Alexandre A. Martins Rodrigues

Department of Mathematics, University of São Paulo, São Paulo, Brazil E-mail address: aamrod@terra.com.br

On infinite Lie pseudo-groups and filtered Lie algebras

All differentiable manifolds, vector fields and maps are assumed to be of class \mathbb{C}^{∞} .

Let M be a manifold and Θ a sheaf of germs of local vector fields defined on M. We shall denote by $J^k\Theta$ and $J^kT(M)$, $k \ge 0$, respectively the set of all k-jets of local sections of Θ and the vector bundle of k-jets of local sections of the tangent bundle T(M) of M. Given a point $a \in M$, $\Theta_a, J_a^k\Theta, J_a^kT(M)$ denote respectively the stalk of Θ at a, the set of all k-jets $j_a^k\theta$ at the point a of a local section θ of Θ , defined in a neigborhood of a and the fiber of $J^kT(M)$ over a.

Definition. Θ is an infinitesimal Lie pseudo-group defined on M (ILPG) if,

- 1. For every $a \in M$, Θ_a is a Lie algebra over \mathbb{R} under the Lie bracket of germs of vector fields.
- 2. There exists an integer k_0 satisfying following conditions:
 - (a) For all $k \ge k_0$, $J^k \Theta$ is a differentiable vector sub-bundle of $J^k T(M)$
 - (b) A local vector field θ is a section of Θ defined on the open set $U \subset M$ if and only if $j_a^{k_0} \in J_a^{k_0}$, for all $a \in U$.

 Θ is a transitive ILPG on M if $J^0\Theta = T(M)$.

Let \mathcal{L}_a be the transitive filtered Lie algebra of infinite jets of local vectors defined in a neighborhood of $a \in M$ [5]. Endowed with the topology defined by the filtration, \mathcal{L}_a is also a topological Lie algebra. We denote by $\mathcal{L}(\Theta, a)$ the closure in \mathcal{L}_a of $J_a^{\infty}\Theta \subset \mathcal{L}_a$. If Θ is transitive on M, $\mathcal{L}(\Theta, a)$ is a transitive filtered subalgebra of \mathcal{L}_a and also a topological subalgebra of \mathcal{L}_a .

Let Θ_1 be an ILPG defined on M_1 . An ILPG Θ_2 defined on M_2 is a homeomorphic prolongation of Θ_1 if there exists a submersion $\rho : M_2 \to M_1$ and for every $a_1 \in M_1$ and $a_2 \in M_2$ with $\rho(a_2) = a_1$, $(\Theta_2)_{a_2}$ is projectable by ρ onto $(\Theta_1)_{a_1}$. By definition, Θ_2 is an isomorphic prolongation of Θ_1 if, moreover, for every germ $\theta_1 \in (\Theta_1)_{a_1}$, there exists only one $\theta_2 \in (\Theta_2)_{a_2}$ whose projection is θ_1 .

The ILPGs Θ_1 and Θ_2 are equivalent in the sense of E. Cartan, [1], [3], [4], if there exists an ILPG Θ_3 defined on a manifold M_3 which is an isomorphic

prolongation of M_1 and M_2 . We say that Θ_1 and Θ_2 are locally equivalent at points $a_1 \in M_1$ and $a_2 \in M_2$ if there are open neighborhoods U_1 and U_2 of a_1 and a_2 for which the restrictions $\Theta_1|U_1$ and $\Theta_2|U_2$ are equivalent.

In the following theorem, we assume that the manifolds M_1 and M_2 and the ILPGs Θ_1 and Θ_2 are real analytic.

Theorem [2]. Let Θ_1 and Θ_2 be two transitive ILPGs defined on M_1 and M_2 . Θ_1 and Θ_2 are locally equivalent in the sense of E. Cartan, at points $a_1 \in M_1$ and $a_2 \in M_2$ if and only if $\mathcal{L}(\Theta_1, a_1)$ and $\mathcal{L}(\Theta_2, a_2)$ are isomorphic topological Lie algebras.

References

- A. A. M. Rodrigues, On infinite Lie groups, Ann. Inst. Fourier, 31 (1981), 245-274.
- [2] A. A. M. Rodrigues, A. Petitjean, Correspondence entre algèbres de Lie abstraites et pseudo-groups de Lie transitifs, Ann. of Math., 101 (1975), 268-279.
- [3] E. Cartan, La structure des groups infinis, Oeuvres Complètes II, vol. 2, 1335-1384.
- [4] M. Kuranishi, On the local theory of continuous infinite pseudo-groups, I, II, Nagoya Math. J., 15, (1959), 225-260; 19, (1961), 55-91.
- [5] I. M. Singer, S. Sternberg, The infinite groups of Lie and Cartan, J. D'Analyse Math., 15, (1965), 1-114.