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Abstract
This paper is devoted to the following question � how to characterize convex

nowhere dense subsets of normed linear spaces in terms of porosity? The motiva-
tion for this study originates from papers of V. Olevskii and L. Zajíµcek, where it is
shown that convex nowhere dense subsets of normed linear spaces are porous in some
strong senses.

1 Introduction

The paper concerns the topic of describing smallness of interesting sets of metric spaces
in terms of porosity. The notions of porosity and �-porosity (a set is �-porous if it is a
countable union of porous sets) can be considered as stronger versions of nowhere density
and meagerness �in particular, in any "reasonable" metric space, there exist sets which are
nowhere dense and are not �-porous. Thus it is interesting to know that some sets are not
only nowhere dense (meager) but even porous (�-porous). In such a direction many earlier
results were extended �for example, it turned out that the set of all Banach contractions
was not only meager but also �-porous in the space of all nonexpansive mappings (cf. [1],
[7]). Since there are various types of porosity (more or less restrictive), the natural problem
of �nding the most restrictive notion of porosity, which would be suitable for an examined
set, is also an interesting task. The reader who is not familiar with porosity is referred to
the survey papers [10] and [11] on porosity on the real line, metric spaces and normed linear
spaces.
In the paper we try to answer the following question: what is the best approximation of

smallness (in terms of porosity) of convex nowhere dense subsets of normed linear spaces?
Zajíµcek [11] observed that such sets are R-ball porous for every R > 0; and 0-cone porous
(cf. [11, p. 518]). In fact, Zajíµcek�s observation is an improvement of the earlier result of
Olevskii [4] (as was shown in [9], Olevskii worked with a much weaker version of porosity
than R-ball porosity). Hence for our purpose we need to �nd some stronger condition, which
would imply R-ball porosity for every R > 0; and 0-cone porosity.
The paper is organized as follows:
In Section 2, we give de�nitions of some types of porosity, i.e., R-ball porosity, 0-angle

porosity (a stronger version of 0-cone porosity) and introduce the notion of c-porosity. We
also make some basic observations (i.e., c-porosity =) 0-angle porosity =) R-ball porosity)
and demonstrate that c-porosity gives the characterization of smallness of convex nowhere
dense sets.
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In Section 3, we prove that in any Hilbert space H with dimH > 1; the unit sphere
is 0-angle porous and is not a countable union of c-porous sets (i.e., is not �-c-porous).
This observation shows that the notion of 0-angle porosity is quite far from the notion of
c-porosity.
The motivation for Section 4 originates from the fact that the notion of c-porosity uses the

space of all continuous functionals X�. In this section we discuss the possibility of �nding
the best approximation of smallness of a convex nowhere dense sets in terms of porosity
without using X�:
In Section 5, we give one example of �-c-porous subset of the space of continuous func-

tions. For other interesting �-c-porous sets, we refer the reader to [4] (one of them deals
with the Banach�Steinhaus principle).

2 Some notions of porosity

In this section we present the de�nitions of R-ball porosity, ball smallness, (�-)0-angle poros-
ity and (�-)c-porosity. We also make some basic observations, which will be used in the sequel
(see Proposition 2 and Example 1).
Let (X; k � k) be a real normed linear space and M � X. Given x 2 X and r > 0, we

denote by B(x; r) the open ball with center x and radius r. By X� we denote the space of
all continuous linear functionals on X

De�nition 1 ([6],[11]) Let R > 0. We say that M is R-ball porous if for any x 2 M and
� 2 (0; 1); there exists y 2 X such that kx� yk = R and B(y; �R) \M = ;:

Remark 1 The de�nition of R-ball porosity presented in [6], [11, p. 516] is slightly di¤erent
from the above one. Namely, M is R-ball porous if for any x 2 M and " 2 (0; R); there
exists y 2 X such that kx � yk = R and B(y;R � ") \M = ;: However, it is obvious that
both de�nitions are equivalent.

De�nition 2 ([6],[11]) We say that M is 0-angle porous if for every x 2 M and every
r > 0, there exist y 2 B(x; r) and � 2 X�nf0g such that

fz 2 X : �(z) > �(y)g \M = ;:

Note that 0-angle porosity can be considered as a "global" version of (mentioned in the
introduction) 0-cone porosity and, in particular, 0-angle porosity implies 0-cone porosity.
For the de�nitions of �-cone porosity and �-angle porosity, where � 2 [0; 1), see .

[11, p. 516] and [6], respectively.

De�nition 3 M is called c-porous if for any x 2 X and every r > 0; there are y 2 B(x; r)
and � 2 X�nf0g such that

fz 2 X : �(z) > �(y)g \M = ;:

C-porosity turns out to be the suitable notion to describe the smallness of convex nowhere
dense sets (see Proposition 1), and is a stronger form of 0-angle porosity (x 2 X instead
x 2 M). Indeed, consider the unit sphere S of any nontrivial normed space. S is not
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c-porous (simply take x = 0 and r = 1
2
), and is 0-angle porous �to see it, use the Hahn�

Banach separation theorem (cf. [8]) for sets B(0; 1) (the closure of B(0; 1)) and f(1 + r
2
)yg,

where y 2 S and r > 0.
If a set M is a countable union of c-porous sets, then we say that M is �-c-porous. In

the same way we de�ne �-0-angle porosity. If M = [n2NMn and each Mn is Rn-ball porous
for some Rn > 0, then we say that M is ball small.
The next result shows that c-porosity is the best approximation of smallness (in the sense

of porosity) of convex nowhere dense sets (in the proof we extend an argument suggested by
Zajíµcek [11, p. 518]).

Proposition 1 A subset M of a normed space X is c-porous if and only if convM is
nowhere dense.

Proof. " =) " It is obvious that for any � 2 X� and y 2 X; we have

fz : �(z) > �(y)g \M = ; () fz : �(z) > �(y)g \ convM = ;:

Hence if M is c-porous, then convM is also c-porous and, in particular, nowhere dense.
" (= " Fix any x 2 X and r > 0. Since convM (the closure of convM) is nowhere

dense, there exists y 2 B(x; r)nconvM . Sets convM and fyg satisfy the assumptions of the
Hahn-Banach separation theorem, so there exist � 2 X� and c 2 R such that �(y) > c and
for any z 2 convM; �(z) < c. Then M \ fz : �(z) > �(y)g = ;.

Corollary 1 Let X be any normed space and let (�) be any condition such that:

if A � X satis�es (�) and B � A, then B satis�es (�).

If every convex and nowhere dense subset of X satis�es (�), then any c-porous subset of X
satis�es (�).

The notions of 0-angle porosity and c-porosity involve the space X�, however, in its origin
the porosity was de�ned in metric spaces. In the next part of this section we will show, what
kind of porosity without using X� is implied by them (see Proposition 2). Note that we will
use this result in Sections 3 and 4.
We omit the proof of the following result since it is technical and can be easily deduced

from the proof of [4, Lemma 1].

Lemma 1 Let R > 0; r 2
�
0; 1

2

�
; x0; y0 2 X, � 2 X�nf0g. If ky0 � x0k < rR; then there

exists y 2 X such that ky � x0k = R and

B(y; (1� 2r)R) � fx 2 X : �(x) > �(y0)g:

Proposition 2 The following statements hold:

(i) If M is 0-angle porous, then M is R-ball porous for every R > 0, that is

for every R> 0; x 2M and every � 2 (0; 1); (1)

there exists y 2X with ky � xk = R and B(y; �R) \M = ;:
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(ii) If M is c-porous, then

for every R> 0; x 2 X and every � 2 (0; 1); (2)

there exists y 2X with ky � xk = R and B(y; �R) \M = ;:

Proof. We will prove only (i); since the proof of (ii) is very similar. Fix R > 0; x0 2 M
and � 2 (0; 1). Let r > 0 be such that 1 � 2r > �, and let y0 2 X and � 2 X�nf0g be
such that ky0 � x0k < rR and M \ fx : �(x) > �(y0)g = ;: By Lemma 1, we have that
there exists y 2 X such that ky � x0k = R and B(y; (1� 2r)R) � fx : �(x) > �(y0)g: Since
B(y; �R) � B(y; (1� 2r)R), the result follows.

Note that (2) is stronger than (1). Indeed, the unit sphere in any normed space satis�es
(1) and does not satisfy (2). In the sequel, we will extend this observation (see Theorem 1).
The next example shows, in particular, that the converse of the Proposition 2 is not true.

Example 1 Let (X; k � k) be one of the following real Banach spaces: c0 or lp, p 2 [1;1).
Let us de�ne the set M := [n2Nf�ne1;�ne2; :::;�neng where

en(r) :=

�
1; r = n

0; r 6= n:

Now we will show that M satis�es the following condition, which is stronger than (2)
(and, in particular, than (1)):

for every R > 0; x 2 X; there exists y 2 X s.t. ky � xk = R and B(y;R) \M = ;: (3)

To see it, take any x 2 X and R > 0 . Since x(n) ! 0, there exists n0 > 3R such that
j x(n0) j < R. Assume, without loss of generality, that x(n0) � 0: Now let y 2 X be such
that

y(k) :=

�
x(k); k 6= n0

x(k) +R; k = n0
:

Then kx� yk = R. To see that B(y;R) \M = ;, take any z 2M and consider three cases:

(i) z(n0) = 0. Then ky � zk �j x(n0) +R� z(n0) j=j x(n0) +R j� R:

(ii) z(n0) � n0: Then ky � zk �j x(n0) +R� z(n0) j� n0 � x(n0)�R � R:

(iii) z(n0) � �n0. Then ky � zk �j x(n0) +R� z(n0) j� n0 + x(n0) +R � R:

Now we will show that M is not 0-angle porous. It is su¢ cient to show that for any
� 2 X�nf0g and y 2 X, M \ fx : �(x) > �(y)g 6= ;. Fix any � 2 X�nf0g and y 2 X. Then
there exists a sequence x0 such that �(x) =

P1
n=1 x(n)x0(n) for any x 2 X. Let n1 2 N be

such that x0(n1) 6= 0. Assume, without loss of generality, that x0(n1) > 0. Let n2 � n1 be
such that n2x0(n1) > �(y). Then n2en1 2M and

�(n2en1) = n2x0(n1) > �(y):

Thus M is not 0-angle porous, and hence not c-porous.
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3 On c-porosity

In this section we will show that c-porosity is a much stronger notion of porosity than 0-angle
porosity. This will justify introducing this notion.
From now on, if (H; (� j �)0) is a real Hilbert space, then (R�H; (� j �)) denotes the real

Hilbert space R�H with the inner product (� j �) de�ned as follows:

((a; x) j (b; y)) := ab+ (x j y)0 for any (a; x); (b; y) 2 R�H:

Denote by k � k0 and k � k the norms generated by (� j �)0 and (� j �); respectively.
We will show that in any nontrivial real Hilbert space H with dimH > 1, the unit sphere

S is not �-c-porous. In fact, we will obtain a more general result: if S = [n2NSn, then
there exists n0 2 N such that Sn0 does not satisfy (2), and hence (by Proposition 2) S is not
�-c-porous.

Lemma 2 Let (H; (� j �)0) be a nontrivial real Hilbert space. For any � 2 (0; 1); the set

V� := f(a; y) 2 R�H : 1� � � a � 1 and k(a; y)k = 1g

does not satisfy (2):

Proof. Take
�
1� 1

2
�; 0
�
2 R�H, R = 3 and

� :=
1

R
max

(s
R2 � 4

�p
2� � �2 � 1

2
� +

1

16
�2
�
;

r
R2 � 1

4
�2

)
: (4)

It is easy to see that � 2 (0; 1). Let (a0; y0) 2 R�H be such that



(a0; y0)� �1� 12�; 0
�



 = R: (5)

We will show that B ((a0; y0) ; �R) \ V� 6= ;: Consider three cases:

Case 1: a0 � 1 and y0 6= 0. Then

a0 < �1 or ky0k0 > 2:

Indeed, otherwise we would have a contradiction since

R =





(a0; y0)� �1� 12�; 0
�



 =

s�
a0 �

�
1� 1

2
�

��2
+ ky0k20

=

s
a20 � 2a0

�
1� 1

2
�

�
+

�
1� 1

2
�

�2
+ ky0k20 �

p
1 + 2 + 1 + 4 < 3 = R:

Set � :=
p
2� � �2=ky0k0. It is easy to see that (1 � �; �y0) 2 V� . We will show that

(1� �; �y0) 2 B ((a0; y0); �R). By (5), we have

k(1� �; �y0)� (a0; y0)k2 =
�
�1
2
� �

�
a0 �

�
1� 1

2
�

���2
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+k(� � 1)y0k20 =
1

4
�2 + �

�
a0 �

�
1� 1

2
�

��
+

�
a0 �

�
1� 1

2
�

��2
+ 2� � �2 � 2

p
2� � �2ky0k0 + ky0k20

= R2 � 1
4
�2 + (1 + a0) � � 2

p
2� � �2ky0k0;

so if a0 < �1; then, by (4), we infer

k(1� �; �y0)� (a0; y0)k2 < R2 �
1

4
�2 � �2R2;

and if ky0k0 > 2; then, again by (4), we get

k(1� �; �y0)� (a0; y0)k2 < R2 �
1

4
�2 + 2� � 4

p
2� � �2 � �2R2:

Case 2: a0 � 1 and y0 = 0: In this case a0 =
�
1� 1

2
�
�
�R. Set z 2 H with kzk0 =

p
2� � �2.

It is obvious that (1� �; z) 2 V� . We will show that (1� �; z) 2 B ((a0; 0) ; �R). By (4), (5)
and a fact that R = 3, we get

k(1� �; z)� (a0; 0)k2 = (1� � � 1 +
1

2
� +R)2 + 2� � �2

= R2 � �R + 1
4
�2 + 2� � �2 = R2 � � � 3

4
�2 < R2 � 3

4
�2 < �2R2:

Case 3: a0 > 1: Take (1; 0) 2 V�. By (4) and (5) we infer

k(a0; y0)� (1; 0)k2 =




��a0 � �1� 12�

��
� 1
2
�; y0

�



2

=

�
a0 �

�
1� 1

2
�

��2
� �

�
a0 �

�
1� 1

2
�

��
+
1

4
�2 + ky0k20

= R2 � �(a0 � 1)�
1

4
�2 < R2 � 1

4
�2 � �2R2;

so (1; 0) 2 V� \B
��
1� 1

2
�; 0
�
; �R

�
:

As a consequence, in all cases we have B ((a0; y0) ; �R) \ V� 6= ;; and hence the result
follows.

Theorem 1 Let (H; (� j �)) be any Hilbert space with dimH > 1 and let S be the unit sphere
in H. If S = [n2NSn, then there is n0 2 N such that Sn0 does not satisfy (2). In particular,
S is not �-c-porous.

Proof. The second statement follows from the �rst one by Proposition 2. We will prove
the �rst statement. Let (H; (� j �)0) be a Hilbert space with dimH > 1: Since S is complete,
by the Baire Category theorem, there exists n0 2 N such that Sn0 is not nowhere dense in
S: Hence there exists a nonempty set U open in S such that U � Sn0

S
= Sn0 (by Sn0

S
we

denote the closure of Sn0 in the space S). Since the closure of a set which satis�es (2), also
satis�es (2), the proof will be completed if we show that U does not satisfy (2). Take any
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x0 2 U and consider one dimensional subspace M := fax0 : a 2 Rg. It is well known (see,
e.g., [8]) that

M? := fy 2 H : (y j x0)0 = 0g
is a closed subspace of H and H = M �M?. Consider the space R �M?. It is easy to
see that the function H 3 ax0 + y

F7�! (a; y) is an isometrical isomorphism between H and
R�M?. Since (2) is a metric condition, it su¢ ces to show that the set

V := F (U) = f(a; y) 2 R�M? : ax0 + y 2 Ug

does not satisfy (2) in R�M?. Since S1 := F (S) = f(a; y) :k (a; y) k= 1g and
FjS : S ! S1 is a homeomorphism between S and S1, the set V is open in S1. Hence and by
the fact that the point (1; 0) is in V; we infer there exists 0 < � < 1; such that

V� � V; (6)

where V� is de�ned as in Lemma 2. Indeed, since (1; 0) 2 V and V is open in S1; we have
that there are c; d 2 R and r > 0 such that 0 < c < 1 < d and

[(c; d)�B(0; r)] \ S1 � V:

Set � := min
n
r2

2
; 1�c
2

o
and take any (a; y) 2 V�. Then

d > 1 � a � 1� � > 1� 1 + c = c

and
k yk0 =

p
1� a2 �

p
1� (1� �)2 =

p
2� � �2 <

p
2� � r;

so (a; y) 2 [(c; d) � B(0; r)] \ S1 which yields (6). Since V� does not satisfy (2) in view of
Lemma 2, the proof is completed.

Now we show that for the Euclidean space R, all presented notions of porosity coincide.
In [6, p. 222] it is given that any ball small subset of R is countable. Thus and by Proposition
2, if M � R, then M is �-c-porous () M is a countable union of sets satisfying (2) ()
M is �-0-angle porous ()M is ball small () M is countable.

4 Smallness of convex nowhere dense sets in terms of porosity
without using X�

In this section we will discuss the problem of �nding the best approximation of smallness
of a convex nowhere dense subset of a normed space X in terms of porosity without using
X�(as was mentioned, in its origin porosity was de�ned as a strictly metric condition). By
Propositions 1 and 2, any such set satis�es (2). This is a stronger version of the �rst part of
Zajíµcek�s observation, which states that such sets are R-ball porous for every R > 0. Indeed,
by Theorem 1, the unit sphere in Hilbert space is R-ball porous for every R > 0 and is not
a countable union of sets satisfying (2).
Now let M be the set de�ned in Example 1. M satis�es (3), hence (2), and is not

0-angle porous, so is not c-porous. This shows that, in general, the notion of c-porosity is
more restrictive than condition (2). On the other hand, as was mentioned, in any nontrivial
normed linear space, the unit sphere (which is 0-angle porous) does not satisfy (2), and
hence, in general, the notion of 0-angle porosity and condition (2) are not comparable.
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Clearly, condition (2) is only one of possible stronger versions of R-ball porosity for every
R > 0. The other are condition (3) and the following weakening of (3):

For any R> 0 and any x 2M; there exists y 2 X (7)

such that (kx� yk = R and B(y;R) \M = ;) :

Now the question arises whether any convex nowhere dense subset of any normed linear
space satis�es (7) or (3)?
Since the closed balls in �nite dimensional normed spaces are compact, conditions (3)

and (2) are equivalent in such spaces (note that a similar result is given in [2, Remark 2.4]),
and hence any convex nowhere dense subset of such space satis�es (3). However, in the
remainder of this section we will show that in a very wide class of Banach spaces there are
sets, which are convex and nowhere dense, and are not a countable union of sets satisfying
(7).
Let us focus our attention on nonre�exive spaces.

Proposition 3 Let (X; k �k) be a real nonre�exive Banach space. Then there exists a closed
subspace M  X; which is not a countable union of sets satisfying (7) .

Proof. Since X is a nonre�exive Banach space, there exists a closed subspace M  X such
that for every x0 2M; R > 0 and every y 2 X, if ky� x0k = R, then B(y;R)\M 6= ; (this
is a well known fact which follows from the James�theorem [3, p. 52]). We will show that
M is not a countable union of sets satisfying (7). Assume that M = [n2NMn. Since M is
complete, by the Baire Category theorem, there exists n0 2 N such that Mn0 is not nowhere
dense in M . Hence for some x 2M and r > 0, we have that

B(x; r) \M �Mn0

M
=Mn0.

Since x 2Mn0 , there exist x0 2Mn0 and r1 > 0 such that B(x0; r1) � B(x; r). Then

B(x0; r1) \M �Mn0 :

Fix any R > 0 and let y 2 X be such that ky�x0k = R. Then there exists z 2 B(y;R)\M ,
and then the segment (x0; z] � B(y;R)\M . Hence if x0 2 (x0; z] is such that kx0�x0k < r1,
then x0 2 B(y;R) \ B(x0; r1) \M � B(y;R) \Mn0. Thus B(y;R) \Mn0 6= ;, and hence
B(y;R) \Mn0 6= ;.
A natural question arises, what happens in re�exive spaces?

Example 2 An anonymous referee observed that the Hilbert cube

K =

�
x 2 l2 : �

1

n
� x(n) � 1

n
; n 2 N

�
does not satisfy (7). To see it, recall the concept of the so-called supported points: we
say x 2 M � X is a supported point of M , if there exists � 2 X�nf0g such that �(x) =
supf�(y) : y 2 Mg; if such a functional does not exist, then x is called a non-supported
point (cf. [5, p. 44]). Now take x0 = 0 and R = 1. Then it is easy to see that x0 is a
non-supported point of K. Now assume that y 2 l2 is such that ky � x0k = kyk = 1 and
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B(y; 1)\K = ;. Then by the Hahn�Banach separation theorem (cf. [8, p. 38]), there exists
� 2 l�2nf0g with

supf�(z) : z 2 Kg � inff�(z) : z 2 B(y; 1)g:
On the other hand, x0 is on the boundary of B(y; 1), and hence

�(x0) � inff�(z) : z 2 B(y; 1)g:

This gives a contradiction. Hence K does not satisfy (7).

By Propositions 3 and the above example, condition (2) seems to be quite suitable for
describing smallness of convex nowhere dense sets in terms of porosity without using X�.
However, the next example shows that there are sets which satisfy (7) (and, in particular,
(2)) and are not a countable union of c-porous sets.

Example 3 Let X = R2, k(x; y)k = jxj+ jyj and let

M = f(x; y) : x � 1=
p
2 and x2 + y2 = 1g.

It is easy to see that M satis�es (7). Moreover; using an analogous method as in the proof
of Lemma 1, it can be easily shown that M is not �-c-porous.

5 Applications

We will give one example of �-c-porous set (for other, we refer the reader to [4]).
Let H be a Hilbert space, and let K be a nonempty bounded closed and convex subset of

H: De�ne CB(K) := fA : K ! H : A is continuous and A(K) is bounded in Hg: Consider
CB(K) as a Banach space with the norm k A k := supx2K k A(x) k. Let |B be the set of
all Banach contractions:

|B = fA : K ! K : 9�2(0;1)8x;y2K k Ax� Ay k� � k x� y kg:

For any � 2 (0; 1); we also de�ne |B� := fA : K ! K : 8x;y2K k Ax�Ay k � � k x� y kg:

Proposition 4 |B is a �-c-porous subset of CB(K): In particular, |B is ball small.

Proof. De Blasi and Myjak [1] (cf. also [7]) proved that for any � < 1, |B� is lower porous
(and hence nowhere dense; for the de�nition of lower porosity, see [11]) subset of the space


 := fA : K ! K : 8x;y2K k Ax� Ay k � k x� y kg;

with the metric induced from (CB(K); k � k). Hence |B� is a nowhere dense subset of
CB(K): It is also obvious that |B� is convex. As a consequence, for any � < 1; the set |B�
is a c-porous subset of CB(K). Since |B = [n2N|B(1� 1

n
); the proof is completed.

.
Acknowledgements: I am very grateful to the anonymous referees and Simeon Reich for
suggestions how to modify the paper, and for solving the problem concerning condition (7)
in re�exive spaces. Also, I would like to thank Szymon G÷¾ab and Jacek Jachymski for many
valuable discussions.

9



References

[1] F.S. De Blasi and J. Myjak, Sur la porosité de l�ensemble des contractions sans point
�xe, C.R. Acad. Sci. Paris 308, 51�54, 1989.

[2] J. Duda, On the size of the set of points where the metric projection exists, Israel J.
Math. 140 (2004), 271�283.

[3] P. Habala, P. Hájek and V. Zizler, Introduction to Banach Spaces I, Volume I, MatFiz-
Press, Univ. Karlovy, Prague, 1996.

[4] V. Olevskii, A note on the Banach�Steinhaus Theorem, Real Anal. Exchange 17
(1991/1992), 399�401.

[5] R. Phelps, Convex functions, Monotone Operators and Di¤erentiability, Lecture Notes
in Mathematics, 1364, Springer-Verlag, Berlin, 1989.

[6] D. Preiss, L. Zajíµcek, Stronger estimates of smallness of sets of Fréchet nondi¤erentia-
bility of convex functions, Rend. Circ. Mat. Palermo 2 (1984), Suppl. no. 3, 219�223.

[7] S. Reich, Genericity and porosity in nonlinear analysis and optimization, ESI Preprint
1756, 2005, Proceedings of CMS�05 (Computer Methods and Systems), Cracow, 2005,
9�15.

[8] W. Rudin, Functional Analysis, McGraw-Hill, Inc., New York, 1991.
[9] F. Strobin, A comparison of two notions of porosity, Comment. Math. 48, (2008), 209�

219.
[10] L. Zajíµcek, Porosity and �-porosity, Real Anal. Exchange 13 (1987/1988),

314�350.
[11] L. Zajíµcek, On �-porous sets in abstract spaces, Abstr. Appl. Anal. 5, Proceedings of

the International Workshop on Small Sets in Analysis (E. Matou�ková, S. Reich and
A. Zaslavski, Editors), Hindawi Publishing Corporation, Cairo and New York (2005),
509�534.

10


