic equation is unstable if the
unrestricted growth rate is larger than 3 which in our case corresponds to

1 + r − qE > 3 iff r − 2 > qE.

Thus, the case r > qE + 2 does not give a stable fish population ensuring the sustainable constant yield.

Biological pest control

Assume that we have to deal with an insect population which invades our plantation. The insects reproduce
according to the Beverton-Holt model (2.2.12),

P (k + 1) =
βP (k)

1 + aP (k)
(2.6.20)

where β is the natural fertility of insects and a = (β− 1)/K where K is the capacity of the environment. As
we know, see Section 3.4, if β > 1, then the population P (k) tends a nonzero equilibrium K = (β−1)/a; that
is, there is a nonzero stable population of insects. An ecological way of eradicating the pest is to decrease
the birth rate and one of the methods is to introduce a number of sterile insects into the population. We
assume that S is under our control and we can keep the number of the sterile insects constant in time.
Though suppressed in the model, insects reproduce sexually and thus the effective birth rate depends on
the probability of finding a mate. If, say, S individuals are sterile, and P (k) is the number of fertile insects,
then the probability of picking a fertile insect is P (k)/(P (k) + S). Thus, the Beverton-Holt model can be
modified as

P (k + 1) = βP (k)
P (k)

S + P (k)

1

1 + aP (k)
= βP (k)f(P (k)). (2.6.21)

To find the equilibria of (2.6.21), we solve
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P = βP
P

S + P

1

1 + aP

which gives P1 = 0 and the simplified equation

1 = β
P

S + P

1

1 + aP
.

While the above equation can be solved for P ∗, a faster way to find the answer is the approach used in
Section 6.2 to analyse the continuous Allee model. Thus, we solve the above equation for S as a function of
P ∗ getting

S(P ) =
(β − 1 − aP )P

1 + aP
. (2.6.22)

We find that S(0) = S((β − 1)/a) = 0 and the derivative is give by S′(P ) = −1 + β/(1 + aP )2. Hence, the
maximum in the interval (0, (β− 1)/a) is attained at P = (

√
β− 1)/a; the maximum is Smax = (

√
β− 1)2/a.

Thus, we conclude that if S > Smax, the only equilibrium of (2.6.21) is P1 = 0.
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Fig. 2.17. The graph of S(P ), given by (2.6.22),for β = 2 and a = 0.001.

β
d

dP
Pf(P ) = β

P 2(1 + aS) + 2PS

((P + S)(1 + aP ))2
.

Hence, β d
dP Pf(P )|P=0 = 0 and the equilibrium P1 = 0 is asymptotically stable, for any S. It is laborious to

provide explicit estimates of the derivatives of βPf(P ) at the other two equilibria that exists for 0 < S < Smax

but still we can determine their stability by using the discussion preceding Theorem 2.14. First we notice
that β d

dP Pf(P ) > 0 for all P > 0 (provided S > 0). This means that the derivative never equals −1. Let
0 < S < Smax. The curve βPf(P ) starts at zero below the diagonal and thus at the smaller equilibrium
it must cross the diagonal from below. Hence, this equilibrium is unstable. At the second equilibrium, the
curve crosses the diagonal from above and, since the curve is ascending, the derivative is between 0 and 1.
Thus this equilibrium is asymptotically stable. If S = Smax, we have a tangent point which means that the
(unique) positive equilibrium is semi-stable - unstable from the left and stable from the right.

Summarizing, to eradicate the pest population we should introduce the number S > Smax of sterile insects.
Then the population will converge to the extinction equilibrium provided we the number S of sterile insects
is kept above Smax at each cycle (this may require our intervention as the insects die of natural causes).
Otherwise, we need to drive the population of pest below the smaller equilibrium – then the population will
also converge to the extinction equilibrium.
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Fig. 2.18. The graphs of βPf(P ), as in (2.6.21),for β = 2, a = 0.001 with S = 300 (thin line) and S = 100 (thick
line).

The discrete Allee model (2.3.42)

Let us recall the model (2.3.42)

N(k + 1) = N(k)

(

1 + λ

(

1 − N(k)

C
− A

1 +BN(k)

))

.

The equilibria are determined by solving

N = N

(

1 + λ

(

1 − N

C
− A

1 +BN

))

and we see that the equilibria are 0, L,K for appropriate parameters C,A,B, exactly as in the continuous
case, see Subsection 6.2 and Eqn. (2.6.7). To fix attention, we focus on the case with two positive equilibria
0 < L < K. In contrast to (2.4.77), it is not obvious that (2.3.42) describes a population, that is, whether
the solution is nonnegative for nonnegative initial condition. Here we shall prove that the interval [0,K] is
invariant under

g(N) := N

(

1 + λ

(

1 − N

C
− A

1 +BN

))

.

First we look at nonnegativity. We can write

N(k + 1) −N(k) = λf(N(k))

where f is defined in (2.6.7) and thus N(k + 1) > N(k) is increasing as long as L < N(k) < K. Hence,
N(k+ 1) is nonnegative as long as N(k) ∈ (L,K). However, N(k+ 1) < N(k) if 0 < N(k) < L and it could
become negative. To avoid this, it suffices to ensure that

N(k) + λf(N(K)) > 0

or

λh(N) := λ

(

1 − N

C
− A

1 +BN

)

> −1, 0 < N < L.

Since

h′(N) = − 1

C
+

AB

(1 +BN)2
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and, in our case A > 1, BC > 1, we see that h has only one stationary point N̄ . Since h(0) = 1−A < 0 and
h(L) = h(K) = 0 for 0 < L < K, we see that L < N̄ < K and thus h is increasing on [0, N̄). Hence, h > −1
on (0, L) if and only if h(0) ≥ −1 which translates into

A ≤ 1 + λ

λ
. (2.6.23)

The stability of the equilibria 0 and L can be determined using the continuous case. Indeed, writing (2.3.42)
as

N(k + 1) = g(N(k))

we see that
g(N) = N + λf(N) = N + λNh(N)

and thus
g′(N) = 1 + λf ′(N) = 1 + λh(N) + λNh′(N).

Hence
g′(0) = 1 + λh(0) = 1 + λ(1 −A)

which gives stability provided

A < 1 +
2

λ
.

However, monotonic stability coincides with the assumption (2.6.23) – otherwise we would have oscillatory
convergence and consequently negative solutions. Further, since h′(L) > 0 by the considerations above, we
immediately obtain instability of L.

To show that N(k + 1) < K provided 0 < N(k) < K and also to determine the character of stability of K
requires some more work. First, observe that

h(N) < 1 − N

C
=: ψ(N).

Since ψ is a monotonically decreasing function, having N = C as the only solution, we obtain

L < K < C. (2.6.24)

Indeed, 0 = h(K) < ψ(K) and (2.6.24) follows from monotonicity of ψ.

Next, using (2.6.10) we can write

g′(N) = 1 + λf ′(N) = 1 +
d

dP

(

λBN

C(1 +BN)
(N − L)(K −N)

)

= 1 + φ′(N)(N − L)(K −N) + φ(N)(−2N + L+K), (2.6.25)

where φ(N) = λBN/C(1 +BN). It is easy to see that φ is a strictly increasing function on [0,∞) satisfying
0 ≤ φ(N) < λ/C. Thus

g′(K) = 1 +
λBK

C(1 +BK)
(L−K)

and we obtain that g′(K) ≥ 0 provided λ(L−K)/C ≥ −1 or

λ ≤ C

K − L
. (2.6.26)

We note that C/(K − L) > 1 by (2.6.24), thus the Allee effect can occur in populations with positive net
growth rate. If we look closer at (2.6.25), we note that the second term in the last equality is positive for
L < N < K and

φ(N)(−2N + L+K) > φ(K)(L−K),

on this interval. Indeed, −2N+L+K > 0 for L < N < (K+L)/2 so on this interval the equality is obvious.
For (K + L)/2 ≤ N ≤ K we have
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φ(N)(−2N + L+ K) > φ(N)(L −K) > φ(K)(L −K),

on account of monotonicity and signs of the involved functions.

Hence, provided (2.6.26) holds,

g′(N) ≥ 1 + φ(K)(L−K) ≥ 0, L ≤ N ≤ K

and thus
g(N) ≤ g(K) = K

for any N ∈ [L,K]. Since we proved earlier that g transforms [0, L] into [0, L], we see that if (2.6.11), (2.6.23)
and (2.6.26) are satisfied, then g(N) ∈ [0,K] for N ∈ [0,K] as required.

An example of parameters satisfying these conditions is provided in Example 2.2.

6.7 Periodic points and cycles

Theorem 2.6 tells us that a solution to a scalar autonomous differential equation must be monotonic. Above
we have already seen that solutions to scalar autonomous difference equations can be oscillatory. In fact,
such equations may admit periodic solutions which cannot occur in the continuous case.

Definition 2.20. Let b be a point in the domain of f . Then,

(i) b is called a periodic point of f if fk(b) = b for some k ∈ N. The periodic orbit of b , O(b) =
{b, f(b), f2(b), . . . , fk−1(b)} is called a k-cycle,
(ii) b is called eventually k-periodic if, for some integer m, fm(b) is a k-periodic point.

Example 2.21. Consider x(n+ 1) = T 2x(n), where T is the tent map introduced in Exercise 2.17. Then

T 2(x) =















4x for 0 ≤ x ≤ 1/4,
2(1 − 2x) for 1/4 < x ≤ 1/2,
4x− 2 for 1/2 < x ≤ 3/4,
4(1 − x) for 3/4 < x ≤ 1.

There are four equilibrium points, 0, 2/5, 2/3 and 4/5, two of which are equilibria of T . Hence {2/5, 4/5} is

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Fig. 2.19. 2-cycle for the tent map

the only 2-cycle of T .

Definition 2.22. Let b be a k-periodic point of f . Then b is said to be:

(i) stable, if it is a stable fixed point of fk,
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(ii) asymptotically stable, if it is an asymptotically stable fixed point of fk,

(iii) unstable, if it is an unstable fixed point of fk.

This definition, together with Theorem 2.13, yield the following classification of the stability of k-cycles.

Theorem 2.23. Let O(b) = {x0 = b, x(1) = f(b), . . . , x(k − 1) = fk−1(b)} be a k-cycle of a continuously
differentiable function f . Then

(i) The k-cycle O(b) is asymptotically stable if

|f ′(x0)f ′(x(1)) . . . f ′(x(k − 1))| < 1.

(ii) The k-cycle O(b) is unstable if

|f ′(x0)f ′(x(1)) . . . f ′(x(k − 1))| > 1.

Proof. Follows from Theorem 2.13 by the Chain Rule applied to fk. ✷

It follows that if b is k-periodic, then every point of its k-cycle {x(0) = b, x(1) = f(b), . . . , x(k−1) = fk−1(b)}
is also k-periodic. This follows from fk(f r(b)) = f r(fk(b)) = f r(b), r = 0, 1, . . . , k − 1.

Note that the stability of b means that |fnk(x) − b| < ǫ for all n, provided x is close enough to b. In other
words, we are ensured only that the iterates of fk(x) will stay close to b. However, from continuity of f it
also follows that for r = 1, . . . , k − 1, fnk+r(x) will stay close to fnk+r(b) = f r(b) if x is close enough to b.

Actually, a stronger result is valid.

Proposition 2.24. Each such point of the k-cycle O(b) = {x(0) = b, x(1) = f(b), . . . , x(k − 1) = fk−1(b)}
possesses the same stability property as b.

Proof. The proof would be easy if f was continuously invertible. Indeed, then a preimage of any small neigh-
bourhood of f r(b) would be a small neighbourhood of b and starting the iterates from a small neighbourhood
of f r(b) would be equivalent to starting from a small neighbourhood of b. . In general, it is not possible for
non-invertible functions (think about f(x) = sinx and preimage {x ∈ R; | sinx| < ǫ} – it is unbounded).
Assume that b is stable and fix 0 < r < k. Stability of b and continuity of f r implies that for any ǫ we can
find δ so that

|f rf (n−1)k(y) − f rf (n−1)k(b)| = |f (n−1)kf r(y) − f (n−1)kf r(b)| = |f (n−1)kf r(y) − fnkf r(b)| < ǫ,

provided |y − b| < δ. Next, we can find δ1 > 0 such that from |x− f r(b)| < δ1 it follows that

|fk−r(x) − fk−rf r(b)| = |fk−r(x) − fk(b)| = |fk−r(x) − b| < δ.

Taking now y = fk−r(x), we have |y − b| < δ, hence

|f (n−1)kfk(x) − fnkf r(b)| = |fnk(x) − fnkf r(b)| < ǫ,

provided |x−f r(b)| < δ1, which yields stability of f r(b). Asymptotic stability can be proved in a similar way.
We know that we can find δ1 such that |x− f r(b)| < δ1 implies fknfk−r(x) → b for n→ ∞. The continuity
of f yields

f rfknfk−r(x) = fk(n+1)(x) → f r(b)

but this is the same as fkn(x) → f r(b). Hence f r(b) is asymptotically stable.

Finally, let b be be unstable. If f r(b) was stable, then b = fk−rf r(b) would be stable, contradicting the first
part of the proof. ✷
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6.8 Dynamics of the logistic equation

Consider the logistic equation

x(n+ 1) = Fγ(x(n)) := γx(n)(1 − x(n)), x ∈ [0, 1], γ > 0. (2.6.27)

Our aim is to investigate the properties of equilibria of (2.6.27) with respect to the parameter γ. The values
of γ, for which there is a qualitative change of the properties of the equilibria are called bifurcation points.

To find the equilibrium points, we solve Fγ(x∗) = x∗ which gives x∗ = 0, (γ − 1)/γ.

We investigate the stability of each point separately.

(a) For x∗ = 0, we have F ′
γ(0) = γ and thus x∗ = 0 is asymptotically stable for 0 < γ < 1 and unstable for

γ > 1. To investigate the stability for γ = 1, we find F ′′
γ (0) = −2γ 6= 0 and thus x∗ = 0 is unstable in this

case. However, the instability comes from the negative values of x, which we discarded from the domain. If
we restrict our attention to the domain [0, 1], then x∗ = 0 is stable. Such points are called semi-stable.
(b) The equilibrium point x∗ = (γ−1)/γ belongs to the domain [0, 1] only if γ > 1. Here, F ′

γ((γ−1)/γ) = 2−γ
and F ′′

γ ((γ − 1)/γ) = −2γ. Thus, using Theorems 2.13 and 2.14, we obtain that x∗ is asymptotically stable
if 1 < γ ≤ 3 and it is unstable if γ > 3.

Further, by Remark 2.18, we observe that for 1 < γ < 2, the population approaches the carrying capacity
monotonically from below. However, for 2 < γ ≤ 3 the population can go over the carrying capacity but
it will eventually stabilize around it. What happens for γ = 3? Consider 2-cycles. We have F 2

γ (x) =
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Fig. 2.20. Asymptotically stable equilibrium x = 2/3 for γ = 3.

γ2x(1 − x)(1 − γx(1 − x)) so that we are looking for solutions to γ2x(1 − x)(1 − γx(1 − x)) = x, which can
be re-written as

x(γ3x3 − 2γ3x2 + γ2(1 + γ)x+ (1 − γ2)) = 0.

To simplify, we observe that any equilibrium is also a 2-cycle (and any k-cycle for that matter). Thus, we
can divide this equation by x and x− (γ − 1)/γ, getting

γ2x2 − γ(γ + 1)x+ γ + 1 = 0.

Solving this quadratic equation, we obtain a 2-cycle

x± =
(1 + γ) ±

√

(γ − 3)(γ + 1)

2γ
. (2.6.28)

Clearly, these points determine a 2-cycle provided γ > 3 (in fact, for γ = 3, these two points collapse into
the equilibrium point x∗ = 2/3. Thus, we see that when the parameter γ passes through γ = 3, the stable
equilibrium becomes unstable and bifurcates into two 2-cycles.

The stability of 2-cycles can be determined by Theorem 2.23. We have F ′
γ(x) = γ(1 − 2x) so the 2-cycle is

stable, provided
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−1 < γ2(1 − 2x+)(1 − 2x−)) < 1.

Using Viète’s formulae we find that the above is satisfied provided −1 < −γ2 + 2γ+ 4 < 1 and, upon solving
this inequality, we get γ < −1 or γ > 3 and 1 −

√
6 < γ < 1 +

√
6 which yields 3 < γ < 1 +

√
6.

In a similar fashion, we find that for γ1 = 1 +
√

6, the 2-cycle is still attracting but becomes unstable for
γ > γ1.

To find 4-cycles, we solve F 4
γ (x) = 0. However, in this case the algebra becomes intractable and one should

resort to a computer. It turns out that there is a 4-cycle, when γ > 1 +
√

6, which is attracting for 1 +√
6 < γ < 3.544090 . . . =: γ2. When γ = γ2, the 22-cycle bifurcates into a 23-cycle which is stable for

γ2 ≤ γ ≤ γ3 := 3.564407 . . .. Continuing, we obtain a sequence of numbers (γn), such that the 2n-cycle
bifurcates into a 2n+1-cycle passing through γn. In this particular case, limn→∞ γn = γ∞ = 3.57 . . .. A
remarkable observation, made by Feigenbaum, is that for any sufficiently smooth family Fγ of mappings of
an interval into itself, the number

δ = lim
n→∞

γn − γn−1

γn+1 − γn
= 4.6692016 . . . ,

in general does not depend on the family of maps, provided they have single maximum. The interested reader
should consult e.g., [11] for further information on dynamics of the logistic map.

The Feigenbaum’s result expresses the fact that the picture obtained for the logistic equation is to a large
extent universal. What happens for γ∞? Here we find a densely interwoven region with both periodic and
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Fig. 2.21. Chaotic orbit for x = 0.9 and γ = 4.

very irregular orbits. In particular, a 3-cycle appears and, by the celebrated theorem by Šarkovsky, see e.g.
[13], this implies the existence of orbits of any period. In fact, what we observe is the emergence of the
so-called chaotic dynamics. The discussion of this topic is beyond the scope of this book and the reader is
referred to e.g., [11] (discrete dynamics) and [13, 22] (continuous dynamics) for a more detailed account of
it.

6.9 Stability in the Beverton-Holt equation

We conclude with a brief description of the stability of equilibrium points for the Beverton-Holt equation
which was discussed in Subsections 2.4 and 3.4. Let us recall this equation

x(n+ 1) = f(x(n), β, b) =
βx(n)

(1 + x(n))b
.

Writing x∗(1 + x∗)b = βx∗, we find a steady state x∗ = 0 and we observe that if β ≤ 1, then this is the
only steady state (at least for positive values of x). If β > 1, then there is another steady state given by
x∗ = β1/b − 1. Evaluating the derivative at x∗, we have

f ′(x∗, β, b) =
β

(1 + x∗)b
− βbx∗

(1 + x∗)b+1
= 1 − b+

b

β1/b
.
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0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.05

0.10

0.15

0.20

0.25

0.30

Fig. 2.22. Monotonic stability of the equilibrium for the Beverton-Holt model with b = 3 and β = 2; see Eqn (2.6.29).

0.5 1.0 1.5 2.0

1.2

1.4

1.6

1.8

2.0

Fig. 2.23. Oscillatory stability of the equilibrium for the Beverton-Holt model with b = 2 and β = 8; see Eqn
(2.6.29).

Clearly, with β > 1, we always have f ′ < 1. Hence, for monotone stability we must have 1 − b+ bβ−1/b > 0,
whereas oscillatory stability requires −1 < 1− b+ bβ−1/b < 0. Solving these inequalities, we obtain that the
borderlines between different types of behaviour are given by

β =

(

b

b− 1

)b

and β =

(

b

b− 2

)b

. (2.6.29)

Let us consider the existence of 2-cycles. The second iteration of the map H(x) = βx/(1 + x)b is given by

Fig. 2.24. Regions of stability of the Beverton-Holt model described by (2.6.29)

H(H(x)) =
β2x(1 + x)b

2−b

((1 + x)b + βx)b
,

so that 2-cycles can be obtained by solving H(H(x)) = x. This can be rewritten as

xβ2(1 + x)b
2−b = x((1 + x)b + βx)b,

or, discarding x = 0 and taking the bth root,

(1 + x)b−1β
2
b = (1 + x)b + βx.
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Introducing the change of variables z = 1 + x, we see that we have to investigate the existence of positive
roots of

f(z) = zb − zb−1β
2
b + βz − β.

Clearly, we have f(β
1
b ) = 0, since any equilibrium of H is also an equilibrium of H2. First, let us consider

1 < b ≤ 2 (the case b = 1 yields an explicit solution obtained in Section 3.4).

0.5 1.0 1.5 2.0 2.5 3.0

1

2

3

4

Fig. 2.25. 2-cycles for the Beverton-Holt model with b = 3 and β = 28; see Eqn (2.6.29).

We have f ′(z) = bzb−1 − (b − 1)zb−2β2/b + β and f ′′(z) = (b − 1)zb−3(bz + (2 − b)β2/b), hence we see that
f ′′ > 0 for all z > 0. Furthermore, f(0) = −β < 0. Hence, the region Ω, bounded from the left by the axis
z = 0 and lying above the graph of f for z > 0, is convex. Thus, the z axis, being perpendicular to the axis
z = 0, cuts the boundary of Ω in exactly two points, one being (0, 0) and the other (β

1
b , 0). Hence, there are

no additional equilibria of H2 for 1 < b < 2 and therefore H does not have 2-cycles for b ≤ 2. Consider next
b > 2. Then f ′′ has exactly one positive root zi = (b − 2)β

2
b /b. The fact that the equilibrium x∗ = β

1
b − 1

loses stability at βcrit = (b/(b − 2))b suggests that a 2-cycle can appear, when β increases passing through
this point.

The analysis of this case rests on the following observation.

Lemma 2.25. Let g be a differentiable function on an interval [α, γ] such that g(α) > 0, g(γ) ≥ 0 and the
only zero of g′ is at x = α or at x = γ. Then g(x) > 0 for all x ∈ [α, γ).

Proof. Assume there is α < x0 < γ where g(x0) ≤ 0. It cannot be the local minimum of g as then
g′(x0) = 0, contrary to the assumption. Thus, for some x(1) > x0 we have g(x(1)) < 0 and therefore there
is x(2) ∈ (x(1), γ] with g(x(2)) = 0 and, by Rolle’s theorem, there is x(3) < γ for which g′(x(3)) = 0, again
contradicting the assumption. ✷

Let us discuss the stable region β ≤ bb(b − 2)−b. Then zi ≤ (b − 2)/2 = β
1
b , that is, zi is below the original

equilibrium β
1
b ; it is easy to see that, when β passes through the value R0,crit, zi passes through β

1
b and

moves on to take on values larger than the original equilibrium. Let us evaluate the first derivative at zi

f ′
(

b− 2

b
β

2
b

)

= β

(

1 −
(

b− 2

b

)b−2

β
(b−2)

b

)

.

Thus we see that f ′
(

b−2
b β

2
b

)

> 0 provided zi < R
1
b

0 and becomes negative as zi moves through R
1
b

0 . Further,

we see that f ′(β
1
b ) = β(bβ− 1

b − (b− 2)) and f ′(β
1
b ) > 0 provided β < (b(b− 2))b, that is, for zi < β

1
b .

Now, consider the case with β < (b(b − 2))b. Since then f ′(0) = β > 0, f ′
(

b−2
b β

2
b

)

> 0, f ′(β
1
b ) > 0,

0 < b−2
b β

2
b < β

1
b and b−2

b β
2
b is the only zero of f ′′ on [0, β

1
b ], we can apply the lemma above (to g = f ′

on the intervals [0, zi] and [zi, β
1
b ]). Hence, f ′ is positive on the interval [0, β

1
b ] and β

1
b is the only zero of

f in this interval. Consider now the interval [β
1
b ,∞). Since f ′(β

1
b ) > 0 and f(z) tends to +∞ for z → ∞,

for f to have zeroes in this interval, it would have to have a local maximum, then take on 0, and then to
have a local minimum before crossing the axis again to move to infinity. This would give another zero of f ′′

between the local extrema, but then this zero would be greater than β
1
b , which is impossible.
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For β = (b(b− 2))b, the points zi and β
1
b coalesce and, analogously, we see that there is only one zero of f .

Let us consider the case with β > (b(b − 2))b. Then f ′(β
1
b ) < 0 and hence f takes on negative values for

z > β
1
b . Since, however, f(z) tends to +∞ for z → ∞, there must be z∗ > β

1
b , for which f(z∗) = 0. Also,

by f ′(β
1
b ) < 0, f(z) > 0 in a left neighbourhood of β

1
b and hence there must be another zero 1 < z# < β

1
b ,

by f(1) = 1 − β
1
b < 0. Since β

1
b − 1 and 0 were the only equilibria of H , x∗ = z∗ − 1 and x# = z# − 1 > 0

must give a 2-cycle.

Figure 2.26 shows, for b = 3, how the point zi moves with β through the equilibrium point z = 3 to produce
new zeros of f, giving rise to 2-cycles. With much more, mainly computer aided, work we can establish that,
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Fig. 2.26. Function f for b = 3 and, from left to right, β = 8, 27, 30. Notice the emergence of 2-cycles represented
here by new zeros of f besides z = 3

√

β.

as with the logistic equation, we obtain period doubling and transition to chaos.

Experimental results are in quite good agreement with the model, see [6]. Most models fell into the stable
region. On the other hand, it is obvious that high reproductive ratio R0 and highly over-compensating density
dependence (large b) are capable of provoking periodic or chaotic fluctuations in the population density. This
can be demonstrated mathematically (before the advent of the mathematical theory of chaos it was assumed
that these irregularities were of stochastic nature) and it is observed in the fluctuations of the populations
of the Colorado beetle.

The question of whether chaotic behaviours do exist in ecology is still an area of active debate. Observational
time series are always finite and inherently noisy, thus it can be argued that always a regular models can
be found to fit these data. However, in several laboratory host-parasitoid systems good fits were obtained
between the data and chaotic mathematical models and therefore it is reasonable to treat these systems as
chaotic.
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Linear models with discrete structure

1 Introducing structure

The Malthusian model clearly is hugely oversimplified and its improvements may go into many directions.
Earlier we discussed models still with an aggregated description but with variable and and nonlinear coeffi-
cients. Another option is to consider a relevant internal structure of the population. This could be age and
related with it differentiation in birth and death rates. Other possibilities include size or geographical struc-
ture which also may impact on death and birth rates. Let us start with revisiting the classical Fibonacci’s
problem of rabbits.

Fibonacci’s rabbits

In his famous book, Liber abaci, published in 1202, he formulated the following problem:

A certain man put a pair of rabbits in a place surrounded on all sides by a wall. How many rabbits
can be produced from that pair in a year if it is supposed that every month each pair begets a new
pair which from the second month on becomes productive?

To fix attention, we assume that we take monthly census just after the births for this month take place and
the rabbits were newly born at the beginning of the experiment. Usually the problem is modelled as the
initial value problem for a second order difference equation The resulting

y(n+ 2) = y(n+ 1) + y(n), y(0) = 1, y(1) = 1. (3.1.1)

Example 3.1. It is clear that (3.1.1) as a model describing a population of rabbits is oversimplified: rabbits
do not die, they are always fertile as soon as they are mature, etc. However, there are biological phenomena
for which (3.1.1) provides an exact fit. One of them is family tree of honeybees. Honeybees live in colonies
and one of the unusual features of them is that not every bee has two parents. To be more precise, let us
describe a colony in more detail. First, in any colony there is one special female called the queen. Further,
there are worker bees who are female but they produce no eggs. Finally, there are drones, who are male and
do no work, but fertilize the queen’s eggs. Drones are borne from the queen’s unfertilised eggs and thus they
have a mother but no father. On the other hand, the females are born when the queen has mated with a
male and so have two parents. In Fig. 3.1 we present a family tree of a drone. It is clear that the number of
ancestors kth generations earlier exactly satisfies (3.1.1).

Our aim here is not to reheat the classical Fibonacci equation but rather use it to explain a more general
structure.
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Fig. 3.1. The family tree of a drone

1.1 Models in discrete time

Fibonacci model is an example of an age-structured population model: in this particular case each month the
population is represented by two classes of rabbits, adults v1(n) and juveniles v0(n). Thus the state of the
population is described by the vector

v(n) =

(

v0(n)
v1(n)

)

Since the number of juvenile (one-month old) pairs in month n + 1 is equal to the number of adults in the
month n and the number of adults is the number of adults from the previous month and the number of
juveniles from the previous month (who became adults). In other words

v0(n+ 1) = v1(n),

v1(n+ 1) = v1(n) + v0(n) (3.1.2)

or, in a more compact form,

v(n+ 1) = Lv(n) :=

(

0 1
1 1

)

v(n). (3.1.3)

The solution can be found by iterations
v(n + 1) = Lv(n),

that is,
v(n) = Lnv(0), (3.1.4)

Leslie matrices

How do we generalize this? Assume that we are tracking only females and not pairs and that census is taken
immediately after the reproductive period (the length of which is negligible). Further, assume that there is
an oldest age class n and if no individual can stay in an age class for more than one time period (which is not
the case for Fibonacci rabbits, where we allowed adults to stay adults forever). We introduce the year-to-year
survival probability si and the age dependent maternity function mi; that is, si is probability of survival
from age i to age i+ 1 and each individual of age i produces mi offspring on average. Thus, say in the kth
breeding season, we have vi(k) individuals of age i, si of them survives to the k + 1th breeding season, that
is, to age i+ 1, producing on average fivi(k) := mi+1sivi(k) offspring. Thus, the surviving individuals of all
ages will produce
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v0(k + 1) =

n−1
∑

i=0

fivi(k) =

n−1
∑

i=0

mi+1sivi(k)

offspring. In this case, the evolution of the population can be described by the difference system

v(n + 1) = Lv(n),

where L is the n× n matrix

L :=















f0 f1 · · · fn−2 fn−1

s0 0 · · · 0 0
0 s1 · · · 0 0
...

... · · ·
...

...
0 0 · · · sn−2 0















. (3.1.5)

The matrix of the form (3.1.5) is referred to as a Leslie matrix.

A generalization of the Leslie matrix can be obtained by assuming that a fraction τi of i-th population stays
in the same population. This gives the matrix

L :=















f0 + τ0 f1 · · · fn−2 fn−1

s0 τ1 · · · 0 0
0 s1 · · · 0 0
...

... · · ·
...

...
0 0 · · · sn−2 τn−1















, (3.1.6)

Such matrices are called Usher matrices. We note that the matrix of the Fibonacci process in an Usher
matrix.

In most cases fi 6= 0 only if α ≤ i ≤ β where [α, β] is the fertile period. For example, for a typical mammal
population we have three stages: immature (pre-breeding), breeding and post-breeding. If we perform census
every year, then naturally a fraction of each class remains in the same class. Thus, the transition matrix in
this case is given by

L :=





τ0 f1 0
s0 τ1 0
0 s1 τ2



 , (3.1.7)

On the other hand, in many insect populations, reproduction occurs only in the final stage of life and in such
a case fi = 0 unless i = n.

Projection matrices

Leslie matrices fit into a more general mathematical structure describing evolution of populations divided in
states, or subpopulations, not necessarily related to age. Matrices resulting from such a modelling, that is,
describing changes of a structured populations from one generation to another due to migrations between
structural states and (generalized) birth processes are called projection matrices. For example, we can consider
clusters of cells divided into classes with respect to their size, cancer cells divided into classes on the basis
of the number of copies of a particular gene responsible for its drug resistance, or a population divided into
subpopulations depending on the geographical patch they occupy in a particular moment of time. Let us
suppose we have n states. Each individual in a given state j contributes on average to, say, aij individuals
in state j. Typically, this is due to a state j individual:

• migrating to i-th subpopulation with probability pij ;

• contributing to a birth of an individual in i-th subpopulation with probability bij ;

• dying with probability dj , that is, surviving with probability 1 − dj .
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It must be borne in mind that the exact interpretation of the coefficients can vary depending on the way of
taking census and when the death and migrations occur in the process, see Remark 2.1.

Other choices and interpretations are, however, also possible. For instance, if we consider size structured
population of clusters of cells divided into subpopulations according to their size i, an n-cluster can split
into several smaller clusters, contributing thus to ‘births’ of clusters in subpopulations indexed by i < n.
Hence, aij are non-negative but otherwise arbitrary numbers. Denoting, as before, by vi(k) the number of
individuals at time k in state i, with v(k) = (v1(k), . . . , vn(k)), we have

v(k + 1) = Av(k), (3.1.8)

where

A :=











a11 a12 · · · a1n−1 a1n
a21 a22 · · · a2n−1 a2n
...

... · · ·
...

...
an1 an2 · · · ann−1 ann











. (3.1.9)

Thus
vk = Akv0,

where v0 is the initial distribution of the population between the subpopulations.

Example 3.2. Any chromosome ends with a telomer which protects it agains damage during the DNA repli-
cation process. Recurring divisions of cells can shorten the length of telomers and this process is considered
to be responsible for cell’s aging. If telomer is too short, the cell cannot divide which explains why many cell
types can undergo only a finite number of divisions. Let us consider a simplified model of telomer shortening.
The length of a telomer is a natural number from 0 to n, so cells with telomer of length i are in subpopulation
i. A cell from subpopulation i can die with probability µi and divide (into 2 daughters). Any daughter can
have a telomer of length i with probability ai and of length i − 1 with probability 1 − ai. Cells of 0 length
telomer cannot divide and thus will die some time later. To find coefficients of the transition matrix, we see
that the average production of an offspring with telomer of length i by a parent of the same class is

2a2i + 2ai(1 − ai) = 2ai,

(2 daughters with telomer of length i produced with probability a2i and 1 daughter with telomer of length
i − 1 produced with probability 2ai(1 − ai)). Similarly, average production of daughters with length i − 1
telomer is 2(1 − ai). However, to have offspring, the cell must have survived from one census to another
which happens with probability 1 − µi. Hence, defining ri = 2ai(1 − µi) and di = 2(1 − ai)(1 − µi), we have

A :=











0 d1 0 · · · 0
0 r1 d2 · · · 0
...

...
... · · ·

...
0 0 0 · · · rn











. (3.1.10)

The model can be modified to make it closer to reality by allowing, for instance, shortening of telomers by
different lengthes or consider models with more telomers in a cell and with probabilities depending on the
length of all of them.

Markov matrices

A particular version of (3.1.9) is obtained when we assume that the total population has constant size so that
no individual dies and no new individual can appear, so that the the only changes occur due to migration
between states. In other words, bij = dj = 0 for any 1 ≤ i, j ≤ n and thus aij = pij is the fraction of
j-th subpopulation which, on average, moves to the i-th subpopulation or, using a probabilistic language,
probabilities of such a migration. Then, in addition to the constraint pij ≥ 0 we must have pij ≤ 1 and, since
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the total number of individuals contributed by the state j to all other states must equal to the number of
individuals in this state, we must have

vj =
∑

1≤i≤n

pijvj

we obtain
∑

1≤i≤n

pij = 1. (3.1.11)

In words, the sum of entries in each column must be equal to 1. This expresses the fact that each individual
must be in one of the n states at any time.

Matrices of this form are called Markov matrices.

We can check that, indeed, this condition ensures that the size of the population is constant. Indeed, the
size of the population at time k is N(k) = v1(k) + . . .+ vn(k) so that

N(k + 1) =
∑

1≤i≤n

vi(k + 1) =
∑

1≤i≤n





∑

1≤j≤n

pijvj(k)





=
∑

1≤j≤n

vj(k)





∑

1≤i≤n

pij



 =
∑

1≤j≤n

vj(k) = N(k). (3.1.12)

1.2 Transition matrices for continuous time processes

Let us consider a model with population divided into n subpopulation but with transitions between them
happening in a continuous time. Note that this in natural way excludes age structured populations discussed
earlier as those models were constructed assuming discrete time. Continuous time age structure population
models require a slightly different approach and will be considered later.

Let vi(t) denotes the number of individuals in subpopulation i at time t and consider the change of the size
of this population in a small time interval ∆t. Over this interval, an individual from a j-th subpopulation
can undergo the same processes as in the discrete case; that is,

• move to i-th subpopulation with (approximate) probability pij∆t;

• contribute to the birth of an individual in i-th subpopulation with probability bij∆t;

• die with probability dj∆t.

Thus, the number of individuals in class i at time t+∆t is:

the number of individuals in class i at time t - the number of deaths in class i + the number of births
in class i due to interactions with individuals in all other classes + the number of individuals who
migrated to class i from all other classes - the number of individuals who migrated from class i to
all other classes,

or, mathematically,

vi(t+∆t) = vi(t) − di∆tvi(t) +
n
∑

j=1

bij∆tvj(t)

+
n
∑

j=1

j 6=i

(pij∆tvj(t) − pji∆tvi(t)) , i = 1, . . . , n. (3.1.13)

To make the notation more compact, we denote qij = bij + pij for i 6= j and
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qii = bii − di −
n
∑

j=1

j 6=i

pji.

Using this notation in (3.1.13), dividing by ∆t and passing to the limit with ∆t→ 0 we obtain

v′i(t) =

n
∑

j=1

qijvj(t), , i = 1, . . . , n, (3.1.14)

or
v′ = Qv, (3.1.15)

where Q = {qij}1≤i,j≤n.

Let us reflect for a moment on similarities and differences between continuous and discrete time models.
To simplify the discussion we shall focus on processes with no births or deaths events: bij = dj = 0 for
1 ≤ i, j ≤ n. As in the discrete time model, the total size of the population at any given time t is given by
N(t) = v1(t) + . . .+ vn(t). Then, the rate of change of N is given by

dN

dt
=
∑

1≤i≤n

dvi(t)

dt
=

n
∑

i=1





n
∑

j=1

qijvj(t)





=

n
∑

i=1

qiivi(t) +

n
∑

i=1







n
∑

j=1

j 6=i

qijvj(t)







= −
n
∑

i=1

vi(t)







n
∑

j=1

j 6=i

pji






+

n
∑

i=1







n
∑

j=1

j 6=i

pijvj(t)







= −
n
∑

i=1

vi(t)







n
∑

j=1

j 6=i

pji






+

n
∑

j=1

vj(t)







n
∑

i=1

i6=j

pij







= −
n
∑

i=1

vi(t)







n
∑

j=1

j 6=i

pji






+

n
∑

i=1

vi(t)







n
∑

j=1

j 6=i

pji






= 0, (3.1.16)

where we used the fact that i, j are dummy variables.

Remark 3.3. The change of order of summation can be justified as follows

n
∑

i=1







n
∑

j=1

j 6=i

pijvj






=

n
∑

i=1





n
∑

j=1

pijvj



−
n
∑

i=1

piivi

=

n
∑

j=1

(

n
∑

i=1

pijvj

)

−
n
∑

j=1

pjjvj =

n
∑

j=1

vj

(

n
∑

i=1

pij − pjj

)

=
n
∑

j=1

vj







n
∑

i=1

i6=j

pij






.

Hence, N(t) = N(0) for all time and the process is conservative. To certain extent we can compare the
increments in the discrete time process
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v(k + 1) − v(k) = (−I + P)v(k) (3.1.17)

=











−1 + p11 p12 · · · p1n
p21 −1 + p22 · · · p2n
...

... · · ·
...

pn1 pn2 · · · −1 + pnn











v(k),

so that the ‘increment’ matrix has the property that each row adds up to zero due to (3.1.11). However, it
is important to remember that the coefficients pij in the continuous case are not probabilities and thus they
do not add up to 1. In fact, they can be arbitrary numbers and represent probability rates with pij∆t being
approximate interstate transition probabilities.

2 Long time behaviour of structured population models

The main interest in population theory is to determine the long time structure of the population.

2.1 Numerical example of the AEG property

Before we embark on mathematical analysis, let us consider two numerical examples which indicate what we
should expect from the models.

Example 3.4. Let us consider a population divided into three classes, evolution of which is modelled by the
Leslie matrix

L =





2 1 1
0.5 0 0
0 0.4 0



 ,

so that the population v = (v1, v2, v3) evolves according to

v(k + 1) = Lv(k), k = 0, 1, 2 . . . ,

or
v(k) = Lk ◦

v,

where
◦
v is an initial distribution of the population. In Fig. 3.2 we observe that each component grows very
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Fig. 3.2. Evolution of v1(k) (circles), v2(k) (squares) and v3(k) (rhombuses) for the initial distribution
◦

v= (1, 0, 3)
and k = 1, . . . , 20.

fast with k. However, if we compare growth of v1(k) with v2(k) and of v2(k) with v3(k) (see Fig. 3.3) we see
that the ratios stabilize quickly around 4.5 in the first case and around 5.62 in the second case. This suggests
that there is a scalar function f(k) and a vector e = (e1, e2, e3) = (25.29, 5.62, 1) such that for large k
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v(k) ≈ f(k)e. (3.2.18)

Let us consider another initial condition, say,
◦
v= (2, 1, 4) and do the same comparison. It turns out that

2 4 6 8 10
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5.7

5.8

5.9

6.0

Fig. 3.3. Evolution of v1(k)/v2(k) (top) and v2(k)/v3(k) (bottom) for the initial distribution
◦

v= (1, 0, 3) and
k = 1, . . . , 20.
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Fig. 3.4. Evolution of v1(k)/v2(k) (top) and v2(k)/v3(k) (bottom) for the initial distribution
◦

v= (2, 1, 4) and
k = 1, . . . , 20.

the ratios stabilize at the same level which further suggest that e does not depend on the initial condition
so that (5.4.34) can be refined to

v(k) ≈ f1(k)g(
◦
v)e, k → ∞ (3.2.19)

where g is a linear function. Anticipating the development of the theory, it can be proved that f1(k) = λk

where λ is the largest eigenvalue of L, e is the eigenvector corresponding to λ and g(x) = g · x with g being
the eigenvector of the transpose matrix corresponding to λ. In our case, λ ≈ 2.26035 and the ratios vi(k)/λk

stabilize as seen in Fig. 3.5.

The situation in which the structure of the population after long time does not depend on the initial condition
but only on the intrinsic properties of the model (here the leading eigenvalue) is called the asynchronous
exponential growth (AEG) property.

Unfortunately, not all Leslie matrices enjoy this property.

Example 3.5. Consider a Leslie matrix given by
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Fig. 3.5. Evolution of v1(k)/λ
k) (circles), v2(k)/λ

k (squares)and v3(k)/λ
k (rhombuses) for the initial distribution

◦

v= (1, 0, 3) and k = 1, . . . , 20.

L =





0 0 3
0.5 0 0
0 0.4 0





and a population evolving according to

y(k) = Lk
◦
y

with
◦
y= (2, 3, 4). The solution is given in Fig. 3.6. The picture is completely different from that obtained
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Fig. 3.6. Evolution of y1(k) (top) and y2(k) (middle) and y3(k) (bottom) for the initial distribution
◦

v= (2, 3, 4) and
k = 1, . . . , 10.

in Example 3.4. We observe some pattern but the ratios do not tend to a fixed limit but oscillate, as
shown in Fig. 3.7. This can be explained using the spectral decomposition: indeed, the eigenvalues are
given by λ1 = 0.843433, λ2 = −0.421716 + 0.730434i, λ2 = −0.421716 − 0.730434i and we can check that
|λ1| = |λ2| = |λ3| = 0.843433 and thus we do not have the dominant eigenvalue. The question we will try to
answer in the next chapter is what features of the population are responsible for such behaviour.

The next example shows that structured population models in continuous time have the same property.
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Fig. 3.7. Evolution of y1(k)/y2(k) (top) and y2(k)/y3(k) (bottom) for the initial distribution
◦

v= (2, 3, 4) and
k = 1, . . . , 20.

Example 3.6. Population in continuous time.
Consider the following problem

dv

dt
= Av, (3.2.20)

where

A =





−1 1 1
0.5 −0.5 0
0 0.4 −1



 .

We consider this equation with the initial conditions
◦
v= (1, 0, 3) and

◦
v= (2, 1, 4).
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Fig. 3.8. Solutions v1(t) (dotted), v2(t) (dashed) and v3(t) (continuous) for the initial condition
◦

v= (2, 1, 4)

As before we see that the components grow fast but v1(t)/v2(t) and v2(t)/v3(t) stabilize quickly around
1.57631 and 0.970382, respectively, see Fig. 3.9, and these ratios are independent of the initial conditions.
Thus,

v(t) ≈ f(t)g(
◦
v)e

for large t, where e = (1.5296, 0.970382, 1) and g is a scalar linear function of
◦
v. As illustrated in Fig. 3.10,

f(t) = e0.288153t and the number 0.288153 is the largest eigenvalue of A.

It is interesting that the behaviour observed in Example 3.5 cannot occur in continuous time.

The question whether any matrix with nonnegative entries in discrete time and with positive off-diagonal
entries gives rise to such a behaviour and, if not, what models lead to AEG, is quite delicate and requires
invoking the Frobenius-Perron theorem which will be discussed in the next chapter. First, however, we have
to review general properties of solution to systems of difference and differential equations.
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Fig. 3.9. Evolution of v1(t)/v2(t) (top) and v2(t)/v3(t) (bottom) for the initial distributions
◦

v= (1, 0, 3) (continuous

line) and
◦

v= (2, 1, 4) (dashed line).
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Fig. 3.10. Evolution v1(t)/e
0.288153t (dotted), v2(t)/e

0.288153t (dashed) and v3(t)/e
0.288153t (continuous) for the initial

condition
◦

v= (2, 1, 4).

3 Systems of linear differential and difference equations.

To explain and be able to predict similar behaviour in population models, first we discuss basic facts solv-
ability of initial value problems systems of difference

y(k + 1) = Ay(k), y(0) =
◦
y (3.3.21)

and differential,
dy

dt
= Ay, (3.3.22)

equations. Here y = (y1, . . . , yn) ∈ Rn and A = (aij)1≤i,j≤n is an n× n matrix.

We begin with introducing relevant notation and mathematical concepts.

3.1 Basic mathematical notions

To make further progress, we have to formalize a number of statements made in the previous sections and,
in particular, the meaning of the approximate equality (3.3.76). For this, we have to set the problem in an
appropriate mathematical framework.

First, we note that, in the context of population theory, if a given difference equation/system of equations
is to describe evolution of a population; that is, if the solution is the population size or density, then clearly
solutions emanating from non-negative data must stay non-negative. Thus we have to extend the notion
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of positivity to vectors. We say that a vector x = (x1, . . . , xn) is non-negative, (resp. positive), if for all
i = 1, . . . , n, xi ≥ 0, (resp. xi > 0). We denote these as x ≥ 0, (resp. x > 0) and put

X+ = {x ∈ R
n; x ≥ 0}.

Similarly, we say that a matrix A = (aij)1≤i,j≤n is non-negative (resp. positive) and write A ≥ 0 (resp.
A > 0) if aij ≥ 0 (resp. aij > 0) for all i, j = 1, . . . , n.

As we noted earlier, writing (3.1.4), the solution to (3.3.21) is given by the sequence (Ak)k≥1 of iterates

operating in the state space X = R
n. Then, in fact, (3.3.76) is a statement about the limit of Ak

◦
y as k → ∞

so we must introduce a way of measuring distances in X . Usually we want to make the metric consistent
with the linear structure of Rn; that is, with addition of vectors and multiplication of vectors by scalars.
Such metrics are defined by the so-called norms. A norm is a function ‖ · ‖ : X → R+ satisfying, for any
x,y ∈ X,α ∈ R,

‖x‖ = 0 iff x = 0, ‖αx‖ = |α|‖x‖, ‖x + y‖ ≤ ‖x‖ + ‖y‖.

Then, the distance between two points x and y is given by ‖x− y‖.

In what follows, we say that the sequence (x(k))k≥0 converges to x, and write

lim
k→∞

x(k) = x

if the numerical sequence (‖x(k) − x‖)k≥0 converges to 0. There is a variety norms in Rn (which, however,
define the same convergence of sequences, see e.g. [14, Chapter 5]), the most common being the Euclidean
norm

‖x‖2 =

√

√

√

√

n
∑

i=1

|xi|2.

In a plain language, a norm is a parameter which we use to describe the state of a system. In many applications
discussed in this book, we consider populations and one of the most natural parameters with which a
population is described, is its size, see e.g. Eqns (3.1.12) and (3.1.16). To accommodate this, we consider the
norm

‖y‖ =

n
∑

i=1

|yi| (3.3.23)

which, for y ≥ 0 simplifies to

‖y‖ =
n
∑

i=1

yi (3.3.24)

which is the total population of the ensemble. This norm is often called l1-norm.

Since we want A to act from X to X with the same way of measuring distances, we should have

‖Ax‖ =

n
∑

i=1

∣

∣

∣

∣

∣

∣

n
∑

j=1

aijxj

∣

∣

∣

∣

∣

∣

≤
n
∑

j=1

|xj |
n
∑

i=1

|aij | ≤ ‖x‖ max
1≤j≤n

n
∑

i=1

|aij | =: ‖A‖‖x‖

where

‖A‖ = max
1≤j≤n

n
∑

i=1

|aij |

is called the norm of the matrix/operator A. It is a norm of an operator in the functional analytic sense, see
[14, Chapter 5], and though one can define other norms, the above one is consistent with the interpretation
of the problem and will be used in the notes.
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3.2 Systems of difference equations I.

We are interested in solving
y(k + 1) = Ay(k),

where A is an n× n matrix A = (aij)1≤i,j≤n; that is

A =







a11 . . . a1n
...

...
an1 . . . ann






,

and y(k) = (y1(k), . . . , yn(k)).

Eq. (3.3.21) is usually supplemented by the initial condition y(0) = y0. As noted earlier, by induction, to
the solution to (3.3.21) is given by

y(k) = Aky0, k = 1, 2, . . . . (3.3.25)

The problem with (3.3.25) is that it is rather difficult to give an explicit form of Ak.

To proceed, we assume that the matrix A is nonsingular (this is not serious restriction as then one can consider
action of the matrix in a subspace). This means, in particular, that if v1, . . . ,vn are linearly independent
vectors, then also Av1, . . . ,Avn are linearly independent. Since Rn is n-dimensional, it is enough to find n
linearly independent vectors vi, i = 1, . . . , n for which Akvi can be easily evaluated. Assume for a moment
that such vectors have been found. Then, for arbitrary x0 ∈ Rn we can find constants c1, . . . , cn such that

x0 = c1v
1 + . . .+ cnv

n.

Precisely, let V be the matrix having vectors vi as its columns

V =





| . . . |
v1 . . . vn

| . . . |



 . (3.3.26)

Note, that V is invertible as the vectors vi are linearly independent. Denoting c = (c1, . . . , cn), we obtain

c = V−1x0. (3.3.27)

Thus, for an arbitrary x0 we have

Akx0 = Ak(c1v
1 + . . .+ cnv

n) = c1Anv1 + . . .+ ckAnvn. (3.3.28)

Now, if we denote by Ak the matrix whose columns are vectors Akv1, . . . ,Akvn, then we can write

Akx0 = Akc = AkV−1x0. (3.3.29)

Hence, the problem is to find linearly independent vectors vi, i = 1, . . . , k, on which powers of A can be
easily evaluated. We shall use eigenvalues and eigenvectors for this purpose. Firstly, note that if v1 is an
eigenvector of A corresponding to an eigenvalue λ1, that is, Av1 = λ1v

1, then by induction

Akv1 = λk1v
1.

Therefore, if we have n linearly independent eigenvectors v1, . . . ,vn corresponding to eigenvalues λ1, . . . , λn
(not necessarily distinct), then from (3.3.28) we obtain

Akx0 = c1λ
k
1v

1 + . . .+ cnλ
k
nv

n.

with c1, . . . , cn given by (3.3.27), or

Akx0 =





| . . . |
λk1v

1 . . . λknv
n

| . . . |



V−1x0 (3.3.30)
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Systems of differential equations I.

Considerations of the previous paragraph to some extent can be repeated for systems of differential equations

y′ = Ay,

where y(t) = (y1(t), . . . , yn(t)) and, as before, A = {aij}1≤i,j≤n is an n × n matrix. The system (3.3.22) is
considered together with the following initial conditions

y(t0) =
◦
y . (3.3.31)

The question of solvability and uniqueness of (3.3.22), (3.3.31) is not as easy as for difference equations but it
follows from the Picard theorem. We summarize the relevant properties of solutions in the following theorem
Thus, we can state

Theorem 3.7. [5, 10]

i. There exists one and only one solution of the initial value problem (3.3.22), (3.3.31), which is defined for
all t ∈ R.

ii. The set X of all solutions to (3.3.22) is a linear space of dimension n.

iii. If y1(t), . . . ,yr(t) are linearly independent solutions of (3.3.22) and let t0 ∈ R be an arbitrary number.
Then, {y1(t), . . . ,yr(t)} form a linearly independent set of functions if and only if {y1(t0), . . . ,yr(t0)}
is a linearly independent set of vectors in Rn.

An important consequence of iii. is that solutions starting from linearly independent initial conditions remain
linearly independent. Note that this is not necessarily the case in systems of difference equations – to have
this property we required A to be nonsingular.

Theorem 3.7 implies that there is matrix E(t) such that the solution y(t) can be represented as

y(t) = E(t)
◦
y (3.3.32)

which satisfies E(0) = I (the identity matrix). Then we proceed as in the discrete case by assuming that we
can find n linearly independent vectors vi, i = 1, . . . , n for which E(t)vi can be easily evaluated. Then, for

arbitrary
◦
y∈ Rn we can find constants c1, . . . , cn such that

◦
y= c1v

1 + . . .+ cnv
n;

that is, denoting c = (c1, . . . , cn),

c = V−1 ◦
x, (3.3.33)

where V was defined in (3.3.26). Thus, for an arbitrary
◦
y we have

E(t)
◦
y= E(t)(c1v

1 + . . .+ c2v
n) = c1E(t)v1 + . . .+ ckE(t)vn. (3.3.34)

Now, if we denote by Ev(t) the matrix whose columns are vectors E(t)v1, . . . , E(t)vn, then we can write

E(t)
◦
y= Ev(t)c = Ev(t)V−1 ◦

y . (3.3.35)

Hence, again, the problem lies in finding linearly independent vectors vi, i = 1, . . . , k, on which E can be
easily evaluated. Mimicking the scalar case, let us consider y(t) = eλtv for some vector v ∈ Rn. Since

d

dt
eλtv = λeλtv
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and
A(eλtv) = eλtAv

as eλt is a scalar, y(t) = eλtv is a solution to (3.3.22) if and only if

Av = λv, (3.3.36)

or in other words, y(t) = eλtv is a solution if and only if v is an eigenvector of A corresponding to the
eigenvalue λ.

Thus, for each eigenvector vj of A with eigenvalue λj we have a solution yj(t) = eλjtvj. By Theorem 3.7,
these solutions are linearly independent if and only if the eigenvectors vj are linearly independent in Rn.
Thus, if we can find n linearly independent eigenvectors of A with eigenvalues λ1, . . . , λn (not necessarily
distinct), then the general solution of (3.3.44) is of the form

y(t) = c1e
λ1tv1 + . . .+ cne

λntvn. (3.3.37)

with c1, . . . , cn given by (3.3.27), or

E(t)
◦
y=





| . . . |
eλ1tv1 . . . eλntvn

| . . . |



V−1
◦
y . (3.3.38)

Unfortunately, in many cases there are insufficiently many eigenvectors to generate all solutions.

Eigenvalues, eigenvectors and associated eigenvectors.

Let A be an n× n matrix. We say that a number λ (real or complex) is an eigenvalue of A is there exist a
non-zero solution of the equation

Av = λv. (3.3.39)

Such a solution is called an eigenvector of A. The set of eigenvectors corresponding to a given eigenvalue
is a vector subspace. Eq. (3.3.39) is equivalent to the homogeneous system (A − λI)v = 0, where I is the
identity matrix, therefore λ is an eigenvalue of A if and only if the determinant of A satisfies

det(A− λI) =

∣

∣

∣

∣

∣

∣

∣

a11 − λ . . . a1n
...

...
an1 . . . ann − λ

∣

∣

∣

∣

∣

∣

∣

= 0. (3.3.40)

Evaluating the determinant we obtain a polynomial in λ of degree n. This polynomial is also called the
characteristic polynomial of the system (3.3.22). We shall denote this polynomial by p(λ). From algebra we
know that there are exactly n, possibly complex, roots of p(λ). The set of eigenvalues eigenvalues is called
the spectrum of A and denoted by σ(A). An important role in applications is played by the spectral radius
of A, defined as

r(A) = sup
λ∈σ(A)

|λ|. (3.3.41)

Some of the roots of the characteristic polynomial can be multiple, so that in general p(λ) factorizes into

p(λ) = (λ1 − λ)n1 · . . . · (λk − λ)nk , (3.3.42)

with n1 + . . . + nk = n. It is also worthwhile to note that since the coefficients of the polynomial are real,
then complex roots appear always in conjugate pairs, that is, if λj = ξj + iωj is a characteristic root, then
so is λ̄j = ξj − iωj . Thus, eigenvalues are the roots of the characteristic polynomial of A. The exponent ni

appearing in the factorization (3.3.42) is called the algebraic multiplicity of λi. For each eigenvalue λi there
corresponds an eigenvector vi and eigenvectors corresponding to distinct eigenvalues are linearly independent.
The set of all eigenvectors corresponding to λi spans a subspace, called the eigenspace corresponding to λi
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which we will denote by Ẽλi
. The dimension of Ẽλi

is called the geometric multiplicity of λi. In general,
algebraic and geometric multiplicities are different with geometric multiplicity being at most equal to the
algebraic one. Thus, in particular, if λi is a single root of the characteristic polynomial, then the eigenspace
corresponding to λi is one-dimensional.

If the geometric multiplicities of eigenvalues add up to n; that is, if we have n linearly independent eigenvec-
tors, then these eigenvectors form a basis for Rn. In particular, this happens if all eigenvalues are single roots
of the characteristic polynomial. If this is not the case, then we do not have sufficiently many eigenvectors
to span Rn and if we need a basis for Rn, then we have to find additional linearly independent vectors. A
procedure that can be employed here and that will be very useful in our treatment of systems of difference
and differential equations is to find solutions to equations of the form (A−λiI)kv = 0 for 1 < k ≤ ni, where
ni is the algebraic multiplicity of λi. Precisely speaking, if λi has algebraic multiplicity ni and if

(A− λiI)v = 0

has only νi < ni linearly independent solutions, then we consider the equations

(A− λiI)jv = 0

for j ≥ 1. Using Theorem 7.17 we see that the solutions of these equations form an increasing set terminating
at worst at

(A− λiI)niv = 0

with ni linearly independent solutions. In practice, we first find linearly independent eigenvectors and, if
there are fewer than ni of them, we look for solutions to (A − λiI)2v = 0 selecting the ones that are not
eigenvectors (then they must be linearly independent of eigenvectors) and continue with higher powers until
we find ni linearly independent solutions. In each the step, say j, we select solutions that are independent
of the solutions obtained in step j − 1; for this it is enough to find solutions to (A− λiI)jv = 0 that satisfy
(A− λiI)j−1v 6= 0.

Vectors v obtained in this way for a given λi are called generalized or associated eigenvectors corresponding
to λi and they span an ni dimensional subspace called a generalized or associated eigenspace corresponding
to λi, denoted hereafter by Eλi

.

Now we show how to apply the concepts discussed above to solve systems of difference and differential
equations.

Systems of difference equations II.

Let us return to the system

y(k + 1) = Ay(k), y(0) =
◦
y .

As discussed, we need to find formulae for Akv for a selected n linearly independent vectors v. Let us take
as v the collection of all eigenvectors and associated eigenvectors of A. We know that if vi is an eigenvector
associated to an eigenvalue λi, then Akvi = λki v

i. Thus, the question is whether Ak can be effectively
evaluated on associated eigenvectors.

Let vj be an associated eigenvector found as a solution to (A − λiI)jvj = 0 with j ≤ ni. Then, using the
binomial expansion, we find

Akvj = (λiI + A− λiI)kvj =
k
∑

r=0
λk−r
i

(

k
r

)

(A− λiI)rvj

=
(

λki I + kλk−1
i (A− λiI) + . . .

+
k!

(j − 1)!(k − j + 1)!
λk−j+1
i (A− λiI)j−1

)

vj, (3.3.43)

where



3 Systems of linear differential and difference equations. 83

(

k
r

)

=
k!

r!(k − r)!

is the Newton symbol. It is important to note that (3.3.43) is a finite sum for any k; it always terminates at
most at the term (A− λ1I)ni−1 where ni is the algebraic multiplicity of λi.

We shall illustrate these considerations by several examples.

Example 3.8. Find Ak for

A =





4 1 2
0 2 −4
0 1 6



 .

We start with finding eigenvalues of A:

p(λ) =

∣

∣

∣

∣

∣

∣

4 − λ 1 2
0 2 − λ −4
0 1 6 − λ

∣

∣

∣

∣

∣

∣

= (4 − λ)(16 − 8λ+ λ2) = (4 − λ)3 = 0

gives the eigenvalue λ = 4 of algebraic multiplicity 3. To find eigenvectors corresponding to λ = 4, we solve

(A− 4I)v =





0 1 2
0 −2 −4
0 1 2









v1
v2
v3



 =





0
0
0



 .

Thus, v1 is arbitrary and v2 = −2v3 so that the eigenspace is two dimensional, spanned by

v1 =





1
0
0



 , v2 =





0
−2
1



 .

Therefore

Akv1 = 4k





1
0
0



 , Akv2 = 4k





0
−2
1



 .

To find the associated eigenvector we consider

(A− 4I)2v =





0 1 2
0 −2 −4
0 1 2









0 1 2
0 −2 −4
0 1 2









v1
v2
v3





=





0 0 0
0 0 0
0 0 0









v1
v2
v3



 =





0
0
0



 .

Any vector solves this equation so that we have to take a vector that is not an eigenvalue. Possibly the
simplest choice is

v3 =





0
0
1



 .

Thus, by (3.3.43)

Akv3 =
(

4kI + k4k−1(A− 4I)
)

v3

=









4k 0 0
0 4k 0
0 0 4k



+ k4k−1





0 1 2
0 −2 −4
0 1 2













0
0
1





=





2k4k−1

−k4k

4k + 2k4−1



 .
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To find explicit expression for Ak we use (3.3.29). In our case

Ak =





4k 0 2k4k−1

0 −2 · 4k −k4k

0 4k 4k + 2k4k−1



 ,

further

V =





1 0 0
0 −2 0
0 1 1



 ,

so that

V−1 =





1 0 0
0 − 1

2 0
0 1

2 1



 .

Therefore

Ak = AkV−1 =





4k k4k−1 2k4k−1

0 4k − 2k4k−1 −k4k

0 k4k−1 4k + 2k4k−1



 .

The next example shows how to deal with complex eigenvalues. We recall that if λ = ξ + iω is a complex
eigenvalue, then also its complex conjugate λ̄ = ξ − iω is an eigenvalue, as the characteristic polynomial
p(λ) has real coefficients. Eigenvectors v corresponding to a complex complex eigenvalue λ will be complex
vectors, that is, vectors with complex entries. Thus, we can write

v =







v11 + iv21
...

v1n + iv2n






=







v11
...
v1n






+ i







v21
...
v2n






= ℜv + iℑv.

Since (A−λI)v = 0, taking complex conjugate of both sides and using the fact that matrices A and I have
only real entries, we see that

(A− λI)v = (A− λ̄I)v̄ = 0

so that the complex conjugate v̄ of the eigenvector v is an eigenvector corresponding to the eigenvalue λ̄.
Since λ 6= λ̄, as we assumed that λ is complex, the eigenvectors v and v̄ are linearly independent and thus
we obtain two linearly independent complex valued solutions λkv and λ̄kv̄. Since taking real and imaginary
parts is a linear operations:

ℜ(λkv) =
λkv + λ̄kv̄

2
, ℑ(λkv) =

λkv − λ̄kv̄

2i
,

both ℜ(λkv) and ℑ(λkv) are real valued solutions. To find explicit expressions for them we write λ = reiφ

where r = |λ| and φ = Argλ. Then

λn = rneinφ = rn(cosnφ+ i sinnφ)

and

ℜ(λnv) = rn(cosnφℜv − sinnφℑv),

ℑ(λnv) = rn(sinnφℜv + cosnφℑv).

Example 3.9. Find Ak if

A =

(

1 −5
1 −1

)

.

We have
∣

∣

∣

∣

1 − λ −5
1 −1 − λ

∣

∣

∣

∣

= λ2 + 4
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so that λ1,2 = ±2i. Taking λ1 = 2i, we find the corresponding eigenvector by solving

(

1 − 2i −5
1 −1 − 2i

)(

v1
v2

)

=

(

0
0

)

;

thus

v1 =

(

1 + 2i
1

)

and

x(k) = Anv1 = (2i)k
(

1 + 2i
1

)

.

To find real valued solutions, we have to take real and imaginary parts of x(k). Since i = cos π
2 + i sin π

2 we
have, by de Moivre’s formula,

(2i)k = 2k
(

cos
π

2
+ i sin

π

2

)k

= 2k
(

cos
kπ

2
+ i sin

kπ

2

)

.

Therefore

ℜx(k) = 2k
(

cos
kπ

2

(

1
1

)

− sin
kπ

2

(

2
0

))

ℑx(k) = 2k
(

cos
kπ

2

(

2
0

)

+ sin
kπ

2

(

1
1

))

.

The initial values for ℜx(k) and ℑx(k) are, respectively,

(

1
1

)

and

(

2
0

)

. Since Ak is a real matrix, we have

ℜAkv1 = Akℜv1 and ℑAkv1 = Akℑv1, thus

Ak

(

1
1

)

= 2k
(

cos
kπ

2

(

1
1

)

− sin
kπ

2

(

2
0

))

= 2k
(

cos kπ
2 − 2 sin kπ

2

cos kπ
2

)

and

Ak

(

2
0

)

= 2k
(

cos
kπ

2

(

2
0

)

+ sin
kπ

2

(

1
1

))

= 2k
(

2 cos kπ
2 + sin kπ

2

sin kπ
2

)

.

To find Ak we use again (3.3.29). In our case

Ak = 2k
(

cos kπ
2 − 2 sin kπ

2 2 cos kπ
2 + sin kπ

2

cos kπ
2 sin kπ

2

)

,

further

V =

(

1 2
1 0

)

,

so that

V−1 = −1

2

(

0 −2
−1 1

)

.

Therefore

Ak = AkV−1 = −2k−1

(

−2 cos kπ
2 − sin kπ

2 5 sin kπ
2

− sin kπ
2 −2 cos kπ

2 + sin kπ
2

)

.
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Systems of differential equations II.

Let us return to the system
y′ = Ay. (3.3.44)

As before, our goal is to find n linearly independent solutions of (3.3.44). For the solution matrix E(t) we do
not have a natural expression as was the case for the difference system. If all eigenvalues are simple, then
we have a sufficient number of eigenvector to define E(t) by (3.3.38). The same formula is valid if there are
multiple eigenvalues but algebraic and geometric multiplicities of each eigenvalue are the same. However, it
still remains to find a formula for E(t) when A has less than n linearly independent eigenvectors.

Recall that for a single equation y′ = ay, where a is a constant, the general solution is given by y(t) = eatC,
where C is a constant. In a similar way, we would like to say that the general solution to (3.3.44) is y = eAtv,
where v is any constant vector in Rn. The problem is that we do not know what it means to evaluate the
exponential of a matrix. However, if we reflect for a moment that the exponential of a number can be
evaluated as the power (Maclaurin) series

ex = 1 + x+
x2

2
+
x3

3!
+ . . .+

xk

k!
+ . . . ,

where the only involved operations on the argument x are additions, scalar multiplications and taking integer
powers, we come to the conclusion that the above expression can be written also for a matrix, that is, we
can define

eA = I + A +
1

2
A2 +

1

3!
A3 + . . .+

1

k!
Ak + . . . . (3.3.45)

The problem is that the sum is infinite and we have to define what it means for a series of matrices to
converge. This can be done but here we will avoid this problem by showing that, in fact, the sum in (3.3.45)
can be always replaced by a finite sum. We note, however, that in some simple cases we can evaluate the
infinite sum. For example, if we take

A =





λ 0 0
0 λ 0
0 0 λ



 = λI,

then
Ak = λkIk = λkI,

and

eλI = I + λI +
λ2

2
I +

λ3

3!
I + . . .+

λk

k!
+ . . .

=

(

1 + λ+
λ2

2
+
λ3

3!
+ . . .+

λk

k!
+ . . .

)

I

= eλI. (3.3.46)

Unfortunately, in most cases finding the explicit form for eA directly is very difficult.

To justify algebraic manipulations below, we note that, in general, matrix exponentials have the following
algebraic properties

(

eA
)−1

= e−A

and
eA+B = eAeB (3.3.47)

provided the matrices A and B commute: AB = BA. Furthermore, defining a function of t by

etA = I + tA +
t2

2
A2 +

t3

3!
A3 + . . .+

tk

k!
Ak + . . . , (3.3.48)

and formally differentiating it with respect to t we find, as in the scalar case, that
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d

dt
etA = A + tA2 +

t2

2!
A3 + . . .+

tk−1

(k − 1)!
Ak + . . .

= A
(

I + tA +
t2

2!
A2 + . . .+

tk−1

(k − 1)!
Ak−1 + . . .

)

= AetA = etAA,

proving thus that y(t) = etAv is a solution to our system of equations for any constant vector v (provided,
of course, that we can justify all the above operations in a rigorous way).

As we mentioned earlier, in general it is difficult to find directly the explicit form of etA. However, we can
always find n linearly independent vectors v for which the series etAv is finite. This is based on the following
two observations. Firstly, since λI and A− λI commute, we have by (3.3.46) and (3.3.47)

etAv = et(A−λI)etλIv = eλtet(A−λI)v.

Secondly, if (A− λI)mv = 0 for some m, then

(A− λI)rv = 0, (3.3.49)

for all r ≥ m. This follows from

(A− λI)rv = (A− λI)r−m[(A− λI)mv] = 0.

Consequently, for such a v

et(A−λI)v = v + t(A− λI)v + . . .+
tm−1

(m− 1)!
(A− λI)m−1v.

and

etAv = eλtet(A−λI)v = eλt
(

v + t(A− λI)v + . . .+
tm−1

(m− 1)!
(A− λI)m−1v

)

. (3.3.50)

Thus, to find all solutions to y′ = Ay it is sufficient to find n independent vectors v satisfying (3.3.49)
for some scalars λ. To check consistency of this method with our previous consideration we observe that if
λ = λ1 is a single eigenvalue of A with a corresponding eigenvector v1, then (A − λ1I)v1 = 0, thus m of
(3.3.49) is equal to 1. Consequently, the sum in (3.3.50) terminates after the first term and we obtain

y1(t) = eλ1tv1

in accordance with (3.3.37). From our discussion of eigenvalues and eigenvectors it follows that if λi is a
multiple eigenvalue of A of algebraic multiplicity ni and the geometric multiplicity νi is less then ni; that
is, there is less than ni linearly independent eigenvectors corresponding to λi, then the missing independent
vectors can be found by solving successively equations (A− λiI)kv = 0 with k running at most up to n1.

Remark 3.10. Let us mention here that the exponential function etA has been introduced just as a guideline,
to explain how the formula (3.3.50) was arrived at. Once we have this formula, we can directly check that it
gives a solution to (3.3.44). Indeed,
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d

dt
eλt
(

v + t(A− λI)v + . . .+
tm−1

(m− 1)!
(A− λI)m−1v

)

= λeλt
(

v + t(A− λI)v + . . .+
tm−1

(m− 1)!
(A− λI)m−1v

)

+ eλt
(

(A− λI)v + t(A− λI)2v . . .+
tm−2

(m− 2)!
(A− λI)m−1v

)

= λeλt
(

v + t(A− λI)v + . . .+
tm−1

(m− 1)!
(A− λI)m−1v

)

+ eλt(A− λI)

(

v + t(A− λI)2v . . .+
tm−2

(m− 2)!
(A− λI)m−2v

)

= λeλt
tm−1

(m− 1)!
(A− λI)m−1v

+ eλtA
(

v + t(A− λI)2v . . .+
tm−2

(m− 2)!
(A− λI)m−2v

)

= Aeλt tm−1

(m− 1)!
(A− λI)m−1v − (A− λI)eλt

tm−1

(m− 1)!
(A− λI)m−1v

+ eλtA
(

v + t(A− λI)2v . . .+
tm−2

(m− 2)!
(A− λI)m−2v

)

− eλt
tm−1

(m− 1)!
(A− λI)mv

+ eλtA
(

v + t(A− λI)2v . . .+
tm−1

(m− 1)!
(A− λI)m−1v

)

= eλtA
(

v + t(A− λI)2v . . .+
tm−1

(m− 1)!
(A− λI)m−1v

)

where we used (A− λI)mv = 0.

We illustrate the theory on a few examples.

Example 3.11. Find the general solution to

y′ =





1 −1 4
3 2 −1
2 1 −1



y.

To obtain the eigenvalues we calculate the characteristic polynomial

p(λ) = det(A− λI) =

∣

∣

∣

∣

∣

∣

1 − λ −1 4
3 2 − λ −1
2 1 −1 − λ

∣

∣

∣

∣

∣

∣

= −(1 + λ)(1 − λ)(2 − λ) + 12 + 2 − 8(2 − λ) + (1 − λ) − 3(1 + λ)

= −(1 + λ)(1 − λ)(2 − λ) + 4λ− 4 = (1 − λ)(λ − 3)(λ+ 2),

so that the eigenvalues of A are λ1 = 1, λ2 = 3 and λ3 = −2. All the eigenvalues have algebraic multiplicity
1 so that they should give rise to 3 linearly independent eigenvectors.

(i) λ1 = 1: we seek a nonzero vector v such that

(A− 1I)v =





0 −1 4
3 1 −1
2 1 −2









v1
v2
v3



 =





0
0
0



 .
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Thus
−v2 + 4v3 = 0, 3v1 + v2 − v3 = 0, 2v1 + v2 − 2v3 = 0

and we get v2 = 4v3 and v1 = −v3 from the first two equations and the third is automatically satisfied.
Thus we obtain the eigenspace corresponding to λ1 = 1 containing all the vectors of the form

v1 = C1





−1
4
1





where C1 is any constant, and the corresponding solutions

y1(t) = C1e
t





−1
4
1



 .

(ii) λ2 = 3: we seek a nonzero vector v such that

(A− 3I)v =





−2 −1 4
3 −1 −1
2 1 −4









v1
v2
v3



 =





0
0
0



 .

Hence
−2v1 − v2 + 4v3 = 0, 3v1 − v2 − v3 = 0, 2v1 + v2 − 4v3 = 0.

Solving for v1 and v2 in terms of v3 from the first two equations gives v1 = v3 and v2 = 2v3. Consequently,
vectors of the form

v2 = C2





1
2
1





are eigenvectors corresponding to the eigenvalue λ2 = 3 and the function

y2(t) = e3t





1
2
1





is the second solution of the system.

(iii) λ3 = −2: We have to solve

(A + 2I)v =





3 −1 4
3 4 −1
2 1 1









v1
v2
v3



 =





0
0
0



 .

Thus
3v1 − v2 + 4v3 = 0, 3v1 + 4v2 − v3 = 0, 2v1 + v2 + v3 = 0.

Again, solving for v1 and v2 in terms of v3 from the first two equations gives v1 = −v3 and v2 = v3 so
that each vector

v3 = C3





−1
1
1





is an eigenvector corresponding to the eigenvalue λ3 = −2. Consequently, the function

y3(t) = e−2t





−1
1
1




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is the third solution of the system. These solutions are linearly independent since the vectors v1,v2,v3

are linearly independent as eigenvectors corresponding to distinct eigenvalues. Therefore, every solution
is of the form

y(t) = C1e
t





−1
4
1



+ C2e
3t





1
2
1



+ C3e
−2t





−1
1
1



 .

If we single complex eigenvalue λ with eigenvector v then, as explained before Example 3.9, λ̄ is also an
eigenvalue with corresponding eigenvector v̄. Thus, we have two linearly independent (complex) solutions

z1(t) = eλtv, z2(t) = eλ̄tv̄ = z1(t).

Since the sum and the difference of two solutions are again solutions, by taking

y1(t) =
z1(t) + z2(t)

2
=

z1(t) + z1(t)

2
= ℜz1(t)

and

y2(t) =
z1(t) − z2(t)

2i
=

z1(t) − z1(t)

2i
= ℑz1(t)

we obtain two real valued (and linearly independent) solutions. To find explicit formulae for y1(t) and y2(t),
we write

z1(t) = eλtv = eξt(cosωt+ i sinωt)(ℜv + iℑv)

= eξt(cosωtℜv − sinωtℑv) + ieξt(cosωtℑv + sinωtℜv)

= y1(t) + iy2(t)

Summarizing, if λ and λ̄ are single complex roots of the characteristic equation with complex eigenvectors
v and v̄, respectively, then the we can use two real linearly independent solutions

y1(t) = eξt(cosωtℜv− sinωtℑv)

y2(t) = eξt(cosωtℑv + sinωtℜv) (3.3.51)

Example 3.12. Solve the initial value problem

y′ =





1 0 0
0 1 −1
0 1 1



y, y(0) =





1
1
1





The characteristic polynomial is given by

p(λ) = det(A− λI) =

∣

∣

∣

∣

∣

∣

1 − λ 0 0
0 1 − λ −1
0 1 1 − λ

∣

∣

∣

∣

∣

∣

= (1 − λ)3 + (1 − λ) = (1 − λ)(λ2 − 2λ+ 2)

so that we have eigenvalues λ1 = 1 and λ2,3 = 1 ± i.

It is immediate that

v =





1
0
0





is an eigenvector corresponding to λ1 = 1 and thus we obtain a solution to the system in the form

y1(t) = et





1
0
0



 .
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Let us take now the complex eigenvalue λ2 = 1 + i. We have to solve

(A− (1 + i)I)v =





−i 0 0
0 −i −1
0 1 −i









v1
v2
v3



 =





0
0
0



 .

Thus
−iv1 = 0, −iv2 − v3 = 0, v2 − iv3 = 0.

The first equation gives v1 = 0 and the other two yield v2 = iv3 so that each vector

v2 = C2





0
i
1





is an eigenvector corresponding to the eigenvalue λ2 = 1 + i. Consequently, we obtain a complex valued
solution

z(t) = e(1+i)t





0
i
1



 .

To obtain real valued solutions, we separate z into real and imaginary parts:

e(1+i)t





0
i
1



 = et(cos t+ i sin t)









0
0
1



+ i





0
1
0









= et



cos t





0
0
1



− sin t





0
1
0



+ i sin t





0
0
1



+ i cos t





0
1
0









= et





0
− sin t

cos t



+ iet





0
cos t
sin t



 .

Thus, we obtain two real solutions

y1(t) = et





0
− sin t
cos t





y2(t) = et





0
cos t
sin t





and the general solution to our original system is given by

y(t) = C1e
t





1
0
0



 + C2e
t





0
− sin t
cos t



+ C3e
t





0
cos t
sin t



 .

We can check that all these solutions are independent as their initial values





1
0
0



 ,





0
0
1



 ,





0
1
0



 ,

are independent. To find the solution to our initial value problem we set t = 0 and we have to solve for
C1, C2 and C3 the system
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



1
1
1



 = C1





1
0
0



+





0
0
1



+ C3





0
1
0



 =





C1

C2

C3



 .

Thus C1 = C2 = C3 = 1 and finally

y(t) = et





1
0
0



+ et





0
− sin t
cos t



+ et





0
cos t
sin t



 = et





1
cos t− sin t
cos t+ sin t



 .

The last example deals with multiple eigenvalues.

Example 3.13. Find three linearly independent solutions of the differential equation

y′ =





1 1 0
0 1 0
0 0 2



y.

To obtain the eigenvalues we calculate the characteristic polynomial

p(λ) = det(A− λI) =

∣

∣

∣

∣

∣

∣

1 − λ 1 0
0 1 − λ 0
0 0 2 − λ

∣

∣

∣

∣

∣

∣

= (1 − λ)2(2 − λ)

so that λ1 = 1 is eigenvalue of multiplicity 2 and λ2 = 2 is an eigenvalue of multiplicity 1.

(i) λ = 1: We seek all non-zero vectors such that

(A− 1I)v =





0 1 0
0 0 0
0 0 1









v1
v2
v3



 =





0
0
0



 .

This implies that v2 = v3 = 0 and v1 is arbitrary so that we obtain the corresponding solutions

y1(t) = C1e
t





1
0
0



 .

However, this is only one solution and λ1 = 1 has algebraic multiplicity 2, so we have to look for one
more solution. To this end we consider

(A− 1I)2v =





0 1 0
0 0 0
0 0 1









0 1 0
0 0 0
0 0 1









v1
v2
v3





=





0 0 0
0 0 0
0 0 1









v1
v2
v3



 =





0
0
0





so that v3 = 0 and both v1 and v2 arbitrary. The set of all solutions here is a two-dimensional space
spanned by





v1
v2
0



 = v1





1
0
0



 + v2





0
1
0



 .

We have to select from this subspace a vector that is not a solution to (A − λI)v = 0. Since for the
later the solutions are scalar multiples of the vector (1, 0, 0) we see that the vector (0, 1, 0) is not of this
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form and consequently can be taken as the second independent vector corresponding to the eigenvalue
λ1 = 1. Hence

y2(t) = et (I + t(A− I))





0
1
0



 = et









0
1
0



+ t





0 1 0
0 0 0
0 0 1









0
1
0









= et





0
1
0



+ tet





1
0
0



 = et





t
1
0





(ii) λ = 2: We seek solutions to

(A− 2I)v =





−1 1 0
0 −1 0
0 0 0









v1
v2
v3



 =





0
0
0



 .

This implies that v1 = v2 = 0 and v3 is arbitrary so that the corresponding solutions are of the form

y3(t) = C3e
2t





0
0
1



 .

Thus we have found three linearly independent solutions.

3.3 Higher order difference and differential equations

Once we know how to solve systems of difference and differential equations, it is easy to adopt the theory to
cater for higher order scalar equations.

First consider the linear difference equation of order n:

y(k + n) + a1y(k + n− 1) + . . .+ any(k) = 0, n ≥ 0 (3.3.52)

where a1, . . . , an are known numbers. This equation determines the values of y(N), N > n by n preceding
values of y(k). Thus, it is clear that to be able to solve this equation, that is, to start the recurrence procedure,
we need n initial values y(0), y(1), . . . , y(n− 1). Equation (3.3.52) can be written as a system of first order
equations of dimension n. We let

z1(k) = y(k),

z2(k) = y(k + 1) = z1(k + 1),

z3(k) = y(k + 2) = z2(k + 1),

...
...

...,

zn(k) = y(k + n− 1) = zn−1(k − 1), (3.3.53)

hence we obtain the system

z1(k + 1) = z2(k),

z2(k + 1) = z3(k),

...
...

...,

zn−1(k + 1) = zn(k),

zn(k + 1) = −anz1(k) − a2z2(k) . . .− a1zn(k),
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or, in matrix notation,
z(k + 1) = Az(k)

where z = (z1, . . . , zn), and

A =











0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

−an −an−1 −an−2 . . . −a1











.

The matrix A often is called the companion matrix of the equation (3.3.52). It is clear that the initial values
y(0), . . . , y(n− 1) give the initial vector z0 = (y(0), . . . , y(n− 1)). Next we observe that the eigenvalues of A
can be obtained by solving the equation

pn(λ) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

−λ 1 0 . . . 0
0 −λ 1 . . . 0
...

...
...

...
...

−an −an−1 −an−2 . . . −a1 − λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0.

It is not obvious how to directly calculate the determinant. Here we present one method which is related
to the difference equation. Later, is Remark 3.28, we present another way which is more related to the
interpretation of the problem. Expanding first the determinant along the first row, we find

pn(λ) = −λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

−λ 1 0 . . . 0
0 −λ 1 . . . 0
...

...
...

...
...

−an−1 −an−2 −an−3 . . . −a1 − λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

−an −an−2 −an−3 . . . −a1 − λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

= −λpn−1(λ) + (−1)nan.

This is a linear difference equation and we can solve it using (2.3.49). Taking into account that p1(λ) =
−a− 1 − λ and adjusting (2.3.49) to cater for the fact that we start with n = 1, we obtain

pn(λ) = (−λ)n−1(a1 + λ) +

n−1
∑

k=1

(−λ)n−k−1(−1)k+1ak+1 = (−1)n(λn + λn−1a1 + · · · + an). (3.3.54)

We note that the characteristic polynomial of the companion matrix can be obtained by just replacing
y(k + n − i) in (3.3.52) by λn−i, i = 0, . . . , n. Consequently, solutions of higher order equations can be
obtained by solving the associated first order systems but there is no need to repeat the whole procedure.
In fact, to solve an n × n system we have to construct n linearly independent vectors v1, . . . ,vn so that
the solution is given by z1(k) = Akv1, . . . zn(k) = Akvn and coordinates of each zi are products of λi
and polynomials in k of degree strictly smaller than the algebraic multiplicity of λi. Thus, to obtain ni

solutions of the higher order equation corresponding to the eigenvalue λi, by (3.3.53), we take only the first
coordinates of all zi(k) that correspond to λi. On the other hand, we must have here ni linearly independent
scalar solutions of this form and therefore we can use the set {λki , kλki , . . . , kni−1λki } as a basis for the set of
solutions corresponding to λi, and the union of such sets over all eigenvalues to obtain a basis for the set of
all solutions.

Example 3.14. Consider the Fibonacci equation (3.1.1):

y(k + 2) = y(k + 1) + y(k) (3.3.55)

to be consistent with the notation of the present chapter. Introducing new variables z1(k) = y(k), z2(k) =
y(k + 1) = z1(k + 1) so that y(k + 2) = z2(k + 1), we re-write the equation as the system

z1(k + 1) = z2(k),

z2(k + 1) = z1(k) + z2(k);
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note that it is not the same form as (3.1.3). The eigenvalues of the matrix

A =

(

0 1
1 1

)

are obtained by solving the equation

∣

∣

∣

∣

−λ 1
1 1 − λ

∣

∣

∣

∣

= λ2 − λ− 1 = 0;

they are λ1,2 = 1±
√
5

2 . Since the eigenvalues are distinct, we immediately obtain that the general solution of
(3.3.55) is given by

y(n) = c1

(

1 +
√

5

2

)n

+ c2

(

1 −
√

5

2

)n

. (3.3.56)

Let us find the particular solution satisfying the initial conditions y(0) = 1, y(1) = 2 (corresponding to one
pair of adult rabbits initially). We substitute these values and get the system of equations for c1 and c2

1 = c1 + c2,

2 = c1
1 +

√
5

2
+ c2

1 −
√

5

2
,

the solution of which is c1 = 1 + 3
√

5/5 and c2 = −3
√

5/5.

3.4 Spectral Decomposition.

If v is an eigenvector of a matrix A corresponding to an eigenvalue λ, then the one dimensional eigenspace
space Ẽλ has an important property of being invariant under A as well as under Ak and etA; that is, if
y ∈ Ẽλ, then Ay ∈ Ẽλ (and Aky, etAy ∈ Ẽλ for all k = 1, 2, . . . and t > 0). In fact, in this case, y = αv for
some α ∈ R and

Ay = αAv = αλv ∈ Ẽλ.

Similarly, Aky = λkαv ∈ Ẽλ and etAy = eλtαv ∈ Ẽλ. Thus, if A is diagonalizable, then the evolution
governed by A can be decomposed into n independent scalar evolutions occurring in eigenspaces of A. The
situation is more complicated when we have multiple eigenvalues as the one dimensional spaces spanned
by generalized eigenvectors are not invariant under A. However, we can show that the each generalized
eigenspace spanned by all eigenvectors and generalized eigenvectors corresponding to the same eigenvalue is
invariant under A.

We start with the following property of Eλi
which is important in this context.

Lemma 3.15. Let Eλi
= Span{v1, . . . ,vni} be the generalized eigenspace corresponding to an eigenvalue λi

and vr satisfies
(A− λiI)kvr = 0,

for some 1 < k < ni, while (A− λiI)k−1vr = 0. Then vr satisfies

(A− λiI)vr = vr′ , (3.3.57)

where (A− λiI)k−1vr′ = 0 and

(A− λiI)k−1vr = vr′ , (3.3.58)

where vr′ is an eigenvector.
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Proof. Let Eλi
= Span{v1, . . . ,vnj} be grouped so that the first νi elements: {v1, . . . ,vνi} are the eigen-

vectors, {vρ}νi+1≤ρ≤r′ satisfy (A− λI)2vρ = 0, etc. Then vρ, νi + 1 ≤ ρ ≤ r′ satisfies

0 = (A− λI)2vρ = (A− λI)((A − λI)vρ).

Since vρ is not an eigenvector, 0 6= (A − λI)vρ must be an eigenvector so that any vρ with νi + 1 ≤ ρ ≤ r′

satisfies (after possibly multiplication by a scalar)

(A− λI)vρ = vj

for some eigenvector vj , j ≤ νi. If r′ < ni, then the elements from the next group, {vρ}r′+1≤ρ≤r′′ satisfy

0 = (A− λI)3vρ = (A− λI)(A − λI)2vρ (3.3.59)

and since vρ in this range does not satisfy (A− λI)2vρ = 0, we may put

(A− λI)2vρ = vj (3.3.60)

for some 1 ≤ j ≤ νi; that is, for some eigenvector vj . Alternatively, we can write (3.3.59) as

(A− λI)2(A− λI)vρ = 0

and since vρ is not an eigenvector,
(A− λI)vρ = vρ

′

(3.3.61)

for some ρ′ between νi + 1 and r′. By induction, we obtain a basis of Eλ consisting of vectors satisfying
(3.3.60) where on the right-hand side stands a vector of the basis constructed in the previous cycle. ✷

An important corollary of this lemma is

Corollary 3.16. Each generalized eigenspace Eλi
of A is invariant under A; that is, for any v ∈ Eλi

we
have Av ∈ Eλi

. It is also invariant under Ak, k = 1, 2, . . . and etA, t > 0.

Proof. We use the representation of Eλi
obtained in the previous lemma. Indeed, let x =

∑ni

j=1 ajv
j be an

arbitrary element of Eλi
. Then

(A− λiI)x =

ni
∑

j=1

aj(A− λiI)vj

and, by construction, (A − λiI)vj = vj′ for some j′ < j (belonging to the previous ’cycle’). In particular,
(A− λiI)vj = 0 for 1 ≤ j ≤ νi (eigenvectors). Thus

Ax = λx−
∑

j′>νi

aj′v
j′ ∈ Eλ,

which ends the proof of the first part.

From the first part, by induction, we obtain that (A − λiI)kEλi
⊂ Eλi

. In fact, let x ∈ Eλi
and assume

(A−λiI)k−1x ∈ Eλi
. Then (A−λiI)kx = (A−λiI)(A−λiI)k−1x ∈ Eλi

by the induction assumption and
the first part.

For Ak we have

Akx = (A− λiI + λiI)kx =

ni
∑

j=1

aj(A− λiI + λiI)kvj

=

ni
∑

j=1

aj
k
∑

r=0
λk−r
i

(

k
r

)

(A− λiI)rvj
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where the inner sum must terminate at at most ni−1 term since vj are determined by solving (A−λI)νv = 0
with ν being at most equal to ni. From the previous part of the proof we see that (A − λiI)rvj ∈ Eλi

and
thus Akx.

The same argument works for etA. Indeed, for x ∈ Eλi
and using (3.3.50) we obtain

etAx = eλit
ni
∑

j=1

aje
t(A−λI)vj = eλit

ni
∑

j=1

aj

rj
∑

r=0

tr−1

(r − 1)!
(A− λI)r−1vj. (3.3.62)

with rj ≤ ni and the conclusion follows as above. ✷

This result suggests that the the evolution governed by A in both discrete and continuous case can be broken
into several simpler and independent pieces occurring in each generalized eigenspace. To write this in proper
mathematical terms, we need to introduce some notation.

Let us recall that we have representations

Ak ◦
x=





| . . . |
Akv1 . . . Akvn

| . . . |



V−1 ◦
x (3.3.63)

and

etA
◦
x=





| . . . |
etAv1 . . . etAvn

| . . . |



V−1 ◦
x, (3.3.64)

where

V =





| . . . |
v1 . . . vn

| . . . |



 . (3.3.65)

Following our considerations, we select the vectors v1, . . . ,vn to be eigenvectors and generalized eigenvectors
of A as then the entries of the solution matrices can be evaluated explicitly with relative ease. We want to
split these expressions into generalized eigenspaces.

Let us introduce the matrix

Pi =





0 . . . | . . . 0
0 . . . vi . . . 0
0 . . . | . . . 0









| . . . |
v1 . . . vn

| . . . |





−1

. (3.3.66)

and note that, for x = c1v
1 + . . .+ cnv

n, Pix = civ
i; that is, Pi selects the part of x along vi. It is easy to

see, that
P2
i = Pi, PiPj = 0, (3.3.67)

Matrices with such properties are called projections; in particular Pi is a projection onto vi. Clearly,

I =

n
∑

i=1

Pi,

however, APix = ciAvi is in the span of vi only if vi is an eigenvector. Thus, as we said earlier, this
decomposition is not useful unless all vis are eigenvectors.

On the other hand, if we consider operators

Pλi
=

∑

j; vj∈Eλi

Pj, (3.3.68)

where Pi, then such operators again will be projections. This follows from (3.3.67) by termwise multiplication.
They are called spectral projections. Let σ(A) denotes the set of all eigenvalues of A, called the spectrum of
A. The decomposition
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I =
∑

λ∈σ(A)

Pλ, (3.3.69)

is called the spectral resolution of identity.

In particular, if all eigenvalues are simple (or semi-simple), we obtain the spectral decomposition of A in the
form

A =
∑

λ∈σ(A)

λPλ,

and, for Ak and etA,

Ak =
∑

λ∈σ(A)

λkPλ, (3.3.70)

and
etA =

∑

λ∈σ(A)

eλtPλ, (3.3.71)

which is another way of writing (3.3.30) and (3.3.38), respectively.

In general case, we use (3.3.69) to write

Ax =
∑

λ∈σ(A)

APλx, (3.3.72)

where, by Corollary 3.16, we have APλx ∈ Eλ. Thus, using (3.3.67), we get Pλi
APλj

= 0 for i 6= j. Using
(3.3.68) and we obtain

PλAx = PλAPλx = APλx.

Thus, (3.3.72) defines a decomposition of the action of A into non-overlapping subspaces Eλ, λ ∈ σ(A),
which is called the spectral decomposition of A.

To give spectral decomposition of Ak and etA, generalizing (3.3.70) and (3.3.71), we observe that, by Corollary
3.16, also AkPλx ∈ Eλ and etAPλx ∈ Eλ. Therefore

Akx =
∑

λ∈σ(A)

AkPλx =
∑

λ∈σ(A)

λkpλ(k)x, (3.3.73)

and
etAx =

∑

λ∈σ(A)

eλtPλx =
∑

λ∈σ(A)

eλtqλ(t)x, (3.3.74)

where pλ and qλ are polynomials in k and, respectively, in t, of degree strictly smaller than the algebraic
multiplicity of λ, and with vector coefficients being linear combinations of eigenvectors and associated eigen-
vectors corresponding to λ.

Returning to our main problem, that is, to the long time behaviour of iterates Ak and the exponential
function etA, then, from (3.3.73) and (3.3.74), we see that on each eigenspace the long time behaviour of Ak

(respectively, of etA) is determined by λn (respectively, etλ), possibly multiplied by a polynomial of degree
smaller than the algebraic multiplicity of λ.

The situation observed in Examples 3.4 and 3.6 corresponds to the situation when there is a real positive
simple eigenvalue, say, λ1 satisfying λ1 > |λ| in discrete time, or λ1 > ℜλ in continuous time, for any other
λ. Such an eigenvalue is called the principal or dominant eigenvalue. In such a case, for any initial condition
◦
x for which Pλ1

◦
x 6= 0, we have

Ak ◦
x≈ c1λ

k
1v

1

for large k in discrete time or, in continuous time,

etA
◦
x≈ c1e

λ1tv1,
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for large t. In such a case the vector v1 is called a stable age structure. An important question is to determine
c1 (an possibly other coefficients of the spectral decomposition). Clearly, c1v

1 = P1 but the definition of Pi

involves knowing all eigenvectors and associated eigenvectors of A and thus is not particularly handy. Here
we shall describe a simpler method.

Let us recall that the transposed matrix A∗ satisfies

< A∗x∗,y >=< x∗,Ay >

where < x∗,y >= x∗ ·y =
∑n

i=1 x
∗
i yi Matrices A and A∗ have the same eigenvalues and, though eigenvectors

and associated eigenvectors are different (unless A is symmetric), the structure of the generalized eigenspaces
corresponding to the same eigenvalue is identical (that is, the geometric multiplicities of λ are equal and
we have the same number of associated eigenvectors solving (A − λI)νv = 0 and (A∗ − λI)νv∗ = 0). This
follows from the fact that determinant, nullity and rank of a matrix and its transpose are the same.

Theorem 3.17. Let Eλ and E∗
λ∗ be generalized eigenspaces of, respectively, A and A∗, corresponding to

different eigenvalues: λ 6= λ∗. If v∗ ∈ E∗
λ∗ and v ∈ Eλ, then

< v∗,v >= 0 (3.3.75)

Proof. We can assume that λ∗ 6= 0 since, if λ∗ = 0, then λ 6= 0 and we can repeat the calculations below
starting with λ instead of λ∗. We begin with v ∈ Eλ and v∗ ∈ E∗

λ∗ being eigenvectors. Then

< v∗,v >=
1

λ∗
< A∗v∗,v >=

1

λ∗
< v∗,Av >=

λ

λ∗
< v∗,v > .

Thus,
(

λ
λ∗

− 1
)

< v∗,v >= 0 and, since λ 6= λ∗, we must have < v∗,v >= 0. Next we assume, that v∗ is an
eigenvector and v is an associated eigenvector which solves (A − λI)kv = 0 with k > 1. Then, by Lemma
3.15, (A−λI)v = v′, where (A−λI)k−1v′ = 0. We adopt induction assumption that < v∗,v′ >= 0 for any
v′ which satisfy (A− λI)k−1v′ = 0. Then, as above

< v∗,v >=
1

λ∗
< v∗,Av >=

1

λ∗
< v∗, λv + v′ >=

λ

λ∗
< v∗,v > .

and the proof follows as before. Finally, let (A∗ − λ∗I)kv∗ = 0 with k > 1. Then λ∗v∗ = A∗v∗ − ṽ∗, where
(A∗ − λ∗I)k−1ṽ∗ = 0. We can adopt the induction assumption that < ṽ∗,v >= 0 for any ṽ∗ satisfying
(A∗ − λ∗I)k−1ṽ∗ = 0. Then

< v∗,v > =
1

λ∗
< λ∗v∗,v >=

1

λ∗
< A∗v∗ − ṽ∗,v >=

1

λ∗
< A∗v∗,v >

=
λ

λ∗
< v∗,Av > .

✷

Summarizing, to determine a long time behaviour of a population described by either discrete y(k+1) = Ay
or continuous system y′ = Ay we have to

1. Find eigenvalues of A and determine whether there is the dominant eigenvalue, that is, a simple real
eigenvalue, say, λ1 satisfying λ1 > |λ| in discrete time, or λ1 > ℜλ in continuous time, for any other λ.

2. If this is the case, we find the eigenvector v of A and v∗ of A∗ corresponding to λ1.

3. The long time behaviour of the population is then described by

Akx ≈ λk1 < v∗,x > v (3.3.76)

for large k in discrete time or, in continuous time, by

etAx ≈ eλ1t < v∗,x > v (3.3.77)

for large time, for any initial distribution of the population satisfying < v∗,x > 6= 0.
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We illustrate this result by finding the long time behaviour of solutions to the system discussed in Example
3.11.

Example 3.18. Consider

y′ =





1 −1 4
3 2 −1
2 1 −1



y.

The eigenvalues of A are λ1 = 1, λ2 = 3 and λ3 = −2. We found eigenvectors corresponding to this
eigenvalues to be

v1 =





−1
4
1



 , v2 =





1
2
1



 , v3 =





−1
1
1



 ,

and the general solution

y(t) = C1e
t





−1
4
1



 + C2e
3t





1
2
1



+ C3e
−2t





−1
1
1



 .

Clearly, writing

y(t) = e3t



C2





1
2
1



+ C1e
−2t





−1
4
1



 + C3e
−5t





−1
1
1







 . (3.3.78)

we see that the dominant eigenvalue is λ2 = 3 and for large time

y(t) ≈ e3tC2





1
2
1



 , (3.3.79)

where C2 depends on the initial condition.

The transposed matrix is given by

A∗ =





1 3 2
−1 2 1
4 −1 −1





and the eigenvector v∗ corresponding to λ = 3 can be calculated by

(A∗ − 3I)v =





−2 3 2
−1 −1 1
4 −1 −4









v1
v2
v3



 =





0
0
0





and we get v2 = 0 and v1 = v3. Thus, v2
∗ = (1, 0, 1) and we can check that, indeed, < v2

∗,v1 >=<
v2

∗,v2 >= 0. Then, multiplying (3.3.78) by v2
∗ we obtain

< v2
∗,y(t) >= C2e

λ2t < v2
∗,v2 >

and, taking t = 0 we have

< v2
∗,

◦
x>= C2 < v2

∗,v2 >

and C2 = 1
2 (

◦
x1 +

◦
x3). Clearly, long time picture of evolution given by (3.3.79) will not be realized if

◦
x is

orthogonal to v2
∗.

Example 3.19. Returning to Fibonacci rabbits, we see that the eigenvalues of L are exactly numbers

λ1,2 = r± =
1 ±

√
5

2
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and clearly, λ1 = (1 +
√

5)/2 is the dominant eigenvalue. The eigenvector associated with this eigenvalue is
v1 = (λ1, 1) = ((

√
5 + 1)/2, 1) and this gives the stable age structure. Moreover, the matrix L is symmetric

and thus the eigenvectors of L∗ are the same as of L. Thus

v(k) =

(

v1(k)
v0(k)

)

≈ C1r
k
+

(
√
5+1
2
1

)

where

C1 =
2
(

v1(0)
√
5+1
2 + v0(0)

)

5 +
√

5

as < v1,v1 >= (5 +
√

5)/2.

Taking, for instance, the initial condition discussed in Section 1: v1(0) = 0, v0(0) = 1, we find C1 = 2/(5+
√

5)
and if we like to estimate the growth of the whole population, we have

y(k) = v1(k) + v0(k) ≈ 2

5 +
√

5

(√
5 + 1

2
+ 1

)

rk+ =
3 +

√
5

5 +
√

5
rk+ =

1 +
√

5

2
√

5
rk+,

in accordance with (3.3.56).

Example 3.20. Consider a population with individuals living up to two years in which both juveniles and
adults can reproduce with effective maternity rate of juveniles and adults per capita is, respectively, 1 and 4.
Assume further that the survival rate of juveniles is 1/2. Find the formula for the evolution of this population.

The question amounts to finding iterates Lk of the Leslie matrix

L =

(

1 4
1
2 0

)

.

We start with finding eigenvalues of L:

p(λ) =

∣

∣

∣

∣

1 − λ 4
1
2 −λ

∣

∣

∣

∣

= λ2 − λ− 2 = 0

gives the eigenvalues λ = 2 and −1 of algebraic multiplicity 1. Thus, both eigenvalues are simple. To find
eigenvectors corresponding to λ1 = 2, we solve

(L − 2I)v =

(

−1 4
1
2 −2

)(

v1
v2

)

=

(

0
0

)

.

Thus, v2 is arbitrary, say v2 = 1 and therefore v1 = 4 so that

v1 =

(

4
1

)

.

Repeating this for λ2 = −1, we obtain

(L + 1I)v =

(

2 4
1
2 1

)(

v1
v2

)

=

(

0
0

)

.

Again, we take v2 = 1 and therefore v1 = −2 so that

v2 =

(

−2
1

)

.

Therefore
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Lkv1 = 2k
(

4
1

)

, Lkv2 = (−1)k
(

−2
1

)

.

To find explicit expression for Lk we use (3.3.29) we recall that the solution originating from
◦
x= (

◦
x1,

◦
x2) is

given by

Lk ◦
x= c12k

(

4
1

)

+ c2(−1)k
(

−2
1

)

=

(

4 · 2k −2 · (−1)k

2k (−1)k

)(

c1
c2

)

where c1 and c2 are determined from
◦
x= c1v

1 + c2v
2 so that

(

c1
c2

)

= V−1 ◦
x=

(

1
6

1
3

− 1
6

2
3

)

◦
x .

where

V =





| |
v1 v2

| |



 =

(

4 −2
1 1

)

.

Finally

Lk ◦
x=

(

4 · 2k −2 · (−1)k

2k (−1)k

)(

1
6

1
3

− 1
6

2
3

)

◦
x,

where the matrix on the left hand side is the matrix Ak, introduced in (3.3.29). Now, we see that for large
k we have

Lk ◦
x=

(

x1(k)
x2(k)

)

≈ c12k
(

4
1

)

= 2k
(

4
1

)(

1

6

◦
x1 +

1

3

◦
x2

)

.

To provide a better interpretation of the above formula, we note that the total population approximately
evolves as

P (k) = x1(k) + x2(k) ≈ 2k
(

1

6

◦
x1 +

1

3

◦
x2

)

(4 + 1)

and therefore the fractions of juveniles and adults in the total population approximately are given by,
respectively,

J =
x1(k)

P (k)
≈ 4

5
, A =

x2(k)

P (k)
=

1

5
.

Thus, the eigenvector of the dominant eigenvalue normalized with respect to the total population:

(J,A) =
1

1 + 4
(4, 1).

gives the so called stable age profile of the population.

The next example shows how to deal with complex eigenvalues.

Example 3.21. Consider a population with individuals living up to 3 years in which only the eldest generation
reproduces with effective birth rate 32 juveniles per individual. Assume further that the survival rate of
juveniles is 3/4 and yearlings to the 2 years old is 1/3. Find the formula for the evolution of this population.
Here we have

L =





0 0 32
3
4 0 0
0 1

3 0



 .

The eigenvalues are determined from
∣

∣

∣

∣

∣

∣

−λ 0 32
3
4 −λ 0
0 1

3 −λ

∣

∣

∣

∣

∣

∣

= −λ3 + 8 = 0

so that
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λ1 = 2, λ2 = 2e2πi/3 = 2

(

−1

2
+ i

√
3

2

)

, λ3 = λ̄2 = 2

(

−1

2
− i

√
3

2

)

.

We find general form of eigenvectors vi corresponding to eigenvalues λi, i = 1, 2, 3, by solving





−λi 0 32
3
4 −λi 0
0 1

3 −λi









vi1
vi2
vi3



 =





0
0
0



 .

Taking vi3 = 1, we find vi2 = 3λi and vi1 = 4λ2i (note that the first equation of the system gives the eigenvalue
equation). Thus we can write

v1 =





16
6
1



 ,

then

v2 =





16e4πi/3

6e2πi/3

1



 =









16
(

−1
2 − i

√
3
2

)

6
(

−1
2 + i

√
3
2

)

1









and

v3 = v2 =





16e−4πi/3

6e−2πi/3

1



 =









16
(

−1
2 + i

√
3
2

)

6
(

−1
2 − i

√
3
2

)

1









One could write the general solution of the problem as

Lk ◦
x=





x1(k)
x2(k)
x3(k)



 = c12kv1 + c22ke2kπi/3v2 + c32ke−2kπi/3v2 (3.3.80)

where
◦
x= c1v

1 + c2v
2 + c3v

3 but the expressions above are complex and we require real solutions. We take
advantage of the fact that complex solutions appear as a complex conjugate pair.

To find explicit real expressions for them, we write λ = reiφ where r = |λ| and φ = Argλ. Then

λk = rneinφ = rk(cos kφ+ i sin kφ)

and

ℜ(λkv) = rk(cos kφℜv − sinkφℑv),

ℑ(λkv) = rk(sin kφℜv + coskφℑv).

In our case

ℜλk2v2 = 2k



cos 2kπ/3





−8
−3
1



− sin 2kπ/3





−8
√

3

3
√

3
0









and

ℑλk2v2 = 2k



sin 2kπ/3





−8
−3
1



+ cos 2kπ/3





−8
√

3

3
√

3
0







 .

The initial values for ℜλkv2 and ℑλkv2 are, respectively,





−8
−3
1



 and





−8
√

3

3
√

3
0



. Since Lk is a real matrix,

we have ℜLkv2 = Lkℜv2 and ℑLkv2 = Lkℑv2, thus
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Lk





−8
−3
1



 = 2k



cos 2kπ/3





−8
−3
1



− sin 2kπ/3





−8
√

3

3
√

3
0









= 2k





−8(cos 2kπ/3 −
√

3 sin 2kπ/3)

−3(cos 2kπ/3 +
√

3 sin 2kπ/3)
cos 2kπ/3





and

Lk





−8
√

3

3
√

3
0



 = 2k



sin 2kπ/3





−8
−3
1



+ cos 2kπ/3





−8
√

3

3
√

3
0









= 2k





−8(sin 2kπ/3 +
√

3 cos 2kπ/3)

−3(sin 2kπ/3 −
√

3 cos 2kπ/3)
sin 2kπ/3





Thus we see that (3.3.80) can be written using only real expressions as

Lk ◦
x = c12k





16
6
1



+ c22k





−8(cos 2kπ/3 −
√

3 sin 2kπ/3)

−3(cos 2kπ/3 +
√

3 sin 2kπ/3)
cos 2kπ/3





+c32k





−8(sin 2kπ/3 +
√

3 cos 2kπ/3)

−3(sin 2kπ/3 −
√

3 cos 2kπ/3)
sin 2kπ/3





where c = (c1, c2, c3) are solutions to
◦
x= Vc

with

V =





16 −8 −8
√

3

6 −3 3
√

3
1 1 0





The final example is to illustrate the case when we do not have sufficiently many eigenvectors.

Example 3.22. Consider a population divided into two classes, reproductive and post reproductive. Assume
that the reproductive season lasts exactly 1 year and the effective fertility is 0.5. Assume further that 20%
percent of this class survives the first year and moves to the postreproductive class. The individuals can
live indefinitely but every year 50% of individuals in the postreproductive class dies. Write down the Usher
matrix for this population and find its eigenvalues and eigenvectors.

Here we have

U =

(

0.5 0
0.2 0.5

)

.

The characteristic equation is

p(λ) =

∣

∣

∣

∣

0.5 − λ 0
0.2 0.5 − λ

∣

∣

∣

∣

= λ2 − λ+ 0.25 = 0

gives the double eigenvalue λ = 0.5 so that the algebraic multiplicity of λ is 2. Let us find eigenvectors. We
solve find eigenvectors corresponding to λ1 = 2, we solve

(U − 0.5I)v =

(

0 0
0.2 0

)(

v1
v2

)

=

(

0
0

)

which gives v2 = (0, 1) and this is the only eigenvector so that the eigenvalue is not semisimple. Hence, we
have to find the associated eigenvector by solving
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(U − 0.5I)2v =

(

0 0
0 0

)(

v1
v2

)

=

(

0
0

)

.

Any vector satisfies the above equation. We select the simplest vector linearly independent of v2 = (0, 1)
which is v1 = (1, 0). In this way, we obtain V = I.

Thus we can write, for x = (x1, x2),

Ukx = x1Ukv1 + x2Ukv2 = x1(0.5I + (U − 0.5I))kv1 + x2(0.5)kv2

= x1

(

(0.5)kv1 + k(0.5)k−1

(

0 0
0.2 0

)

v1

)

+ x2(0.5)kv2

= x1

(

(0.5)k
(

1
0

)

+ k(0.5)k−1

(

0
0.2

))

+ x2(0.5)k
(

0
1

)

.

The question whether any matrix with nonnegative entries gives rise to such a behaviour and, if not, what
models exhibit AEG, is much more delicate and requires invoking the Frobenius-Perron theorem which will
be discussed in the next section.

4 Positive linear dynamical systems – Frobenius-Perron theorem

4.1 Problems with general linear models – the Natchez structure

Many societies are divided into classes membership of which is largely hereditary. Such a class structure is
essential in maintaining power and control the distribution of resources by an appropriately defined elite.
One of the ways to prevent watering down of the elite is the practice of endogamy; that is, marrying within
one’s own class. Some societies, however, practice an open class system to prevent stagnation of the structure.
We describe and analyse on of the most famous societies of such a type – the civilization of Natchez, see
[17, 18, 23].

Natchez were Native Americans who lived in the lower Mississipi in North America. The early accounts about
them came from the Spanish explorer Hernando de Soto in 1542. Most of the information about Natchez
is due to their contacts with French colonisers who first met them in 1682. The civilisation ceased to exist
after the so-called Natchez massacre in 1731 when they were defeated and then dispersed or were enslaved.

Natchez created a complex system of open class structure based on the exogamous marriages so that the
power is passed between people born to different social classes. The society was divided into two main classes –
nobility and commoners (so-called Stinkards). The nobility was further divided ito subclasses (casts): Suns,
Nobles and Honoured People. A member of nobility only could marry a Stinkard. According to [23], a
person’s social status and class were determined matrilineally; that is, the children of female Suns, Nobles,
or Honoureds kept the status of their mothers. However, the children of male Suns and Nobles did not become
commoners, as noble exogamy and matrilineal descent would appear to dictate, but rather moved one class
below the class of their fathers. In other words, children of male Suns became Nobles, while children of male
Nobles became Honoured.

We summarize the permissible marriages and inherited statuses in the table below. An empty place inter-
section of the row and a column in the table means that such a marriage is not permitted; if it is permitted,
then the entry at the intersection indicates the status of the offspring. To analyse the evolution of this popu-
lation, we shall create a mathematical model based on Table 3.1. To make it feasible, we adopt the following
simplifying assumptions.

1. There is the same number of males and females in each class in each generation.

2. Each person marries only once and the spouse is from the same generation.

3. Each pair has exactly one son and one daughter.
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Mother/Father Sun Noble Honoured Stinkard

Sun Sun

Noble Noble

Honoured Honoured

Stinkard Noble Honoured Stinkard Stinkard

Table 3.1. Possible marriages in the Natchez population and the status of their offspring

Since we have the same number of males and females in each generation, in our model we will only track the
males. Hence, let xi(k) denote the number of males in the class i and in the generation k, where the classes
are numbered as follows: 1 -Sun, 2 -Noble, 3 -Honoured, 4 -Stinkard. Let us consider the class distribution
in the generation k + 1. Since a Sun son only can be born to a Sun mother and there is no other way to
become a Sun, using the fact that the number of female Suns equals the number of male Suns we can write

x1(k + 1) = x1(k).

Next, a Noble son only can be born to Sun father or to Noble mother, using the parity of males and females
in the Noble class we get

x2(k + 1) = x1(k) + x2(k).

A Honoured son is either a descendent of Noble father or Honoured mother hence, as before,

x3(k + 1) = x2(k) + x3(k).

Finally, the number of male offspring in the Stinkard class is equal to the number of Stinkard males who are
not married to females from the nobility plus the number of sons of Stinkard mothers and Honoured fathers
(remember that the son of a Stinkard father and the Honoured mother is Honoured but then the son of a
Stinkard mother and Honoured father is a Stinkard). Hence, using again the fact that the numbers of males
and females in each class are equal, we arrive at

x4(k + 1) = −x1(k) − x2(k) + x4(k).

Writing these equations in a matrix form we obtain









x1(k + 1)
x2(k + 1)
x3(k + 1)
x4(k + 1)









=









1 0 0 0
1 1 0 0
0 1 1 0

−1 −1 0 0

















x1(k)
x2(k)
x3(k)
x4(k)









(3.4.81)

Let us denote the coefficient matrix by A. The form of the matrix allows for expressing Ak in an explicit
form. We write A = I + B, where

B =









0 0 0 0
1 0 0 0
0 1 0 0

−1 −1 0 0









.

It is easy to see that B is idempotent. Indeed,

B2 =









0 0 0 0
0 0 0 0
1 0 0 0

−1 0 0 0









, B3 =









0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0









.

Hence, using the Newton formula, we get

Ak = (I +B)k = I + kB +
k(k − 1)

2
B2
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and, using the formulae for the powers of B

Ak =









1 0 0 0
k 1 0 0

k(k−1)
2 k 1 0

−k(k+1)
2 −k 0 1









.

Hence we obtain

x(k) = (x1(0), kx1(0) + x2(0),
1

2
k(k − 1)x1(0) + kx2(0) + x3(0),−1

2
k(k + 1)x1(0) − kx2(0) + x4(0)).

In particular, if x1(0) = x2(0) = 0, then the class structure of the population does not change as we have

x(k) = (0, 0, x3(0), x4(0)).

If, however, originally we have some members of either Sun or Noble class, then the size of the Stinkard
shrinks and becomes negative in finite time. Indeed, e.g. solving for k

−1

2
k(k + 1)x1(0) − kx2(0) + x4(0) = 0,

we obtain the positive solution
k0 =

√

(1 + 2p)2 + 8q − (1 + 2p),

where p = x2(0)/x1(0) and q = x4(0)/x1(0). For instance, if the number of Suns and Nobles is equal (p = 1)
and the number of Stinkards is 5 times the number of Suns (q = 5), we obtain k0 = 4, the the number of
Stinkards will become 0 after four generations. Thus, nobody from the nobility will be able to marry and
have offspring and thus the population will become extinct. Since, according to the historical records, the
Natchez civilisation survived for several hundred years, the model in the presented form cannot be correct.

We recognize, however, that we have made a number of assumptions in order to simplify the model. It is
possible that we can modify some of them to get a model which gives a more realistic evolution of the
population by avoiding its collapse in such a short time. Let us try to adjust the birth coefficients. Indeed,
in many societies it is observed that the birth rate depends on the status of the parents. Thus, let us address
the following question: Can we find a birth rate for each combination of parents in the Natchez community
which will result in its a stable class distribution?

To simplify the analysis without compromising the general picture, we restrict ourselves to three classes
which are labelled A, B and C and, following Table 3.1, we construct the intermarriage scheme summarized
in Table 3.2. Interpretacja of the table is the same as before. The Roman letter at the intersection of a column

Mother/Father A B C

A A α1

B B α3

C B α2 C α4 C α5

Table 3.2. Intermarriage scheme in a simplified Natchez-like community

and a row indicates the class of the offspring coming from the mother in the row and father in the column,
while the Greek letter αi gives the average number of male offspring from in such a marriage. Further, as
before, we assume that

1. The numbers of males and females are equal in each class and each generation;

2. there are no inter-generation marriages,
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and by x1(k), x2(k), x3(k) we denote the number of male members of the population in the class, A, B and
C in the kth generation. Then

x1(k + 1) = α1x1(k). (3.4.82)

Similarly, since a child in B may be born either to a father from class A (and mother from class C) or to
mother from class B (and father from C), we have

x2(k + 1) = α2x1(k) + α3x2(k).

Finally, a child of class C may be born to a father of class B or father of class C except those who married
females of class A or B. Hence

x3(k + 1) = α4x2(k) + α5 (x3(k) − x1(k) − x2(k)) .

In matrix form




x1(k + 1)
x2(k + 1)
x3(k + 1)



 =





α1 0 0
α2 α3 0

−α5 (α4 − α5) α5









x1(k)
x2(k)
x3(k)



 , (3.4.83)

or, in compact form
x(k + 1) = Ax(k).

Before we analyze the model, let us check that in the case α1 = α2 = α3 = α4 = α5 = 1 the model reproduces
the behaviour of the full, four class, Natchez model. In such a case we have

A =





1 0 0
1 1 0

−1 0 1



 .

As in the previous case, we write A = I + B and see that B2 = 0. Hence, Ak = I + kB, or

Ak =





1 0 0
k 1 0

−k 0 1



 .

Therefore, x3(k) = −kx1(0) + x3(0) and thus x1(0) > 0 yields x3(k) < 0 for k > x3(0)/x1(0). We see that
the simplified system displays the same collapse as the original Natchez system.

Let us return to the model (3.4.83). Following the analysis of Subsection 3.4, we will try to find a positive
eigenvector of A associated with the largest positive eigenvalue. Such a vector would correspond to a stable
population structure which, once attained, would not change in time. The total population would change
as powers of the eigenvalue. In this way we see that if the structure is perturbed, then the model will
return to the stable distribution. Moreover, we must ensure that in our model we always have sufficiently
many members of the class C to provide spouses to the higher classes. Since the matrix A is triangular, its
eigenvalues are given by the diagonal elements; that is, eigenvalues are α1, α3 and α5. First, let α5 > α1 and
α5 > α3; that is, α5 is the dominant eigenvalue of A. This assumption corresponds to an increasing fertility
of the lowest class. To find the corresponding eigenvector, we solve





(α1 − α5) 0 0
α2 (α3 − α5) 0
α5 (α4 − α5) 0









x1
x2
x3



 =





0
0
0





Hence x1 = 0 hence there is no positive eigenvector. Moreover, this leads to x2 = 0 and arbitrary x3, so
that the only possible long term structure is given by (0, 0, 1); that is, the population will only consists of
commoners. While it is certainly possible, we are interested in survival of the community as a whole which
is not possible if α5 is the dominant eigenvalue. A similar outcome is obtained if we assume that α3 is
the dominant eigenvalue. Here also x1 = 0 and though under additional assumption α4 > α5 we obtain a
nonnegative eigenvector (0, 1, (α4 − α5)/(α3 − α5), but the structure is destroyed.
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The last option is to assume that α1 is a dominant eigenvalue. Thus, let α1 > α3 and α1 > α5. The
eigenvector corresponding to α1 satisfies





0 0 0
α2 (α3 − α1) 0

−α5 (α4 − α5) (α5 − α1)









x1
x2
x3



 =





0
0
0



 .

The second equation yields

x2 =
α2

(α1 − α3)
x1.

Since α1 > α3, we see that x2 > 0 provided x1 > 0. Then from the last equation we get

x3 =
1

α1 − α5

(

−α5 + α2
α4 − α5

α1 − α3

)

x1.

Since α1 > α5 and α1 > α3, we have x3 > 0 if and only if

−α5(α1 − α3) + α2(α4 − α5) > 0.

In other words, the eigenvector corresponding to the dominant eigenvalue α1 is positive provided







α1 > α3

α1 > α5

α2(α4 − α5) > α5(α1 − α3).
(3.4.84)

We observe that a necessary condition for the last inequality to be satisfied, we must have α4 > α5. In
particular, the inequality will be satisfied if α5 is sufficiently small. Thus, we have a positive stable distribution
if the birth rate in the lowest class is small.

To complete our considerations, we must show that in each generation we have sufficiently many members
of class C for the members of classes B and A to marry. Thus we require that the components of the stable
distribution vector additionally satisfy

x3 ≥ x1 + x2. (3.4.85)

Substituting here the formulae for x2 and x3, which were derived earlier, we obtain the inequality

(α4 − α5)

(α1 − α5)
− α5(α1 − α3)

α2(α1 − α5)
− (α1 − α3)

α2
− 1 ≥ 0. (3.4.86)

We observe here that we can satisfy this inequality by taking sufficiently large α4. In particular, we must
have

α4 > α5. (3.4.87)

Thus, to ensure that in the stable population distribution we have sufficient number of members of class C,
we should ensure that α4; that is, the birth rate of in marriages of mothers of class C and fathers of class
B, is sufficiently large. Of course, this is not a necessary condition. Any set of birth rates satisfying (3.4.85),
in addition to (3.4.84), will ensure (3.4.85.

The birth coefficients α1 = 1.2, α2 = 0.9, α3 = 1.1, α4 = 1.4 and α5 = 0.8 satisfy (3.4.86). Then the stable
population structure is given by

x = (1, 9, 11.5).

We observe that the provided analysis is not complete. It shows that there is a structure of the society
which can persist in a stable way. However, we do not know whether any initial population will eventually
stabilize at the structure determined by the eigenvector found above. Fortunately, the problem allows for a
more detailed solution which confirm the results obtained by the analysis of the dominant eigenvalue and the
corresponding eigenvector. First, we observe that the first equation in (3.4.83) is independent of the other
two and the second one does not depend on the third one. Then we obtain
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x1(k) = αk
1

◦
x1 (3.4.88)

and, using (2.3.49),

x2(k) = αk
3

◦
x2 +α2

◦
x1

αk
1 − αk

3

α1 − α3
. (3.4.89)

Finally, using (3.4.88) and (3.4.89) and, again, (2.3.49), we have

x3(k) = αk
5

◦
x3 +

◦
x2 (α4 − α5)

k−1
∑

i=0

αk−i−1
5 αi

3+
◦
x1

α2(α4 − α5

α1 − α3

(

k−1
∑

i=0

αk−i−1
5 αi

1 −
k−1
∑

i=0

αk−i−1
5 αi

3

)

−α5
◦
x1

k−1
∑

i=0

αk−i−1
5 αi

1

= αk
5

◦
x3 +

αk
3 − αk

5

α3 − α5
(α4 − α5)

(

◦
x2 − ◦

x1
α2

α1 − α3

)

+
αk
1 − αk

5

α1 − α5

(

α2(α4 − α5)

α1 − α3
− α5

)

◦
x1 . (3.4.90)

Assuming that (3.4.87) is satisfied, we see that for x3(k) to be positive, we need (3.4.84) to be satisfied as
well as ◦

x1
◦
x2

<
α1 − α3

α2
. (3.4.91)

Hence, though in general some non-negative initial conditions may lead negative solution; that is, to the
collapse of the society, positive initial conditions satisfying (3.4.91) ensure that the population will stay
positive for all times and distribution among classes will eventually stabilize at the vector

(

1,
α2

(α1 − α3)
,

1

α1 − α5

(

−α5 + α2
α4 − α5

α1 − α3

))

.

Note the relation with condition (3.4.91). The latter simply states that for the solution to remain positive,
the ratio of the initial populations in classes A and B must be smaller that the ratio of these populations
in the stable distribution vector. The analysis is, however, still not complete. The reason is that though the
model (3.4.83) is a proper reflection of the assumptions, we cannot claim that the model determines the
assumptions in a unique way. For instance, the equation (3.4.82) only specifies how many offspring the class
A produces in each cycle but it does not tell that the offspring must result from the marriage of a class A
mother and class C father. In other words, we do not know whether

x3(k) ≥ x1(k) + x2(k) (3.4.92)

is satisfied for any k; that is, we do not know that in each cycle the society can obey its marriage scheme.
For this, using (3.4.88)–(3.4.90), we have to prove that

αk
5

◦
x3 +

αk
3 − αk

5

α3 − α5
(α4 − α5)

(

◦
x2 − ◦

x1
α2

α1 − α3

)

+
αk
1 − αk

5

α1 − α5

(

α2(α4 − α5)

α1 − α3
− α5

)

◦
x1

≥ αk
3

◦
x2 +α2

◦
x1

αk
1 − αk

3

α1 − α3
+ αk

1

◦
x1 . (3.4.93)

It is natural to assume that the initial conditions satisfy
◦
x3≥

◦
x1 +

◦
x2. We see that if we prove (3.4.93) for

◦
x3=

◦
x1 +

◦
x2, then it will be valid for any

◦
x3≥

◦
x1 +

◦
x2. So, let

◦
x3=

◦
x1 +

◦
x2 and, denoting q =

◦
x2 /

◦
x1, we

must find conditions for

Ψk(q) := (αk
3 − αk

5)
α5 − α3 + 1

α3 − α5
q + αk

5 − αk
1 − α2(αk

3 − αk
5)

(α3 − α5)(α1 − α3)
+
αk
1 − αk

5

α1 − α5

(

α2(α4 − α5)

α1 − α3
− α5

)

−α2
αk
1 − αk

3

α1 − α3
≥ 0 (3.4.94)

for all q ≥ α2/(α1 − α3) and k ≥ 1.
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We re-write the previous equation as

Ψk(q) =
αk
3 − αk

5

α3 − α5

(

(α5 − α3 + 1)q − α2

α1 − α3

)

+
α2(αk

1 − αk
5)

α1 − α3

(

α4 − α5

α1 − α5
− α5(α1 − α3)

α2(α1 − α5)
− α1 − α3

α2

)

−α2
αk
1 − αk

3

α1 − α3
(3.4.95)

and, using (3.4.86),

Ψk(q) ≥ αk
3 − αk

5

α3 − α5

(

(α5 − α3 + 1)q − α2

α1 − α3

)

+
α2

α1 − α3
(αk

3 − αk
5)

≥ αk
3 − αk

5

α3 − α5

(

(α5 − α3 + 1)

(

q − α2

α1 − α3

))

and the last line is nonnegative whenever α5 − α3 + 1 ≥ 0 (since q ≥ α2/(α1 − α3)).

4.2 Positive dynamical systems

If a given difference or differential equation/system of equations is to describe evolution of a population;
that is, if the solution is the population size or density, then clearly solutions emanating from non-negative
data must stay non-negative. If we deal with systems of equations, then non-negativity must be understood
in the sense defined above. We note that there are models admitting negative solutions such as the discrete
logistic equation (see discussion preceding (2.2.23) or the Natchez population in the previous section), but
then the moment the solution becomes negative is interpreted as the extinction of the population and the
model ceases to be applicable for later times.

Let us first consider processes occurring in discrete time.

Proposition 3.23. The solution y(k) of

y(k + 1) = Ay(k), y(0) =
◦
y

satisfies y(k) ≥ 0 for any k = 1, . . . , for arbitrary
◦
y≥ 0 if and only if A ≥ 0.

Proof. The ‘if’ part is easy. We have yi(k) =
n
∑

j=1

aijyj(k−1) for k ≥ 1 so if aij ≥ 0 and
◦
yj≥ for i, j = 1, . . . , n,

then yi(1) ≥ 0 for all i = 1, . . . , n and the extension for k > 1 follows by induction.

On the other hand, assume that aij < 0 for some i, j and consider
◦
y= ej = (0, . . . , 0, 1, 0, . . . , 0), where 1 is

on the jth place. Then A
◦
y= (a1j , . . . , aij , . . . , anj) so the output is not non-negative. Thus, the condition

A ≥ 0 is also necessary. ✷

The proof of analogous result in continuous time is slightly more involved.

Proposition 3.24. The solution y(t) of

y′ = Ay, y(0) =
◦
y

satisfies y(t) ≥ 0 for any t > 0 for arbitrary
◦
y≥ 0 if and only if A has non-negative off-diagonal entries.

Proof. First let us consider A ≥ 0. Then, using the representation (3.3.48)

etA = I + tA +
t2

2
A2 +

t3

3!
A3 + . . .+

tk

k!
Ak + . . . ,
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and the results of the previous proposition we see that etA ≥ 0. Next, we observe that for any real a and
◦
y

the function y(t) = eatetA
◦
y≥ 0 and satisfies the equation

y′ = ay + Ay = (aI + A)y.

Hence if the diagonal entries of A, aii, are negative, then denoting r = max1≤i≤n{−aii} we find that

Ã = rI + A ≥ 0. Using the first part of the proof, we see that

etA = e−rtetÃ ≥ 0. (3.4.96)

Let us write

etA = E(t) =







ǫ11(t) . . . ǫ1n(t)
...

...
ǫn1(t) . . . ǫnn(t)






,

so ǫij(t) ≥ 0 for all i, j = 1, . . . , n, and consider E(t)ei = (ǫ1i(t), . . . , ǫii(t), . . . , ǫni(t)). Then

(a1i, . . . , aii, . . . , ani) = AE(t)ei|t=0 =
d

dt
E(t)ei

∣

∣

∣

∣

t=0

= lim
h→0+

(

ǫ1i(h)

h
, . . . ,

ǫii(h) − 1

h
, . . . ,

ǫni(h)

h

)

,

so that aji ≥ 0 for j 6= i. ✷

4.3 Classification of projection matrices

The long time behaviour of (Ak)k≥1 is fully determined by whether A is a primitive irreducible, imprimitive
irreducible or a reducible matrix. These concepts are also easily interpreted in the context of population
dynamics.

For a matrix A = (aij)1≤i,j≤n, we say that there is an arc from i to j if aij > 0; a path from i to j is a
sequence of arcs starting from i and ending in j in which the endpoint of each arc (apart from the last) is
the beginning of the subsequent arc. A loop is a path from i to itself.

We say that a non-negative matrix is irreducible if, for each i and j, there is a path from i to j. Otherwise,
we say that it is reducible.

This definition easily can be interpreted in terms of graphs. A graph is a nonempty finite set of vertices and
(possibly empty) set of edges (edge can be interpreted as a unordered pair of vertices). An directed graph
or a digraph is a graph with directed edges (a directed edge is then an ordered pair of vertices). As with
matrices, a path in a graph is a finite sequence of directed edges ((i1, i2), (i2, i3), . . . , (ik−1, ik)) in which no
vertex is repeated apart from possibly i1 = ik; in the latter case the path is called a loop. We say that a
digraph is strongly connected if for any pair of vertices i and j there is a path which connects them.

By the incidence matrix associated to a nonnegative matrix A we understand the matrix D = (dij)1≤i,j≤n

where di,j = 1 if ai,j > 0 and di,j = 0 otherwise. There is a one to one correspondence between diagraphs
and incidence matrices (up to a permutation). For a given D we take {1, . . . , n} as the set of vertices and
we draw a directed from j to i whenever di,j > 0. Conversely, given a diagraph with n vertices, we number
them {1, . . . , n} and set di,j = 1 whenever there is an edge from j to i.

Then it is relatively easy to prove that a matrix A is irreducible if and only if its incidence matrix D is
irreducible. Then one can prove that A is irreducible if and only if the digraph associated with the incidence
matrix of A is strongly connected.

An equivalent, but more algebraic, condition must be preceded by some notation. We write

Ak = (a
(k)
i,j )1≤i,j≤n.
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It is easy to see that

a
(k)
i,j =

∑

1≤ir≤n,r=1,...,k−1

ai,i1ai1,i2 · . . . · aik−1,j

If some ai,i1ai1,i2 · . . . · aik−1,j 6= 0 then there is a path starting from j and passing through ik−1, . . . , i1 to i.

Since the matrix elements are nonnegative, for a
(k)
i,j to be non-zero it is enough that there exists at least one

such path. Thus, A is irreducible if for each pair (i, j) there is k such that a
(k)
i,j > 0.

If the matrix A is not irreducible, then we say that is is reducible. Thus, a matrix is reducible if the associated
graph is not strongly connected, that is, if there are vertices i and j such that i is not accessible from j. An
equivalent definition is that A is reducible if, by simultaneous permutation of rows and columns, it can be
brought to the form

(

A 0
B C

)

where A and B are square matrices.

In terms of age-structured population dynamics, a matrix is irreducible if each stage i can contribute to any
other stage j. E.g., the Usher matrix









0 0 1 0
1 0 0 0
0 1 0 0
0 0 1 1









is reducible as the last state cannot contribute to any other state and fertility is only concentrated in one
state.

Irreducible matrices are subdivided into two further classes. An irreducible matrix A is called primitive if

Ak > 0,

otherwise it is called imprimitive.

Note the difference between irreducibility and primitivity. For irreducibility we require that for each (i, j)

there is k such that a
(k)
i,j > 0 but for primitivity there must be k such that a

(k)
i,j > 0 for all (i, j).

In population dynamics, if the population has a single reproductive stage, then its projection matrix is
imprimitive. E.g., the matrix





0 0 1
1 0 0
0 1 0





describing a semelparous population is imprimitive.

The Perron-Frobenius theorem can be summarized as follows.

Theorem 3.25. Let A be a nonnegative matrix.

1. There exists a real nonnegative eigenvalue λmax = r(A) such that λmax ≥ |λ| for any λ ∈ σ(A). There
is an eigenvector (called the Perron eigenvector) corresponding to λmax which is real and nonnegative.

2. If, in addition, A is irreducible, then λmax is simple and strictly positive, λmax ≥ |λ| for λ ∈ σ(A). The
eigenvector corresponding to λmax may be chosen to be strictly positive.

(i)If A is additionally primitive, then λmax > |λ|;
(ii) If A is imprimitive, then there are d − 1 (d is called the imprimitivity index) eigenvalues λj =

λmaxe
2πi j

d , j = 1, . . . , j − 1, with λmax = |λj |.
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Let us apply the Perron-Frobenius theorem in the population context. Suppose that our population is divided
into n age (or other) classes and the state of the population is given by the vector x = (x1, . . . , xn) giving the
number of individuals (or density) in each class. Let x0 ≥ 0 denote the initial distribution of the population
among the classes. Then

x(k) = Akx0

is the distribution after k periods and

P (k,x) = ‖Akx0‖ =

n
∑

i=1

(Akx0)i =

n
∑

i=1

xi(k) = ‖x(k)‖

is the total population at time k evolving from the initial distribution x0.

If A is nonnegative, irreducible or primitive, then the transpose AT has the same property. Let r := λmax be
the dominant eigenvalue of both matrices and v and v∗ be the corresponding strictly positive eigenvectors of,
respectively, A and AT , corresponding to λmax. We normalize v so that ‖v‖ = 1 and v∗ so that < v∗,v >= 1.

Combining the Perron-Frobenius theorem with the spectral decomposition we arrive at the following result.

Theorem 3.26 (Fundamental Theorem of Demography). Suppose that the projection matrix A is
irreducible and primitive and let r be the strictly positive dominant eigenvalue of A, v the strictly positive
eigenvector of A and v∗ strictly positive eigenvector of AT corresponding to r. Then, for any x0 ≥ 0,

(a) A has the AEG property
lim
k→∞

r−kAkx0 =< v∗,x0 > v. (3.4.97)

(b)

lim
k→∞

x(k)

P (k,x0)
=

Akx0

P (k,x0)
= v. (3.4.98)

(c) If r < 1
lim
k→∞

P (k,x0) = 0,

and
lim
k→∞

P (k,x0) = ∞

if r > 1.

Proof. (a) We use (3.3.73), (3.3.76) and Theorem 3.25 1.(i)

Akx0 =
∑

λ∈σ(A)

λkpλ(k,Pλx0) = rk < v∗,x0 > v +
∑

λ∈σ(A)\{r}
λkpλ(k,Pλx0). (3.4.99)

By primitivity of A, r > |λ| for any λ ∈ σ(A \ {r}) and since pλ(k,Pλ,x0) are polynomials in k, we have

∥

∥

∥

∥

∥

(

λ

r

)k

pλ(k,Pλx0)

∥

∥

∥

∥

∥

→ 0, k → ∞,

and (a) is proved.

For (b) we see that, by (a),

lim
k→∞

P (k,x0)

rk
= lim

k→∞

‖Akx0‖
rk

= lim
k→∞

∥

∥

∥

∥

Akx0

rk

∥

∥

∥

∥

= | < v∗,x0 > | > 0. (3.4.100)

Hence, by (a) and (3.4.100),
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lim
k→∞

Akx0

P (k,x0)
= lim

k→∞

r−kAkx0

r−kP (k,x0)
= v,

which gives (3.4.98).

To prove (c) we observe that

P (k,x0) =

∥

∥

∥

∥

Ak

(

x0

P (k − 1,x0)

)∥

∥

∥

∥

P (k − 1,x0) = rk−1P (k − 1,x0)

where

rk−1 =

∥

∥

∥

∥

Ak

(

x0

P (k − 1,x0)

)∥

∥

∥

∥

= r

∥

∥

∥

∥

r−kAkx0

r−(k−1)P (k − 1,x0)

∥

∥

∥

∥

→ r
| < v∗,x0 > |‖v‖
| < v∗,x0 > | = r, as k → ∞

by (a), (b) and the normalization of v,v∗. Thus, if r < 1, then we can pick r̄ < 1 such that rk−1 ≤ r̄ for all
k larger than some k0 and

P (k0 + i,x0) ≤ r̄iP (k0,x0) → 0 as i→ ∞.

Similarly, if r > 1, then we can pick r̃ > 1 such that rk−1 ≥ r̃ for all k larger than some k0 and

P (k0 + i,x0) ≥ r̃iP (k0,x0) → ∞ as i→ ∞,

as P (k0,x0) 6= 0 for any finite k0. Indeed, otherwise from nonnegativity we would have x(k0) = 0 and thus
x(k) = 0 for k ≥ k0, contradicting (a). ✷

If we note that for each 1 ≤ i ≤ n
(Akx)i
P (k,x)

is the fraction of the population in the state i at time k, then the result above states that for large times
the fraction of the population in the state i approximately is given by the i coordinate of the Perron
eigenvector and is independent of the initial distribution x. Moreover v is approached (or departed from) at
an exponential rate, hence the name asynchronous exponential growth.

4.4 Example–irreducible case

Let us consider the Leslie matrix

L :=















f0 f1 · · · fn−2 fn−1

s0 0 · · · 0 0
0 s1 · · · 0 0
...

... · · ·
...

...
0 0 · · · sn−2 0















, (3.4.101)

and find under what conditions the population described by L exhibits asynchronous exponential growth.

First we observe that for irreducibility we need all si 6= 0, 0 ≤ i ≤ n− 2. Indeed, if for some i the coefficient
si = 0, then there would be no path from k ≤ i to k > i. In other words, there would be no way of reaching
the age k > i. Assuming this, L is irreducible if and only if fn−1 > 0. Clearly, if fn−1 = 0, then there is no
communication from class n − 1 to any other class and thus L is reducible. Now, let fn−1 > 0 and pick a
(i, j). If j < i, then there is a path (j, j + 1)...(i − 1, i) ensured by the survival coefficients sj , sj+1, . . . si−1.
If j ≥ i, then the survival coefficients ensure that we reach the last class n− 1, then since fn−1 > 0 we reach
the class 0 and then we arrive at i by aging, that is (j, j + 1) . . . (n− 2, n− 1)(n− 1, 0)(0, 1), . . . (i− 1, i).

The question of primitivity is more complicated. Let us first assume that fj > 0 for j = 0, . . . , n − 1, that
is, that any age group is capable of reproduction. Let us consider arbitrary initial state j. Then there is
an arc between j and 0 (a0j = fj > 0) and then from state 0 one can reach any state i in exactly i steps
(s0s1 · . . . · si). Thus, there is a path joining j and i of length i + 1 which still depends on the target state.
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However, there is an arc from 0 to itself, so we can wait at 0 for any number of steps. In particular we can
wait for n− i steps so that j can be connected with i is n+ 1 steps. In other words

si−1 · · · · · s1s0f0 · . . . · f0fj > 0

where f1 occurs n− i times. Hence Ln > 0.

Remark 3.27. The above argument shows that any irreducible matrix in which at least one diagonal entry is
not equal to zero is primitive.

This result assumes too much - typically young individuals cannot reproduce. We will strengthen this result.
Let

0 = det(λI − L) = λn + an1λ
n1 + . . . ani

λni (3.4.102)

with n > n1 > . . . > ni, ank
6= 0, k = 1, . . . , i be the characteristic equation of L. It follows that if L

is imprimitive of index d, then d is the greatest common divisor of n − n1, n1 − n2, . . . , ni−1 − ni. This is
related to the fact that λd− rd is a factor of the characteristic polynomial but full proof requires more subtle
characterization of the spectrum of imprimitive matrices. The characteristic equation of a Leslie matrix
can be calculated explicitly and it has its own biological interpretation. Let us start with n = 2. Then the
determinant D2 equals

D2 = λ2 − λf0

and for n = 3

D3(λ) = det





f0 − λ f1 f2
s0 −λ 0
0 s1 −λ



 = −λ3 + λ2f0 + λf1s0 + f2s0s1, (3.4.103)

We make the induction assumption

Dn−1(λ) = (−1)n−1

(

λn−1 −
n−2
∑

k=0

λn−2−kfk

k−1
∏

i=0

si

)

,

with
−1
∏

i=0

= 1. Then

Dn(λ) = det















f0 − λ f1 · · · fn−2 fn−1

s0 −λ · · · 0 0
0 s1 · · · 0 0
...

... · · ·
...

...
0 0 · · · sn−2 −λ















= −λDn−1 + (−1)2n−1sn−2(−1)nfn−1

n−1
∏

i=0

si = (−1)n

(

λn −
n−1
∑

k=0

λn−1−kfk

k−1
∏

i=0

si

)

.

Now, this equation can be simplified if we remember that si = li+1/li with l0 = 1, where li is the probability
of surviving from birth to age i and fi = mi+1si. Thus

fk

k−1
∏

i=0

si = mk+1sksk−1 · . . . · s0 = mk+1lk+1

and thus the characteristic equation for a Leslie matrix can be written as

n
∑

k=1

λn−kmklk = λn. (3.4.104)

Using the criterion mentioned above, a Leslie matrix is irreducible and primitive if e.g. the fertility of the
oldest generation mn is not zero and two subsequent generations have nonzero fertility.
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Remark 3.28. Alternative derivation of the characteristic equation of a Leslie matrix and its
eigenvectors. Consider the eigenvalue-eigenvector equation for a Leslie matrix

Lv =















f0 f1 · · · fn−2 fn−1

s0 0 · · · 0 0
0 s1 · · · 0 0
...

... · · ·
...

...
0 0 · · · sn−2 0





























v0
v1
v2
...

vn−1















= λ















v0
v1
v2
...

vn−1















.

The equations from the second row down read

s0v0 = λv1, s1v1 = λv2, . . . sn−2vn−2 = λvn−1.

Taking v0 = 1, we obtain

v1 =
s0
λ
, v2 =

s0s1
λ2

, . . . vn−1 =
s0s1 . . . sn−2

λn−1
.

Now, the first row gives the equation

λ =

(

f0 +
f1s0
λ

+
f2s0s1
λ2

+ . . .+
fn−1s0s1 . . . sn−2

λn−1

)

.

Again we use si = li+1/li where li is probability of survival till the i + 1st reproductive cycle from birth
(thus si is conditional probability of survival to the next reproductive cycle if one survived till i from birth)
and fi = mi+1si to rewrite the above as

1 =

(

m1l1
λ

+
m2l2
λ2

+
m3l3
λ3

+ . . .+
mnln
λn

)

,

where we used l0 = 1. This equation is called the discrete Euler-Lotka equation.

Relative simplicity of the characteristic equation allows to strengthen this result even more. In fact, L is
imprimtive if and only if the maternity function is periodic, that is, if the greatest common divisor of ages
of positive reproduction, called the period, is greater than 1. For instance, the sequence m2,m4,m6... has
period 2. In particular, the period is equal to the imprimitivity index.

The proof follows from the criterion given above but we shall provide a direct instructive proof. Indeed,
suppose that

λj = reiθ, θ 6= 2πn,

is a negative or complex root to

ψ(λ) = λ−1m1l1 + . . .+ λn−1mn−1ln−1 + λ−nmnln =

n
∑

k=1

λ−kmklk = 1. (3.4.105)

Then
n
∑

k=1

r−ke−ikθlkmk = 1 (3.4.106)

or, taking real and imaginary parts,

n
∑

k=1

r−k cos(kθ)lkmk = 1, (3.4.107)

n
∑

k=1

r−k sin(kθ)lkmk = 0. (3.4.108)
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If mk is periodic, then the only nonzero terms correspond to multiples of d, mk1d,mk2d,mk3d, . . .. Taking
θj = 2πj/d, j = 0, 1, . . . , d− 1, we see cos kldθj = 1, sin kldθj = 0 and so, if the above equations are satisfied
by r, they are also satisfied by any λj = reiθj .

If mk is aperiodic, with mki
6= 0, i ∈ I ⊂ {1, . . . , n}, then there is no θ 6= 0 for which cos kiθ = 1 for all ki.

Indeed, otherwise there is θ ∈ (0, 2π) such that

cos k1θ = 1.

This implies

θ = 2π
l

k1
= 2π

j

d
,

where l < k1 is an integer and j and d are relatively prime integers, so that 0 < j ≤ d− 1 (note that if j = 0,
then θ = 0). But then

kiθ = ki
2πj

d
= 2πli

for some integer li so that

ki = li
d

j
.

However, ki is an integer and j and d are relatively prime so that li must be divisible by j. Hence

ki = rid

for some integer ri, i ∈ I. Thus, whatever θ, for some k we must have cos kθ < 1. But then, if (3.4.107) was
satisfied, we would have

n
∑

k=1

|λj |−klkmk > 1.

On the other hand, since
n
∑

k=1

r−klkmk = 1,

we obtain |λj | < r.

Remark 3.29. Eq. (3.4.105) is the characteristic equation of the so called Lotka renewal equation and can be
derived directly. Let B(k) be the number of births at time k. These births can be divided into two classes:
one class attributed to females born between time 0 and k and the other due to females which were alive at
time k = 0. Females that are of age i at time k were born at time k− i. The number of females born at k− i
is given by B(k − i). The number of them that survive till the age k is l(i)B(k − i)∆t and thus the number
of births at time k by females of age i is l(i)B(k − i)m(i). Thus, this contribution is

k
∑

i=1

B(k − i)limi.

To find the contribution of the females who were present at time k = 0 we begin with taking the number of
females of age i present at k = 0, xi(0). These females must live till the age k + i, that is we must take
survival rate till k+ i, lk+i, conditioned upon the female having survived till i. Hence we see that xi(0)lk+i/li
females survived till time k. These gave birth to mk+ixi(0)lk+i/li new females. To find the number of all
births due to females older then k we again sum over all ages. However, no female survives beyond n so the
summation terminates at n − k (no female older that n − k at time k = 0 will survive till k). Combining
these two formulae we get

B(k) =

k
∑

i=1

B(k − i)limi +G(k), (3.4.109)

where
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Gk =

n−k
∑

i=1

xi(0)
lk+i

li
mk+i.

For large k, k > n, the equation (3.4.109) reduces to

B(k) =

k
∑

i=1

B(k − i)limi

which is a constant coefficient difference equation the characteristic equation of which is exactly (3.4.105).

4.5 Reducible case

Let us consider a more complicated case where the fertility is restricted to some interval [n1, n2], that is,
when fj > 0 for j ∈ [n1, n2]. As we noted earlier, if n2 < n, the matrix cannot be irreducible as there is no
communication between postreproductive stages and the reproductive ones. Consequently, if we start only
with individuals in postreproductive age, the population will die out in finite time. Nevertheless, if n1 < n2

then the population still displays asynchronous exponential growth, albeit with a slight modification, as
explained below.

To analyse this model, we note that since we cannot move from stages with j > n2 to earlier stages, the part
of the population with j ≤ n2 evolves independently from postreproductive part (but feeds into it.) Assume
that n1 < n2 and introduce the restricted matrix

L̃ =















f0 f1 · · · fn2−1 fn2

s0 0 · · · 0 0
0 s1 · · · 0 0
...

... · · ·
...

...
0 0 · · · sn2−1 0















and the matrix providing (one-way) link from reproductive to postreproductive stages is given by

R =







0 · · · sn2 0 · · · 0 0
... · · ·

...
... · · ·

...
...

0 · · · 0 0 · · · sn−2 0







For the matrix L̃, fn2 > 0 and fn2−1 > 0 and we can apply the considerations of the previous section
and Theorem 3.26. Thus, there is r > 0 there are vectors v = (v0, . . . vn2) and v∗ = (v∗0 , . . . v

∗
n2

) such that

L̃v = rv and
lim
k→∞

r−kx(k + 1) = lim
k→∞

r−kL̃kx0 = v < v∗,x0 >, 0 ≤ x0 ∈ R
n2 . (3.4.110)

For n2 ≤ j < n, k ≥ 0, we have xj+1(k + 1) = sjxj(k). Hence, starting from xn2(k) we get xn2+i(k + i) =
cixn2(k), where ci = sn2+i−1 · . . . · sn2 , as long as i ≤ n− n2 − 1. So

lim
k→∞

r−kxn2+i(k + i) = civn2 < v∗,x0 >, 0 ≤ x0 ∈ R
n2 ,

and hence, changing k + i into k

lim
k→∞

r−kxn2+i(k) = cir
−ivn2 < v∗,x0 >, 0 ≤ x0 ∈ R

n2 ,

for any i = 1, . . . , n− n2 − 1.

Hence, we see that the formula (3.3.76) is satisfied if we take

v = (v0, . . . vn2 , c1r
−1vn2 , . . . , cn−n2−1r

−(n−n2−1)vn2)

v∗ = (v∗0 , . . . y
∗
n2
, 0, . . . , 0).
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Finally, we observe that if only one fj is positive (semelparous population), then we do not have asynchronous
exponential growth. Indeed, in this case starting from initial population in one class we will have a cohort
of individuals in the same age group moving through the system. We have observed such a behaviour in
Example 3.5.

5 Birth-and-death type problems

Consider a population consisting of N(t) individuals at time t. We allow stochasticity to intervene in the
process so that N(t) becomes a random variable. Accordingly, we denote by

pn(t) = P [N(t) = n], n = 1, 2, . . . (3.5.111)

the probability that the population has n individuals at t.

5.1 Birth process

At first, we consider only births and we assume that each individual gives births to a new one independently
of others. For a single individual, we assume that

P{1 birth in (t, t+∆t]|N(t) = 1} = β∆t+ o(∆), (3.5.112)

P{more than 1 birth in (t, t+∆t]|N(t) = 1} = o(∆t), (3.5.113)

P{0 births in (t, t+∆t]|N(t) = 1} = 1 − β∆t+ o(∆t). (3.5.114)

If we have n individuals, than 1 births will occur if exactly one of them give birth to one offspring and the
remaining n− 1 produce 0. This can happen in n ways. Thus

P{1 birth in (t, t+∆t]|N(t) = n} = n(β∆t+ o(∆t))(1 − β∆t+ o(∆t))n−1

= nβ∆t+ o(∆t). (3.5.115)

Similarly, more then one birth can occur if one individual give births to more than 1 offspring or at least
two individuals give birth to one new one. Considering all possible combinations, we end up with finite sum
each term of which is multiplied by ∆t or its higher powers. Thus

P{more than 1 birth in (t, t+∆t]|N(t) = n} = o(∆t). (3.5.116)

Finally, no birth occurs if none individual produces an offspring; that is

P{0 births in (t, t+∆t]|N(t) = n} = (1 − β∆t+ o(∆t))n

= 1 − nβ∆t+ o(∆t). (3.5.117)

We can set up the equation describing evolution of pn(t). There can be n individuals at time t + ∆t if
there were n− 1 individuals at time t and one births occurred or if there were n individuals and zero births
occurred, or less than n− 1 individuals and more than 1 birth occurred. However, the last event occurs with
probability o(∆t) and will be omitted. Using the theorem of total probabilities

pn(t+∆t) = pn−1(t)P{1 birth in (t, t+∆t]|N(t) = n− 1}
+pn(t)P{0 births in (t, t+∆t]|N(t) = n} (3.5.118)

that is, using the formulae

pn(t) = (n− 1)β∆tpn−1 + (1 − nβ∆t)pn(t) + o(∆) + o(∆t). (3.5.119)

After some algebra, we get
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pn(t+∆t) − pn(t)

∆t
= −nβpn(t) + (n− 1)βpn−1(t) +

o(∆t)

∆t

and, passing to the limit
dpn(t)

dt
= −nβpn(t) + (n− 1)βpn−1(t). (3.5.120)

This is an infinite chain of differential equations which must be supplemented by an initial condition. The
population at t = 0 had to have some number of individuals, say, n0. Hence,

pn(0) =

{

1 for n = n0,
0 for n 6= n0.

(3.5.121)

Since this is purely birth process, pn(0) = 0 for t > 0 and n < n0.

Since the rate of change of pn depends only on itself and on the preceding pn−1(t), we have

dpn0(t)

dt
= −n0βpn0(t), (3.5.122)

so that
pn0(t) = e−βn0t.

For pn0+1(t) we obtain nonhomogeneous equation

dpn0+1(t)

dt
= −(n0 + 1)βpn0+1(t) + βn0e

−βn0t.

Using integrating factor eβ(n0+1)t we obtain
(

pn0+1(t)eβ(n0+1)t
)′

= βn0e
βt

or
pn0+1(t) = (n0e

βt + C)e−β(n0+1)t

so, using the initial condition pn0+1(0) = 0, we obtain

pn0+1(t) = n0(1 − e−βt)e−βn0t

In general, it can be proved that

pn0+m(t) =

(

n0 +m− 1
n0 − 1

)

e−βn0t(1 − e−βt)m.

Indeed, we proved the validity of the formula for m = 1. Next

dpn0+m+1(t)

dt
= −(n0 +m+ 1)βpn0+m+1(t) + β

(

n0 +m− 1
n0 − 1

)

e−βn0t(1 − e−βt)m.

and, as before
(

pn0+m+1(t)eβ(n0+m+1)t
)′

= β

(

n0 +m− 1
n0 − 1

)

eβt(1 − e−βt)m.

and, integrating

pn0+m+1(t)eβ(n0+m+1)t

= C + β(n0 +m)

(

n0 +m− 1
n0 − 1

)∫

eβ(m+1)t(1 − e−βt)mdt

= C + β(n0 +m)

(

n0 +m− 1
n0 − 1

)∫

eβt(eβt − 1)mdt

= C + (n0 +m)

(

n0 +m− 1
n0 − 1

)∫

umdu

= C +
n0 +m

m+ 1

(

n0 +m− 1
n0 − 1

)

(eβt − 1)m+1

= C +

(

n0 +m
n0 − 1

)

(eβt − 1)m+1
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Using the initial condition pn0+m+1(0) = 0 we find C = 0 and so

pn0+m+1(t) =

(

n0 +m
n0 − 1

)

e−βn0t(1 − e−βt)m+1.

5.2 Birth-and-death system

The obvious drawback of the system discussed above is that individuals never die. We can easily remedy this
by adding possibility of dying in the same way as we modelled births. Accordingly,

P{1 birth in (t, t+∆t]|N(t) = 1} = β∆t+ o(∆), (3.5.123)

P{1 death in (t, t+∆t]|N(t) = 1} = δ∆t+ o(∆), (3.5.124)

P{no change in (t, t+∆t]|N(t) = 1} = 1 − (β + δ)∆t+ o(∆t). (3.5.125)

Possibility of more then one births or death occurring in (t, t+∆t] is assumed to be or order o(∆t) and will
be omitted in the discussion.

As before, we assume that in the population of n individuals births and deaths occur independently. The
probability of 1 birth is given by

P{1 birth in (t, t+∆t]|N(t) = n}
= n(β∆t+ o(∆t))(1 − (β + δ)∆t+ o(∆t))n−1

= nβ∆t+ o(∆t). (3.5.126)

Similarly, probability of 1 (net) death in the population

P{1 birth in (t, t+∆t]|N(t) = n}
= n(δ∆t+ o(∆t))(1 − (β + δ)∆t+ o(∆t))n−1

= nδ∆t+ o(∆t). (3.5.127)

and, finally,

P{no change in (t, t+∆t]|N(t) = n} = (1 − (β + δ)∆t+ o(∆t))n

= 1 − n(β + δ)∆t+ o(∆t). (3.5.128)

We can set up the equation describing evolution of pn(t). Arguing as before

pn(t) = (n− 1)β∆tpn−1 + (n+ 1)δ∆tpn+1 + (1 − n(β + δ)∆t)pn(t) + o(∆t) (3.5.129)

and, finally
dpn(t)

dt
= −n(β + δ)pn(t) + (n− 1)βpn−1(t) + (n+ 1)δpn+1(t). (3.5.130)

This system has to be supplemented by the initial condition

pn(0) =

{

1 for n = n0,
0 for n 6= n0.

(3.5.131)

Remark 3.30. Equations similar to (3.5.130) can occur in many other ways, not necessarily describing stochas-
tic processes. In general, we can consider population consisting of individuals differentiated by a single feature,
e.g., we can consider cells having n copies of a particular gen. Here, un(t) will be the number of individuals
having n copies of this gen. Due to mutations or other environmental influence, the number of genes can
increase or decrease. We may assume that at sufficiently small period of time only one change may occur.
Denoting by βn and δn the rates of increasing (resp. decreasing) the number of genes if there are n of them,
by the argument used above, we have

u′n(t) = −(βn + δn)un(t) + δn+1un+1(t) + βn−1un−1(t), n ≥ 0.
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Contrary to (3.5.120), the system (3.5.130) is much more difficult to solve. In fact, even proving that there
is a solution to it is a highly nontrivial exercise. In what follows, we assume that (p0(t), p1(t), . . . , ) exists
and describes a probability; that is

∞
∑

n=0
pn(t) = 1, t ≥ 0. (3.5.132)

Then, we will be able to find formulae for pn by the generating function method. We define

F (t, x) =
∞
∑

n=0
pn(t)xn

Since pn ≥ 0, by (3.5.132), the generation function is defined in the closed circle |x| ≤ 1 and analytic in
|x| < 1. The generating function has the following properties:

(1) The probability of extinction at time t, p0(t), is given by

p0(t) = F (t, 0). (3.5.133)

(2) The probabilities pn(t) are given by

pn(t) =
1

n!

∂nF

∂xn

∣

∣

∣

∣

x=0

(3.5.134)

If F (t, x) is analytic in a little larger circle, containing x = 1, we can use F to find other useful quantities.
The expected value of N(t) at time t is defined by

E(N(t)) =
∞
∑

n=0
npn(t)

On the other hand,
∂F

∂x
(t, x) =

∞
∑

n=0
npn(t)xn−1

so that

E[N(t)] =
∞
∑

n=0
npn(t) =

∂F

∂x

∣

∣

∣

∣

x=1

(3.5.135)

Similarly, the variance is defined by

V ar[N(t)] = E[N2(t)] − (E[N(t)])2.

On the other hand,
∂2F

∂x2
(t, x)

∣

∣

∣

∣

x=1

=
∞
∑

n=0

n(n− 1)pn(t) = E[N2(t)] − E[N(t)].

Combining these formulae, we get

V ar[N(t)] =

(

∂2F

∂x2
+
∂F

∂x
−
(

∂F

∂x

)2
)∣

∣

∣

∣

∣

x=1

(3.5.136)

Let us find the equation satisfied by F . Using (3.5.130) and remembering that p−1 = 0, we have

∂F

∂t
(t, x) =

∞
∑

n=0
n
dpn
dt

(t) = −(β + δ)
∞
∑

n=0
npn(t)xn

+β
∞
∑

n=0
(n− 1)pn−1(t)x

n + δ
∞
∑

n=0
(n+ 1)pn+1(t)xn

= −(β + δ)x
∂F

∂x
(t, x) + βx2

∂F

∂x
(t, x) + δ

∂F

∂x
(t, x).

That is, to find F we have to solve the equation
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∂F

∂t
=
(

βx2 − (β + δ)x+ δ
) ∂F

∂x
. (3.5.137)

supplemented by the initial condition
F (0, x) = xn0 .

The equation can be solved by characteristics. This problem is slightly simpler than the McKendrick-van
Foerster equation: F is constant along characteristics, which are given by

dx

dt
= −(βx− δ)(x − 1)

that is

−t+ C =

∫

dt

(βx− δ)(x − 1)
=

1

β − δ

(

−
∫

dx

x− δ
β

+

∫

dx

x− 1

)

=
1

β − δ
ln

∣

∣

∣

∣

∣

x− 1

x− δ
β

∣

∣

∣

∣

∣

provided β 6= δ and x 6= 1, δ/β. This gives

∣

∣

∣

∣

βx− δ

x− 1

∣

∣

∣

∣

= Cert

where r = β − δ. Thus, we have the general solution

F (t, x) = G

(

e−rt

∣

∣

∣

∣

βx− δ

x− 1

∣

∣

∣

∣

)

,

where G is an arbitrary function. Using the initial condition, we get

xn0 = G

(∣

∣

∣

∣

βx− δ

x− 1

∣

∣

∣

∣

)

Assume x < min{1, δ/β} or x > max{1, δ/β} so that we can drop absolute value bars. Solving

s =
βx− δ

x− 1

we get

x =
s− δ

s− β

so that

G(s) =

(

s− δ

s− β

)n0

.

Thus, the solution is given by

F (x, t) =

(

e−rt βx−δ
x−1 − δ

e−rt βx−δ
x−1 − β

)n0

=

(

ertδ(1 − x) + (βx− δ

ertβ(1 − x) + (βx − δ)

)n0

(3.5.138)

Consider zero of the denominator:

x =
ert − δ

β

ert − 1

If δ/β < 1, then r > 0 and we see that x > 0 and, as t → ∞, x moves from +∞ to 1 and thus F is
analytical in the circle stretching from the origin to the first singularity, which is bigger than 1 for any finite
t. If δ/β > 1, then r < 0 and x above is again positive and moves from infinity to δ/β > 1 so again F is
analytic in a circle with radius bigger than 1. Since we know that the generating function (defined by the
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series, coincides with F defined above for |x| < min{1, δ/β}, by the principle of analytic continuation, the
generation function coincides with F in the whole domain of its analyticity (note that this is not necessarily
solution of the equation (3.5.137) outside this region as we have removed the absolute value bars).

Consider now the case β = δ. Then the characteristic equation is

dx

dt
= −β(x− 1)2

solving which we obtain
1

x− 1
= βt+ ξ,

or

ξ =
1 − xβt+ βt

x− 1
.

Hence, the general solution is given by

F (t, x) = G

(

1 − xβt+ βt

x− 1

)

.

Using the initial condition, we have

xn0 = G

(

1

x− 1

)

.

Defining

s =
1

x− 1
or

x = 1 +
1

s
.

Hence

G(s) =

(

1 +
1

s

)n0

.

Therefore

F (t, x) =

(

1 +
x− 1

1 − xβt+ βt

)n0

=

(

βt+ (1 − βt)x

1 − xβt+ βt

)n0

.

Summarizing,

F (t, x) =







(

ertδ(1−x)+(βx−δ)
ertβ(1−x)+(βx−δ)

)n0

if β 6= δ
(

βt+(1−βt)x
1−xβt+βt

)n0

if β = δ
(3.5.139)

Let us complete this section by evaluating some essential parameters. The probability of extinction at time
t is given by

p0(t) = F (t, 0) =







(

δ(ert−1
ertβ−δ

)n0

if β 6= δ
(

βt
1+βt

)n0

if β = δ.
(3.5.140)

Hence, the asymptotic probability of extinction is given by

lim
t→∞

p0(t) =

{(

δ
β

)n0

if β > δ

1 if β ≤ δ.
(3.5.141)

We note that even for positive net growth rates β > δ the probability of extinction is non-zero. Populations
with small initial numbers are especially susceptible to extinction.

To derive the expected size of the population we use (3.5.135). We have
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E[N(t)] =
∂F

∂x

∣

∣

∣

∣

x=1

= n0

(

ertδ(1 − x) + (βx − δ)

ertβ(1 − x) + (βx − δ)

)n0−1

(−ertδ + β)(ertβ(1 − x) + (βx − δ)) + β(ert − 1)(ertδ(1 − x) + (βx − δ))

(ertβ(1 − x) + (βx− δ))2

∣

∣

∣

∣

x=1

= n0
(−ertδ + β)(β − δ) + β(ert − 1)(β − δ)

(β − δ)2

= n0e
rt

To get the variance, we have to find the second derivative. It is given by

∂2F

∂x2

= n0

(

xβ − δ + ert(1 − x)δ

ert(1 − x)β + xβ − δ

)−1+n0

(

− 2(β − ertβ)(β − ertδ)

(ert(1 − x)β + xβ − δ)2
+

2(β − ertβ)2(xβ − δ + ert(1 − x)δ)

(ert(1 − x)β + xβ − δ)3

)

+

(−1 + n0)n0

(

xβ − δ + ert(1 − x)δ

ert(1 − x)β + xβ − δ

)−2+n0

(

β − ertδ

ert(1 − x)β + xβ − δ
− (β − ertβ)(xβ − δ + ert(1 − x)δ)

(ert(1 − x)β + xβ − δ)2

)2

Hence

V ar[N(t)] =

(

∂2F

∂x2
+
∂F

∂x
−
(

∂F

∂x

)2
)∣

∣

∣

∣

∣

x=1

= n0

(

2(β − ertβ)2

(β − δ)2
− 2(β − ertβ)(β − ertδ)

(β − δ)2

)

+ n0

(

−β − ertβ

β − δ
+
β − ertδ

β − δ

)

+(−1 + n0)n0

(

−β − ertβ

β − δ
+
β − ertδ

β − δ

)2

− n0
2

(

−β − ertβ

β − δ
+
β − ertδ

β − δ

)2

=
ert(−1 + ert)n0(β + δ)

β − δ

for β 6= δ, while for β = δ we obtain
V (t) = 2n0βt.
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Discrete time non-linear models for interacting species and age

structured populations

System of discrete equations occur when we have two, or more, interacting species. However, we also have
seen systems in age structured one-species models. They were linear but can be easily generalized to non-
linear by introducing density dependent coefficients (such as logistic growth). We have discuss two such
systems, next we introduce tools for their analysis, and finally provide stability analysis of them.

1 Models

1.1 Host-parasitoid system

Discrete difference equation models apply most readily to groups such as insect population where there is
rather natural division of time into discrete generations. A model which has received a considerable atten-
tion from experimental and theoretical biologists is the host-parasitoid system. Let us begin by introducing
definition of a parasitoid. Predators kill their prey, typically for food. Parasites live in or on a host and draw
food, shelter, or other requirements from that host, often without killing it. Female parasitoids, in turn,
typically search and kill, but do not consume, their hosts. Rather, they oviposit (deposit eggs) on, in, or near
the host and use it as a source of food and shelter for the developing youngs. There are around 50000 species
of wasp-like parasitoids, 15000 of fly-type parasitoids and 3000 species of other orders.

Typical of insect species, both host and parasitoid have a number of life-stages that include eggs, larvae,
pupae and adults. In most cases eggs are attached to the outer surface of the host during its larval or pupal
stage, or injected into the host’s flesh. The larval parasitoids develop and grow at the expense of their host,
consuming it and eventually killing it before they pupate.

A simple model for this system has the following set of assumptions:

1. Hosts that have been parasitized will give rise to the next generation of parasitoids.

2. Hosts that have not been parasitized will give rise to their own prodigy.

3. The fraction of hosts that are parasitized depends on the rate of encounter of the two species; in general,
this fraction may depend on the densities of one or both species.

It is instructive to consider this minimal set of interactions first and examine their consequences. We define:

• Nt – density (number) of host species in generation t,

• Pt – density (number) of parasitoid in generation t,

• f = f(Nt, Pt) – fraction of hosts not parasitized,

• λ – host reproductive rate,
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• c – average number of viable eggs laid by parasitoid on a single host.

Then our assumptions 1)–3) lead to:

Nt+1 = λNtf(Nt, Pt),

Pt+1 = cNt(1 − f(Nt, Pt). (4.1.1)

To proceed we have to specify the rate of encounter f . One of the earliest models is the Nicholson-Bailey
model.

The Nicholson-Bailey model

Nicholson and Bailey added two assumptions to to the list 1)-3).

4. Encounters occur randomly. The number of encounters Ne of the host with the parasitoid is therefore
proportional to the product of their densisties (numbers):

Ne = αNtPt,

where α is a constant, which represents the searching efficiency of the parasitoids. (This kind of assump-
tion presupposing random encounters is is known as the law of mass action. )

5. Only the first encounter between a host and parasitoid is significant (once the host has been parasitized it
gives rise exactly c parasitoid progeny; a second encounter with an egg laying parasitoid will not increase
or decrease this number.

Based on the latter assumption, we have to distinguish only between those hosts that have had no encounters
and those that had n encounters, n ≥ 1. Because the encounters are random, one can represent the probability
of r encounters by some distribution based on the average number of encounters that take place per unit
time.

Poisson distribution

One of the simplest distributions used in such a context is the Poisson distribution. It is a limiting case of
the binomial distribution: if the probability of an event occurring in a single trial is p and we perform n
trials, then the probability of exactly r events is

b(n, p; r) =

(

n
r

)

pr(1 − p)n−r.

Average number of events in µ = np. If we assume that the number of trials n grows to infinity in such a
way that the average number of events µ stays constant (so p goes to zero), then the probability of exactly
r events is given by

p(r) = lim
n→∞

b(n, µ/n; r) = lim
n→∞

n!

r!(n − r)!

µr

nr

(

1 − µ

n

)n−r

=
e−µµr

r!
,

which is the Poisson distribution. In the case of host-parasitoid interaction, the average number of encounters
per host per unit time is

µ =
Ne

Nt
,

that is, by 4.,
µ = aPt.

Hence, the probability of a host not having any encounter with parasitoid is
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p(0) = e−aPt .

Assuming that the parasitoids search independently and their searching efficiency is constant a, leads to the
Nicholson-Bailey system

Nt+1 = λNte
−aPt ,

Pt+1 = cNλ(1 − e−aPt) (4.1.2)

1.2 Non-linear age structured model.

Consider a single species population with two age classes: juveniles and adults. Let Xt be the number of
juveniles at time t and Yt be the number of adults. We assume that the fertility rate for adults is b, c is the
survival rate of juveniles; that is a fraction c of juveniles present at time t become adults at t + 1 and the
rest dies. In each time period only the density dependent fraction s−DYt of the adult population survives.
These assumptions lead to the system

Xt+1 = bYt,

Xt+1 = cXt + Yt(s−DYt). (4.1.3)

We re-write this equation in a form which is more convenient for analysis by introducing new unknowns
Xt = bX̂t/D and Yt = Ŷt/D, which converts (4.1.3) into

X̂t+1 = Ŷt,

X̂t+1 = aX̂t + Ŷt(s− Ŷt), (4.1.4)

where a = cb > 0.

1.3 SIR model

Let us consider the population divided into three classes: susceptibles S, infectives I and removed (immune
or dead) R. We do not consider any births in the process. Within one cycle from time k to time k + 1 the
probability of an infective meeting someone is α′ and thus meeting a susceptible is α′S/N where N is the
size of the population at time k; further a fraction α′′ of these encounters results in an infection. We denote
α = α′α′′. Moreover, we assume that a fraction β of individuals (except from class S) can become susceptible
(could be reinfected) and a fraction γ of infectives move to R. This results in the system

S(k + 1) = S(k) − α

N
I(k)S(k) + β(I(k) +R(k))

I(k + 1) = I(k) +
α

N
I(k)S(k) − γI(k) − βI(k)

R(k + 1) = R(k) − βR(k) + γI(k) (4.1.5)

We observe that

S(k + 1) + I(k + 1) +R(k + 1) = S(k) + I(k) +R(k) = const = N

so that the total population does not change in time.

This can be used to reduce the (4.1.5) to a two dimensional system

S(k + 1) = S(k) − α

N
I(k)S(k) + β(N − S(k))

I(k + 1) = I(k)(1 − γ − β) +
α

N
I(k)S(k). (4.1.6)

The modelling indicates that we need to assume 0 < γ + β < 1 and 0 < α < 1.
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2 Stability analysis

In both cases (that is, for the host-parasitoid models of for the age structured population model) our interest
is in finding and determining stability of the equilibria. For this, however, we have to do some mathematics.

We shall be concerned with autonomous systems of difference equations

x(n+ 1) = f(x(n)), (4.2.7)

where x(0) = x0 is given. Here, x = (x1, . . . , xN ) and f(t) = {f1(t), . . . , fN (t)} is a continuous function from
RN into RN . In what follows, ‖ · ‖ is any norm on RN , unless specified otherwise.

As in the scalar case, x∗ ∈ RN is called an equilibrium point of (4.2.7) if

x∗ = f(x∗) (4.2.8)

The definition of stability is analogous to the scalar case.

Definition 4.1. (a) The equilibrium x∗ is stable if for given ǫ > 0 there is δ > 0 such that for any x and
for any n > 0, ‖x− x∗‖ < δ implies ‖fn(x) − x∗| < ǫ for all n > 0. If x∗ is not stable, then it is called
unstable (that is, x∗ is unstable if there is ǫ > such that for any δ > 0 there are x and n such that
‖x− x∗‖ < δ and ‖fn(x) − x∗‖ ≥ ǫ.)

(b) The point x∗ is called attracting if there is η > 0 such that

‖x(0) − x∗‖ < η implies lim
n→∞

x(n) = x∗.

If η = ∞, then x∗ is called a global attractor or globally attracting.

(c) The point x∗ is called an asymptotically stable equilibrium if it is stable and attracting. If η = ∞, ten
x∗ is said to be globally asymptotically stable equilibrium.

It is worthwhile to note that in higher dimension we may have unstable and attracting equilibria.

2.1 Stability of linear systems

We consider the linear autonomous system

x(n+ 1) = Ax(n), x(0) =
◦
x, (4.2.9)

We assume that A is non-singular. The origin 0 is always an equilibrium point of (4.2.9). We have the
following result:

Theorem 4.2. The following statements hold:

1. The zero solution of (4.2.9) is stable if and only if the spectral radius of A satisfies ρ(A) ≤ 1 and the
eigenvalues of unit modulus are semi-simple;

2. The zero solution is asymptotically stable if and only if ρ(A) < 1.

Proof. Let λ1, . . . , λk be distinct eigenvalues of A, each with algebraic multiplicity ni so that n1 + . . .+nk =
N . We assume that |λ1| ≥ |λ2| ≥ . . . |λk| > 0. For each 1 ≤ r ≤ k, let v1

r , . . . ,v
nr
r be the set of eigenvectors

and associated eigenvectors belonging to λr. Each vj
r is a solution to

(A− λrI)m
r
jvj

r = 0

for some 1 ≤ mr
j ≤ nr (some (even all) js may correspond to the same mr

j . Then we can write the solution
as
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Anx0 =

k
∑

r=1

(

nr
∑

j=1

cjrAnvj
r

)

(4.2.10)

where cjr are coefficients of the expansion of x0 in the basis consisting of vj
r, 1 ≤ r ≤ k, and 1 ≤ j ≤ nr and

Anvj
r = (λrI + A− λrI)nvj

r =
n
∑

l=0

λn−l
r

(

n
l

)

(A− λrI)lvj
r

=
(

λnr I + nλn−1
r (A− λrI) + . . .

+
n!

(mr
j − 1)!(n−mr

j + 1)!
λ
n−mr

j+1
r (A− λrI)m

r
j−1

)

vj
r, (4.2.11)

It is important to note that (4.2.11) is a finite sum for any n as the term (A− λrI)m
r
jvj

r and all subsequent
ones are zero. Using the triangle inequality for norms, we obtain

‖Anvj
r‖ (4.2.12)

≤ |λr |n
(

1 + n|λr|−1(‖A‖ + |λr|) + . . .

+ Pmr
j−1(n)|λr |−mr

j+1(|A| + |λr |)m
r
j−1
)

‖vj
r‖

= |λr |nnmr
j−1

(

n−mr
j+1 + nmr

j−2|λr|−1(‖A‖ + |λr |) + . . .

+
Pmr

j−1(n)

nmr
j−1 |λr |−mr

j+1(‖A‖ + |λr|)m
r
j−1

)

‖vj
r‖

≤ Cr
j |λr|nnmr

j−1 ≤ Cr
j |λr|nnnr−1,

where the constant Cr
j does not depend on n and we used mr

j ≤ nr. Next we observe that the vector ⌋
consisting of constants cjr is given by

c =





| . . . |
v1
1 . . . v

nk

k

| . . . |





−1

x0

and thus, for some constant M
‖c‖ ≤M‖x0‖. (4.2.13)

Assume now that ρ(A) < 1; that is all eigenvalues have absolute values smaller than 1. Then

‖Anx0‖ ≤
k
∑

r=1

|λr|nnnr−1

(

nr
∑

j=1

|cjr|Cr
j

)

≤M ′‖x0‖
k
∑

r=1

|λr|nnnr−1

where

M ′ = M max
1≤r≤k

nr
∑

j=1

Cr
j

and we used the fact that in (4.2.13) we can use ‖c‖ = max{|cjr|}. From ρ(A) < 1 we infer that 1 > |λ1| ≥
|λ2| ≥ . . . ≥ |λk| and hence there is 1 > η > |λ1|. With this η, we have |λi|η−1 ≤ η0 < 1 for any i = 1, . . . , k
and

‖Anx0‖ ≤M ′k‖x0‖ηnηn0nN−1

Now, for any a < 1 and k > 0 we have lim
n→∞

annk = 0 so that annk ≤ L for some constant L. Thus, there is

are constants K > 0 and 0 < η < 1 such that

‖Anx0‖ ≤ K‖x0‖ηn (4.2.14)

and the zero solution is asymptotically stable.

If there are eigenvalues of unit modulus but they are semi-simple, then the expansions (4.2.13) reduce to
first term (j1 = 1 in each case) so that in such a case
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‖Anvj
r‖ ≤ Cr

j

and the solution is stable (but not asymptotically stable).

If an eigenvalue λr is not semi-simple, then some mr
j is bigger then 1 and we have polynomial entries in

(4.2.11). Consider an associated eigenvector vj
r corresponding to this case. Then

‖Anvj
r‖

= ‖vj
r + nλ−1

r (A− λr)vj
r + . . .+ Pmr

j−1(n)λ
−mr

j+1
r (A− λr)m

r
j−1vj

r‖

≥ nmr
j−1

∣

∣

∣n−mr
j+1|Pmr

j−1(n)|‖(A− λr)m
r
j−1vj

r‖

− n−1‖n−mr
j+2vj

r + n−mr
j+3λ−1

r (A− λr)vj
r + . . . ‖

∣

∣

∣

The coefficient ‖(A− λr)m
r
j−1vj

r‖ is non-zero and the first term inside the absolute value bars converges to
a finite limit (1/(mr

j − 1)!) and the second to zero, hence ‖Anvj
r‖ diverges to infinity. Thus, taking initial

conditions of the form ǫvl
r we see that we can take arbitrarily small initial condition, the resulting solution

is unbounded and thus the zero solution is unstable.

Finally, if |λ1| > 1, then argument as above gives instability of the zero solution. ✷

2.2 Stability by linearisation

Let us first note the following result.

Lemma 4.3. If f has continuous partial derivatives of the first order in some neighbourhood of y0, then

f(x + y0) = f(y0) + Ax + g(x) (4.2.15)

where

A =







∂f1
∂x1

(y0) . . . ∂f1
∂xn

(y0)
...

...
∂f1
∂xn

(y0) . . . ∂fn
∂xn

(y0)






,

and g(x)/‖x‖ is continuous in some neighbourhood of y0 and vanishes at x = y0.

If A be the matrix defined above. We say that

yt+1 = Ayt (4.2.16)

is the linearization of (4.2.7) around an equilibrium x∗.

We also note that to solve the nonhomogeneous system of equations

x(n+ 1) = Ax(n) + g(n), (4.2.17)

where x = (y1, . . . , yk), g = (g1, . . . , gk) and A = {aij}1≤i,j≤k. Exactly as in Subsection ?? we find that the
solution to (4.2.17) satisfying the initial condition x(0) = x0 is given by the formula

x(n) = Anx0 +
n−1
∑

r=0

An−r−1g(r). (4.2.18)

We shall need a discrete version of Gronwall’s lemma.
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Lemma 4.4. Let z(n) and h(n) be two sequences of real numbers, n ≥ n0 > 0 and h(n) ≥ 0.. If

z(n) ≤M

(

z(n0) +
n−1
∑

j=n0

h(j)z(j)

)

(4.2.19)

for some M > 0, then

z(n) ≤ z(n0)

n−1
∏

j=n0

(1 +Mh(j)) (4.2.20)

z(n) ≤ z(n0) exp
n−1
∑

j=n0

Mh(j) (4.2.21)

Proof. Consider the equation

u(n) = M

(

u(n0) +
n−1
∑

j=n0

h(j)u(j)

)

, u(n0) = z(n0).

From non-negativity, by induction we obtain z(n) ≤ u(n) for n ≥ n0. Hence

u(n+ 1) − u(n) = Mh(n)u(n)

or, equivalently,
u(n+ 1)) = (1 +Mh(n))u(n)

so

u(n) = u(n0)
n−1
∏

j=n0

(1 +Mh(j))

which proves (4.2.20). The second follows from the formula 1 +Mh(j) ≤ exp(Mh(j)). ✷

Theorem 4.5. Assume that f is a C1 function and x∗ is an equilibrium point. If the zero solution of the
linearised system (4.2.16) is asymptotically stable, then the equilibrium x∗ is asymptotically stable.

Proof. We have
x(n+ 1) = f(x(n)) = f(x(n)) − f(x∗) + x∗.

Denoting y(n) = x(n) − x∗ and using Lemma 4.3 we obtain

y(n+ 1) = Ay(n) + g(yn),

so that, by (4.2.18),

y(n) = Any(0) +
n−1
∑

r=0
An−r−1g(y(r)).

Since the condition (4.2.14) is equivalent to asymptotic stability of the linearized system, we get

‖y(n)‖ ≤ Kηn‖y(0)‖ +Kη−1
n−1
∑

r=0
ηn−r‖g(y(r))‖.

For a given ǫ > 0, there is δ > 0 such that ‖g(y)‖ < ǫ‖y‖ whenever ‖y‖ < δ. So, as long as we can keep
‖y(r)‖ < δ for r ≤ n− 1

η−n‖y(n)‖ ≤ K‖y(0)‖ +Kǫ
n−1
∑

r=0
η−r−1‖y(r)‖.

Applying the Gronwall inequality for z(n) = η−n‖y(n)‖ we obtain
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η−n‖y(n)‖ ≤ ‖y(0)‖
n−1
∏

j=0

(1 +Kǫη−1).

Thus
‖y(n)‖ ≤ ‖y(0)‖(η +Kǫ)n.

Choose ǫ < (1 − η)/K so that η + Kη < 1. Thus, by induction, ‖y(0)‖ < δ, we have ‖y(n)‖ < ‖y(0)‖ < δ
and the equilibrium is asymptotically stable.

✷

It can be also proved that if ρ(A) > 1, then the equilibrium is unstable but the proof is more involved.

3 Stability analysis of models

3.1 SIR model

Let us start with finding the equilibria of (4.1.6). These are solutions of

S = F1(S, I) = S − α

N
IS + β(N − S)

I = F21(S, I) = I(1 − γ − β) +
α

N
IS. (4.3.22)

I = 0 is a solution of this system with corresponding S = N so this is a disease-free equilibrium. If I 6= 0,
then dividing the second equation by I we find S = Nδ/α which yields I = βN(α − δ)/αδ which is an
endemic disease equilibrium. Thus

E∗
1 = (N, 0), E∗

2 =

(

Nδ

α
,
βN(α− δ)

αδ

)

.

To find the Jacobian, we calculate

F1,S(S, I) = 1 − α

N
I − β, F1,I(S, I) = − α

N

F2,S(S, I) =
α

N
I, F2,I(S, I) = 1 − δ +

α

N
S,

thus we have

JE∗

1
=

(

1 − β −α
0 1 − δ + α

)

and

JE∗

2
=

(

1 − αβ
δ −δ

αβ
δ − β 1

)

.

To determine whether the magnitude of the eigenvalues is smaller or larger than 1 we could find the eigenval-
ues and directly compute their magnitude but this is in general time consuming and not always informative.
There are other, easier methods.

Interlude: How to determine whether eigenvalues of a 2 × 2 matrix have magnitude less then 1 without
solving the quadratic equation.

Consider the equation
λ2 −Bλ+A = 0

where B and A are real coefficients. The roots are given by
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λ1,2 =
B ±

√
B2 − 4A

2
.

We consider two cases. First, let B2 − 4A > 0 so that the roots are real. Then we must have

−2 −B <
√

B2 − 4A < 2 −B

and
−2 −B < −

√

B2 − 4A < 2 −B

Squaring the second inequality in the former expression, we obtain

1 −B +A > 0.

Similarly, squaring the first inequality in the second expression, we get

1 +B +A > 0.

Next, we get 2 −B > 0 from the first and −2 −B < 0 from the second inequality, hence |B| < 2 and, since
B2 − 4A ≥ 0, we have A < 1. Combining, we can write

|B| < 1 +A < 2 (4.3.23)

Conversely, from (4.3.23) we get −1 < B/2 < 1 so that the midpoint between the roots is indeed inside
(−1, 1). Now, if B > 0, then we must only make sure that

B

2
+

√
B2 − 4A

2
< 1.

This is equivalent to the following chain of inequalities (as 1 −B/2 > 0)

√
B2 − 4A

2
< 1 − B

2
⇐⇒ B2 − 4A

4
< 1 −B +

B2

4
⇐⇒ B < 1 +A

Similarly, if B < 0, then we must only make sure that

B

2
−

√
B2 − 4A

2
> −1.

This is equivalent to the following chain of inequalities (as 1 +B/2 > 0)

√
B2 − 4A

2
< 1 +

B

2
⇐⇒ B2 − 4A

4
< 1 +B +

B2

4
⇐⇒ −B < 1 +A.

Hence, (4.3.23) is sufficient.

Assume now that 4A − B2 > 0 so that the roots are complex conjugate. Since absolute values of complex
conjugate numbers are equal, and A is the product of the roots, we must have A < 1 (in fact, 0 < A < 1
from the condition on the discriminant). We must prove that

1 − |B| +A > 0. (4.3.24)

But in this case, |B| < 2
√
A so that if

1 − 2
√
A+A > 0

holds on (0, 1), than (4.3.24) holds as well. But the former is nothing but (1−
√
A)2 > 0 on this open interval.

Hence, (4.3.24) is proved.

Conversely, assume (4.3.23) holds. Since in the first part we already proved that it yields the desired result
if 4A − B2 ≤ 0, we can assume that 4A − B2 > 0. This yields A > 0 and hence 0 < A < 1 yields
λλ̄ = |λ|2 = A < 1.
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For a matrix

A =

(

a11 a12
a21 a22

)

its eigenvalues are determined by solving

0 = det

(

a11 − λ a12
a21 a22 − λ

)

=

(

a11 a12
a21 a22

)

−
(

λ a12
0 a22

)

−
(

a11 0
a21 λ

)

= λ2 − λ(a11 + a22) + detA = λ2 − λtrA + detA
Hence, the condtion for stability can be expressed as

|trA| < 1 + detA < 2 (4.3.25)

Returning to our model, we find

|trJE∗

1
| = |2 − β − δ + α| = 2 − β − δ + α

by assumptions on coefficients and

detJE∗

1
= 1 − δ + α− β(1 − δ + α)

so that condition (4.3.25) can be written as

2 − β − δ + α < 2 − δ + α− β(1 − δ + α) < 2

Subtracting from both sides we obtain

0 < β(δ − α) < δ − α+ β.

This gives δ−α < 0 while the second condition is automatically satisfied as 0 < β < 1 and (δ−α) > 0 yields
β(δ − α) < δ − α < β + (δ − α). Hence, the equilibrium (N, 0) is asymptotically stable if

β + γ > α.

Consider the equilibrium at E∗
2 . Here we have

|trJE∗

2
| =

∣

∣

∣

∣

2 − βα

δ

∣

∣

∣

∣

= 2 − βα

δ
,

as 2(γ + β) − βα = 2γ + β(2 − α) > 0, and

detJE∗

2
= 1 − βα

δ
+ αβ − δβ

so that condition (4.3.25) can be written as

2 − βα

δ
< 2 − βα

δ
+ αβ − δβ < 2

Subtracting from both sides, we get

0 < β(α− δ) <
βα

δ
from where α− δ > 0. The second condition is equivalent to (α− δ) < α/δ; that is, δ(α− δ) < α but this is
always satisfied as δ < 1. Hence, the endemic disease equilibrium

(

Nδ

α
,
βN(α− δ)

αδ

)

is asymptotically stable provided
α > γ + δ.

We note that these conditions are consistent with the modelling process. The disease free equilibrium is
stable if the infection rate is smaller than the rate of removal of infected individuals. On the other hand, in
the opposite case we have an endemic disease.
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3.2 Nicholson-Bailey model

Recall that the model is given by

Nt+1 = λNte
−aPt ,

Pt+1 = cNt(1 − e−aPt). (4.3.26)

The equilibria are obtained by solving

N = λNe−aP ,

P = cN(1 − e−aP ).

This gives either trivial equilibrium N = P = 0 or

λ = eaP̄ ;

that is,

P̄ =
lnλ

a
, (4.3.27)

and hence

N̄ =
λ ln λ

(λ − 1)ac
. (4.3.28)

Clearly, λ > 1 for N̄ to be positive. To analyse stability, we define

F (N,P ) = Ne−aP , G(N,P ) = cN(1 − e−aP ).

Then, FN (N,P ) = e−aP , FP (N,P ) = −aNe−aP and GN (N,P ) = c(1− e−aP ), GP (N,P ) = cNe−aP and we
obtain the Jacobi matrix at (0, 0) as

A|0,0 =

(

1 0
0 0

)

and

A|N̄ ,P̄ =

(

1 −aN̄
c
(

1 − 1
λ

)

caN̄
λ

)

In the subsequent considerations we use (4.3.25). At (N̄ , P̄ ). We obtain

trA = 1 +
λ

λ− 1
,

detA =
caN̄

λ
+ caN̄

(

1 − 1

λ

)

= caN̄ =
λ ln λ

λ− 1

We know that λ > 1. Consider the function

S(λ) = λ− 1 − λ ln λ.

We have S(1) = 0, S′(λ) = 1 − lnλ− 1 = − lnλ so that S′(λ) < 0 for λ > 1. Thus, S(λ) < 0 for λ > 1 and
thus

λ lnλ > λ− 1, λ > 1.

Consequently,
detA > 1

for any λ and the equilibrium is not stable.

Most natural parasitoid-host systems in nature are more stable than the Nicholson-Bailey seems to indicate
and thus the model is not a satisfactory representation of real systems. We shall try to improve the system
by modifying some parameters to see whether this could introduce stabilizing factors. We shall discuss the
following modification:
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In the absence of parasitoids, the host population grows to some limited density (determined by the
carrying capacity K of the environment). Thus, the original system (4.3.26) would be amended as
follows:

Nt+1 = λ(Nt)Nte
−aPt ,

Pt+1 = cNt(1 − e−aPt), (4.3.29)

where for λ(Nt) we might adopt

λ(Nt) = exp r

(

1 − Nt

K

)

,

where r > 0. With this choice, we obtain a modified Nicholson-Bailey system

Nt+1 = Nt exp

(

r

(

1 − Nt

K

)

− aPt

)

,

Pt+1 = cNt(1 − exp(−aPt)), (4.3.30)

We simplify this system by introducing nt = Nt/K and pt = aPt. This converts (4.3.30) into

nt+1 = nt exp (r(1 − nt) − pt) ,

pt+1 = Kcant(1 − exp(−pt)), (4.3.31)

and, in what follows, we denote Kca = C.

The equilibria are obtained by solving solving

n = n exp (r (1 − n) − p) ,

p = Cn(1 − exp(−p)).

We discard the trivial equilibrium (0, 0) so that we are left with

1 = exp (r (1 − n) − p) , (4.3.32)

p = Cn(1 − exp(−p)). (4.3.33)

The equilibrium value q = n̄ = N̄/K is of interest in modelling as being the ratio of the steady-state
host densities with and without parasitoid present. This gives

p̄ = r (1 − n̄) = r(1 − q), (4.3.34)

Cn̄ =
p̄

1 − exp(−p̄) . (4.3.35)

It is clear that one non-trivial equilibrium point is given by n̄1 = 1 (N̄1 = K), P̄1 = 0. Is there any
other equilibrium point? To answer this question, we re-write (4.3.35) as

p̄ = Cn̄ (1 − exp (−r (1 − n̄)))

so that n̄ satisfies
r (1 − n̄)

Cn̄
= 1 − exp

(

r

(

1 − N̄

K

))

Define two functions

f1(n) =
r (1 − n)

Cn
=

r

C

(

1

n
− 1

)

,

f2(n) = 1 − exp (−r (1 − n))

First, we observe that, indeed, f1(1) = f2(1) = 0, which gives the equilibrium obtained above. Next,
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f ′
1(n) = − r

Cn2
, f ′

2(n) = −r exp (−r (1 − n))

hence both functions are decreasing for n > 0. Furthermore, f ′
1(1) = − r

C and f ′
2(K) = −r. If we

assume C ≥ 1, then the graph of f1 is below the graph of f2 for n smaller than and close to n = 1.
Furthermore, f2(0) = 1 − exp(−r) and f1(N) → +∞ as n → 0+. This implies the existence of at
least one more equilibrium (n̄2, p̄2). To show that there are no others, we find

f ′′
1 (n) =

2r

Cn3
, f ′′

2 (n) = −r2 exp (−r (1 − n))

so that f1 is convex down and f2 is convex down. In other words, g(n) = f1(n) − f2(n) satisfies
g′′(n) > 0 which means that g′(n) is strictly increasing and thus g(n) can have at most two zeros.
Thus, we found all possible equilibria of the system.

Let us focus on the last equilibrium describing coexistence of the parasitoid and the host. Let us
consider stability of this equilibrium. The first step is to linearize the system around the equilibrium.
To this end, we return to (4.3.30) and define

F (n, p) = n exp (r (1 − n) − p) , G(n, p) = Cn(1 − exp(−p)),

and thus

Fn(n, p) = (1 − rn) exp (r (1 − n) − p) ,

Fp(n, p) = −n exp (r (1 − n) − p) ,

Gn(n, p) = C(1 − exp(−p)),
Gp(n, p) = Cn exp(−p).

At (n̄2, p̄2) we find, by (4.3.32),

Fn(n̄2, p̄2) = (1 − rn2) = 1 − rq

Fp(n̄2, p̄2) = −n̄2 = −q,

For the other two derivatives we find, by (4.3.33) and (4.3.32), that

1 − e−p̄2 =
p̄2
Cn̄2

=
r (1 − n̄2)

Cn̄2
=
r (1 − q)

Cq

and thus

e−p̄2 =
Cq − r(1 − q)

Cq
.

Hence

Gn(n̄2, p̄2) =
r(1 − q)

q
,

Gp(n̄2, p̄2) = Cq − r(1 − q),

Thus, the Jacobi matrix is given by
(

1 − rq −q
r(1−q)

q Cq − r(1 − q)

)

The trace of the matrix is given by 1 − r + Cq and the determinant is

q(C(1 − rq) + r2(1 − q)).

The condition for stability is

|1 − r + Cq| < q(C(1 − rq) + r2(1 − q)) + 1 < 2.

By computer simulations it can be found that there is a range of parameters for which this equilibrium
is stable.





5

McKendrick model

1 From discrete Leslie model to continuous McKendrick problem

In the classical Leslie model the census is taken in equal intervals taken, for convenience, to be also
a unit of time. If the time between censuses and the length of each age class are instead taken to be
h > 0 then, starting from some time t the Leslie model would take the form















x0(t+ h)
xh(t+ h)
x2h(t+ h)

...
x(n−1)h(t+ h)















=















f0(h) fh(h) · · · f(n−2)h(h) f(n−1)h(h)
s0(h) 0 · · · 0 0

0 sh(h) · · · 0 0
...

... · · ·
...

...
0 0 · · · s(n−2)h(h) 0





























x0(t)
xh(t)
x2h(t)

...
x(n−1)h(t)















. (5.1.1)

The maximal age of individuals ω = nh is thus divided into n age intervals [0, h), [h, 2h) . . . [(n −
1)h, nh) with the convention that if the age a of an individual is in [kh, (k + 1)h) is considered to
be kh. In this definition, as in the discrete case, nobody actually lives till ω. Thus, xa(t) denotes
the number of individuals of age a, sa = la+h/la is the probability of survival to the age of a + h
conditioned upon surviving up to age a with l0 = 1 and fa = ma+hsh is the effective fecundity
with ma+h being the average fertility of females of age a+ h. We note that 1 − sa is the number of
individuals who do not survive from a to a + h. We make the following assumptions and notation:
for any a ≥ 0

lim
h→0+

sa(h) = sa(0) = 1, (5.1.2)

lim
h→0+

1 − sa(h)

h
= µ(a), (5.1.3)

lim
h→0+

fa(h)

h
= β(a). (5.1.4)

To explain these notation, we note that probability of survival over a very short period of time should
be close to 1, as in Eq. (5.1.2). Further, using subsection on the average life span, we note that if
death rate µ is constant, then the probability of surviving over a short time interval h approximately
is sa(h) = 1−µh for any a and thus the limit in Eq. (5.1.3) can serve as a more general definition of
the age dependant death rate. Similarly, if the average number of births per female over a unit time
is a constant β then the number of births over h will be βh and the last equation gives the general
definition of the age dependent birth rate which, moreover, is independent of the survival rate by
Eq. (5.1.2).

Finally, we assume that there is a density function n(a, t)

xa(t) =

a+h
∫

a

n(α, t)dα. (5.1.5)
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We are going to derive a differential equation for n. Consider a fixed age a = ih > 0. From (5.1.1)
we see that

xa+h(t+ h) = sa(h)xa(t), a = 0, h, . . . , (n− 2)h. (5.1.6)

Using (5.1.5)

xa+h(t+ h) =

a+2h
∫

a+h

n(α, t+ h)dα =

a+h
∫

a

n(α+ h, t+ h)dα,

thus (5.1.6) can be written as

a+h
∫

a

n(α+ h, t+ h)dα = sa(h)

a+h
∫

a

n(α, t)dα.

We re-write it as

1

h2





a+h
∫

a

n(α+ h, t+ h)dα−
a+h
∫

a

n(α, t)dα



 = −1 − sa(h)

h2

a+h
∫

a

n(α, t)dα.

Assuming that the directional derivative

Dn(a, t) = lim
h→0+

n(a+ h, t+ h) − n(a, t)

h

exists at each (a, t) and the limit is locally uniform in the sense that

n(a+ h, t+ h) = n(a, t) = Dn(a, t)h+R(a, t, h)

and each (a, t) has a neighbourhood such that

R(α, τ, h)

h
≤ c(h)

for some c(h) independent of (α, τ) in this neighbourhood and c(h) → 0. Then we can write

1

h2





a+h
∫

a

n(α+ h, t+ h)dα−
a+h
∫

a

n(α, t)dα



 =
1

h

a+h
∫

a

Dn(α, t)dα+
1

h

a+h
∫

a

R(α, t, h)dα.

If we assume that Dn(α, t) is continuous at α = a, then passing to the limit we obtain from the
fundamental theorem of calculus

lim
h→0+

1

h2





a+h
∫

a

n(α+ h, t+ h)dα−
a+h
∫

a

n(α, t)dα



 = Dn(a, t).

Similarly, since we assumed n to be continuous, using (5.1.3) we obtain

lim
h→0+

1 − sa(h)

h2

a+h
∫

a

n(α, t)dα = µ(a)n(a, t).

Combining, we obtain that at every point of continuity of n and Dn, n satisfies

Dn(a, t) = −µ(a)n(a, t), a > 0, t > 0.

Assuming that the partial derivatives ∂tn, ∂an at (a, t) exist, we can further transform the last
equation to
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∂tn(a, t) + ∂an(a, t) = −µ(a)n(a, t), a > 0, t > 0.

This is the most commonly used form of the equation for n though, as we shall see later, not the
best for its analysis and, in fact, false in many cases as the differentiability assumptions are often
not satisfied.

Now consider the class of neonates in the Leslie formulation:

x0(t+ h) =

n−1
∑

j=0

fjh(h)xjh(t)

which can be rewritten as
1

h
x0(t+ h) =

n−1
∑

j=0

1

h
fjh(h)

1

h
xjh(t)h.

Now, if n is continuous and f is differentiable at 0, then

1

h
xjh(t) =

1

h

(j+1)h
∫

jh

n(α, t)dα = n(jh+ θjh)

and
fjh(h)

h
= β(jh+ θ′jh).

for some 0 < θj , θ
′
j < 1. Thus

n(θjh, t) =

n−1
∑

j=0

n(jh+ θjh)β(jh+ θ′jh)h.

If we further assume that β is a continuous function, then the right hand side is the Riemann sum
and we can pass to the limit as h→ 0+ getting

n(0, t) =

ω
∫

0

β(α)n(α, t)dα.

Thus, we arrived at the classical formulation of the McKendrick model

∂tn(a, t) + ∂an(a, t) = −µ(a)n(a, t), a > 0, t > 0, (5.1.7)

n(0, t) =

ω
∫

0

β(α)n(α, t)dα, t > 0, (5.1.8)

n(a, 0) = n0(a), (5.1.9)

where the last equation provides the initial distribution of the population.

If ω < +∞ then we have to ensure that n(a, t) = 0 for t ≥ 0, a ≥ ω, which can be done either by
imposing an additional boundary condition on n or by introducing assumptions on the coefficients
which ensure that no individual survives beyond ω. If ω = ∞ then, instead of such an additional
condition, we impose some requirements on the behaviour of the solution at ∞, e.g. that they are
integrable over [0,∞).

2 Linear constant coefficient case

Before we embark on more advanced analysis of (5.1.7)–(5.1.9) let us get a taste of the structure of
the problem by solving the simplest case with µ(a) = µ and β(a) = β:
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∂tn(a, t) + ∂an(a, t) = −µn(a, t). (5.2.1)

coupled with the boundary condition

n(0, t) = β

∞
∫

0

n(a, t)da,

and the initial condition
n(a, 0) = n0(a).

2.1 Interlude - solving first order partial differential equations with constant
coefficients

Let us consider more general linear first order partial differential equation (PDE) of the form:

aut + bux = 0, t, x ∈ R (5.2.2)

where a and b are constants. This equation can be written as

Dvu = 0, (5.2.3)

where v = aj+ bi (j and i are the unit vectors in, respectively, t and x directions), and Dv = ∇u ·v
denotes the directional derivative in the direction of v. This means that the solution u is a constant
function along each line having direction v, that is, along each line of equation bt − ax = ξ. Along
each such a line the value of the parameter ξ remains constant. However, the solution can change
from one line to another, therefore the solution is a function of ξ, that is the solution to Eq. (7.2.25)
is given by

u(x, t) = f(bt− ax), (5.2.4)

where f is an arbitrary differentiable function. Such lines are called the characteristic lines of the
equation.

Example 5.1. To obtain a unique solution we must specify the initial value for u. Hence, let us consider
the initial value problem for Eq. (7.2.25): find u satisfying both

aut + bux = 0 x ∈ R, t > 0,

u(x, 0) = g(x) x ∈ R, (5.2.5)

where g is an arbitrary given function. From Eq. (5.2.4) we find that

u(x, t) = g

(

−bt− ax

a

)

. (5.2.6)

We note that the initial shape propagates without any change along the characteristic lines, as seen
below for the initial function g = 1 − x2 for |x| < 1 and zero elsewhere. The speed c = b/a is taken
to be equal to 1.

Example 5.2. Let us consider a variation of this problem and try to solve the initial- boundary value
problem

aut + bux = 0 x ∈ R, t > 0,

u(x, 0) = g(x) x > 0, (5.2.7)

u(0, t) = h(t) t > 0, (5.2.8)

for a, b > 0 From Example 5.1 we have the general solution of the equation in the form
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Fig. 4.1 The graph of the solution in Example 5.1

u(x, t) = f(bt− ax).

Putting t = 0 we get f(−ax) = g(x) for x > 0, hence f(x) = g(−x/a) for x < 0. Next, for x = 0
we obtain f(bt) = h(t) for t > 0, hence f(x) = h(x/b) for x > 0. Combining these two equations we
obtain

u(x, t) =

{

g(− bt−ax
a ) for x > bt/a

h( bt−ax
b ) for x < bt/a

Now, let us consider what happens if a = 1 > 0, b = −1 < 0. Then the initial condition defines
f(x) = g(−x) for x < 0 and the boundary condition gives f(x) = h(−x) also for x < 0! Hence,
we cannot specify both initial and boundary conditions in an arbitrary way as this could make the
problem ill-posed.

The physical explanation of this comes from the observation that since the characteristics are given
by ξ = x+ t, the flow occurs in the negative direction and therefore the values at x = 0 for any t are
uniquely determined by the initial condition. Therefore we see that to have a well-posed problem we
must specify the boundary conditions at the point where the medium flows into the region.

2.2 Solution of the McKendrick equation

First, let us simplify the equation (5.2.1) by introducing the integrating factor

∂t(e
µan(a, t)) = −∂a(eµan(a, t))

and denote u(a, t) = eµan(a, t). Then

u(0, t) = n(0, t) = β

∞
∫

0

e−µau(a, t)da

with u(a, 0) = eµan0(a) =: u0(a). Now, if we knew ψ(t) = u(0, t), then

u(a, t) =

{

u0(a− t), t < a,
ψ(t− a), a < t.

(5.2.9)

The boundary condition can be rewritten as
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ψ(t) = β

∞
∫

0

e−µau(a, t)da = β

t
∫

0

e−µaψ(t− a)da+ β

∞
∫

t

e−µau0(a− t)da

= βe−µt

t
∫

0

eµσψ(σ)dσ + βe−µt

∞
∫

0

e−µru0(r)dr

which, upon denoting φ(t) = ψ(t)eµt and using the original initial value, can be written as

φ(t) = β

t
∫

0

φ(σ)dσ + β

∞
∫

0

n0(r)dr. (5.2.10)

Now, if we differentiate both sides, we get

φ′ = βφ

which is just a first order linear equation. Letting t = 0 in (5.2.10) we obtain the initial value for φ:

φ(0) = β
∞
∫

0

n0(r)dr. Then

φ(t) = βeβt
∞
∫

0

n0(r)dr

and

ψ(t) = βe(β−µ)t

∞
∫

0

n0(r)dr.

Then

n(a, t) = e−µau(a, t) = e−µt







n0(a− t), t < a,

βeβ(t−a)
∞
∫

0

n0(r)dr, a < t.

Observe that
lim
a→t+

n(a, t) = e−µtn0(0)

and

lim
a→t−

n(a, t) = βe−µt

∞
∫

0

n0(r)

so that the solution is continuous, let alone differentiable only if the initial condition satisfies the
following compatibility condition

n0(0) = β

∞
∫

0

n0(r)dr. (5.2.11)

Thus, as we noted earlier, we must be very careful with using (5.1.7)-(5.1.9) in the differential form
and interpreting the solution.

3 General linear McKendrick problem

The ideas used to solve the McKendrick case in this simple case also is used in more general situa-
tions but, unfortunately, the resulting integral equation (5.2.10) cannot be explicitly solved. Before,
however, we discuss solvability of more general cases, let us introduce certain functions related to
(5.1.7)-(5.1.9) which are relevant to the population dynamics.
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Fig. 5.1. Discontinuity of the population density n(a, t).

3.1 Demographic parameters of the McKendrick problems

Consider again the general McKendrick problem

∂tn(a, t) + ∂an(a, t) = −µ(a)n(a, t)

n(0, t) =

ω
∫

0

β(α)n(α, t)dα,

n(a, 0) = n0(a)

We recall that β(a) is the age specific fertility which can be defined as the number of newborns, in
one time unit, coming from a single individual whose age is in the small time age interval [a, a+ da).
So, the number of births coming from all individuals in the population aged between a1 and a2 in a
one time unit is

a2
∫

a1

β(α)n(α, t)da

and we can define the total birth rate as

B(t) =

ω
∫

0

β(α)n(α, t)da

which gives the total number of newborns in a unit time (ω is the maximum age in the population).

Let us consider the death rate µ(a) which is average number of deaths per unit of population aged
a. We can relate µ(a) to a number of vital characteristics of the population. Similarly to the discrete
case, we introduce the survival probability S(a) as the proportion of the initial population surviving
to age a. We can relate µ and S by the following argument. Consider a population beginning with n0

individuals of age 0. Then n0(a)S(a)(= n(a)) is the average number of individuals that survived to
age a. The decline in the population over a short age period [a, a+da] is n0(a)S(a)−n0(a)S(a+da).
On the other hand, this decline can only be attributed to deaths: if the death rate is µ, then in this
age interval we will have approximately n0(a)S(a)µ(a)da deaths. Equating and passing to the limit
as da→ 0 yields
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dS

da
= −Sµ

or

S(a) = S(0)e
−

a∫

0

µ(σ)dσ

(compare with (2.2.6)). Since, however, the probability of surviving to age 0 is 1, we have

S(a) = e
−

a∫

0

µ(σ)dσ
. (5.3.12)

We note that if no individuals can survive beyond ω, we must have S(ω) = 0 or, equivalently,

ω
∫

0

µ(σ)dσ = ∞. (5.3.13)

These considerations can be used, as before, to find average life span of individuals in the population.
In fact, average life span is the mean value of the length of life in the population, which can be
expressed as

L =

ω
∫

0

ap(a)da

where p(a) is the probability (density) of an individual dying at age a. If we approximate the integral
as the Riemann sum

L ≈
∑

i

aip(ai)∆ai

where p(ai) is the probability that an individual survived till the age ai and died at this age. Thus

p(ai) = S(ai)µ(ai).

We note that S(a)µ(a) is, indeed, a probability density. Thus

L =

ω
∫

0

aµ(a)e
−

a∫

0

µ(s)ds
da = −

ω
∫

0

a
d

da
e
−

a∫

0

µ(s)ds
da =

ω
∫

0

S(a)da

where we used integration by parts and S(ω) = 0.

Further, we introduce
K(a) = β(a)S(a) (5.3.14)

which is called the maternity function and describes the rate of birth relative to the surviving fraction
of the population and is the continuous equivalent to the coefficients f0, f1, . . . , fn−1. Further, we
define

R =

ω
∫

0

β(a)S(a)da (5.3.15)

and call it net reproduction rate of the population. It is the expected number of offspring produced
by an individual during her reproductive life.

3.2 Solution of the linear McKendrick problem

One of the easiest way of analysing the general McKendrick model
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∂tn(a, t) + ∂an(a, t) = −µ(a)n(a, t)

n(0, t) =

ω
∫

0

β(a)n(a, t)da,

n(a, 0) = n0(a) (5.3.16)

is to reduce it to an integral equation in the same way as we proceeded in Section 2 though the tech-
nicalities are slightly more involved due to age dependence of the mortality and maternity functions.
First, we simplify (5.3.16) by introducing the integrating factor

∂t

(

e

a∫

0

µ(σ)dσ
n(a, t)

)

= −∂a
(

e

a∫

0

µ(σ)dσ
n(a, t)

)

(5.3.17)

and denote u(a, t) = e

a∫

0

µ(σ)dσ
n(a, t). Then

u(0, t) = n(0, t) =

ω
∫

0

β(a)e
−

a∫

0

µ(σ)dσ
u(a, t)da =

ω
∫

0

K(a)u(a, t)da,

where we recognized that the kernel in the integral above is the maternity function introduced in

(5.3.14). Further, u(a, 0) = e

a∫

0

µ(s)ds
n0(a) =: u0(a). Also, the right hand side defines the total birth

rate B(t).

Now, if we knew B(t) = u(0, t), then

u(a, t) =

{

u0(a− t), t < a,
B(t− a), a < t.

(5.3.18)

The boundary condition can be rewritten as

B(t) =

∞
∫

0

β(a)e
−

a∫

0

µ(σ)dσ
u(a, t)da

=

t
∫

0

β(a)e
−

a∫

0

µ(σ)dσ
B(t− a)da+

∞
∫

t

β(a)e
−

a∫

0

µ(σ)dσ
u0(a− t)da

=

t
∫

0

K(t− a)B(a)da+

∞
∫

0

β(a+ t)e
−

a+t∫

0

µ(σ)dσ
e

a∫

0

µ(s)ds
n0(a)da,

where to shorten notation we extended coefficients by zero beyond a = ω. Summarizing, we arrived
at the integral equation for the total birth rate

B(t) =

t
∫

0

K(t− a)B(a)da +G(t) (5.3.19)

where

G(t) =

∞
∫

0

β(a+ t)
S(a+ t)

S(a)
n0(a)da, (5.3.20)

is a known function. Explicitly, we have
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B(t) =

t
∫

0

K(t− a)B(a)da+

ω−t
∫

0

β(a+ t)
S(a+ t)

S(a)
n0(a)da

=

t
∫

0

K(t− a)B(a)da+

ω
∫

t

β(a)
S(a)

S(a− t)
n0(a− t)da (5.3.21)

for 0 ≤ t ≤ ω and

B(t) =

ω
∫

0

K(t− a)B(a)da (5.3.22)

for t > ω. Unlike in Section 2, this equation cannot be solved explicitly and we have to use more
abstract approach. For this we have to introduce a proper mathematical framework. As in the discrete
case, the natural norm will be

‖n‖1 =

ω
∫

0

|n(α)|dα

which in the current context, with n ≥ 0 being the density of the population distribution with
respect to age, is the total population. Thus, the state space is the space X0 = L1([0, ω)) of Lebesgue
integrable functions on [0, ω). Since we are dealing with functions of two variables, we often consider
(a, t) → n(a, t) as a function t → u(t, ·), that is, for each t the value of this function is a function
with a argument. For such functions, we consider the space C([0, T ], L1([0, ω])) of L1([0, ω])-valued
continuous functions. For functions f bounded on [0, ω] we introduce ‖f‖∞ = sup0≤a≤ω |f(a)|. We
make the following assumptions.

(i)
β ≥ 0 is bounded on [0, ω], (5.3.23)

(ii)
0 ≤ µ ∈ L1([0, ω′]) for any ω′ < ω (5.3.24)

with
ω
∫

0

µ(α)dα = ∞, (5.3.25)

(iii)
0 ≤ n0 ∈ L1([0, ω]). (5.3.26)

Now, if (5.3.23)-(5.3.26) are satisfied, then we can show that K is a non-negative bounded function
which is zero for t ≥ ω and G is a continuous function which also is zero for t ≥ ω. If, additionally

n0 ∈W 1,1([0, ω]) and µn0 ∈ L1([0, ω]), (5.3.27)

(here by W 1
1 we denote the Sobolev space of functions from L1 with generalized derivatives in L1)

then G is differentiable with bounded derivative. Indeed, let us look at G for t < ω

G(t) =

ω
∫

t

β(a)
S(a)

S(a− t)
n0(a− t)da =

ω
∫

t

β(a)e
−

a∫

a−t

µ(s)ds

n0(a− t)da

If we formally differentiate using the Leibnitz rule, we get

G′(t) = −β(t)S(t)n0(0) +

ω
∫

t

β(a)e
−

a∫

a−t

µ(s)ds

µ(a− t)n0(a− t)da

+

ω
∫

t

β(a)e
−

a∫

a−t

µ(s)ds

µ(a− t)n′
0(a− t)da
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so we see that for existence of the integrals we need integrability of µn0 and differentiability of n0.
Then we can prove the main result

Theorem 5.3. If (5.3.23)-(5.3.26) are satisfied, then (5.3.19) has a unique continuous and non-
negative solution. If, additionally, (5.3.27) is satisfied, then B is differentiable with B′ bounded on
bounded intervals.

Proof. We define iterates

B0(t) = G(t),

Bk+1(t) = G(t) +

t
∫

0

K(t− s)Bk(s)ds. (5.3.28)

Take T > 0. Then, for any t ∈ [0, T ] we have

|B1(t) −B0(t)| =

t
∫

0

|K(t− s)F (s)|ds ≤ tKmFm

where Km = sup0≤t≤T |K(s)| and Lm = sup0≤t≤T |F (s)|. Then

|B2(t) −B1(t)| ≤ Km

t
∫

0

|B1(s) − B0(s)|ds ≤ K2
mFm

2
t2

and, by induction,

|Bk+1(t) −Bk(t)| ≤ Km

t
∫

0

|Bk(s) −Bk−1(s)|ds ≤ Kk+1
m Fm

(k + 1)!
tk+1. (5.3.29)

Further

lim
k→∞

Bk+1(t) = G(t) + lim
k→∞

k
∑

i=0

(Bi+1(t) −Bi(t))

with

sup
0≤t≤T

∣

∣

∣

∣

∣

k
∑

i=0

(Bi+1(t) −Bi(t))

∣

∣

∣

∣

∣

≤
k
∑

i=0

sup
0≤t≤T

∣

∣Bi+1(t) −Bi(t)
∣

∣ ≤ Fm

k
∑

i=0

(TKm)k+1

(k + 1)!
.

The series on the right hand side converges to Fme
TKm and thus (Bk(t))k≥0 converges uniformly to

a continuous solution B of (5.3.19). Uniqueness follows by the Gronwall inequality.

If, in addition, (5.3.27) is satisfied, then Bk can be differentiated with respect to t and

V k :=
d

dt
Bk

satisfy the recurrence

V k+1(t) = F ′(t) +K(t)F (0) +

t
∫

0

K(t− s)V k(s)ds

which converges uniformly to some continuous function V which, by the theorem of uniform conver-
gence of derivatives, must be the derivative of B. ✷

Once we have B, we can recover n by (5.4.46) and back substitution
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n(a, t) = e
−

a∫

0

µ(σ)dσ
u(a, t) =

{

S(a)
S(a−t)n0(a− t), t < a,

S(a)B(t− a), a < t.
(5.3.30)

Thus, if (5.3.27) is satisfied in addition to (5.3.23)-(5.3.26), then it is easy to see that n defined above
satisfies the equation (5.1.7) everywhere except the line a = t. Along this line we have, as before

lim
a→t+

n(a, t) = S(0)n0(0) = n0(0)

and

lim
a→t−

n(a, t) = S(0)B(0) =

ω
∫

0

β(a)n0(a)da

and, to ensure at least continuity of the solution we need to assume the compatibility condition

n0(0) =

ω
∫

0

β(a)n0(a)da. (5.3.31)

We note that if a function is continuous at a point and differentiable in both one sided neighbour-
hoods, then it is a Lipschitz function and it is in fact differentiable almost everywhere (in the sense
that the function can be recovered from its derivative). On the other hand, if a function has a jump at
a point, then its derivative at this point is of a Dirac delta type. Thus, we can state that if (5.3.31) is
satisfied, then the solution is continuous and satisfies (5.1.7) almost everywhere. If we do not assume
(5.3.31) then we can still claim that the solution satisfies

Dn(a, t) = lim
h→0+

n(a+ h, t+ h) − n(a, t)

h
= −µ(a)n(a, t), a > 0, t > 0.

Furthermore, both the birth rate B and the solution n itself grow at most at an exponential rate.
Consider again (5.3.19)

B(t) =

t
∫

0

K(t− a)B(a)da+G(t).

with G given by (5.3.20).

S(a) = e
−

a∫

0

µ(σ)dσ
.

and K(a) = β(a)S(a) we see that K(t) ≤ ‖β‖∞ and G(t) ≤ ‖β‖∞‖n0‖1 so that

B(t) ≤ max
0≤a≤ω

β(a)

t
∫

0

B(s)ds+ max
0≤a≤ω

β(a)

ω
∫

0

n0(s)ds =: ‖β‖∞
t
∫

0

B(s)ds+ ‖β‖∞‖n0‖1,

which, by Gronwall’s inequality, yields

B(t) ≤ ‖β‖∞‖n0‖1et‖β‖∞ . (5.3.32)

This gives the estimate for n:

‖n(·, t)‖1 ≤
t
∫

0

B(t− s)S(s)ds+

∞
∫

t

S(s)

S(s− t)
n0(s− t)ds

≤ ‖β‖∞‖n0‖1





t
∫

0

e(t−s)‖β‖∞ds+ 1



 ,

where we used S(s)/S(s− t) ≤ 1. Then, by integration

‖n(·, t)‖1 ≤ ‖n0‖1 + ‖n0‖1et‖β‖∞(1 − e−t‖β‖∞) = ‖n0‖1et‖β‖∞ . (5.3.33)
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4 Long time behaviour of the solution

4.1 Warm up - the constant coefficients case

Consider again the constant coefficient problem

∂tn(a, t) + ∂an(a, t) = −µn(a, t)

n(0, t) = β

∞
∫

0

n(a, t)da,

n(a, 0) = n0(a)

with the solution

n(a, t) = e−µt







n0(a− t), t < a,

βeβ(t−a)
∞
∫

0

n0(r)dr, a < t

and ask what happens with the population as t → ∞. Clearly, for large t we can consider only the
second part of the solution

n(a, t) = βN0e
−βaet(β−µ), a < t,

where N0 =
∞
∫

0

n0(r)dr. Denote by r = β − µ the net growth rate. We see that if r = 0, we have

n(a, t) = βN0e
−µa, a < t,

and one can surmise that
n(a, t) ≈ βN0e

−βa,

for large t and all a > 0. If we assume that n0 is bounded, this can be easily checked. Indeed

n(a, t) =

{

e−µtn0(a− t), t < a,
βe−µaN0, a < t

= βe−µaN0 +

{

−βe−µaN0 + e−µtn0(a− t), t < a,
0, a < t

and, since for t < a, e−µa < e−µt, we have

| − βe−µaN0 + e−µtn0(a− t)| ≤ Ce−µt

where C = max{βN0, sup |n0|}. In other words

n(a, t) = βe−µaN0 +O(e−µt). (5.4.34)

So we see that for large t the solution has the shape of βe−µa, independent of the initial data,
multiplied by the scalar N0. Thus, the shape of the solution is practically not affected by the initial
age distribution. In other words, the age distribution of the population after long time is the same
independently of the initial age distribution.

Even if r 6= 0, we can write
e−rtn(a, t) = βN0e

−βa, a < t,

and, as before, Indeed

e−rtn(a, t) =

{

e−βtn0(a− t), t < a,
βe−βaN0, a < t

= βe−µaN0 +

{

−βe−βaN0 + e−βtn0(a− t), t < a,
0, a < t

and, since for t < a, e−βa < e−βt, we have

| − βe−βaN0 + e−βtn0(a− t)| ≤ Ce−βt



154 5 McKendrick model

where C = max{βN0, ‖n0‖∞}. In other words

n(a, t) = N0e
rtβe−βa +O(e−µt). (5.4.35)

where we used erte−βt = e(β−µ)te−mt = e−µt. Hence, the population is described by the Malthusian
part N0e

rt, which is independent of the age profile of the population, multiplied by the age profile
βe−βa. The profile is called the stable age distribution and the property described above is called
asynchronous exponential growth property. In what follows we shall prove that this property holds for
general McKendrick model. However, before we move to more general models, we provide another
way of deriving the stable age distribution. Let us consider the eigenvalue problem for (5.2.1)

λn(a) + na(a) = −µn(a)

n(0) = β

∞
∫

0

n(a)da. (5.4.36)

The first equation is simply a linear equation with the general solution

n(a) = Ce−(µ+λ)a

while the nonlocal initial condition yields

1 = β

∞
∫

0

e−(µ+λ)ada

where we cancelled the constant C. This is an example of the Lotka renewal equation. In our case,
we solve it explicitly. Integration gives

1 =
β

µ+ λ
(5.4.37)

or
λ = β − µ = r

and
n(a) = Ce−βa.

So, the unique eigenvalue of (5.4.41) is (in this case) precisely the net growth rate. This eigenvalue
is simple and the corresponding eigenvector is the stable age distribution. As we shall see, this is not
a coincidence.

4.2 Long time behaviour–general case

By (5.3.32), we can apply the Laplace transform to analyse (5.3.19). The Laplace transform of an
exponentially bounded integrable function f is defined by

f̂(λ) = (Lf)(λ) =

∞
∫

0

e−λtf(t)dt,

and f̂ is defined and analytic in a right half-plane (determined by the rate of growth of f) of the
complex plane C. In the case of B, (5.3.32) shows that B̂(λ) is analytic in ℜλ > ‖m‖∞. For our
applications it is also important to note that if the f is only non-zero over a finite interval [a, b],
then its Laplace transform is defined and analytic everywhere in C. Such functions are called entire.
Moreover, we also use f̂(λ) → 0 as |λ| → ∞ in any strip contained in the domain of analyticity of f̂
(the proof of this fact is nontrivial).
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We use the property of the Laplace transform that the convolution is transformed into the algebraic
product of transforms; that is, for the convolution

(f ∗ g)(t) =

t
∫

0

f(t− s)g(s)ds =

t
∫

0

f(s)g(t− s)ds,

using the definition of the Laplace transform and changing the order of integration, we obtain

[L(f ∗ g)](λ) = (Lf)(λ) · (Lg)(λ). (5.4.38)

With this result, (5.3.19) yields
B̂(λ) = B̂(λ)K̂(λ) + Ĝ(λ). (5.4.39)

Hence,

B̂(λ) =
Ĝ(λ)

1 − K̂(λ)
= Ĝ(λ) +

Ĝ(λ)K̂(λ)

1 − K̂(λ)
(5.4.40)

As we noted above, Ĝ is an entire function so the only singularities of B̂ are due to zeroes of 1 − K̂.
Since K̂ is an entire function, these zeroes are isolated of finite order (thus giving rise to poles of
B̂ and with no finite accumulation point. However, there may be infinitely many of them and this
requires some care with handling the inverse. It is known that if f̂ is the Laplace transform of a
continuous function f , then

f(t) =
1

2πi

c+i∞
∫

c−i∞

eλtf̂(λ)dλ

where integration is carried along any vertical line in the domain of analyticity of f̂ .

Let us look closer at the equation
K̂(λ) = 1, (5.4.41)

or, explicitly,
∞
∫

0

β(a)e
−λa−

a∫

0

µ(σ)dσ
da = 1, (5.4.42)

where λ ∈ C.

Remark 5.4. We observe that (5.4.42) is a continuous copy of the discrete renewal equation (3.4.105)
if one replaces λ of the latter by eλ. However, as we shall see below, continuous case does not admit
any cyclic behaviour.

Theorem 5.5. Equation (5.4.41) has exactly one real root, λ = λ0, of algebraic multiplicity 1. All
other roots λj of (5.4.41) occur as complex conjugates (real root is its own conjugate). Moreover,
ℜλj < λ0 for any j, there could be only denumerable number of them and, in each strip a < ℜλ < b,
there is at most a finite number of them.

Proof. We introduce the real function

ψ(λ) =

∞
∫

0

e−λaK(a)da

for λ ∈ R. We note that this function is well defined on R since K is non zero only on a finite interval.
Also, because of this, it is continuous and differentiable, see Remark 5.6 below. Then

lim
λ→−∞

ψ(λ) = ∞,

lim
λ→∞

ψ(λ) = 0.
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Moreover,

ψ′(λ) = −
β
∫

α

ae−λaK(a)da < 0,

ψ′′(λ) =

β
∫

α

a2e−λaK(a)da > 0,

so that ψ is strictly decreasing and concave up function. Since it is continuous, it takes on every
positive value exactly once. Thus, in particular, there is exactly one real value λ∗ satisfying (5.4.41).

Suppose λ = u+ iv is a root of (5.4.41). Then

1 =

∞
∫

0

e−va(cos(−ua) + i sin(−ua))K(a)da

and, taking the real and imaginary part,

∞
∫

0

e−vaK(a) cosua da = 1,

∞
∫

0

e−vaK(a) sin va da = 0.

We observe that these two equations are invariant under the change v → −v so that λ̄ = u− iv also
satisfies (5.4.41).

To prove the second part, we note that, since the variable a is continuous, there must be a range of
a, say, [α, β] over which cosua < 1. Thus,

∞
∫

0

e−vaK(a)da >

∞
∫

0

e−vaK(a) cosua da = 1.

However
β
∫

α

e−λ∗aK(a)da = 1,

and direct comparison of these two integrals yields λ∗ > v = ℜλ.

The last part follows from the fact that since K̂ − 1 is an entire function, in each bounded set there
can be only finitely many zeros of it, by the principle of isolated zeros. Thus, there could be no more
than denumerable amount of them in C. Finally, since K̂ → 0 as |λ| → ∞ in any strip, we also see
that there can be only finitely many of them in any vertical strip. ✷

Remark 5.6. In the proof above, the continuity of ψ is a consequence of the boundeness of the support
of definition of K. In general, if we allow K to be nonzero on [0,∞), then the above statement is not
true. Consider K(a) = c(1 + a2)−1 with c < 2/π. Then

ψ(λ) = c

∞
∫

0

e−λa

1 + a2
dt

then ψ(λ) < 1 for λ ≥ 0 but ψ(λ) = ∞ for λ < 0 and ψ(λ) < 1 for all λ ≥ 0 and Eq. (5.4.41) has no
real solution.
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In general, if ω = ∞, one has to prove that the range of ψ contains 1. For instantce, in the constant
coefficient case ψ is given by (5.4.37)

ψ(λ) =
m

λ+ µ

and though it is discontinuous at λ = −µ, its range for λ ∈ (−µ,∞) is R and the argument holds.

Observe that the function ψ crosses the a axis at

R := ψ(0) =

∞
∫

0

K(a)da (5.4.43)

which is precisely the net reproductive rate. R must exceed 1 for λ∗ to be positive, R = 1 if and only
if λ∗ = 0 and, finally, R < 1 if and only if λ∗ < 0.

Next we shall show that the sign of λ∗ indeed determines the long time behaviour of the population.

Let us consider the second term in the last formula of (5.4.40)

Ĥ(λ) =
Ĝ(λ)K̂(λ)

1 − K̂(λ)
.

We noted that Ĝ(λ) and K̂(λ) tend to zero as |λ| → ∞ in any half plane ℜλ > δ, δ ∈ R. Furthermore,
on any line {σ+iy; y ∈ R} which does not meet any root of (5.4.41), we have infy∈R |1−K̂(σ+iy)| > 0
and ∞

∫

−∞

∣

∣

∣

∣

∣

Ĝ(σ + iy)K̂(σ + iy)

1 − K̂(σ + iy)

∣

∣

∣

∣

∣

dy <∞. (5.4.44)

This follows from the fact that any finitely supported function, multiplied by e−σt is an L2 function
and thus its Laplace transform, treated as the Fourier transform, is in L2 with respect to y. Then
the result follows from the Plancherel theorem.

Inverting Ĥ(λ) we have

H(t) =
1

2πi

σ+i∞
∫

σ−i∞

Ĝ(σ + iy)K̂(σ + iy)

1 − K̂(σ + iy)
e(σ+iy)tdy

for any σ > λ∗. Hence
B(t) = G(t) +H(t).

To estimate H(t) we note that, by properties of Ĥ , we can shift the line of integration to {σ1+iy; y ∈
R} where ℜλ1 < σ1 < λ∗ and λ1 is the eigenvalue with the largest real part less than λ∗. Then the
Cauchy theorem gives

H(t) = H1(t) +H2(t)

where

H1(t) = resλ=λ∗

eλtĜ(λ)K̂(λ)

1 − K̂(λ)
= lim

λ→λ∗

(λ− λ∗)
eλtĜ(λ)K̂(λ)

1 − K̂(λ)

= eλ∗t Ĝ(λ∗)K(λ∗)

−K̂ ′(λ∗)
= B0e

λ∗t

with

B0 =

∞
∫

0

e−λ∗aG(a)da

∞
∫

0

ae−λ∗aK(a)da
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and

H2(t) =
1

2πi

σ1+i∞
∫

σ1−i∞

Ĝ(σ1 + iy)K̂(σ1 + iy)

1 − K̂(σ1 + iy)
e(σ1+iy)tdy.

The function H2 satisfies the estimate

|H2(t)| ≤ eσ1t

2π

σ1+i∞
∫

σ1−i∞

∣

∣

∣

∣

∣

Ĝ(σ1 + iy)K̂(σ1 + iy)

1 − K̂(σ1 + iy)

∣

∣

∣

∣

∣

dy = B1e
σ1t.

Here B1 is a constant. Thus, we arrived at the representation

B(t) = eλ∗tB0 +G(t) + eσ1tB1.

However, remembering that G(t) = 0 for t ≥ 0, we can write

B(t) = B0e
λ∗t

(

1 +
e−λ∗G(t)

B0
+ e(σ1−λ∗)t

B1

B0

)

= B0e
λ∗t (1 +Ω(t)) (5.4.45)

where Ω(t) → 0 as t→ ∞, provided B0 6= 0.

Now, B0 = 0 if and only if G(t) = 0 for all t ≥ 0 but then, from uniqueness, B(t) = 0 for all t. Let
us interpret this condition. We have

0 = G(t) =

∞
∫

0

β(a+ t)
S(a+ t)

S(a)
n0(a)da

which, by positivity of n0, is possible only if

β(a+ t)n0(a) = 0

for a ∈ [0, ω] and t ≥ 0. This occurs only if the support of β is to the left of the support of n0 (as
the support of β(· + t) moves to the left as t increases). In other words, this case occurs only if the
original population is too old to become fertile. In this case

n(a, t) =

{

n0(a− t) S(a)
S(a−t) , t < a,

0, a < t.
(5.4.46)

Otherwise, we can write

n(a, t) =

{

n0(a− t) S(a)
S(a−t) , t < a,

B0e
λ∗(t−a) (1 +Ω(t− a))S(a), a < t.

(5.4.47)

Now, in the case ω < +∞ we see that for t ≥ ω we have

n(a, t) = B0e
λ∗(t−a) (1 +Ω(t− a))S(a)

and we identify the stable age distribution

n∞(a) = e
−λ∗a−

a∫

0

µ(s)ds
.

so that

lim
t→∞

e−λ∗tn(a, t) = e
−λ∗a−

a∫

0

µ(s)ds

on [0, ω] (provided the supports of n0 and β meet).

Finally, we noted in (5.4.43) that λ∗ > 0, λ∗ = 0 and λ∗ < 0 if and only if, respectively, R > 1, R = 1
and R < 1. Thus, the population is growing if R > 1, it is stable if R = 1 and it decays if R < 1
(again if supports of n0 and β meet), in accordance with the interpretation of the parameter R.
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Basic nonlinear models

1 Typical nonlinear extensions

1.1 Density dependent vital demographic coefficients

In Subsection 2 we introduced the age structured McKendrick population model

∂tn(a, t) + ∂an(a, t) = −µ(a, t)n(a, t), t, a > 0

n(0, t) =

ω
∫

0

n(a, t)β(a, t)da, t > 0,

n(a, 0) = n0(a), a > 0,

where µ is the death rate, β is the maternity rate and ω ≤ ∞ is the maximum age of individuals in
the population.

In many cases the assumption that µ and β do not depend on the population is a serious oversim-
plification. A more realistic is the system

∂tn(a, t)∂t+ ∂an(a, t)∂a = −µ(a, t,Nγ1)n(a, t), t, a > 0

n(0, t) =

ω
∫

0

n(a, t)β(a, t,Nγ2)da, t > 0,

n(a, 0) = n0(a), a > 0 (6.1.1)

where

Nγi
(t) =

∞
∫

0

γi(a)n(a, t)da, i = 1, 2,

is the a weighted total population at time t. The weights γi account for the fact that the death and
maternity rates may be more sensitive on the density of population at particular ages.

This makes (6.1.1) a (badly) nonlinear equation which only can be solved explicitly only in very
special cases by using a technique often referred to as linear chain trick. Later we shall describe some
cases yielding to more straightforward analysis but first we discuss another nonlinear extension.

1.2 An epidemiological system with age structure

Standard epidemiological models treat the population as homogeneous apart from the differences due
to the disease. Then, for the description of the epidemics the population is divided into three main
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classes: susceptibles (individuals who are not sick and can be infected), infectives (individuals who
have the disease and can infect others) and removed (individuals who were infective but recovered
and are now immune, dead or isolated). Depending on the disease, other classes can be introduces to
cater e.g., for the latent period of the disease. We denote by S(t), I(t), R(t) the number of individuals
in the classes above. By

S(t) + I(t) +R(t) = N(t)

we denote the total population size. In many models it is assumed that the population size is constant
disregarding thus vital dynamics such as births and deaths. Thus, the total population is a conserved
quantity and the relevant conservation law can be written as

S′ = −λS + δI,

I ′ = λS − (γ + δ)I,

R′ = γI (6.1.2)

with S(0) = S0, I(0) = I0, R(0) = R0 and S0 + I0 + R0 = N . The parameter λ is the force of
infection, δ is the recovery rate and γ is the recovery/removal rate. While δ and γ are usually taken
to be constant, the force of infection requires a constitutive law. The simplest is the law of mass
action

λ = cφ
I

N
, (6.1.3)

where c is the contact rate (the number of contacts that a single individual has with other individuals
in the population per unit time, φ is the infectiveness; that is, the probability that a contact with an
infective will result in infection and I/N is the probability that the contacted individual is infective.
In what follows we shall denote k = cφ/N .

There are many other assumptions underlying this model: that the population is homogenous, that
no multiple infections are possible, that an infected individual immediately become infective, etc.

Concerning the nature of the disease the basic distinction is between those which are not lethal
and do not impart immunity (influenza, common cold) and those which could be caught only once
(leading to death or immunity) such as measles or AIDS. In the first case, γ = 0 and the model is
referred to as an SIS model and in the second δ = 0 and the model is called an SIR model.

In many cases the rate of infection significantly varies with age and thus it is important to consider
the age structure of the population. Thus we expect the interaction of the vital dynamics and the
infection mechanism to produce a nontrivial behaviour.

To introduce the model we note again that, in absence of the disease, the age-dependent density of the
population n(a, t) would be the solution of the linear model introduced in (5.1.7)–(5.1.9). However,
because of the epidemics, the population is partitioned into the three classes: susceptibles, infectives
and removed, represented by their respective age densities s(a, t), i(a, t) and r(a, t). Now, if we look
at the population of susceptibles, than we see that it is losing individuals at the rate λ(a, t)s(a, t)
and gaining at the rate δ(a)i(a, t), where we have taken into account that the infection force and the
cure rate are age dependent. Similarly, the source terms for the other two classes are given by the
(age dependent) terms of the (6.1.2) model. This leads to the system

∂ts(a, t) + ∂as(a, t) + µ(a)s(a, t) = −λ(a, t)s(a, t) + δ(a)i(a, t),

∂ti(a, t) + ∂ai(a, t) + µ(a)i(a, t) = λ(a, t)s(a, t) − (δ(a) + γ(a))i(a, t),

∂tr(a, t) + ∂ar(a, t) + µ(a)r(a, t) = γ(a)i(a, t). (6.1.4)
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s(0, t) =

ω
∫

0

β(a)(s(a, t) + (1 − q)i(a, t) + (1 − w)r(a, t))da,

i(0, t) = q

ω
∫

0

β(a)i(a, t)da,

r(0, t) = w

ω
∫

0

β(a)r(a, t)da,

(6.1.5)

where q ∈ [0, 1] and w ∈ [0, 1] are the vertical transmission coefficients of infectiveness and immunity,
respectively. The system is complemented by initial conditions s(a, 0) = s0(a), i(a, 0) = i0(a) and
r(a, 0) = r0(a). We remark that here we assumed that the death and birth coefficients are not
significantly affected by the disease. In particular, if we assume that the solution of (6.2.52) exists in
such a way that all terms are separately well defined, then adding the equations together we obtain
that the total population density n(a, t) = s(a, t) + i(a, t) + r(a, t) satisfies

∂tn(a, t) + ∂an(a, t) + µ(a)n(a, t) = 0,

n(0, t) =

ω
∫

0

β(a)n(a, t)da,

n(a, 0) = n0(a) = s0(a) + i0(a) + r0(a),

that is, the disease does not change the global picture of the evolution of the population, as expected
from the model.

Finally, we have to specify a constitutive relation for the force of infection λ. This usually is given
by the equation

λ(a, t) = K0(a)i(a, t) +

ω
∫

0

K(a, s)i(s, t)ds, (6.1.6)

where the two terms on the right hand side are called the intracohort and intercohort terms, re-
spectively. The intracohort term describes the situation in which individuals only can be infected by
those of their own age while the intercohort term describes the case in which they can be infected
by individuals of any age.

Analysis of this problem requires abstract theory which will be developed later.

1.3 An exactly solvable nonlinear model - a linear chain trick

Consider

∂tn(a, t) + ∂an(a, t) = −µ(N(t))n(a, t), t > 0, 0 < a < ω0

n(0, t) =

ω
∫

0

n(a, t)β(N(t))da, t > 0,

n(a, 0) = n0(a), 0 < a < ω. (6.1.7)

We assume that there is a nonnegative classical solution n to this problem defined for t ∈ [0, tmax)
such that

∫ ω

0
∂tn(a, t)da = ∂t

∫ ω

0
n(a, t)da and n(ω, t) = 0 for all t ∈ [0, tmax). Then, by these

assumptions,
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ω
∫

0

∂an(a, t)da = n(ω, t) − n(0, t) = 0 − β(N(t))

ω
∫

0

n(a, t)da = −β(N(t))N(t)

and we obtain an ordinary differential equation for the total population

dN

dt
= N(β(N) − µ(N)),

N(0) = N0 =

ω
∫

0

n0(a)da. (6.1.8)

This is a simple separable equation which can be solved explicitly or in quadratures, depending on
the form of µ and β. An example allowing for explicit solution will be discussed later. Here we shall
address two more theoretical issues.

First, let us ask ourselves whether this procedure produces the solution of the original problem. To
wit, suppose N is a the solution to (6.1.8) defined on an interval [0, tmax). Substituting this (known)
N into (6.1.7) we obtain a linear boundary value problem which can be explicitly solved, yielding a
solution, say, u. Is this a solution of the original nonlinear problem (6.1.7)? We observe that u solves

∂tu(a, t) + ∂au(a, t) = −µ(N(t))n(a, t), t > 0, 0 < a < ω

u(0, t) =

ω
∫

0

u(a, t)β(N(t))da, t > 0,

u(a, 0) = n0(a), 0 < a < ω. (6.1.9)

where N is a given function, whereas n is a solution to

∂tn(a, t) + ∂an(a, t) = −µ





ω
∫

0

n(a, t)da



n(a, t), t > 0, 0 < a < ω

n(0, t) =

ω
∫

0

n(a, t)β





ω
∫

0

n(a, t)da



 da, t > 0,

n(a, 0) = n0(a), 0 < a < ω. (6.1.10)

Integrating (6.1.9) we find that U(t) =
ω
∫

0

u(a, t)da satisfies

dU

dt
= U(β(N) − µ(N)),

U(0) = N0. (6.1.11)

Using the fact that N is a given solution to (6.1.8), the factor (β(N) − µ(N)) in the latter and in
(6.1.11) is the same, U −N satisfies

d(U −N)

dt
= (U −N)(β(N) − µ(N)),

U(0) −N(0) = 0,

which is a linear equation and thus uniquely solvable. Hence, U(t) = N(t) on [0, tmax). Thus u
satisfies
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∂tu(a, t) + ∂au(a, t) = −µ





ω
∫

0

u(a, t)da



n(a, t), t > 0, 0 < a < ω

u(0, t) =

ω
∫

0

u(a, t)β





ω
∫

0

u(a, t)da



 da, t > 0,

u(a, 0) = n0(a), 0 < a < ω.

and hence u(a, t) = n(a, t) provided (6.1.7) is uniquely solvable (which is a separate issue.)

As the second issue we consider the long time behaviour. Assume that there is a unique nontrivial
equilibrium for (6.1.8) denoted by N∗. This can be ensured if e.g. β(N) is a decreasing and µ(N)
an increasing function with µ(0) < β(0) or if µ(0) = β(0) and β′′ − µ′′ < 0. Under this assumptions
N∗ is the global attractor, that is N(t) → N∗ as t→ ∞. Is there a corresponding stationary density
n∗(a) such that

N∗ =

∞
∫

0

n∗(a)da?

A stationary density is a solution to

∂an(a) = −µ





ω
∫

0

n(a)da



n(a), 0 < a < ω0

n(0) =

ω
∫

0

n(a)β





ω
∫

0

n(a)da



 . (6.1.12)

We can follow the argument for the time dependent solution. Assuming u(ω) = 0 and integrating
the first equation over [0, ω), we find

−Nβ (N) = −µ (N)N

so that the total population at the stationary state is the equilibrium population. Further, arguing as
in the time dependent case, we see that the nonlinear, nonlocal equation (6.1.12) for the stationary
state n∗ can be replaced by the linear one

∂an(a) = −µ (N∗)n(a), 0 < a < ω

n(0) = N∗β(N∗), (6.1.13)

which can be solved explicitly giving

n∗(a) = N∗β(N∗)e−µ(N∗). (6.1.14)

This can be considered as the stable age profile of the population. However, at this moment we do
not know whether n(a, t) → n∗(a) as t→ ∞.

Example 6.1. Consider

∂tn(a, t) + ∂an(a, t) = −µ0N(t)n(a, t), t > 0, 0 < a < ω

n(0, t) = β0

ω
∫

0

n(a, t)N(t)da, t > 0,

n(a, 0) = n0(a), 0 < a < ω, (6.1.15)

where µ0, β0 are positive constants.
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Let us integrate the first and the second equation with respect to a. Using the considerations from the
begining of the subsection, we obtain

dN

dt
= N2(β0 − µ0),

N(0) = N0 =

ω
∫

0

n0(a)da. (6.1.16)

There are two cases to consider.

a) µ0 = β0.
In this case, N(t) = N0 for all 0 ≤ t ≤ tmax and (6.1.15) turns into

∂tn(a, t) + ∂an(a, t) = −µ0N0n(a, t), t > 0, 0 < a < ω

n(0, t) = β0N
2
0 , t > 0,

n(a, 0) = n0(a), a > 0 (6.1.17)

which can be transformed to the form (5.4.46) with the boundary condition given explicitly. We could
use the formula which we derived there but here we can use the fact that

n(0, t) =

∞
∫

0

n(a, t)β0N0da = β0N0

∞
∫

0

n(a, t)da = β0N0N(t) = β0N
2
0

and we deal with a straightforward initial boundary value problem

∂n(a, t)

∂t
+
∂n(a, t)

∂a
= −µ0N0n(a, t), t, a > 0

n(0, t) = β0N
2
0 , t > 0,

n(a, 0) = n0(a), a > 0 (6.1.18)

the solution of which is given by (5.4.46)

n(a, t) = e−µ0N0au(a, t) = e−µ0N0a

{

eµ0N0(a−t)n0(a− t), t < a,
β0N

2
0 , a < t

=

{

e−µ0N0tn0(a− t), t < a,
e−µ0N0aβ0N

2
0 , a < t.

(6.1.19)

b) µ0 6= β0.
In this case the solution of (6.1.16) is given by

1

N0
− 1

N(t)
= (β0 − µ0)t

or

N(t) =
N0

1 − (β0 − µ0)N0t
. (6.1.20)

At this moment we note that the evolution of the population is determined by the sign of r0 = β0−µ0

which plays the role of the net growth rate: if r0 > 0 (that is, if the maternity coefficient exceeds the
mortality rate), the population will explode at t = 1/r0N0. On the other hand, if r0 < 0 (that is, if the
maternity coefficient is lower than the mortality rate), the population will exists for all time gradually
decaying to 0. However, in both cases we can give explicit formulae for n(a, t). Indeed, similarly to
a) we arrive at the straightforward initial boundary value problem
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∂tn(a, t) + ∂an(a, t) = −µ0N(t)n(a, t), t, a > 0

n(0, t) = β0N(t)2, t > 0,

n(a, 0) = n0(a), a > 0 (6.1.21)

where N(t) is given (6.1.20). However, contrary to (6.1.18) (and (5.2.1)), the coefficient µ is depen-
dent on time and thus the reduction must be made with more care. We begin by noting that

d

dt
e
µ0

t∫

0

N(s)ds
= µ0N(t)e

µ0

t∫

0

N(s)ds

and thus the first equation of (6.1.21) can be written as

∂

∂t



n(a, t)e
µ0

t∫

0

N(s)ds



+
∂

∂a



n(a, t)e
µ0

t∫

0

N(s)ds



 = 0.

If we denote

u(a, t) = n(a, t)e
µ0

t∫

0

N(s)ds

then

u(a, 0) = n(a, 0)e
µ0

0∫

0

N(s)ds
= n0(a)

and

u(0, t) = n(0, t)e
µ0

t∫

0

N(s)ds
= β0N(t)2e

µ0

t∫

0

N(s)ds

so that, using again (5.4.46), we obtain

n(a, t) = e
−µ0

t∫

0

N(s)ds
u(a, t) = e

−µ0

t∫

0

N(s)ds







n0(a− t), t < a,

β0N(t− a)2e
µ0

t−a∫

0

N(s)ds
, a < t

=















e
−µ0

t∫

0

N(s)ds
n0(a− t), t < a,

β0N(t− a)2e
−µ0

t∫

t−a

N(s)ds

, a < t

(6.1.22)

as long as N is defined. For our particular case we have

∫

N(s)ds = N0

∫

ds

1 − r0N0t
= ln

(

1

1 −N0r0t

)
1
r0

+ C

for 0 ≤ t < 1/r0N0 if r0 > 0 and for 0 ≤ t <∞ otherwise. Hence, for such t

e
−µ0

t∫

0

N(s)ds
= (1 − r0N0t)

µ0
r0

and

e
−µ0

t∫

t−a

N(s)ds

=

(

1 − r0N0t

1 − r0N0(t− a)

)

µ0
r0

.

Thus

n(a, t) =







(1 − r0N0t)
µ0
r0 n0(a− t), t < a,

β0N
2
0

(1−r0N0(t−a))2

(

1−r0N0t
1−r0N0(t−a)

)

µ0
r0
, a < t.

We note that in this example we cannot talk about a stable age profile, as either there is no equilibrium
total population or every number is an equilibrium (if µ0 6= β0).
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1.4 Another example of linear chain trickery

Consider a class of organisms of potentially infinite longevity which can reproduce immediately after
birth and whose age-specific birth rate decreases exponentially with age. This results in the system

∂tn(a, t) + ∂an(a, t) = −µ(N(t))n(a, t), t > 0, 0 < a <∞

n(0, t) = β0

∞
∫

0

e−γan(a, t)da, t > 0,

n(a, 0) = n0(a), 0 < a <∞, (6.1.23)

where γ, β > 0 are constants and µ is a strictly monotonic function. Assuming, as before, that there
is a nonnegative classical solution n to this problem defined for t ∈ [0,∞) such that

∫∞
0
∂tn(a, t)da =

∂t
∫∞
0 n(a, t)da and lima→∞ n(a, t) = 0 for all t ∈ [0,∞), we integrate the equation with respect to

a over [0,∞)
∞
∫

0

∂tn(a, t) + lim
a→∞

n(a, t) − n(0, t) = −µ(N(t))

∞
∫

0

n(a, t)da

to obtain
N ′ = B − µ(N)N, (6.1.24)

where

B(t) = n(0, t) = β0

∫ ∞

0

e−γan(a, t)da.

To close the system, we multiply the equation by the maternity function β0e
−γa

∂t
(

β0e
−γan(a, t)

)

+ β0e
−γa∂an(a, t) = −µ(N(t))β0e

−γan(a, t)

and integrate over [0,∞) so that

B′(t) +

∞
∫

0

β0e
−γa∂an(a, t)da = −µ(N(t))B(t). (6.1.25)

The integral can be transformed by integration by parts

∞
∫

0

e−γa∂an(a, t)da = −n(0, t) + γ

∞
∫

0

e−γan(a, t)da = −β0B(t) + γB(t)

so that (6.1.26) can be written as

B′(t) − β0B(t) + γB(t) = −µ(N(t))B(t). (6.1.26)

Altogether, this time we have obtained a system of differential equations

N ′ = B − µ(N)N,

B′ = (β0 − γ − µ(N))B (6.1.27)

This system can be solved in some special cases; otherwise we have to resort to a phase-plane analysis.
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Constant death rate

We begin with a simple case when µ(N) = µ is a constant and thus we have to take ω = ∞. Then
we obtain the decoupled system

N ′ = B − µN,

B′ = (β0 − γ − µ)B.

This gives
B(t) = B0e

(β0−γ−µ)t,

where

B0 = B(0) = β0

∞
∫

0

e−γan0(a)da.

Then the first equation becomes a linear nonhomogeneous equation

N ′ = −µN +B0e
(β0−γ−µ)t

Using the integrating factor, we have

(Neµt)′ = B0e
(β0−γ)t;

that is

N(t) = N0e
−µt +

B0

β0 − γ

(

e(β0−γ−µ)t − e−µt
)

,

provided β0 6= γ. Note, that finding N is not necessary for finding n. Indeed, in our case (6.1.23)
takes the form

∂tn(a, t) + ∂an(a, t) = −µn(a, t), t > 0, 0 < a <∞
n(0, t) = B(t) = B0e

(β0−γ−µ)t, t > 0,

n(a, 0) = n0(a), 0 < a <∞. (6.1.28)

Then, as in (5.4.46), we get

n(a, t) = e−µt







n0(a− t), t < a,

β0e
(β0−γ)(t−a)

∞
∫

0

e−γrn0(r)dr, a < t.

General death rate

In general system (6.1.23) cannot be explicitly solved and the best thing we can hope for is to
determine asymptotic behaviour of the solution. We shall use phase plane analysis to to this. The
isoclines are given by

B = µ(N)N,

0 = (β0 − γ − µ(N))B (6.1.29)

and the stationary points are at the intersection of these isoclines. We immediately see that we have
trivial equilibrium (0, 0) and a nontrivial one are given by

µ(N) = β0 − γ, B = µ(N)N.

Then, clearly a nontrivial equilibrium exists if β0 − γ is in the range of µ; then it is unique by
monotonicity of µ. Assume this is the case and denote the equilibrium by (N∗, B∗). As usual, we
begin by looking at stability of the equilibrium. The Jacobian is given by
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J =

(

−µ′(N)N − µ(N), 1
−µ′(N)B, (β0 − γ − µ(N))

)

and

J (N∗, B∗) =

(

−µ′(N∗)N∗ − µ(N∗), 1
−µ′(N∗)B∗, 0

)

The characteristic equation is

λ2 + (µ′(N∗)N∗ + µ(N∗))λ+ µ′(N∗)B∗ = 0.

Under natural biological assumption µ′ > 0, using Vieta’s formulae, we see that if there are two
real roots, then there are of the same sign with their sum negative which yields that they are both
negative. If they are complex, then they are complex conjugate and thus the real part is negative.
Hence the equilibrium is asymptotically stable.

We can get a better understanding by considering the line

B = (β0 − γ)N.

It is an invariant manifold. Indeed, consider x(t) = B(t) − (β0 − γ)N(t). Then

x′ = B′(t) − (β0 − γ)N ′

= (β0 − γ − µ(N))B − (β0 − γ)(B − µ(N)N) = −µ(N)(B − (β0 − γ)N) = −µ(N)x.

Treating N as a known function, we see that x is a solution of a linear equation. Thus, if (B,N) is
on the manifold, it will stay there. Moreover, if x 6= 0, then it will decrease to 0 monotonically (even
exponentially provided µ(N) is separated from zero). On the manifold the equation reduces to

dN

dt
= ((β0 − γ) − µ(N))N

which produces logistic like behaviour. It is also clear that there cannot be closed orbits or damped
oscillations around the nontrivial equilibrium as such orbits would have to cut the invariant manifold
which is impossible. We can get a global phase portrait if we note that since µ′ > 0, for the existence

Fig. 6.1. Phase plane (N,B)

of the stationary state N∗ we must have µ(0) < β0 − γ. This shows that

d

dN
(Nµ(N))|N=0 = µ(0) < β0 − γ
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and thus the isocline B = µ(N)N enters the first quadrant below the invariant manifold B =
(β0−γ)N . Furthermore, since along this isocline the vector field is of the form (0, (β0−γ−µ(N))B)
and along the invariant manifold is (β0 − γ − µ(N))N(1, (β0 − γ)) we see that the only intersection
of the isocline and the invariant manifold can occur at the equilibrium (N∗, B∗). Hence, the isocline
and the invariant manifold must be situated with respect to each other as on Fig. 1.4. From the
picture we see that the sectors between the isocline and the invariant manifold are trapping regions
and any trajectory starting outside them must eventually get there by monotonicity, the fact that
B = 0 is also an invariant manifold and the fact that any finite limit point of a trajectory must be
an equilibrium

Finally, using Eq. (6.1.14), we find that the stable age profile in this case will be

n∗(a) = (β0 − γ)N∗e−(β0−γ)a.

As explained earlier, the total population N(t) converges to N∗ which is the total population of the
stationary density n∗ but proving that the densities converge requires a separate theory.

2 Solvability of the SIR/SIS system with age structure

Let us recall the system

∂ts(a, t) + ∂as(a, t) + µ(a)s(a, t) = −λ(a, t)s(a, t) + δ(a)i(a, t),

∂ti(a, t) + ∂ai(a, t) + µ(a)i(a, t) = λ(a, t)s(a, t) − (δ(a) + γ(a))i(a, t),

∂tr(a, t) + ∂ar(a, t) + µ(a)r(a, t) = γ(a)i(a, t). (6.2.30)

with the boundary conditions

s(0, t) =

ω
∫

0

β(a)(s(a, t) + (1 − q)i(a, t) + (1 − w)r(a, t))da,

i(0, t) = q

ω
∫

0

β(a)i(a, t)da,

r(0, t) = w

ω
∫

0

β(a)r(a, t)da,

(6.2.31)

where q ∈ [0, 1] and w ∈ [0, 1] are the vertical transmission coefficients of infectiveness and immunity,
respectively, and the initial conditions

s(a, 0) = s0(a), i(a, 0) = i0(a), r(a, 0) = r0(a). (6.2.32)

To deal with solvability of this system we have to provide a more general framework for the original
McKendrick problem.

2.1 Solution of the McKendrick as a semidynamical system

We considered the problem

∂tn(a, t) + ∂an(a, t) = −µ(a)n(a, t)

n(0, t) =

ω
∫

0

β(a)n(a, t)da,

n(a, 0) = n0(a) (6.2.33)
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and proved that, under assumptions (5.3.23)–(5.3.26), it has a solution

n(a, t) =

{

S(a)
S(a−t)n0(a− t), t < a,

S(a)B(t− a), a < t,
(6.2.34)

where B is the solution of the Volterra equation

B(t) =

t
∫

0

K(t− a)B(a)da+

ω−t
∫

0

β(a+ t)
S(a+ t)

S(a)
n0(a)da

=

t
∫

0

K(t− a)B(a)da+

ω
∫

t

β(a)
S(a)

S(a− t)
n0(a− t)da (6.2.35)

for 0 ≤ t ≤ ω and

B(t) =

ω
∫

0

K(t− a)B(a)da (6.2.36)

for t > ω. The solution satisfies the estimate

‖n(·, t)‖L1([0,ω]) ≤ ‖n0‖L1([0,ω])e
t‖β‖∞ . (6.2.37)

Unique solvability of (6.2.33) in the sense of formula (6.2.51) allows for the dynamical systems
approach to the problem. This amounts to looking at the solution not through individual trajectories
but more globally, as a family of mappings of the state space into itself, parametrized by time. Let us
recall that our state space is X = L1([0, ω]) of all population densities with finite total population.
Then, for any n0 ∈ X we define

[T (t)n0](a) = n(a, t) (6.2.38)

where n is the solution defined by (6.2.51). From (6.2.37) we see that {T (t)}t≥0 is a family of linear
bounded operators on X with at most exponential growth in time. If what follows we investigate the
properties of {T (t)}t≥0.

Earlier we observed that, in general, the solution (6.2.51) is discontinuous along the characteristic
a = t. Here we prove that the condition (5.3.31) is indeed essential for regularity of the solution.

Theorem 6.2. Let us assume that (5.3.23)–(5.3.26) are satisfied. Further let

n0 ∈W 1
1 ([0, ω]), µn0 ∈ L1([0, ω]) (6.2.39)

and

n0(0) =

ω
∫

0

β(a)n0(a)da. (6.2.40)

Then n ∈ C([0, ω]×R+), µ(·)n(·, t) ∈ L1([0, ω]) for any t > 0, n ∈W 1
1 ([0, ω]×R+), that is, ∂tn, ∂an

exist almost everywhere on [0, ω] × R+ and (6.2.33) is satisfied almost everywhere.

Proof. First we note that functions from W 1
1 ([0, ω]) are (absolutely) continuous and thus, by Theo-

rem 5.3 and formula (6.2.51), n is continuous outside the characteristic t = a. Using argument as in
(5.3.31) and the relevant assumption we find that n is continuous on [0, ω]×R+. Similarly, if (6.2.39)
is satisfied then, again by Theorem 5.3, B is differentiable almost everywhere and thus n is differen-
tiable almost everywhere away from the characteristic t = a. Then the continuity along t = a shows
that n ∈ W 1

1 ([0, ω] × R+). To simplify the argument, let as consider ω = ∞, ∆1 = {(a, t); t > a}
and ∆2 = {(a, t); t < a} and functions fi ∈ W 1

1 (∆i), i = 1, 2 satisfying f1(t, t) = f2(t, t). Define F
by F |∆1 = f1 and F |∆2 = f2. Let φ ∈ C∞

0 (R2
+). Then
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∫

R2
+

Fφadadt =

∫

∆1

f1φadadt+

∫

∆2

f2φadadt

=

∞
∫

0





t
∫

0

f1φada



 dt+

∞
∫

0





∞
∫

t

f2φada



 dt

= −
∞
∫

0





t
∫

0

f1,aφda



 dt+

∞
∫

0





∞
∫

t

f2,aφda



 dt+

∞
∫

0

(f1(t, t) − f2(t, t))φ(t, t)dt

= −
∫

R2
+

F̃ φdadt

where F̃ is given by F̃ |∆1 = f1,a and F̃ |∆2 = f2,a. Thus, F̃ = Fa is the generalized derivative of
F and is integrable since the its components are. Analogous argument holds for the derivative with
respect to t.

Finally, we have

ω
∫

0

µ(a)n(a, t)da =

min{t,ω}
∫

0

µ(a)B(t − a)S(a)da+

ω
∫

min{t,ω}

µ(a)
S(a)

S(a− t)
n0(t− a)da

≤ max
s∈[0,ω]

|B(s)|
min{t,ω}
∫

0

µ(a)S(a)da+ e

ω∫

0

µ(s)ds
max
s∈[0,ω]

|n0(s)|
ω
∫

min{t,ω}

µ(a)S(a)da

≤ max
s∈[0,ω]

|B(s)| + e

ω∫

0

µ(s)ds
max
s∈[0,ω]

|n0(s)|

where we used the fact that µS is a probability density. ✷

Lemma 6.3. The set

D = {φ ∈W 1
1 ([0, ω]); µφ ∈ L1([0, ω]), φ(0) =

ω
∫

0

β(a)φ(a)da} (6.2.41)

is dense in L1([0, ω]).

Proof. Let f ∈ L1([0, ω]). Fix ǫ > 0 and take φ ∈ C∞
0 ((0, ω)) such that

‖f − φ‖L1([0,ω]) ≤ ǫ. (6.2.42)

Since φ is of compact support, µφ ∈ L1([0, ω]) is automatically satisfied. We have to construct φǫ
satisfying (6.2.40) and close to φ in L1. For a given δ > 0

φδ(a) = φ(a) + αδe
−a/δ,

where αδ is an undetermined constant. We require

φδ(0) = φ(0) + αδ =

ω
∫

0

β(a)φ(a)da + αδ

ω
∫

0

e−a/δβ(a)da. (6.2.43)

Now,
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|
ω
∫

0

e−a/δβ(a)da| ≤ δ sup
a∈[0,ω]

|β(a)|
ω/δ
∫

0

e−sds =: bδ

and therefore, for sufficiently small δ, (6.2.43) can be solved for αδ with

αδ =

ω
∫

0

β(a)φ(a)da − φ(0)

1 −
ω
∫

0

e−a/δβ(a)da

,

and

|αδ| ≤
sup

a∈[0,ω]

|β(a)|‖φ‖L1([0,ω]) + max
a∈[0,ω]

|φ|

1 − δb
≤ C‖φ‖W 1

1 ([0,ω]).

where C is a independent of δ for sufficiently small δ. Hence

‖φ− φδ‖L1([0,ω]) ≤ |αǫ|
ω
∫

0

e−a/δda ≤ |αδ|
ω
∫

0

e−a/δda ≤ δC‖φ‖W 1
1 ([0,ω]).

Thus, for a given φ ∈ C∞
0 ((0, ω)) satisfying (6.2.42) we can choose δ = ǫ/C‖φ‖W 1

1 ([0,ω]) so that

‖f − φδ‖L1([0,ω]) ≤ 2ǫ

with φδ ∈ D. ✷

Proposition 6.4. If (5.3.23)–(5.3.26) are satisfied, then the solution n defined by (6.2.51) satisfies

n ∈ C([0, T ], L1([0, ω])). (6.2.44)

In other words, the family {T (t)}t≥0 is strongly continuous.

Proof. Clearly, if φ ∈ C([0, ω] × [0, T ]), then φ ∈ C([0, T ], L1([0, ω]) by uniform continuity and
bounded domain of integration. Let n be the solution with initial condition n0 ∈ L1([0, ω]) and
consider a sequence φk ∈ D such that φk → n0 in L1. Let further nk be the solution with initial
condition φk. Then, by (6.2.37),

sup
t∈[0,T ]

‖n(·, t) − nk(·, t)‖L1([0,ω]) ≤= eT‖β‖∞‖n0 − φk‖L1([0,ω]).

which shows that n ∈ C([0, T ], L1([0, ω]). ✷

Proposition 6.5. The family {T (t)}t≥0 has the semigroup property, that is, for any n0 ∈ X and
t1, t2 ≥ 0 we have

T (t+ τ)n0 = T (τ)(T (t)n0). (6.2.45)

Proof. Let {T (t)}t≥0 be associated with (6.2.33) and {U(t)}t≥0 be associated with the McKendrick
problem with µ = 0 and β(a) replaced by K(a) = β(a)S(a). By (5.3.17) we have [T (t)n0](a) =
[S(a)U(t)S−1(a)n0] and thus it is enough to prove (6.2.45) for {U(t)}t≥0, that is, for the solution

u(a, t) = [U(t)u0] =

{

u0(a− t), t < a,
B(t− a), a < t.

(6.2.46)

where

B(t) =

t
∫

0

K(t− a)B(a)da +

∞
∫

t

K(a)u0(a− t)da
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and, again, we consider ω = ∞ (by extending the coefficients by 0 beyond ω. Further, denote by Bf

the unique solution to the above equation with u0 replaced by f . Then we have

[U(τ)(U(t)u0)](a) =

{

[U(t)u0](a− τ) for a > τ,
BU(t)u0

(τ − a) for a < τ

=







u0(a− t− τ) for a− τ > t,
Bu0(t+ τ − a)) for τ < a < t+ τ
BU(t)u0

(τ − a) for a < τ,

where we used

[U(t)u0)](a− τ) =

{

u0(a− (t+ τ)) for a− τ > t,
Bu0(t+ τ − a)) for τ < a < t+ τ.

Now, for r > 0,

BU(t)u0
(r) =

r
∫

0

K(r − s)BU(t)u0
(s)ds+

∞
∫

r

K(α)[U(t)u0](α− r)dα.

We transform the right hand side as follows

r
∫

0

K(r − s)BU(t)u0
(s)ds+

∞
∫

r

K(α)[U(t)u0](α − r)dα (6.2.47)

=

r
∫

0

K(t+ r − (t+ s))BU(t)u0
(s)ds+

t+r
∫

r

K(α)[U(t)u0](α− r)dα +

∞
∫

t+r

K(α)[U(t)u0](α− r)dα

=

t+r
∫

t

K(t+ r − σ)BU(t)u0
(σ − t)dσ +

t+r
∫

r

K(α)[U(t)u0](α− r)dα +

∞
∫

t+r

K(α)[U(t)u0](α− r)dα

=

t+r
∫

t

K(t+ r − σ)BU(t)u0
(σ − t)dσ +

t+r
∫

r

K(α)Bu0(t− (α− r))dα +

∞
∫

t+r

K(α)u0(α − (r + t))dα

=

t+r
∫

t

K(t+ r − σ)BU(t)u0
(σ − t)dσ +

t
∫

0

K(t+ r − v)Bu0(v)dv +

∞
∫

t+r

K(α)u0(α− (r + t))dα

=

t+r
∫

0

K(t+ r − σ)F (σ)dσ +

∞
∫

t+r

K(α)u0(α− (r + t))dα, (6.2.48)

where F (σ) = BU(t)u0
(σ − t) for t ≤ σ ≤ t+ r and F (σ) = Bu0(s) for 0 ≤ σ < t. Next, we apply the

following argument. Consider the Volterra equation

f(t) =

t
∫

t0

Φ(t− s)f(s)ds+ g(t)

for t ≥ t0 ≥ 0 and g is a known function. Let this equation be uniquely solvable for arbitrary t0 and
arbitrary g and denote f(t, t0, g) the solution. Then

f(t, 0, g) = f



t, t0, g +

t0
∫

0

Φ(t − s)f(s, 0, g)ds



 .

Indeed,



174 6 Basic nonlinear models

f(t) ≡
t
∫

0

Φ(t− s)f(s)ds+ g(t) ≡
t
∫

t0

Φ(t− s)f(s)ds+

t0
∫

0

Φ(t− s)f(s)ds+ g(t).

On the other hand, there is a solution f̃ to

f̃(t) =

t
∫

t0

Φ(t− s)f̃(s)ds+

t0
∫

0

Φ(t− s)f(s)ds+ g(t),

but we know that f already satisfies this equation. By uniqueness, f and f̃ must coincide.

Going back to our problem, there is a unique solution to

F (t+ r) =

t+r
∫

0

K(t+ r − σ)F (σ)dσ +

∞
∫

t+r

K(α)u0(α− (r + t))dα

and, using the penultimate line of (6.2.48), we see that Bu0(t+ r) = BU(t)u0
(r) or, returning to the

original variables, Bu0(t+ τ − a) = BU(t)u0
(τ − a). Hence

[U(τ)(U(t)u0)](a) =

{

u0(a− t− τ) for a > t+ τ,
Bu0(t+ τ − a)) for a < t+ τ

= [U(τ + t)u0)](a)

✷

The previous results show that {T (t)}t≥0 is a strongly continuous dynamical systems, or a strongly
continuous semigroup, that is, it is a family of bounded linear operators satisfying, for any x ∈ X ,

1. T (t+ τ)x = T (t)T (τ)x, t, τ ≥ 0;

2. T (0)x = x;

3. lim
t→0+

T (t)x = x.

An operator A is called the generator of the semigroup {T (t)}t≥0 if

Ax = lim
h→0+

T (h)x− x

h
(6.2.49)

whenever the limit exists in X . The set of such x ∈ X is called the domain of A and denoted D(A).
Typically A is unbounded and D(A) 6= X . It follows that if x ∈ D(A), then t → u(t, x) = T (t)x is
differentiable, T (t)x ∈ D(A) for all t ≥ 0 and

d

dt
u(t, x) = Au(t, x), u(t, x) = x (6.2.50)

that is {T (t)}t≥0 gives solutions to the Cauchy problem (6.2.50) and u(t, x) is the semiflow associated
with this equation due to the semigroup property

u(t+ τ, x) = T (t+ τ)x = T (t)T (τ)x = u(t, u(τ, x)).

In the case of the McKendrick problem, it can be proved that A = −∂a − µ with D(A) = D but the
proof is outside the scope of these notes.

Finally we note the following fact which will be of importance in the analysis of nonlinear problems.

Proposition 6.6. Under assumptions (5.3.23)–(5.3.26), if n0 is bounded, then n(t, a) is bounded on
[0, ω] × [0, T ] for any 0 ≤ T <∞.
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Proof. From the formula

n(a, t) =

{

S(a)
S(a−t)n0(a− t), t < a,

S(a)B(t− a), a < t,
(6.2.51)

we see that since S(a)/S(a− t) ≤ 1, S(a) ≤ 1, the part in t < a is bounded by the boundedness of
n0. Also, we have proved that the iterates (5.3.28) defining B converge uniformly on each bounded
time interval and thus B(t− a) is bounded on [0, ω] × [0, T ] (if ω = ∞, then we observe that in any
case, a < t ≤ T ). ✷

2.2 Linear systems

To address the solvability of the McKendrick epidemiological system we first look at its linear part

∂ts(a, t) + ∂as(a, t) + µ(a)s(a, t) − δ(a)i(a, t) = 0,

∂ti(a, t) + ∂ai(a, t) + µ(a)i(a, t) + (δ(a) + γ(a))i(a, t) = 0,

∂tr(a, t) + ∂ar(a, t) + µ(a)r(a, t) − γ(a)i(a, t) = 0. (6.2.52)

with the boundary conditions

s(0, t) =

ω
∫

0

β(a)(s(a, t) + (1 − q)i(a, t) + (1 − w)r(a, t))da,

i(0, t) = q

ω
∫

0

β(a)i(a, t)da,

r(0, t) = w

ω
∫

0

β(a)r(a, t)da,

(6.2.53)

and the initial conditions

s(a, 0) = s0(a), i(a, 0) = i0(a), r(a, 0) = r0(a). (6.2.54)

The problem is an example of a more general vector McKendrick system

∂tn = Sn + Mn, (6.2.55)

n(t, a) = (n1(a, t), . . . , nN(a, t))

and ni(a, t) is the population density at time t of individuals in patch i and being of age a (here
n = (s, i, r)). Further,

Sn = −∂an = (−∂an1, . . . ,−∂anN ) (6.2.56)

describes aging, M(a) = {µij(a)}1≤i,j≤N is the mortality/projection matrix. In our case

M =





−µ δ 0
0 −(µ+ δ + γ) 0
0 γ −µ



 =





−µ 0 0
0 −µ 0
0 0 −µ



+





0 δ 0
0 −(δ + γ) 0
0 γ 0



 (6.2.57)

where the first matrix describes death which is an intrapatch phenomenon and the second refers to
migrations between patches and is thus a Kolmogorov matrix. We require that our general M has
the same structure, that is, it can be written as

M = diag{−µ1, . . . ,−µN} + Q
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where Q is a Kolmogorov matrix, that is, it is positive diagonal and the sum of entries in each column
is 0. This structure has important consequences as far as the asymptotic properties are concerned.

This system is supplemented by the McKendrick boundary condition

[γn](t) = n(t, 0) = [Bn](t) =

∞
∫

0

B(a)n(t, a)da, (6.2.58)

where γ denotes the operator of taking the trace at a = 0 and B(a) = {βij(a)}1≤i,j≤N is the fertility
matrix. We note that births may be interpatch phenomenon like in our case

B =





β β(1 − q) β(1 − w)
0 βq 0
0 0 βw



 (6.2.59)

The initial condition is given by

n|t=0 = n(0, a) =
◦
n(a). (6.2.60)

The natural phase space for the problem is X = L1([0, ω],RN). We denote by X+ the subset
of X consisting of vectors ⋉ which are coordinate-wise nonnegative almost everywhere. Further,
X∞ = L∞([0, ω],RN ) By adapting our earlier consideration concerning the scalar case, or by a more
functional analytic approach, we can prove the solvability result as follows. Let us denote by VM(a, b)
the fundamental solution matrix of the equation z′a(a) = M(a)z(a); that is, z(a) = VM(a)z0 satisfies
the above equation with z(b) = z0 (VM plays the role of the integrating factor in the scalar case).
Since the columns of VM(a, 0) are linearly independent for any a, the inverse V−1

M (a, 0) always exists
and thus VM(a, b) = VM(a, 0)V−1

M (b, 0). With this, we can write the solution to (6.2.55)-(6.2.58) as

n(a, t) =

{

VM(a, a− t)
◦
n, a > t,

(VM(a, 0)ψ)(t− a) a < t,
(6.2.61)

where ψ satisfies the Volterra equation

ψ(t) =

t
∫

0

(B(a)VM(a, 0)ψ)(t− a)da+

∞
∫

t

B(a)VM(a, a− t)
◦
n (a− t)da

Let us define by A the realization of −diag{∂a} −M on the domain

DA = {n ∈ (W 1,1(R+))N ,n(0) = Bn}.

Then

Theorem 6.7. A generates a strongly continuous semigroup {T (t)}t≥0 such that

||T (t)|| ≤ e( b̄−m )t,

where b̄ := sup
a∈R+

||B(a)|| and m := inf
j,a
µj(a). Furthermore, if

◦
n∈ X+, then n(t, ·) ∈ X+ and if

◦
n∈ X∞ ∩X1, then n(t, ·) ∈ X∞ ∩X1.

2.3 The nonlinear system

With the notation of the previous section, the problem (6.2.30)–(6.2.32) can be written in compact
form
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∂tn = An + F(n), t > 0,

n|a=0 = Bn,
n|t=0 =

◦
n, (6.2.62)

where n = (s, i, r), A = S +M with S and M defined by (6.2.56) and (6.2.57). Further, B is defined
by (6.2.59) and F is a nonlinear perturbation

F((s, i, r)) =





−λ 0 0
λ 0 0
0 0 0









s
i
r



 (6.2.63)

where the force of infection depends on the solution through the formula

λ(a, t) = K0(a)i(a, t) +

ω
∫

0

K(a, s)i(s, t)ds, (6.2.64)

where K0(a) and K(a, s) are known functions. How to deal with such problems? First we note that
the boundary condition is really a part of the definition of the domain of A and thus, if we find a
solution to (6.2.62), then it must satisfy u ∈ DA and automatically satisfies the boundary condition.
Thus, for a time being we shall ignore it.

The main idea is to use the fact that we can solve the linear version of (6.2.62)

∂tu = Au + f(t), t > 0,

u|t=0 =
◦
u, (6.2.65)

where f is a given function, and the solution is given by the Duhamel formula

u(t) = T (t)
◦
u +

t
∫

0

T (t− s)f(s)ds.

So, if we knew the solution n to (6.2.62), then it would be given by

n(t) = T (t)
◦
n +

t
∫

0

T (t− s)F(n(s))ds. (6.2.66)

Even if we do not know the solution, then (6.2.66) offers a simplification of (6.2.62) by not involving
unbounded operator A. Of course, a solution to (6.2.66) is not necessarily a solution to (6.2.62) but
at least it seems to be step in right direction in the sense that any continuous solution to (6.2.62)
must be a solution to (6.2.66).

The problem (6.2.66) can be solved by Picard’s iterations, similar to (5.3.28)

n0(t) =
◦
n,

nk+1(t) = T (t)
◦
n +

t
∫

0

T (t− s)F(nk(s))ds, (6.2.67)

however, handling the nonlinearity F requires more care.

Let as recall that by Y = C([t0, T ], X) we denoted the space of continuous functions [t0, T ] ∋ t →
u(t) ∈ X , where −∞ < t0 < T <∞. We define the norm in Y by

‖u(·)‖Y = sup
t∈[t0,T ]

‖u(t)‖X .
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Let us assume that F satisfies the global Lipschitz condition on X , that is, there is L > 0 such that
for any u,v ∈ X

‖F(u) − F(v)‖X ≤ L‖u− v‖. (6.2.68)

Then, returning to (6.2.67) we obtain, for any t ∈ [0, T ],

‖nk+1(t) − nk(t)‖X ≤
t
∫

0

‖T (t− s)(F(nk(s)) − F(nk−1(s)))‖Xds

≤ MeωTLt‖nk − nk−1‖Y (6.2.69)

which, by induction as in (5.3.29), yields

sup
t∈[0,T ]

‖nk+1(t) − nk(t)‖X ≤ (MeωTL)k

k!
‖n1−

◦
n ‖Y

and, as before, this shows that (nk)k∈N converges to a continuous solution to (6.2.66) defined on the
whole interval [0, T ] for any T <∞. Such solutions are called global.

If we consider another solution v to (6.2.66) with the initial condition
◦
v, then

‖n(t) − v(t)‖X ≤ MeωT ‖ ◦
n − ◦

v ‖X +

t
∫

0

‖T (t− s)(F(n(s)) − F(v(s)))‖Xds

≤ MeωT ‖ ◦
n − ◦

v ‖X +MeωTL

t
∫

0

‖n(s) − v(s)‖Xds

and Gronwall’s inequality gives

‖n(t) − v(t)‖X ≤MeωT eMLTeωT ‖ ◦
n − ◦

v ‖X , 0 ≤ t ≤ T,

so that we obtain that the solution is (Lipschitz) continuous with respect to the initial data and is

unique (by putting
◦
n=

◦
v).

However, it is easy to see that even for a simple nonlinearities such as F(u) = u2 we have

|F(u) − F(v)| = |(u+ v)||u − v|

and thus F is Lipschitz continuous as long as we restrict u and v to satisfy |u|, |v| ≤ K for some
constant K. Thus, a quadratic nonlinearity is Lipschitz continuous,but not globally, as the Lipschitz
constant depends on bounds for u and v. Functions like this are called locally Lipschitz. Precisely, F
is said to satisfy a local Lipschitz condition on X if for any c > 0 there is L = Lc such that

‖F(u) − F(v)‖X ≤ Lc‖u− v‖X (6.2.70)

whenever ‖u‖X , ‖v‖X ≤ c.

In such a case we cannot use directly (6.2.69) as the constant L changes with the iterates and can
grow to infinity. We can, however, use this argument if we make sure that all the iterates will stay
in a fixed bounded set of X . We can prove the following result.

Theorem 6.8. Let F : X → X be a locally Lipschitz function. If A is the generator of a semigroup

{T (t)}t≥0, then for every
◦
n∈ X and every t0 ∈ R there is tmax > t0 such that the Cauchy problem

∂tn = An + F(n), t > 0,

n|t=t0 =
◦
n, (6.2.71)
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has a unique mild solution n on [t0, tmax). Moreover, if tmax <∞, then

lim
t→tmax

‖n(t)‖X = ∞.

Proof. The proof consists in finding δ > 0 and a closed subset of C([t0, t0 + δ], X) such that the
iterates (6.2.67) stay in this set or, in other words, that the mapping

[F(n)](t) = T (t− t0)
◦
n +

t
∫

t0

T (t− s)F(n(s))ds,

is a self map of this set. Hence, let us take some 0 < δ < 1 and denote M0 = sup0≤t≤t0+1 ‖T (t)‖,
K0 > M0‖n0‖0 + 1. Then, for t0 ≤ t ≤ t0 + δ and n ∈ B(0,K0) ⊂ C([t0, t+ δ], X)

‖[F(n)](t)‖X ≤ M0‖n0‖X +M0

t
∫

t0

‖F(n(s)) − F(0)‖Xds+M0(t− t0)‖F(0)‖X

≤ M0‖n0‖X + δM0LK0K0 +M0δ‖F(0)‖X
≤ M0(‖n0‖X + δ(LK0K0 + ‖F(0)‖X)).

Hence we see that if take the length of the time interval

δ = min

{

1,
1

M0(LK0K0 + ‖F(0)‖X)

}

, (6.2.72)

then
‖[F(n)](t)‖X ≤ K0

and the k + 1 iterate is in B(0,K0) provided the kth one is. Then on B(0,K0) the function F is
globally Lipschitz and the iterates converge to the mild solution of (6.2.71).

From what we just proved, it follows that if n is a mild solution on a closed interval [t0, t0 + τ ],
then it can be extended onto [t0, t0 + τ + δ] with δ > 0 defined by (6.2.72) with t0 replaced by
t0 + τ . Of course, δ can decrease with every step. Let [t0, tmax) be the maximal interval to which
the solution can be extended by such a procedure. If tmax < ∞, then ‖n(t)‖X → ∞ as t → tmax.
Indeed, otherwise we would have a sequence tn → tmax such that ‖n(tn)‖X ≤ C for some constant
C. However, at each tn we can extend the solution to the interval [tn, tn + δ] with δ independent of
tn (δ depends only on C and the linear semigroup). For tn sufficiently close to tmax we would then
have tn + δ > tmax which contradicts the definition of tmax. ✷

The above theorem does not address the question whether our mild solution is the solution to (6.2.71),
that is, whether it can be differentiated and whether it belongs to DA and thus satisfies the boundary
conditions. Full discussion of regularity is beyond the scope of these notes. We only note that for n to

be a classical solution to (6.2.71) it suffices that
◦
n∈ DA and n → F(n) be continuously differentiable.

Let us return to the epidemiological problem (6.2.62) with F given by (6.2.63)–(6.2.64). Our state
space is X = L1([0,∞))3 = L1([0,∞),R3) and

‖n‖X = ‖(s, i, r)‖X = ‖s‖L1([0,∞)) + ‖i‖L1([0,∞)) + ‖r‖L1([0,∞)).

To simplify discussion, we only consider the intercohort infection and disregard r. Then
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F(n1) − F(n2) =








−
∞
∫

0

Ki1da 0

∞
∫

0

Ki1da 0









(

s1
i1

)

−









−
∞
∫

0

Ki2da 0

∞
∫

0

Ki2da 0









(

s2
i2

)









−s1
∞
∫

0

Ki1da+ s2
∞
∫

0

Ki2da

s1
∞
∫

0

Ki1da− s2
∞
∫

0

Ki2da









It is now easy to see that F is locally Lipschitz continuous as

‖F(n1) − F(n2)‖X ≤ 2

∞
∫

0

∣

∣

∣

∣

∣

∣

s1(a)

∞
∫

0

K(α)i1(α)dα − s2(a)

∞
∫

0

K(α)i2(α)dα

∣

∣

∣

∣

∣

∣

da

≤ 2





∞
∫

0

|s1(a) − s2(a)|
∞
∫

0

K(α)|i1(α)|dαda +

∞
∫

0

|s2(a)|
∞
∫

0

K(α)|i1(α) − i2(α)|dαda





≤ C‖(s1 − s2, i1 − i2)‖X ,

where
C = 2 sup

a∈R+

K(a) max{‖i1‖L1([0,∞)), ‖s2‖L1([0,∞))}.

Hence, the problem has a unique solution defined at least on some interval [0, δ].

We note that the case with intracohort infection the situation is slightly different as the product is of
two integrable functions not necessarily is integrable. However, from Proposition 6.6, we know that

if the initial conditions
◦
s,

◦
i∈ X1,∞ := L1([0,∞))∩L∞([0,∞)), then the solution also is in this space

and so is the product is.

‖F(n1) − F(n2)‖X1,∞ ≤ 2

∞
∫

0

|K(a)(i1(a)s1(a) − s2(a)i2(a))| da

≤ 2 sup
a∈R+

K(a)

∞
∫

0

(|s1(a) − s2(a)||i1(a)|da+ |s2(a)||i1(a) − i2(a)|) da

≤ C‖(s1 − s2, i1 − i2)‖X1,∞ ,

where
C = 2 sup

a∈R+

K(a) max{‖i1‖L∞([0,∞)), ‖s2‖L∞([0,∞))},

and, as above, there exists a mild solution to (6.2.62) on some interval [0, δ].

Can this solution be extended to [0,∞)? We observe that if i, s ≥ 0 then in, say, intercohort case,

‖n(t)‖X =

∞
∫

0

(|i(a, t)| + |s(a, t)|)da =

∞
∫

0

(i(a, t) + s(a, t))da =

∞
∫

0

n(a, t)da

where n is the solution of the equation obtained by adding together (6.2.52)–(6.2.53). Since we know
that n exists for all t, ‖n(t)‖X would be bounded for any finite t and thus would be extendable to

[0,∞). If we look at the iterates (6.2.67), we see that, since
◦
n≥ 0 and the linear semigroup {T (t)}t≥0

preserves positivity, the iterates, and thus the solution, will be positive if F(u) ≥ 0 for u ≥ 0.
However, clearly F is not positive.
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To solve this problem, we observe that the iterations in Theorem 6.8 are performed on a fixed ball
in X (or X1,∞). This means that in the iterations we can always assume that the argument n of F
satisfies ‖n‖ ≤ C with respective norm, for some constant C.

Then we observe that the problem (6.2.71) is equivalent to

∂tn = (An− ωn) + (ωn + F(n)) = Aωn + Fω(n)

for any ω ∈ R. It is easy to see that the semigroup generated by Aω is {Tω(t)}t≥0 = {e−ωtT (t)}t≥0.
The semigroup {Tω(t)}t≥0 also preserves positivity. Therefore n is the mild solution to

n(t) = Tω(t)
◦
n +

∫ t

0

Tω(t− s)Fλ(n(s)) ds, 0 ≤ t < δ. (6.2.73)

In our case we have

Fω(n) =









−
∞
∫

0

K(a)i(a)da 0

∞
∫

0

K(a)i(a)da 0









(

s
i

)

+ ω

(

s
i

)









−s(a)
∞
∫

0

K(a)i(a)da+ ωs(a)

s(a)
∞
∫

0

K(a)i(a)da+ ωi(a)









and we see that if we take ω > C supa∈R+
K(a), then Fω(n) ≥ 0 for any n ≥ 0 satisfying ‖n‖ ≤ C.

Thus all iterates are nonnegative and thus the solution is nonnegative. By the earlier argument, we
have global solvability of the age structured epidemiological problem.
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Appendices

1 Appendix A: Solvability of differential equations and Picard iterates

In this section we shall be concerned with first order ordinary differential equations which are solved
with respect to the derivative of the unknown function, that is, with equations which can be written
as

y′ = f(t, y), (7.1.1)

where f is a given function of two variables.

Several comments are in place here. Firstly, even though in such a simplified form, equation (7.1.1)
in general has no closed form solution, that is, it is impossible to write the solution in the form

y(t) = combination of elementary functions like sin t, cos t, ln t, polynomials...

Example 7.1. A trivial example is the equation

y′ = e−t2 .

We know that the solution must be

y(t) =

∫

e−t2dt

but, on the other hand, it is known that this integral cannot be expressed as a combination of ele-
mentary functions.

If a solution to a given equation can be written in terms of integrals of elementary functions (as
above), then we say that the equation is solvable in quadratures. Since we know that every continuous
function has an antiderivative (though often we cannot find this antiderivative explicitly), it is almost
as good as finding the explicit solution to the equation. However, there are many instances when we
cannot solve an equation even in quadratures. How do we know then that the equation has a solution?
The answer is that if the right hand side of the equation, that is the function f , is continuous, then
there is at least one solution to (7.1.1). This result is called the Peano Theorem and involves some
more advanced calculus. Thus, we can safely talk about solutions to ODEs of the form (7.1.1) even
without knowing their explicit formulae.

Another important problem is related to the uniqueness of solutions, that is, whether there is only
one solution to a given ODE. A quick reflection shows that clearly not: for the simplest equation

y′ = 0,

the solutions are
y(t) = C,
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where C is an arbitrary constant; thus there are infinitely many solutions. The uniqueness question,
however, hasn’t been properly posed. In fact, what we are looking for is usually a solution passing
through a specified point.

Example 7.2. Assume that a point is moving along the horizontal line with speed given by v(t) = t.
Find the position of the point at t = 5. To solve this problem let us recall that v(t) = ds

dt where s is
the distance travelled. Thus the problem results in an equation of the type discussed above:

v(t) =
ds

dt
= t

and
s(t) = 0.5t2 + C

where C is an arbitrary constant. Hence s(5) = 12.5 + C and there is no proper answer. In this
physical setting the original question is clearly wrongly posed. What we need to give the proper answer
is the information about the position of the point at some other time t, say, t = 1. If we know
that (with respect to a fixed origin) s(1) = 2, then also s(1) = 0.5 + C and C = 1.5. Therefore
s(5) = 12.5 + 1.5 = 14.

From this example (and from physical or other considerations) it follows that if we are interested in
getting a unique answer, we not only need the equation (which reflects usually some natural law)
but also the state of the system (that is, the value of the solution) at some specified point. Thus, the
complete Cauchy or initial value problem would be to solve

y′ = f(t, y), for all t ∈ [t1, t2]

y(t0) = y0, for some t0 ∈ [t1, t2]. (7.1.2)

Once again we emphasize that to solve (7.1.2) is to find a continuously differentiable function y(t)
such that

y′(t) = f(t, y(t)) for all t ∈ [t1, t2]

y(t0) = y0, for some t0 ∈ [t1, t2].

Example 7.3. Check that the function y(t) = sin t is the solution to the problem

y′ =
√

1 − y2, t ∈ [0, π/2]

y(π/2) = 1

Solution. LHS: y′(t) = cos t, RHS:
√

1 − y2 =
√

1 − sin2 t = | cos t| = cos t as t ∈ [0, π/2]. Thus the
equation is satisfied. Also sinπ/2 = 1 so the ”initial” condition is satisfied.

Note that the function y(t) = sin t is not a solution to this equation on a larger interval.

Returning to our uniqueness question we ask whether the problem (7.1.2) has always a unique
solution. The answer is negative.

Example 7.4. The Cauchy problem

y′ =
√
y, t ≥ 0

y(0) = 0,

has at least two solutions: y ≡ 0 and y = 1
4 t

2.

However, there is a large class of functions f for which (7.1.2) has exactly one solution. Before we
formulate the main result of this section, we must introduce necessary definitions. We say that a
function g defined on an interval [a, b] is Lipschitz continuous if there is a constant L such that
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|g(x1) − g(x2)| ≤ L|x1 − x2|, (7.1.3)

for any x1, x2 ∈ [a, b]. In particular, if g is continuously differentiable on a closed rectangle [a, b], the
derivative g′ is bounded there by, say, a constant M and then, by the Mean Value Theorem, we have
for x1, x2 ∈ [a, b]

|g(x1) − g(x2)| = |g′(θ)(x1 − x2)| ≤M |x1 − x2|, (7.1.4)

where θ is a point between x1 and x2, so that continuously differentiable functions are Lipschitz
continuous. However, e.g., g(x) = |x| is Lipschitz continuous but not continuously differentiable.

Theorem 7.5. (Picard’s theorem) Let f be continuous in the rectangle R : |t − t0| ≤ a, |y − y0| ≤
b for some a, b > 0 and satisfy the Lipschitz condition with respect to y uniformly in t: for any
(t, y1), (t, y2) ∈ R

|f(t, y1) − f(t, y2)| ≤ L|y1 − y2|. (7.1.5)

Denote
M = max

(t,y)∈R
|f(t, y)|

and define α = min{a, b/M}. Then the initial value problem (7.1.2) has exactly one solution at least
on the interval t0 − α ≤ t ≤ t0 + α.

Remark 7.6. All continuous functions f(t, y) having continuous partial derivative ∂f
∂y in some neigh-

bourhood of (t0, y0) give rise to (7.1.2) with exactly one solution (at least close to t0). In fact, if f
is continuously differentiable with respect to y on some closed rectangle R so that the derivative is
bounded there, say, by a constant L:

∣

∣

∣

∣

∂f

∂y
(t, y)

∣

∣

∣

∣

≤ L

for all (t, y) ∈ R which, by (7.1.4), gives Lipschitz continuity w.r.t y

We split the proof of this result into several steps. First we shall prove a general result known as
Gronwall’s lemma.

Lemma 7.7. If f(t), g(t) are continuous and nonnegative for t ∈ [t0, t0 +α], α > 0, and c > 0, then

f(t) ≤ c+

t
∫

t0

f(s)g(s)ds (7.1.6)

on [t0, t0 + α] implies

f(t) ≤ c exp





t
∫

t0

g(s)ds



 (7.1.7)

for all [t0, t0 + α].

If f satisfies (7.1.6) with c = 0, then f(t) = 0 on [t0, t0 + α].

Proof. Define F (t) = c+
t
∫

t0

f(s)g(s)ds on [t0, t0 +α]. Then F (t) ≥ f(t) and F (t) > 0 on this interval.

Differentiating, we get F ′(t) = f(t)g(t) and therefore

F ′(t)

F (t)
=
f(t)g(t)

F (t)
≤ f(t)g(t)

f(t)
= g(t).

However, the left-hand side is equal to d
dt lnF (t) so that
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d

dt
lnF (t) ≤ g(t),

or, integrating

lnF (t) − lnF (t0) ≤
t
∫

t0

g(s)ds.

Since F (t0) = c, we obtain

F (t) ≤ c exp





t
∫

t0

g(s)ds





but since, as we observed, f(t) ≤ F (t), we have

f(t) ≤ c exp





t
∫

t0

g(s)ds



 ,

which proves the first part. If c = 0, then we cannot use the above argument directly, as it would
involve taking logarithm of zero. However, if

f(t) ≤
t
∫

t0

f(s)g(s)ds

then

f(t) ≤ c+

t
∫

t0

f(s)g(s)ds

for any c > 0 and so

0 ≤ f(t) ≤ c exp





t
∫

t0

g(s)ds





for any c > 0 but this yields f(t) = 0 for all t in [t0, t0 + α].

Gronwall’s inequality can be used to show that, under the assumptions of Picard’s theorem, there
can be at most one solution to the Cauchy problem (7.1.2). Let y1(t) and y2(t) be two solutions
of the Cauchy problem (7.1.2) on R with the same initial condition y0, that is y′1(t) ≡ f(t, y1(t)),
y1(t0) = y0 and y′2(t) ≡ f(t, y2(t)), y2(t0) = y0. Then y1(t0) − y2(t0) = 0 and

y′1(t) − y′2(t) = f(t, y1(t)) − f2(t, y2(t)).

Integrating and using the condition at t0 we see that

y1(t) − y2(t) =

t
∫

0

(f(t, y1(s)) − f2(t, y2(s)))ds.

Using next (7.1.5) we have

|y1(t) − y2(t)| =

∣

∣

∣

∣

∣

∣

t
∫

t0

(f(t, y1(s)) − f2(t, y2(s)))ds

∣

∣

∣

∣

∣

∣

≤
t
∫

t0

|f(t, y1(s)) − f2(t, y2(s))|ds

≤ L

t
∫

t0

|y1(s)) − y2(s)|ds, (7.1.8)
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thus we can use the second part of Gronwall’s lemma to claim that |y1(t)−y2(t)| = 0 or y1(t) = y2(t)
for all t satisfying |t− t0| < a.

The proof of the existence is much more complicated. Firstly, we convert the Cauchy problem (7.1.2)
to an integral equation by integrating both sides of the equation in (7.1.2) and using the initial
condition to get

y(t) = y0 +

t
∫

t0

f(s, y(s))ds. (7.1.9)

If y(t) is a differentiable solution to (7.1.2), then of course (7.1.9) is satisfied. On the other hand, if
y(t) is a continuous solution to (7.1.9), then it is also differentiable, and we see that by differentiating
(7.1.9) we obtain the solution of (7.1.2). Thus, we shall concentrate on finding continuous solutions
to (7.1.9). The approach is to define the so-called Picard’s iterates by

y0(t) = y0,

yn(t) =

t
∫

t0

f(s, yn−1(s))ds, (7.1.10)

and proving that they converge to the solution.

As a first step, we shall show that the iterates remain in the rectangle R. Namely, if M,a, b, α are
defined as in the formulation of Picard’s theorem and yn is defined as in (7.1.10), then for any n

|yn(t) − y0| ≤M |t− t0| (7.1.11)

for |t − t0| ≤ α. Note that (7.1.11) means that yn is sandwiched between lines y0 ±M(t − t0) and
the wedge created by these lines is always inside the rectangle R if |t− t0| < α.

To prove (7.1.11), we note that for n = 0 the estimate (7.1.11) is obvious, so to proceed with
induction, we shall assume that it is valid for some n > 0 and, taking n+ 1, we have

|yn+1(t) − y0| =

∣

∣

∣

∣

∣

∣

t
∫

t0

f(s, yn(s))ds

∣

∣

∣

∣

∣

∣

≤
t
∫

t0

|f(s, yn(s))|ds.

However, by the remark above and the induction assumption, yn(s) is in R as long as |t − t0| ≤ α
and thus |f(s, yn(s))| ≤M . Thus easily

|yn+1(t) − y0| ≤M |t− t0|.

In the next step we shall show that the sequence of Picard’s iterates converges. To make things
simpler, we shall convert the sequence into a series the convergence of which is easier to establish.
To this end we write

yn(t) = y0 + (y1(t) − y0) + (y2(t) − y1(t)) + . . .+ (yn(t) − yn−1(t)) (7.1.12)

and try to show that
∞
∑

n=0
|yn+1(t) − yn(t)| < +∞

for any |t− t0| ≤ α, which would give the convergence of the series.

We use induction again. Assume that t > t0, the analysis for t < t0 being analogous. Firstly,
proceeding as in (7.1.8), we observe that for n > 1

|yn(t) − yn−1(t)| ≤
t
∫

t0

|f(s, yn−1(s)) − f(s, yn−2(s))|ds ≤ L

t
∫

t0

|yn−1(s) − yn−2(s)|ds. (7.1.13)
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Now, for n = 1 we obtain
|y1(t) − y0| ≤M(t− t0)

and for n = 2

|y2(t) − y1(t)| ≤
t
∫

t0

|f(s, y1(s)) − f(s, y0)|ds ≤ L

t
∫

t0

|y1(s) − y0|ds

≤ LM

t
∫

t0

(s− s0)ds =
ML

2
(t− t0)2.

This justifies the induction assumption

|yn(t) − yn−1(t)| ≤ MLn−1

n!
(t− t0)n

and by (7.1.13)

|yn+1(t) − yn(t)| ≤
t
∫

t0

|f(s, yn(s)) − f(s, yn−1(s))|ds ≤ L

t
∫

t0

|yn(s) − yn−1(s)|ds

≤ MLn

n!

t
∫

t0

(s− t0)n =
MLn

(n+ 1)!
(t− t0)n+1.

Now, because |t− t0| < α, we see that

|yn(t) − yn−1(t)| ≤ MLn−1

n!
αn

so that
∞
∑

n=0
|yn+1(t) − yn(t)| ≤

∞
∑

n=1

MLn−1

n!
αn =

M

L
(eαL − 1)

which is finite. Thus, the sequence yn(t) converges for any t satisfying |t− t0| ≤ α. Let us denote the
limit by y(t). By (7.1.12) we obtain

y(t) = y0+(y1(t)−y0)+(y2(t)−y1(t))+. . .+(yn(t)−yn−1(t))+. . . = y0+
∞
∑

n=0
(yn+1(t)−yn(t)) (7.1.14)

and so

|y(t) − yn(t)| =

∣

∣

∣

∣

∣

∞
∑

j=n

(yj+1(t) − yj(t))

∣

∣

∣

∣

∣

≤M
∞
∑

j=n

Lj (t− t0)j+1

(j + 1)!

≤ M

L

∞
∑

j=n

Lj+1αj+1

(j + 1)!
(7.1.15)

where the tail of the series is convergent to zero. It is clear that the left hand side does not depend
on t as long as |t − t0| ≤ α. This fact can be used to show the continuity of the limit function y(t).
Firstly, we observe that, by induction, yn(t) is continuous if yn−1(t) is. In fact, we have

|yn(t1) − yn(t2)| ≤

∣

∣

∣

∣

∣

∣

t1
∫

t0

f(s, yn(s))ds −
t2
∫

t0

f(s, yn(s))ds

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

t2
∫

t1

f(s, yn(s))ds

∣

∣

∣

∣

∣

∣

≤ M |t2 − t1|.
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Next, let t1 and t2 be arbitrary numbers satisfying |ti − t0| ≤ α for i = 1, 2. By (7.1.15) we can find
n so large that

M

L

∞
∑

j=n

Lj+1αj+1

(j + 1)!
< ǫ/3

so that
|y(ti) − yn(ti)| < ǫ/3, i = 1, 2.

Since yn(t) is continuous, we can find δ > 0 such that if |t1 − t2| < δ, then

|yn(t1) − yn(t2)| < ǫ/3.

Combining, we see that whenever |t1 − t2| < δ and |ti − t0| < α for i = 1, 2, we have

|y(t1) − y(t2)| ≤ |y(t1) − yn(t1)| + |yn(t1) − yn(t2)| + |yn(t2) − y(t2)| ≤ ǫ,

so that y(t) is continuous.

The last step is to prove that the obtained function is indeed the solution of the Cauchy problem in
the integral form (7.1.9)

y(t) = y0 +

t
∫

t0

f(s, y(s))ds.

Since by construction

yn+1(t) = y0 +

t
∫

t0

f(s, yn(s))ds

we obtain

y(t) = lim
n→∞

yn+1(t) = y0 + lim
n→∞

t
∫

t0

f(s, yn(s))ds

so that we have to prove that

lim
n→∞

t
∫

t0

f(s, yn(s))ds =

t
∫

t0

f(s, y(s))ds. (7.1.16)

Firstly, note that the right-hand side is well-defined as y is a continuous function, f is continuous so
that the composition f(s, y(s)) is continuous and the integral is well-defined. Thus, we can write, by
(7.1.15),

∣

∣

∣

∣

∣

∣

t
∫

t0

f(s, yn(s))ds −
t
∫

t0

f(s, y(s))ds

∣

∣

∣

∣

∣

∣

≤
t
∫

t0

|f(s, yn(s)) − f(s, y(s))|ds ≤ L

t
∫

t0

|yn(s) − y(s)|ds

≤ L
M

L

∞
∑

j=n

Lj+1αj+1

(j + 1)!

t
∫

t0

ds ≤Mα
∞
∑

j=n

Lj+1αj+1

(j + 1)!
.

As before, the sum above approaches zero as n→ ∞ and therefore (7.1.16), and the whole theorem,
is proved.

We illustrate the use of this theorem on several examples.

Example 7.8. We have seen in Example 7.4 that there are two solutions to the problem

y′ =
√
y, t ≥ 0

y(0) = 0.
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In this case f(t, y) =
√
y and fy = 1/2

√
y; obviously fy is not continuous in any rectangle |t| ≤ a,

|y| ≤ b and we may expect troubles.

Another example of nonuniqueness is offered by

y′ = (sin 2t)y1/3, t ≥ 0

y(0) = 0, (7.1.17)

Direct substitution shows that we have 3 different solutions to this problem: y1 ≡ 0, y2 =
√

8/27 sin3 t

and y3 = −
√

8/27 sin3 t.

Example 7.9. Show that the solution y(t) of the initial value problem

y′ = t2 + e−y2

,

y(0) = 0,

exists for 0 ≤ t ≤ 0.5, and in this interval, |y(t)| ≤ 1.

Let R be the rectangle 0 ≤ t ≤ 0.5, |y| ≤ 1. The function f(t, y) = t2 + e−y2

is continuous and has
continuous derivative fy. We find

M = max
(t,y)∈R

|f(t, y)| ≤ (1/2)2 + e0 = 5/4,

thus the solution exists and is unique for

0 ≤ t ≤ min{1/2, 5/4} = 1/2,

and of course in this interval |y(t)| ≤ 1.

Example 7.10. The solution of the initial value problem

y′ = 1 + y2,

y(0) = 0,

is given by y(t) = tan t. This solution is defined only for −π/2 < t < π/2. Let us check this equation
against the Picard Theorem. We have f(t, y) = 1 + y2 and fy(t, y) = 2y and both functions are
continuous on the whole plane. Let R be the rectangle |t| ≤ a, |y| ≤ b, then

M = max
(t,y)∈R

|f(t, y)| = 1 + b2,

and the solution exists for

|t| ≤ α = min{a, b

1 + b2
}.

Since a can be arbitrary, the maximal interval of existence predicted by the Picard Theorem is the
maximum of b/(1 + b2) which is equal to 1/2.

This shows that it may happen that the Picard theorem sometimes does not give the best possible
answer - that is why it is sometimes called ”the local existence theorem”.

Example 7.11. Suppose that |f(t, y)| ≤ K in the whole plane R2. Show that the solution of the initial
value problem

y′ = f(t, y),

y(t0) = y0,

where t0 and y0 are arbitrary, exists for all t ∈ R.
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Let R be the rectangle |t− t0| ≤ a, |y − y0| ≤ b for some a, b. The quantity M is given by

M = max
(t,y)∈R

|f(t, y)| = K,

and the quantity

|t− t0| ≤ α = min{a, b
K

},

can be made as large as we wish by choosing a and b sufficiently large. Thus the solution exists for
all t.

To be able to extend the class of functions f for which the solution is defined on the whole real line
we must introduce the concept of the continuation of the solution.

Remark 7.12. Picard’s theorem gives local uniqueness that is for any point (t0, y0) around which the
assumptions are satisfied, there is an interval over which there is only one solution of the given
Cauchy problem. However, taking a more global view, it is possible that we have two solutions y1(t)
and y2(t) which coincide over the interval of uniqueness mentioned above but branching for larger
times. If we assume that any point of the plane is the uniqueness point, such a scenario is impossible.
In fact, if y1(t) = y2(t) over some interval I, then by continuity of solutions, there is the largest t,
say t1, having this property. Thus, y1(t1) = y2(t1) with y1(t) 6= y2(t) for some t > t1. Thus, the point
(t1, y1(t1)) would be the point violating Picard’s theorem, contrary to the assumption.

An important consequence of the above is that we can glue solutions together to obtain solution defined
on a possibly larger interval. If y(t) is a solution to (7.1.2) defined on an interval [t0 −α, t0 +α] and
(t0 +α, y(t0 +α)) is a point around which the assumption of Picard’s theorem is satisfied, then there
is a solution passing through this point defined on some interval [t0 + α − α′, t0 + α + α′], α′ > 0.
These two solutions coincide on [t0+α−α′, t0+α] and therefore, by the first part, they must coincide
over the whole interval of their common existence and therefore constitute a solution of the original
Cauchy problem defined at least on [t0 − α, t0 + α+ α′].

Example 7.13. Using such a patchwork technique, global existence can be proved for a larger class of
right-hand sides in (7.1.2). Assume that the function f is globally Lipschitz that is

|f(t, y1) − f(t, y2)| ≤ L|y1 − y2|

for all t, y1, y2 ∈ R, where the constant L is independent of t and y1, y2. Let y(t) be the solution
passing through (t0, y0). It is defined on the interval |t − t0| ≤ α with α = min{a, b/M}. Here, a
and b can be arbitrarily large as f is defined on the whole R2. Let as fix a = 1/(L + 1). Lipschitz
continuity yields

|f(t, y) − f(t, y0)| ≤ L|y − y0| ≤ Lb

for (t, y) ∈ R. Thus,

|f(t, y)| ≤ Lb+ |f(t, y0)| ≤ Lb+ max
t0−1/(L+1)≤t≤t0+1/(L+1)

|f(t, y0)| = Lb+m(t0, y0)

so that
M ≤ Lb+m(t0, y0)

and
b

M
≥ b

Lb+m(t0, y0)
=

1

L+m(t0, y0)/b
.

For any fixed t0, y0 we can select b large enough so that m(t0, y0)/b ≤ 1 and thus, for such a b

α =
1

L+ 1
.
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The solution therefore is defined at least on the interval [t0 − α, t0 + α], where α = 1
L+1 , and the

length of the interval of existence is independent of t0 and y0. Next we shall use the method
of small steps. We take t1,0, t1,0 = t0 + 0.9α with corresponding y1,0 = y(t1,0) as a new Cauchy
data. By the above there is a solution of this Cauchy problem that is defined on [t1,0 − α, t1,0 + α] =
[t0 − 0.1α, t0 + 0.9α + α] and by uniqueness the two solutions coincide on [t0 − 0.1α, t0 + α] and
therefore by gluing them together we obtain a the solution of the original Cauchy problem defined on
[t0 − α, t0 + 0.9α+ α]. Continuing this way we eventually cover the whole real line with solutions as
each time we make a step of constant length.

Note that the crucial rôle here was played by the fact that the numerator and denominator of the
fraction b/M grew at the same rate. The procedure described above would be impossible if f(y) grew
faster than linearly as y → ∞, like in Example 7.10. There, b/M = b/(1 + b2) and if we enlarge b,
then the possible time step will become smaller and there is a possibility that the time steps will sum
up to a finite time determining the maximal interval of existence of the solution as in Example 7.10.

Picard’s theorem ensures existence for only a bounded interval |t − t0| ≤ α, where in general α
depends on the initial condition (through the rectangle R). In most applications it is important to
determine whether the solution exists for all times, as discussed in the previous two examples. To be
able to discuss this question we shall introduce the maximal interval of existence of a solution of the
differential equation.

Next we present a powerful result allowing to assess whether a local solution to (7.1.2) can be
extended to a global one; that is, defined for all t (and also providing an alternative proof of the
result in the example above). First we have to introduce new terminology. We say that [t0, t0 + α∗)
is the maximal interval of existence for a solution y(t) to (7.1.2) if there is no solution y1(t) on a
longer time interval [t0, t0 + α+) where α+ > α∗ satisfying y(t) = y1(t) for t ∈ [t0, t0 + α∗). In other
words, we cannot extend y(t) beyond t0 + α∗ so that it remains a solution of (7.1.2).

Theorem 7.14. Assume that f in (7.1.2) satisfies the assumptions of Picard’s theorem on R2. The
solution y(t) of (7.1.2) has a finite maximal interval of existence [t0, t0 + α∗) if and only if

lim
t→t0+α∗

|y(t)| = ∞. (7.1.18)

Proof. Clearly, if (7.1.18) is satisfied, then y(t) cannot be extended beyond t0 + α∗. On the other
hand, assume that (7.1.18) does not hold. Let us reflect what it means. The meaning of (7.1.18)
is that for any K there is tK such that for any t0 + α∗ > t ≥ tK we have |y(t)| ≥ K. Thus, by
saying that (7.1.18) does not hold, we mean that there is K such that for any t < t0 + α∗ there is
t < t′ < t0 + α∗ with |y(t′)| < K. In particular, there is a sequence (tn)n∈N such that tn → t0 + α∗

we have |yn| := |y(tn)| < K. Consider Cauchy problems

y′ = f(t, y), y(tn) = yn. (7.1.19)

Since |yn| are bounded by K and f satisfies the conditions of the Picard theorem on R2, we can
consider the above problem in rectangles Rn = {(t, y); |t− tn| < a, |y − yn| < b} for some fixed a, b.
Moreover, all Rns are contained in the rectangle R = {(t, y); t0 − a < t < t0 + α∗,−K − b < y <
K + b} and the solutions of the problems (7.1.19) are defined on intervals (tn − α, tn + α) where
α = min{a, b/M} and M can be taken as max(t,y)∈R |f(t, y)| and is independent of n. If α∗ was
finite, then we could find tn with t0 + α∗ − tn < α so that the solution could be continued beyond
t0 + α∗ contradicting the assumption that [t0, t0 + α∗) is the maximal interval of existence. ✷

Example 7.15. This result allows to give another proof of the fact that solutions of (7.1.2) with globally
Lipschitz right-hand side are defined on the whole line. In fact, using Gronwall’s lemma, we obtain
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|y(t)| ≤ |y0| +

t
∫

t0

|f(s, y(s)|ds ≤ |y0| +

t
∫

t0

|f(s, y(s)) − f(s, y0)|ds+

t
∫

t0

|f(s, y0)|ds

≤ |y0| +

t
∫

t0

|f(s, y0)|ds+ L

t
∫

t0

|y(s) − y0)|ds ≤ |y0| +

t
∫

t0

|f(s, y0)|ds+ L

t
∫

t0

|y0|ds+ L

t
∫

t0

|y(s)|ds

≤ |y0| +

t
∫

t0

|f(s, y0)|ds+ L(t− t0)|y0| + L

t
∫

t0

|y(s)|ds

If y(t) is not defined for all t, then by the previous remark, |y(t)| becomes unbounded as t → tmax

for some tmax. Denoting

c = |y0| +

tmax
∫

t0

|f(s, y0)|ds+ L(tmax − t0)|y0|

which is finite as f is continuous for all t, we can write the above inequality as

|y(t)| ≤ c+ L

t
∫

t0

|y(s)|ds

for any t0 ≤ t ≤ tmax. Using now Gronwall’s lemma, we obtain

|y(t)| ≤ c expLt ≤ c expLtmax

contradicting thus the definition of tmax.

2 Appendix B: Cayley-Hamilton theorem and dimension of generalized
eigenspaces

Let us recall that the characteristic polynomial of a square d× d matrix A is defined as

pA(λ) = det(A− λI) =

∣

∣

∣

∣

∣

∣

∣

a11 − λ . . . a1d
...

...
a1d . . . ann − λ

∣

∣

∣

∣

∣

∣

∣

. (7.2.20)

Evaluating the determinant we obtain that

pA(λ) = p0 + p1λ+ . . .+ (−1)dλd

is a polynomial in λ of degree d. Then

Theorem 7.16. (Cayley-Hamilton). We have

pA(A) = p0I + p1A + . . .+ (−1)dAd = 0. (7.2.21)

Proof. Let λ /∈ σ(A), that is, λ is not an eigenvalue of A. Then there exists an inverse (λI − A)−1

which can be expressed as

(λI − A)−1 =
C(λ)

det(λI − A)



194 7 Appendices

where C(λ) is the matrix composed of the minors of (λI −A), that is, determinants of the matrices
obtained by deleting the i-th row and the j-th column of λI − A, multiplied by (−1)i+j . Thus, the
entries of C(λ) are polynomials of degree d− 1 and therefore

C(λ) = λd−1Cd−1 + . . .+ C0,

where Ci, i = 1, . . . , d− 1, are d× d matrices. In other words, we can write

(λI − A)(λd−1Cd−1 + . . .+ C0) = p0I + p1λI + . . .+ (−1)dλdI. (7.2.22)

Formally, if we replace λ by A on both sides of (7.2.22), we will get the statement of the theorem.
However, it is not immediately clear that we can extend the equality from C to the space of matrices
so we argue as follows. Since we have polynomials on both sides of (7.2.22), the (matrix) coefficients
of like powers of λ on both sides must be equal. Thus we obtain

−AC0 = p0I,
C0 −AC1 = p1I,

...
...

...,

Cd−1 = (−1)dI.

Now, if we multiply the first row of the above table by A0, the second by A1, and so on, with the
last multiplied by Ad, and add them together, we will get

0 = −AC0 + AC0 −A2C1 + . . .+ AdCd−1 = (A−A)(Ad−1Cd−1 + . . .+ C0)

= p0I + p1A + . . .+ (−1)dAd,

which ends the proof. ✷

The main aim of the second part of this appendix is to prove the following result.

Theorem 7.17. Let X be a complex, d-dimensional vector space and let A : X → X be a linear
operator. Then X is the direct sum of the generalized eigenspaces of A and the dimension of each
generalized eigenspace is equal to the algebraic multiplicity of the corresponding eigenvalue.

Proof. Consider an operator T : X → X and, for j ∈ N0 = N ∪ {0}, define the subspaces

Nj(T ) = Ker T j = {x ∈ X ; T jx = 0}, N =
⋃

j∈N0

Nj(T ),

Mj(T ) = Im T j = {y ∈ X ; T jx = y for some x ∈ X}, M =
⋂

j∈N0

Mj(T ).

It is easy to see that both families of sets are nested:

0 = N0(T ) ⊆ N1 ⊆ . . . ⊆ Nj ⊆ . . . ⊆ N ;

X = M0(T ) ⊇M1 ⊇ . . . ⊇Mj ⊇ . . . ⊇M.

We observe that whenever Nj 6= Nj+1, then there is an element z ∈ Nj+1 which is linearly indepen-
dent of Nj . Indeed, otherwise we would have

z =
∑

k

αkxk, αk ∈ C,xk ∈ Nj

and, by linearity of T , and thus T j,

T jz =
∑

k

αkT
jxk = 0,



2 Appendix B: Cayley-Hamilton theorem and dimension of generalized eigenspaces 195

so z ∈ Nj(T ). Similarly, if Mj 6= Mj+1, then there is an element y ∈Mj which is linearly independent
of Mj+1. Otherwise we would have

y =
∑

k

βkyk, βk ∈ C,yk ∈Mj+1

and, by linearity of T , and thus T j, for some zk ∈ X ,

y =
∑

k

βkT
j+1zk = T j+1

(

∑

k

βkzk

)

,

so y ∈Mj+1(T ). This shows that there are r,m such that

Nj(T ) = Nr(T ), j ≥ r,

Mj(T ) = Nm(T ), j ≥ m.

This follows since X is finite dimensional and, as we proved above, if we had infinitely many different
Njs or Mjs, then we would have infinitely many linearly independent elements in X . Consequently,

N(T ) = Nr(T ), M(T ) = Mm(T )

We observe that both N(T ) and M(T ) are invariant under T . Indeed, from the definition, it follows
that if T jx = 0 for j > r, then there exists i ≤ r such that T ix = 0. Thus, if x ∈ N(T ), then
T jx = 0 for some 0 ≤ j ≤ r. If j = 0, then x = 0 and 0 = Tx ∈ N(T ). If j ≥ 1, then we can
write 0 = T jx = T j−1Tx and thus Tx ∈ N(T ). Similarly, ify ∈ M(T ), then y = T jxj , xj ∈ X ,
j = 0, . . . ,m and Ty = T j+1xj . If j = 0, . . . ,m− 1, and T j+1xj ∈ M(T ) and Tm+1xm ∈ M(T ) as
Mm+1(T ) = Mm(T ). Furthermore, T |N(T ) is a nilpotent operator, that is, T rx = 0 for any x ∈ N(T ).
Then we have

X = N(T ) ⊕M(T ).

Indeed, since TM(T ) = M(T ), T is surjective onto M(T ). It is a standard result in the theory of
systems of linear equations that if a k×k equation always has a solution, then this solution is unique.
This can be ascertained by considering a matrix representation of T |M(T ). Then the fact that the
system always has a solution means that the columns of the matrix span the whole space (and the
solution is formed of the coefficient of the expansion of the right hand side in this basis). But sice
these are k vectors in a k-dimensional space, the columns must form a basis, so that the solution is
unique. Thus T |T (M) is invertible. Then, since T rM(T ) = M(T ), T r|M(T ) is also invertible and thus
T rx 6= 0 for any M(T ) ∋ x 6= 0. Thus M(T ) ∩ N(T ) = {0}. On the other hand, for any v ∈ X ,
we have Tmv =: y ∈ M(T ). Since Tm|M(T ) is invertible, we have Tmv = Tmz for some z ∈ M(T ).
Writing v = z + (v − z) gives the desired decomposition as Tm(v − z) = 0 yields v − z ∈ N(T ).

To proceed, let λ1, . . . , λq be the distinct eigenvalues of T . We define

Nk := N(λkI − T ) =
⋃

i≥0

Ker(λkI − T )j =

rk
⋃

i=0

Ker(λkI − T )j,

Mk := M(λkI − T ) =
⋂

j≥0

Im(λkI − T )j =

mk
⋂

j=0

Im(λkI − T )j,

for some rk,mk, k = 1, . . . , q. As before, these space are invariant under T . Indeed, since T commutes
with λkI − T , if (λkI − T )jx = 0 for some j, then (λkI − T )jTx = T (λkI − T )jx = 0. Similarly, if
y ∈Mk, then y = (λkI − T )jxj for any j and thus Ty = T (λkI − T )jxj = (λkI − T )jTxj.

We want to prove
X = N1 ⊕ . . .⊕Nq. (7.2.23)

From the previous part,



196 7 Appendices

X = N1 ⊕M1.

The next part of the proof is inductive, with induction on the dimension d of the space X . The
dimension d = 1 is trivial and d = 1 is also obvious with M1 = {0}. Let d > 1 and assume that the
result is valid for any space with smaller dimension. In particular, the decomposition holds for M1

and T |M1 . Therefore it is enough to show that

N((λkI − T )|M1) = N(λkI − T ) = Nk (7.2.24)

for k > 1.

We begin with showing that
Nk ∩Ker(λkI − T ) = {0}. (7.2.25)

Indeed, let x 6= 0 satisfies (λ1I − T )x = 0. Then

(λkI − T )x = (λk − λ1)x

and
(λkI − T )jx = (λk − λ1)jx 6= 0

for any j and hence x /∈ Nk. As under T , Nk is invariant under λ1I − T , that is

(λ1 − T )Nk ⊂ Nk.

Since by (7.2.25), λ1I − T is one-to-one on Nk, we must have

(λ1 − T )Nk = Nk

for any k. This shows that (λ1 − T )jNk = Nk for any j ≥ 0 so that Nk ⊂M1 for k > 1. This shows
that λ2, . . . , λq are eigenvalues of T |M2 and, since eigenvalues of the latter must be eigenvalues of T ,
the spectrum of T |M2 consists of λ2, . . . , λq. Since it is clear that Nk((λkI −T )|M1) ⊂ Nk, we obtain
(7.2.24) and (7.2.23) is proved.

To complete the proof of the theorem, we have to prove that Nk = Ker(λkI −T )nk = Eλk
where nk

is the algebraic multiplicity of λk and Eλk
is the generalized (associated) eigenspace corresponding

to λk. First we observe that due to (7.2.23) the characteristic polynomial pT (λ) factorizes as

pT (λ) = pT |N1
(λ) · . . . · pT |Nq

(λ).

This is due to the fact that by change of coordinates T can be transformed to a block diagonal form
where each block at the diagonal corresponds to one of the operators T |Nk

and the determinant
does not change under similarity transform. On the other hand, λk is the only eigenvalue of T |Nk

so pT |Nk
(λ) = (λk − λ)dimNk . Hence, dimNk = nk. Since clearly Eλk

⊆ Nk, we need to prove the

inverse inclusion. Let Nk = Ker(λkI − T )rk , then there is x ∈ Nk such that (λkI − T )rkx = 0 and
(λkI − T )rk−1x 6= 0. However, by the Cayley-Hamilton theorem, (λkI − T )nkx = 0 for all x ∈ Nk.
Thus rk − 1 < nk or rk ≤ nk. Thus Nk ⊆ Eλk

. ✷

3 Appendix C: The Perron-Frobenius theorem



References

1. J. Banasiak and M. Lachowicz, Methods of small parameter in mathematical biology and other applied
sciences, in preparation.

2. J. Banasiak, Mathematical Modelling in One Dimension. An Introduction via Difference and Differ-
ential Equations, Cambridge University Press, Cambridge, 2013.
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