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We shall describe the structure of orbits of the coadjoint action of a
connected Lie group on the dual space to its Lie algebra. Classical results of
Kostant give a fairly complete invariant-theoretic picture of the (co)adjoint
action in the case of a reductive Lie group. Our result is a generalization of
the results of Rawnsley [1], Guillemin and Sternberg [2] and Räıs [3] obtained
for semi-direct product of a Lie group and a linear space. This linear space
is a normal commutative subgroup. We shall consider the general case of a
non-commutative normal subgroup.

Let G be a connected real (or complex) Lie group with the Lie algebra
g. Consider the coadjoint representation Ad∗ of the Lie group G on the dual
space g∗. Let Oα = Ad∗(G)α be an orbit in g∗ through an arbitrary covector
α ∈ g∗.

Suppose that G is not a simple Lie group. Let A ⊂ G be a normal closed
subgroup of G with the Lie algebra a ⊂ g. Since the subalgebra a is an ideal
of g, the adjoint representations of G in g induces the representation ϕ of
G in a, and consequently the action of G in a∗ (associated with the dual
representation ϕ∗). Denote by O′

ν the corresponding orbit in a∗ through the
element (restriction) ν = α|a. Then O′

ν = G/Gν , where Gν is the isotropy
group of ν.

We shall prove that the G-orbits Oα in g∗ are fibered over the G-orbits
O′

ν in a∗; its fibre type is a direct product of some vector space Vν and a
coadjoint orbit of some (not necessary connected) Lie group Qν , which is a
factor group of the isotropy group Gν . There is a one to one correspondence
between the set of all G-orbits Oα with α|a = ν and the set of all coadjoint
Qν-orbits in the dual space of the Lie algebra of Qν . The space Vν is the
same for all these orbits Oα (with α|a = ν) and has a dimension equal to the
codimension of the Lie group Gν · A in G.

Let gν be the Lie algebra with the Lie group Gν . As a corollary, from
the proof of the above described result, we obtain the following statement
(”bystages hypotesis” [4]):
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Let σ1, σ2 be covectors from g∗ such that for its restrictions to subspaces
a and gν we have σ1|a = σ2|a = ν and σ1|gν = σ2|gν = τ . Then
σ2 = Ad∗g σ1 for some g ∈ (Gν)τ , where (Gν)τ is the isotropy group of
τ ∈ g∗ν for the coadjoint action of Gν on g∗ν .
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