TOPOLOGICAL CLASSIFICATION OF THE HYPERSPACES OF CLOSED CONVEX SUBSETS OF A BANACH SPACE

T. BANAKH, K. SAKAI, M. YAGUCHI, I. ZARICHNYI

In the talk we shall classify topologically the spaces $\operatorname{Conv}_H(X)$ of non-empty closed convex subsets of a Banach space X, endowed with Hausdorff (infinitevalued) metric

$$d_H(A, B) = \max\{\sup_{a \in A} \operatorname{dist}(a, B), \sup_{b \in B} \operatorname{dist}(b, A)\} \in [0, \infty]$$

where $dist(a, B) = inf_{b \in B} ||a - b||$ is the distance from a point a to a subset B in X. The space $\operatorname{Conv}_H(X)$ is locally connected. The connect component of $\operatorname{Conv}_H(X)$ containing a given closed convex set $C \subset X$ coincides with the set $\{A \in \operatorname{Conv}_H(X) : d_H(A, C) < \infty\}.$

Theorem 1. Let X be a Banach space. Each connected component \mathcal{H} of the space $\operatorname{Conv}_H(X)$ is homeomorphic to $\{0\}, \mathbb{R}, \mathbb{R} \times \mathbb{R}_+, Q \times \mathbb{R}_+, or l_2(\kappa)$ for an infinite cardinal κ . More precisely, \mathcal{H} is homeomorphic to:

- (1) $\{0\}$ iff \mathcal{H} contains the whole space X;
- (2) \mathbb{R} iff \mathcal{H} contains a half-space:
- (3) $\mathbb{R} \times \mathbb{R}_+$ iff \mathcal{H} contains a linear subspace of X of codimension 1;
- (4) $Q \times \mathbb{R}_+$ iff \mathcal{H} contains a linear subspace of X of finite codimension ≥ 2 ;
- (5) $l_2(\kappa)$ for an infinite cardinal κ iff \mathcal{H} contains no half-space and no linear subspace of finite codimension.

Here $\mathbb{R}_{=} = [0, \infty)$ is the half-line, $Q = [0, 1]^{\omega}$ is the Hilbert cube and $l_2(\kappa)$ is the Hilbert space of density κ .

A closed convex subset C of a Banach space X is called

- a half-space if $C = f^{-1}[a, +\infty)$ for some real number a and some non-trivial linear continuous functional $f: X \to \mathbb{R}$; • *a polyhedral set* if $C = \bigcap_{i=1}^{n} H_i$ is a finite intersection of half-spaces.

Theorem 2. Let X be a finite-dimensional Banach space. For a connected component \mathcal{H} of $\operatorname{Conv}_H(X)$ the following conditions are equivalent:

- (1) \mathcal{H} has density dens(\mathcal{H}) < \mathfrak{c} ;
- (2) \mathcal{H} is separable;
- (3) \mathcal{H} contains a polyhedral convex set.

Combining Theorems 1 and 2 we obtain the topological classification of connected components of the spaces $\operatorname{Conv}_H(\mathbb{R}^n)$.

Corollary 1. Let X be a finite-dimensional Banach space. Each connected component \mathcal{H} of the space $\operatorname{Conv}_H(X)$ is homeomorphic to $\{0\}, \mathbb{R}, \mathbb{R} \times \mathbb{R}_+, Q \times \mathbb{R}_+, l_2$ or l_{∞} . More precisely, \mathcal{H} is homeomorphic to:

- (1) {0} iff \mathcal{H} contains the whole space \mathbb{R}^n ;
- (2) \mathbb{R} iff \mathcal{H} contains a half-space;

- (3) $\mathbb{R} \times \mathbb{R}_+$ iff \mathcal{H} contains a linear subspace of X of codimension 1;
- (4) $Q \times \mathbb{R}_+$ iff \mathcal{H} contains a linear subspace of X of codimension ≥ 2 ;
- (5) l_2 iff \mathcal{H} contains a polyhedral convex set but contains no linear subspace and no half-space;
- (6) l_{∞} iff \mathcal{H} does not contain a polyhedral convex set.

Corollary 2. Let X be a finite-dimensional Banach space. The space $Conv_H(X)$ is homeomorphic to the topological sum:

- (1) $\{0\} \oplus \mathbb{R} \oplus \mathbb{R} \oplus (\mathbb{R} \times \mathbb{R}_+)$ iff dim(X) = 1;
- (2) {0} $\oplus Q \times \mathbb{R}_+ \oplus \mathfrak{c} \times (\mathbb{R} \oplus \mathbb{R} \times \mathbb{R}_+ \oplus l_2 \oplus l_\infty)$ iff dim(X) = 2; (3) {0} $\oplus \mathfrak{c} \times (\mathbb{R} \oplus \mathbb{R} \times \mathbb{R}_+ \oplus Q \times \mathbb{R}_+ \oplus l_2 \oplus l_\infty)$ iff dim $(X) \ge 3$.

T.BANAKH AND I.ZARICHNYI: LVIV NATIONAL UNIVERSITY (UKRAINE)

K.Sakai and M.Yaguchi: Tsukuba University (Japan)