Topological groups through the looking-glass

I.V.Protasov

Department of Cybernetics, Kyiv National University, Volodimirska 64, Kyiv 01033, Ukraine protasov@unicyb.kiev.ua

A ball structure is a triplet $\mathcal{B} = (X, P, B)$, where X, P are non-empty sets and, for any $x \in X$ and $\alpha \in P$, $B(x, \alpha)$ is a subset of X which is called a ball of radius α around x. It is supposed that $x \in B(x, \alpha)$ for all $x \in X$, $\alpha \in P$. The set X is called the support of \mathcal{B} , P is called the set of radii. Given any $x \in X$ and $\alpha \in P$, we put $B^*(x, \alpha) = \{y \in X : x \in B(y, \alpha)\}$.

A ball structure X is called a *ballean* (or a *coarse structure*) if

• for any $\alpha, \beta \in P$, there exist $\alpha', \beta' \in P$ such that, for every $x \in X$,

$$B(x,\alpha) \subseteq B^*(x,\alpha'), \ B^*(x,\beta) \subseteq B(x,\beta');$$

• for any $\alpha, \beta \in P$, there exist $\gamma \in P$ such that, for every $x \in X$,

$$B(B(x,\alpha),\beta) \subseteq B(x,\gamma).$$

Let $\mathcal{B}_1 = (X_1, P_1, B_1), \mathcal{B}_2 = (X_2, P_2, B_2)$ be balleans. A mapping $f : X_1 \to X_2$ is called a \prec -mapping if, for every $\alpha \in P_1$, there exists $\beta \in P_2$ such that, for every $x \in X_1$,

$$f(B_1(x,\alpha)) \subseteq B_2(f(x),\beta).$$

The category of balleans and \prec -mappings can be considered (see [1], [3]) as an asymptotic reflection of the category of uniform spaces and uniformly continuous mappings.

A family \mathcal{I} of subsets of a group G is called a *Boolean group ideal* if

- $A, B \in \mathcal{I} \Rightarrow A \cup B \in \mathcal{I};$
- $A \in \mathcal{I}, A' \subseteq A \Rightarrow A' \in \mathcal{I};$
- $A, B \in \mathcal{I} \Rightarrow AB \in \mathcal{I}, A^{-1} \in \mathcal{I};$
- $F \in \mathcal{I}$ for every finite subset F of G.

Every Boolean group ideal \mathcal{I} determines the ballean $\mathcal{B}(G, \mathcal{I}) = (G, \mathcal{I}, B)$, where B(g, A) = gA. The balleans on G determined by the Boolean group ideals are the natural (see [1, Chapter 6]) counterparts of the group topologies on G.

We show that, for every countable group G, there are 2^{\complement} distinct Boolean group ideals on G, describe some fragments of the lattice of the Boolean group ideals on G, its interaction with T-sequences from [2], and apply these results to the Stone-Čech compactification βG of a discrete group G.

REFERENCES

- I.Protasov, M.Zarichnyi, *General Asymptology*, Math.Stud. Monogr.Ser. 13, 2006.
- [2] I.Protasov, E.Zelenyuk, Topologies on Groups Determined by Sequences, 4, 1999
- [3] J.Roe, Lectures on Coarse Geometry, University Lectures Series, 31, Amer.Math.Soc., Providence, R.I, 2003.