On the Sectional Curvatures of the Time-like Generalized Ruled Surface in IR_1^n

Soley ERSOY, Murat TOSUN

Department of Mathematics, Faculty of Arts and Sciences, Sakarya University, 54187 Sakarya/TURKEY e-mail:sersoy@sakarya.edu.tr, tosun@sakarya.edu.tr

March 22, 2007

In IR_1^n , (k+1)-dimensional time-like ruled surface is defined parametrically as follows

$$\varphi(t, u_1, \dots, u_k) = \alpha(t) + \sum_{\nu=1}^k u_{\nu} e_{\nu}(t)$$

and denoted as M, where the base curve α of M ruled surface is time-like curve, generating space $E_k(t)$ is space-like subspace. If otherwise mentioned, (k+1)-dimensional time-like ruled surface M is supposed to have a (k-m+1)-dimensional central ruled surface.

Two-dimensional subspace Π of (k + 1) –dimensional time-like ruled surface at the point $\xi \in T_M(\xi)$ is called tangent section of M at point ξ .

If \vec{v} and \vec{w} form a basis of the tangent section Π , then $Q(\vec{v}, \vec{w}) = \langle \vec{v}, \vec{v} \rangle \langle \vec{w}, \vec{w} \rangle - \langle \vec{v}, \vec{w} \rangle^2$ is a non-zero quantity if and only if Π is non-degenerate. This quantity represents the square of the Lorentzian area of the parallelogram determined by \vec{v} and \vec{w} . Using the square of the Lorentzian area of the parallelogram determined by the basis vectors $\{\vec{v}, \vec{w}\}$, one has the following classification for the tangent sections of the time-like ruled surfaces:

$$\begin{array}{ll} Q\left(\vec{v},\vec{w}\right) = \langle \vec{v},\vec{v} \rangle \left\langle \vec{w},\vec{w} \rangle - \langle \vec{v},\vec{w} \rangle^2 < 0 &, \quad (\text{time-like plane}) \\ Q\left(\vec{v},\vec{w}\right) = \langle \vec{v},\vec{v} \rangle \left\langle \vec{w},\vec{w} \rangle - \langle \vec{v},\vec{w} \rangle^2 = 0 &, \quad (\text{degenerate plane}) \\ Q\left(\vec{v},\vec{w}\right) = \langle \vec{v},\vec{v} \rangle \left\langle \vec{w},\vec{w} \rangle - \langle \vec{v},\vec{w} \rangle^2 > 0 &, \quad (\text{space-like plane}) \end{array}$$

For the non-degenerate tangent section Π given by the basis $\{\vec{v}, \vec{w}\}$ of M at the point ξ , the definition

$$K\left(\vec{v}, \vec{w}\right) = \frac{\langle R_{\vec{v}\vec{w}}\vec{v}, \vec{w} \rangle}{\langle \vec{v}, \vec{v} \rangle \langle \vec{w}, \vec{w} \rangle - \langle \vec{v}, \vec{w} \rangle^2} = \frac{\sum R_{ijkm} \beta_i \gamma_j \beta_k \gamma_m}{\langle \vec{v}, \vec{v} \rangle \langle \vec{w}, \vec{w} \rangle - \langle \vec{v}, \vec{w} \rangle^2}$$

is called sectional curvature of M at the point ξ , where $\vec{v} = \sum \beta_i \frac{\partial}{\partial x_i}$ and $\vec{w} = \sum \gamma_j \frac{\partial}{\partial x_j}$. Here the coordinates of the basis vectors \vec{v} and \vec{w} are $(\beta_0, \beta_1, \ldots, \beta_k)$ and $(\gamma_0, \gamma_1, \ldots, \gamma_k)$, respectively.

A normal tangent vector which is orthogonal to the generating space $E_k(t)$ of M.

$$n = \sum_{\sigma=1}^{m} u_{\sigma} \kappa_{\sigma} \left(t \right) a_{k+\sigma} \left(t \right) + \eta_{m+1} a_{k+m+1} \left(t \right) \quad , \quad \left(\eta_{m+1} \neq 0 \right)$$

is time-like or space-like vector. This means that the tangent sectional (e_{ν}, n) , $1 \leq \nu \leq k$, at the point $\forall \xi \in M$ time-like or space-like. This tangent section is called ν^{th} principal tangent section of M. Thus, whether ν^{th} principal tangent section is time-like or space-like, we can give following theorems and corollaries.

Theorem 1 Let M be a generalized time-like ruled surface with central ruled surface and n be non-degenerate normal tangent vector in IR_1^n . Curvature of $(e_{\nu}, n), 1 \leq \nu \leq k$, non-degenerate ν^{th} principal sectional curvature of M, at the point $\forall \xi \in M$ is

$$K_{\nu}\left(\xi\right) = -\frac{1}{2g}\frac{\partial^{2}g}{\partial u_{v}^{2}} + \frac{1}{4g^{2}}\left(\frac{\partial g}{\partial u_{v}}\right)^{2} \quad , \quad 1 \leq \nu \leq k.$$

Corallary 1 Let M be a generalized time-like ruled surface with central ruled surface and n be non-degenerate normal tangent vector in IR_1^n . σ^{th} , $1 \le \sigma \le m$, principal sectional curvature and $(m + \rho)^{\text{th}}$, $1 \le \rho \le k - m$, principal sectional curvature of M, at the point $\forall \xi \in M$ are

$$K_{\sigma}\left(\xi\right) = -\frac{\left(\kappa_{\sigma}\right)^{2} \left[\sum_{\iota=1}^{m} \left(u_{\iota}\kappa_{\iota}\right)^{2} - \eta_{m+1}^{2} - \left(u_{\sigma}\kappa_{\sigma}\right)^{2}\right]}{\left(\sum_{\iota=1}^{m} \left(u_{\iota}\kappa_{\iota}\right)^{2} - \eta_{m+1}^{2}\right)^{2}} , \quad 1 \le \sigma \le m,$$
$$K_{m+\rho}\left(\xi\right) = 0 \quad , \quad 1 \le \rho \le k - m,$$

respectively.

Corallary 2 Generalized time-like ruled surface with central ruled surface has no $(m + \rho)^{\text{th}}$, principal sectional curvature at the point $\forall \xi \in M$ for, $1 \leq \rho \leq k - m$, in IR_1^n .

Theorem 2 Let M be a generalized time-like ruled surface with central ruled surface and n be non-degenerate normal tangent vector in IR_1^n . σ^{th} , $1 \le \sigma \le m$, principal sectional curvature and $(m + \rho)^{\text{th}}$, $1 \le \rho \le k - m$, principal sectional curvature of M, at the central point $\forall \zeta \in \Omega$ are

$$\begin{aligned} K_{\sigma}\left(\zeta\right) &= \frac{1}{P_{\sigma}^{2}} \quad , \quad 1 \leq \sigma \leq m, \\ K_{m+\rho}\left(\zeta\right) &= 0 \quad , \quad 1 \leq \rho \leq k-m \end{aligned}$$

respectively, where $P_{\sigma} = \frac{\eta_{m+1}}{\kappa_{\sigma}}$, $1 \leq \sigma \leq m$, is the σ^{th} principal distribution parameter of M.

In IR_1^n , if one-dimensional generator $h_{\sigma} = Sp\{e_{\sigma}\}, 1 \leq \sigma \leq m$, $(\sigma^{\text{th}} \text{ principal ray})$ moves along the orthogonal trajectory of M, then 2-dimensional ray surface is obtained. This surface is called σ^{th} principal ray surface and denoted by $M_{\sigma}, 1 \leq \sigma \leq m$. A parameterization of M_{σ} is

$$\varphi_{\sigma}(t, u) = \alpha(t) + ue_{\sigma}(t) , \quad 1 \le \sigma \le m.$$

Now the theorem about non-degenerate sectional curvature of principal ray surfaces can be given in the following.

Theorem 3 Let M be a generalized time-like ruled surface with central ruled surface and M_{σ} , $1 \leq \sigma \leq m$, be 2-dimensional time-like σ^{th} principal ray surface in IR_1^n . For $\zeta \in \Omega \subset M$, $u \in IR$ the sectional curvature of M_{σ} at the point $\zeta + ue_{\sigma}$ on generator $h_{\sigma} = Sp\{e_{\sigma}\}$ is

$$K_{\zeta+ue_{\sigma}}\left(e_{\sigma},n\right) = \frac{P_{\sigma}^{2}}{\left(u^{2} - P_{\sigma}^{2}\right)^{2}} \quad , \quad 1 \le \sigma \le m \tag{1}$$

where P_{σ} , $1 \leq \sigma \leq m$, is the σ^{th} principal distribution parameter of M.

Let M_{σ} , $1 \leq \sigma \leq m$, be σ^{th} principal ray surface produced by $h_{\sigma} = Sp\{e_{\sigma}\} \subset E_k(t)$ along the orthogonal trajectory of M and P_{σ} , be the principal distribution parameter of M in IR_1^n . The sectional curvature given in equation (1) is the generalized form of the Lamarle formula in IR_1^3 , which is the relationship between the Gaussian curvature and principal parameter. Thus, equation (1) is named as *Generalized Lorentzian Lamarle Formula* by us.

References

- Beem, J. K., Ehrlich, P. E., *Global Lorentzian Geometry*, Marcel Dekker Inc. New York, 1981.
- [2] Blaschke, W., Vorlesungen über Differentialgeometrie, 14. Ayfl. Berlin, 1945.
- [3] Frank, H., Giering, O., Zur Schnittkrümmung verallgemeinerter Regelflachen, Archiv Der Mathematik, Fasc.1, 32, 86-90, 1979.
- [4] Kruppa, E., Analytische und Konstruktive Differentialgeometrie, Wien Springer-Verlag, 1957.
- [5] O'Neill, B., Semi-Riemannian Geometry, Academic Press, New York, 1983.
- [6] Ratcliffe, J. G., Foundations of Hyperbolic Manifolds, Department of Mathematics, Vanderbilt University, 1994.
- [7] Tosun, M., Kuruoglu N., On (k + 1) dimensional time-like ruled surfaces in the Minkowski space IRⁿ₁, Institute of Mathematics and Computer Sciences, Vol.10 (3), 1997.
- [8] Tosun, M., Kuruoglu N., On properties of generalized time like ruled surfaces, Ant. J. Mathematics, Vol.2 (1), 2005.