
SOME POROUS AND MEAGER SETS OF CONTINUOUS MAPPINGS

FILIP STROBIN

Abstract. De Blasi and Myjak showed that in Hilbert space the set of all Banach con-

tractions is σ-lower porous in the space of all nonexpansive mappings. In this paper we

generalize this result by considering more general spaces.

1. Introduction

Assume that K is a closed convex and bounded subset of a Hilbert space. De Blasi and

Myjak proved [DM2] that the set of all Banach contractions

kB = {f : K → K : ∃α ∈ (0, 1) ∀x, y ∈ K ||f(x)− f(y)|| ≤ α||x− y||}

is σ-porous in the space of all nonexpansive mappings

Ω = {f : K → K : ∀x, y ∈ K ||f(x)− f(y)|| ≤ ||x− y||},

endowed with the supremum metric:

sup{||f(x)− g(x)|| : x ∈ K}.

Since Ω is a complete space and every σ-porous set is meager, the above result shows that

kB is a small subset of Ω (note that in [DM1] it was shown that kB is meager in Ω). The

most important tool in the proof is the Kirszbraun–Valentine Theorem, used there in a

very particular case – for nonexpansive mappings. In our paper we show that using the

Kirszbraun–Valentine Theorem in all of its power, we can prove more general results – in

particular, instead of the space of nonexpansive mappings, we can consider the space of

all uniformly continuous mappings with the modulus of continuity bounded by some fixed

function.
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2. Notations and Terminology

We start with giving some notions of porosity. Let (X, d) be a metric space. B(x,R)

stands for the open ball with a radius R centered at a point x. We say that M ⊂ X is lower

porous, if

∀x ∈M ∃α > 0 ∃R0 > 0 ∀R ∈ (0, R0) ∃z ∈ X B(z, αR) ⊂ B(x,R)\M,

and M is α-lower porous, if

∀x ∈M ∀β ∈
(

0,
α

2

)
∃R0 > 0 ∀R ∈ (0, R0) ∃z ∈ X B(z, βR) ⊂ B(x,R)\M.

Note that these definitions are equivalent to those given in [Z2, p. 511]. We say that M is

σ-lower porous if M is a countable union of lower porous sets, and M is σ-α-lower porous if

M is a countable union of α-lower porous sets. Clearly, every σ-α-lower porous set is σ-lower

porous, but the converse is not true – in any ”reasonable” metric space there is a σ-lower

porous set which is σ-α-lower porous for no α > 0 (cf. [Z2, p. 516]). It is worth to mention

that this is not the case when we deal with another well known notion of porosity – the

upper porosity (cf. [Z2, Proposition 2.9] and [BL, p. 92]).

In [DM2], there was defined another notion of porosity. Namely, we say that M ⊂ X is

porous, if

∃α > 0 ∃R0 > 0 ∀x ∈ X ∀R ∈ (0, R0) ∃z ∈ X B(z, αR) ⊂ B(x,R)\M.

Additionally, we define σ-porosity in an obvious way.

This notion seems to be stronger than the lower porosity. However, by [Z2, Proposition 2.2],

the following conditions are equivalent:

(i) M is σ-lower porous;

(ii) M is σ-porous;

(iii) M =
⋃
Mn and each set Mn is αn-lower porous for some αn.

The equivalence of (i) and (ii) shows that mentioned result of De Blasi and Myjak states

that kB is σ-lower porous, and the equivalence of (i) and (iii) shows that a σ-lower porous

set can be always written as a countable union of αn-lower porous sets (but the constants

αn may be different).

It can easily be seen that if X is a metric space, M ⊂ Y ⊂ X and M is nowhere dense [of
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the first category] in Y , then it is also nowhere dense [of the first category] in X.

It turns out that the same holds for lower porosity:

Proposition 1. Assume that (X, d) is a metric space and M ⊂ Y ⊂ X. If M is lower-porous

[σ-lower porous] in Y , then it is lower-porous [σ-lower porous] in X;

Proof. Assume that M is lower porous and fix x ∈ M . Let α′ > 0 and R′0 > 0 be as in

the definition of lower porosity, chosen for x. Clearly, we can assume that α′ < 1
2 . Now set

R0 = (1 +α′)R′0 and α = α′

1+α′ , take R ∈ (0, R0) and put R′ = 1
1+α′R. Then R′ ∈ (0, R′0), so

there is y ∈ Y such that (BY (·, ·) denotes an open ball in Y ):

(1) BY (y, α′R′) ⊂ BY (x,R′) \M.

Since d(y, x) < R′ = (1− α)R, we have that

B(y, αR) ⊂ B(x,R).

On the other hand, αR = α′

1+α′R = α′R′, so B(x, αR) ∩ Y = BY (x, α′R′). Hence, by (1),

B(x, αR) ∩M = ∅. This ends the proof. �

The above observations show that it is interesting to find the smallest subspace Y ⊂ X in

which M is σ-lower porous [of the first category]; the most restrictive case is when M is σ-

lower porous [of the first category] in itself. Clearly, σ-lower porous subsets of X are small if

the Baire Category Theorem holds for X, however, the fact that some set is σ-lower porous

in itself give us some interesting information about the structure of it.

Now, let (X, || · ||) be a normed linear space. We say that M is c-porous, if its convex

hull convM is nowhere dense. We say that M is σ-c-porous, if M is a countable union of

c-porous sets. The notion of c-porosity is closely related to the notions of R-ball porosity

and 0-angle porosity (cf. [Z2]) and was discussed further in [S] (cf. [S, Proposition 2.5]).

In particular, every σ-c-porous set is σ-lower porous, but the converse need not be true. In

fact, c-porosity is one of the most restrictive notions of porosity.

For more information about porosity, we refer the reader to the survey papers [Z1] and

[Z2] on porosity on the real line, metric spaces and normed linear spaces.

Now let (X, d) and (Y, ρ) be two metric spaces. If f : X → Y , then the modulus of

continuity of A, denoted by ωf , is defined in the following way:

∀t > 0 ωf (t) = sup{ρ(f(x), f(y)) : x, y ∈ X, d(x, y) ≤ t}.
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We recall the Kirszbraun–Valentine Theorem in its most general form [BL, p. 18]:

Theorem 2. Let H1, H2 be two Hilbert spaces, K be any subset of H1 and f : K → H2. Let

ω : (0,∞)→ [0,∞) be a nondecreasing, concave function with limt→0 ω(t) = 0. If for every

t > 0, ωf (t) ≤ ω(t), then there exists f̃ : H1 → H2 such that f̃|K = f and for every t > 0,

ωf̃ (t) ≤ ω(t).

By composing f̃ (if needed) with the appropriate projection, and restricting to an arbitrary

set, we get the following strengthening of the above result (convM denotes the closed convex

hull of the set M):

Corollary 3. Let H1, H2 be two Hilbert spaces, K,L be two subsets of H1 with K ⊂ L,

and f : K → H2. Let ω : (0,∞) → [0,∞) be a nondecreasing, concave function with

limt→0 ω(t) = 0. If for every t > 0, ωf (t) ≤ ω(t), then there exists f̃ : L → convf(K) such

that f̃|K = f and for every t > 0, ωf̃ (t) ≤ ω(t).

Now we define some topological and metric spaces. Assume that X1 and X2 are Banach

spaces and K ⊂ X1. For simplicity, the norms on X1 and X2 will be denoted by the same

symbol || · || (it will not lead to any confusion). By Cb(K) we denote the space of all

continuous bounded functions from K into X2. We consider Cb(K) as a Banach space with

the standard supremum norm (which also will be denoted by || · ||):

||f || = sup{||f(x)|| : x ∈ K}.

Now let D ⊂ X2 and ω : (0,∞)→ [0,∞) be any nondecreasing function. Then by Cbω(K,D)

we denote the space of all bounded mappings from K into D with the modulus of continuity

bounded by ω:

Cbω(K,D) = {f ∈ Cb(K) : f(K) ⊂ D and ∀t > 0 ωf (t) ≤ ω(t)}.

We consider Cbω(K,D) as a metric subspace of Cb(K). Clearly, if D is a closed subset of

X2, then Cbω(K,D) is a complete space. Moreover, for every f : K → X2, the following

conditions are equivalent:

(i) ∀t > 0 ωf (t) ≤ ω(t);

(ii) ∀x, y ∈ K ||f(x)− f(y)|| ≤ ω(||x− y||).
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Hence if X1 = X2, K is bounded, D = K and ω(t) = t, t > 0, then Cbω(K,D) coincides with

the space of all nonexpansive mappings considered in [DM2].

Now we will deal with the case where the mappings may be unbounded. It turns out that

in this case we can define a natural topology as well. Let us define the following sets (K, D

and ω have the same meaning as above):

C(K) = {f : K → X2 : f is continuous};

Cω(K,D) = {f ∈ C(K) : f(K) ⊂ D and ∀t > 0 ωf (t) ≤ ω(t)}.

Define the topology τ on C(K) in the following way:

τ = {U ⊂ C(K) : ∀f ∈ U ∃n ∈ N ∃ε > 0 B(f, (n, ε)) ⊂ U},

where

B(f, (n, ε)) = {g ∈ C(K) : ∀x ∈ B(0, n) ∩K, ||f(x)− g(x)|| ≤ ε}

and 0 is the origin of the space X1. Note that τ can be considered as a topology generated

by the uniformity with the base {E(n, ε) : n ∈ N, ε > 0}, where

E(n, ε) = {(f, g) ∈ C(K)× C(K) : ∀x ∈ B(0, n) ∩K, ||f(x)− g(x)|| ≤ ε}.

By [E, Theorem 8.1.21], C(K) is metrizable. It can easily be seen that C(K) endowed with

the metric defined in [E, Theorem 8.1.21] is complete. It is also easy to prove that if D is a

closed subset of H2, then Cω(K,D) is a closed subset of C(K), hence it is also completely

metrizable.

Now let Y ⊂ C(K). Then the relative topology induced from C(K) can be described in the

following way:

τ|Y = {U ⊂ Y : ∀f ∈ U ∃n ∈ N ∃ε > 0 BY (f, (n, ε)) ⊂ U},

where BY (f, (n, ε)) = B(f, (n, ε)) ∩ Y . This shows that if Cω(K,D) is the space of all

nonexpansive mappings (K = D and ω(t) = t), then the topology on it is the same as that

considered by Reich and Zaslavski [RZ2].

It is also easy to see that if M ⊂ Y ⊂ C(K), then M is nowhere dense in Y if and only if

∀f ∈M ∀n ∈ N ∀ε > 0 ∃g ∈ Y ∃m ∈ N ∃ε1 > 0 BY (g, (m, ε1)) ⊂ BY (f, (n, ε)) \M.

In the sequel, we will write B(f, (n, ε)) instead of BY (f, (n, ε)) – this will not lead to any

confusion.
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3. A generalization of the De Blasi and Myjak Result

In this section we assume that H1, H2 are Hilbert spaces, K ⊂ H1 contains a nontrivial

segment (i.e., there are x, y ∈ K, such that x 6= y and {tx + (1 − t)y : t ∈ [0, 1]} ⊂ K),

D ⊂ H2 is closed, convex and contains at least two elements, and ω is a nondecreasing,

concave function with ω(t) > 0 for t > 0, and limt→0 ω(t) = 0. Note that these assumptions

imply that ω is continuous, and hence:

(2) (0, sup
t>0

ω(t)) = ω((0,∞)).

If λ > 0, then λω denotes the function defined by λω(t) = λ ·ω(t) for t > 0. The main result

of this section is the following:

Theorem 4. Assume that λ ∈ (0, 1). Then the following statements hold:

(i) The set Cbλω(K,D) is (1−λ)2
16 -lower porous in Cbω(K,D);

(ii) The set Cλω(K,D) is nowhere dense in Cω(K,D).

Before we prove the theorem, we will give the most important corollaries of it. At first,

let us define some additional sets:

kBb
ω(K,D) = {f ∈ Cbω(K,D) : ∃λ ∈ (0, 1) ∀t > 0 ωf (t) ≤ λω(t)} =

⋃
λ∈(0,1)

Cbλω(K,D);

Lbω(K,D) = {f ∈ Cb(K) : f(K) ⊂ D and ∃M > 0 ∀t > 0 ωf (t) ≤Mω(t)} =
⋃
M>0

CbMω(K,D).

Similarly we define kBω(K,D) and Lω(K,D). It is easy to see that if K = D and ω(t) = t

for t > 0, then kBb
ω(K,K) is the set of all Banach contractions with a bounded image,

kBω(K,K) is the set of all Banach contractions, Lbω(K,K) is the set of all Lipschitzian self-

mappings with a bounded image, and Lω(K,K) is the set of all Lipschitzian self-mappings.

Corollary 5. The following assertions hold:

(i) The metric space kBb
ω(K,D) is σ-lower porous in itself. In particular, the set

kBb
ω(K,D) is σ-lower porous in Cbω(K,D) and σ-c-porous in Cb(K);

(ii) The metric space Lbω(K,D) is σ-lower porous in itself. In particular, the set Lbω(K,D)

is σ-c-porous in Cb(K);

(iii) The topological space kBω(K,D) is of the first category in itself. In particular, the

set kBω(K,D) is of the first category in Cω(K,D);
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(iv) The topological space Lω(K,D) is of the first category in itself. In particular, the set

Lω(K,D) is of the first category in C(K).

Proof. We will prove only part (i), since the proofs of the other parts are very similar. We

have

kBb
ω(K,D) =

⋃
n∈N

Cb(1− 1
n)ω(K,D).

By Theorem 4, for any m > n, Cb
(1− 1

n
)ω

(K,D) is a lower porous subset of Cb
(1− 1

m
)ω

(K,D),

hence by Proposition 1, is lower porous in kBb
ω(K,D). Thus kBb

ω(K,D) is σ-lower porous in

itself and, again by Proposition 1, in Cbω(K,D). Moreover, Cb
(1− 1

n
)ω

(K,D) is a convex (and,

of course, nowhere dense) subset of Cb(K), so we get (i). �

Now we give the proof of Theorem 4. We will writeB(f, (n, ε)) instead ofBCω(K,D)(f, (n, ε)).

Proof. Put α = (1−λ)2
32 . It is enough to show that there is R0 > 0 such that for any R ∈ (0, R0)

and f ∈ Cλω(K,D), there is g ∈ Cω(K,D) such that

(a) supx∈K ||g(x)− f(x)|| ≤ 1
2R;

(b) If f(K) is bounded, then g(K) is bounded;

(c) ∃n ∈ N ∀h ∈ C(K)
(

supx∈B(0,n)∩K ||h(x)− g(x)|| < αR⇒ h /∈ Cλω(K,D)
)

.

Indeed, let f ∈ Cbλω(K,D) and R ∈ (0, R0). Take g fulfilling (a)–(c). By (b) and (a),

g ∈ Cbω(K,D) and ||f − g|| < (1 − α)R. Finally, (c) implies that if ||g − h|| < αR, then

h /∈ Cbλω(K,D). Hence we get (i).

Now let f ∈ Cλω(K,D), m ∈ N and ε > 0. Set R = min{ε, 12R0} and take g and n ∈ N

as above. Now if n′ = max{n,m}, then (a) and (c) easily imply that B(g, (n′, α2R)) ⊂

B(f, (m, ε)) \ Cλω(K,D). Hence we get (ii).

Let x0, y
′ ∈ K be such that x0 6= y′ and the segment [x0, y

′] ⊂ K. Since limt→0 ω(t) = 0,

there exists r′ > 0 such that

r′ < ||x0 − y′|| and ω(r′) <
1

4
diamD.

Note that if diamD =∞, then the second inequality means that ω(t′) <∞ (and is satisfied

for every positive real). Set R0 = ω(r′) and let R ∈ (0, R0) and f ∈ Cλω(K,D). Define

z0 = f(x0). Since ω(r′) < 1
4diamD, there exists s′ ∈ D \ {z0} such that

||s′ − z0|| > ω(r′).
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By (2), there exists r1 > 0 such that ω(r1) = R
4 . Since ω is concave, nondecreasing, contin-

uous and limt→0 ω(t) = 0, we have that

(3) ω
(r1

2

)
≥ R

8

and r1 < r′. Now let r2 > 0 be such that

(4) ω(r2) =
1− λ

2
ω(
r1
2

).

Clearly, r2 <
r1
2 < r′ and ω(r2) < ||s′ − z0||. Now let y0 ∈ [x0, y

′] and s0 ∈ [z0, s
′] be such

that

(5) ||y0 − x0|| = r2 and ||s0 − z0|| = ω(r2).

We are ready to define g:

• g(x0) = f(x0) = z0;

• g(y0) = s0;

• If x ∈ K1 = {y ∈ K : ||y − x0|| ≥ r1}, we set g(x) = f(x).

Before we define g on the rest of the set K, let us note that the function g : {x0, y0}∪K1 → D,

that we have already defined, has the modulus of continuity bounded by ω. Indeed, we have

(6) ||g(y0)− g(x0)|| = ||s0 − z0|| = ω(r2) = ω(||y0 − x0||),

and if y ∈ K1, then

||g(x0)− g(y)|| = ||f(x0)− f(y)|| ≤ λω(||x0 − y||).

Moreover, ||y0 − y|| > r1
2 since ||y0 − x0|| < r1

2 , so

||g(y0)−g(y)|| ≤ ||g(y0)−g(x0)||+||g(x0)−g(y)|| ≤ ω(r2)+||f(x0)−f(y0)||+||f(y0)−f(y)|| ≤

2ω(r2) + λω(||y0 − y||) = (1− λ)ω
(r1

2

)
+ λω(||y0 − y||) ≤

(1− λ)ω(||y0 − y||) + λω(||y0 − y||) = ω(||y0 − y||),

and, finally, if z ∈ K1, then

||g(z)− g(y)|| = ||f(z)− f(y)|| ≤ ω(||z − y||).

Since g({x0, y0} ∪K1) ⊂ D and D is convex and closed, by Corollary 3, we can extend g to

the mapping g̃ so that g̃ ∈ Cω(K,D). For simplicity of notation, we will write g instead of
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g̃. To complete the proof, we need to show that g satisfies (a), (b) and (c).

Clearly, supx∈K ||f(x)− g(x)|| = supx∈K\K1
||f(x)− g(x)||, and for any x ∈ K \K1,

||f(x)− g(x)|| ≤ ||f(x)− f(x0)||+ ||g(x0)− g(x)|| ≤

2ω(||x0 − x||) ≤ 2ω(r1) =
R

2
,

which shows (a). (b) follows immediately from (a). Now let n ∈ N be such that x0, y0 ∈

B(0, n), and h ∈ C(K) be such that supx∈B(0,n)∩K ||h(x)− g(x)|| < αR. Then

||g(x0)− g(y0)|| ≤ ||g(x0)− h(x0)||+ ||h(x0)− h(y0)||+ ||h(y0)− g(y0)||.

Hence and by (3), (5), (6), (4) and the fact that α = (1−λ)2
32 , we get

ωh(r2) ≥ ||h(x0)− h(y0)|| > ω(r2)− 2αR = ω(r2)−
(1− λ)2

16
R ≥

ω(r2)−
(1− λ)2

2
ω
(r1

2

)
= ω(r2)− (1− λ)ω(r2) = λω(r2).

Thus h /∈ Cλω(K,D) and the result follows. �

A natural question arises, whether the set kBb
ω(K,D) is σ-α-lower porous in Cbω(K,D)

for some α > 0. We will give a partially negative answer.

Proposition 6. Let λ ∈ (0, 1) and α > 21−λ
2−λ . If (additionally) D has a nonempty interior,

then the set Cbλω(K,D) is not α-lower porous in Cbω(K,D).

Proof. Fix any λ ∈ (0, 1) and let δ ∈ (0, 1) be such that 1−λ
2−λ < δ < α

2 . In particular,

(7) (1− λ)(1− δ) < δ.

Now take any y ∈ IntD, and let r > 0 be such that B (y, 2r) ⊂ D. Define f(x) = y for every

x ∈ K. Then, clearly, f ∈ Cbλω(K,D). Now let g ∈ Cbω(K,D) be such that

(8) B(g, δr) ⊂ B(f, r).

It is enough to show that B(g, δr) ∩ Cbλω(K,D) 6= ∅. At first observe that

(9) ||f − g|| ≤ (1− δ)r.

Indeed, assume on the contrary that it is not the case. Then for some x0 ∈ K, ||g(x0)−y|| >

(1− δ)r, so we can take z ∈ D with ||z−y|| = r and ||z−g(x0)|| < δr. Now for every x ∈ K,

define g̃(x) = g(x) + z − g(x0). Since for every x ∈ K,

||g̃(x)− y|| ≤ ||g̃(x)− g(x)||+ ||g(x)− y|| ≤ ||z − g(x0)||+ ||f − g|| < δr + r < 2r,
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we get that g̃(x) ∈ D, and therefore g̃ ∈ Cbω(K,D). On the other hand, ||f − g̃|| ≥ ||y −

g̃(x0)|| = ||y− z|| = r and ||g− g̃|| = ||z− g(x0)|| < δr, so we get the contradiction with (8).

Hence (9) holds. Now define the mapping a in the following way:

∀x∈K a(x) = λg(x) + (1− λ)y.

It can easily be checked that a ∈ Cbλω(K,D). Moreover, by (9) and (7), for every x ∈ K,

||a(x)− g(x)|| = (1− λ)||g(x)− y|| ≤ (1− λ)(1− δ)r < δr,

so ||a− g|| < δr. This ends the proof. �

Since limλ→1 21−λ
2−λ = 0, there is no α > 0 such that for every λ ∈ (0, 1), Cbλω(K,D) is

α-lower porous. However, the question whether the set kBb
ω(K,D) is σ-α-lower porous (for

some α > 0) in Cbω(K,D), is open.

4. Mappings with unbounded domains

Assume additionally that K is convex and unbounded and also D is unbounded. Then we

can strengthen part (ii) of Theorem 4 and part (iii) of Corollary 5. If t0 > 0 and λ ∈ (0, 1),

then by Cλ,t0ω (K,D) we denote the following set:

Cλ,t0ω (K,D) = {f ∈ Cω(K,D) : ωf (t0) ≤ λω(t0)}.

Theorem 7. For every t0 > 0 and λ ∈ (0, 1), the set Cλ,t0ω (K,D) is nowhere dense in

Cω(K,D).

Before we prove the above result, we will present its corollary:

Corollary 8. The set

C<ω(K,D) = {f ∈ Cω(K,D) : ∃t > 0 ωf (t) < ω(t)}

is of the first category in Cω(K,D).

Proof. Let Q stand for the set of all positive rationals. Then we have

C<ω(K,D) =
⋃
q∈Q

⋃
n∈N

C
n−1
n
,q

ω (K,D).
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Indeed, if f ∈ Cω(K,D) is such that for any q ∈ Q and any n ∈ N, f /∈ C
n−1
n
,q

ω (K,D), then

for any q ∈ Q, ωf (q) = ω(q). Since ω is continuous and ωf is nondecreasing, ωf (t) = ω(t)

for every t > 0. The result follows. �

In [RZ3] (see also [RZ1] and [R]) it was shown that if K is a closed convex and bounded

subset of any Banach space, then the set of all Rakotch contractions is large in the space of

all nonexpansive mappings in the sense that its complement is σ-porous (f : K → K is said

to be a Rakotch contraction, if there exists a nonincreasing function φ : [0,∞)→ [0, 1] such

that φ(t) < 1 for every t > 0, and for any x, y ∈ K, ||f(x) − f(y)|| ≤ φ(||x − y||)||x − y||).

Corollary 8 shows that

Corollary 9. If K is an unbounded subset of a Hilbert space, then the set of all Rakotch

contractions is meager in the space of all nonexpansive self-mappings.

Now we will give the proof of Theorem 7:

Proof. It is obvious that if f ∈ Cλ,t0ω (K,D), then

either

(
sup
t>0

ωf (t) ≤ λω(t0)

)
or

(
ωf (t0) ≤ λω(t0) and sup

t>0
ωf (t) > λω(t0)

)
.

Hence it suffices to show that for every δ ∈ (0, ω(t0)), the following sets

C1 =

{
f ∈ Cω(K,D) : sup

t>0
ωf (t) ≤ δ

}
and

C2 =

{
f ∈ Cω(K,D) : ωf (t0) ≤ δ and sup

t>0
ωf (t) > δ

}
are nowhere dense in Cω(K,D).

We first show that C1 is nowhere dense. Let f ∈ C1, n ∈ N and ε > 0. W have to show

that there exist g ∈ Cω(K,D), m ∈ N and ε1 > 0 such that B(g, (m, ε1)) ⊂ B(f, (n, ε)) \ C1

(again, instead of BCω(K,D)(f, (n, ε)), we simply write B(f, (n, ε))). Since ωf (t) ≤ δ for any

t > 0, we have that f(B(0, n) ∩K) is bounded. Put

p(z) = sup{||z − y|| : y ∈ f(B(0, n) ∩K)} for any z ∈ D.

It is well known that p : D → [0,∞) is continuous (even nonexpansive). Since diamf(B(0, n)∩

K) ≤ supt>0 ωf (t), we have that p(z) ≤ δ for any z ∈ f(B(0, n) ∩K). By the fact that D is

unbounded and connected, we obtain [δ,∞) ⊂ p(D). Therefore there exist t′ > 0 and z0 ∈ D
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such that δ < p(z0) < ω(t′). Now let x0 ∈ K be such that ||x0|| > n + t′. We are ready to

define g:

• g(x0) = z0;

• g(x) = f(x) for x ∈ B(0, n) ∩K.

Note that if x ∈ B(0, n) ∩K, then t′ < ||x0|| − n < ||x0|| − ||x|| ≤ ||x− x0||, so

||g(x)− g(x0)|| ≤ p(z0) ≤ ω(t′) ≤ ω(||x− x0||).

Hence the modulus of continuity of g : {x0} ∪ (B(0, n) ∩ K) → D is bounded by ω. By

Corollary 3, we can extend g to a mapping g̃ so that g̃ ∈ Cω(K,D). Denote this extension

also by g. Now let m ∈ N be such that ||x0|| < m (in particular, m > n). Since p(z0) > δ,

there exists x1 ∈ B(0, n) ∩K with ||z0 − f(x1)|| > δ. Set

ε1 = min

{
ε,
||z0 − f(x1)|| − δ

4

}
.

We will show that B(g, (m, ε1)) ⊂ B(f, (n, ε)) \ C1. If h ∈ B(g, (m, ε1)), then

ωh(||x0 − x1||) ≥ ||h(x0)− h(x1)|| ≥ ||g(x0)− g(x1)|| − 2ε1 ≥

||z0 − f(x1)|| −
||z0 − f(x1)|| − δ

2
=
||z0 − f(x1)||+ δ

2
> δ,

so h /∈ C1. On the other hand, if x ∈ B(0, n) ∩K, then x ∈ B(0,m) ∩K, and therefore

||h(x)− f(x)|| = ||h(x)− g(x)|| < ε1 ≤ ε,

so h ∈ B(f, (n, ε)). Thus C1 is nowhere dense.

Now we prove that C2 is nowhere dense. Let f ∈ C2, n ∈ N and ε > 0. Since supt>0 ωf (t) > δ,

there exist x0, y0 ∈ K such that ||f(x0) − f(y0)|| > δ. Let n′ ≥ n be such that x0, y0 ∈

B(0, n′) ∩ K. Since K is unbounded, we can choose x′ ∈ K such that ||x0 − x′|| > 3n′ +

||x0||+ t0. Then

||x′|| ≥ ||x0 − x′|| − ||x0|| > 3n′ + t0 > 3n′.

Fix y′ ∈ [x0, x
′] so that ||x′ − y′|| = t0. Then also

||y′|| ≥ ||x0 − y′|| − ||x0|| > 3n′ + ||x0|| − ||x0|| = 3n′.

Since δ < ω(t0) and δ < ||f(x0)− f(y0)||, there exists γ ∈ (0, 1) such that

(10) ω(t0) > (1− γ)||f(x0)− f(y0)|| > δ.

We are ready to define g:
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• g(x′) = f(x0);

• g(y′) = γf(x0) + (1− γ)f(y0);

• g(x) = f(x) for x ∈ B(0, n) ∩K.

Now if x ∈ B(0, n) ∩K, then

||x− x0|| ≤ ||x||+ ||x0|| ≤ n+ n′ ≤ 2n′

and

||x− x′|| ≥ ||x′|| − ||x|| > 3n′ − n ≥ 2n′,

hence

||g(x)− g(x′)|| = ||f(x)− f(x0)|| ≤ ω(||x− x0||) ≤ ω(2n′) ≤ ω(||x− x′||).

Similarly, ||x− y0|| ≤ 2n′ and ||x− y′|| ≥ 2n′, so

||g(x)−g(y′)|| = ||f(x)−γf(x0)−(1−γ)f(y0)|| ≤ γ||f(x)−f(x0)||+(1−γ)||f(x)−f(y0)|| ≤

≤ γω(2n′) + (1− γ)ω(2n′) ≤ ω(||x− y′||).

Moreover, by (10), we have

||g(x′)− g(y′)|| = (1− γ)||f(x0)− f(y0)|| ≤ ω(t0) = ω(||x′ − y′||).

Therefore we can extend g to the whole set K so that g ∈ Cω(K,D). Now let m ∈ N be

such that

(K ∩B(0, n)) ∪ {x′, y′} ⊂ B(0,m)

and let

ε1 = min

{
ε,
||g(x′)− g(y′)|| − δ

4

}
.

By (10), ε1 > 0. If h ∈ B(g, (m, ε1)), then

ωh(t0) ≥ ||h(x′)− h(y′)|| ≥ ||g(x′)− g(y′)|| − 2ε1 ≥
||g(x′)− g(y′)||+ δ

2
> δ,

hence h /∈ C2. On the other hand, B(g, (m, ε1)) ⊂ B(f, (n, ε)), so the result follows. �
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