Hyperspaces of Riemannian manifolds related to the Hausdorff dimension

N. Mazurenko, Pre-Carpathian University

Different authors (see, e.g. [1–3]) considered the hyperspaces of compact subsets and subcontinua of given Lebesgue dimension. In particular, in [2] the topology of the system of hyperspaces of given Lebesgue dimension in the Hilbert cube is described. In [3] this result is extended over the case of hyperspaces of countable infinite products of nondegenerated Peano continua and in [1] over the case of a Peano continuum in which every open set contains sets of arbitrary finite dimension.

The author [4, 5] obtained counterparts of the above mentioned results for the hyperspaces of compacta and continua of given Hausdorff dimension in the cube $[0, 1]^n$. The aim of the talk is to extend these results over the case of the hyperspaces of Riemannian manifolds.

By Q we denote the Hilbert cube $[-1,1]^{\omega}$, and by $B(Q) = \{(x_i) \in Q \mid x_i \in \{-1,1\}$ for some $i\}$ the pseudoboundary of Q. Further, $HD_{>\gamma}(X)(HD_{>\gamma}^c(X))$ is the hyperspace of compacta (continua) X of the Hausdorff dimension $> \gamma$.

The following is the main result of the talk.

Theorem. Let $n \in \mathbb{N}$, X be an n-dimensional compact connected Riemannian manifold, and Γ be some countable ordered set.

(1) If $\Gamma \subset [0, n)$ then there is a homeomorphism $\alpha \colon \exp(X) \to Q^{\Gamma}$ such that for every $\gamma \in \Gamma$

$$\alpha[HD_{>\gamma}(X)] = \bigcup_{\gamma' \ge \gamma} \left(\prod_{\gamma'' \ne \gamma'} Q_{\gamma''} \times B(Q)_{\gamma'} \right).$$

(2) If $n \ge 2$ and $\Gamma \subset [1, n)$ then there is a homeomorphism $\beta \colon \exp_c(X) \to Q^{\Gamma}$ such that for every $\gamma \in \Gamma$

$$\beta[HD_{>\gamma}^{c}(X)] = \bigcup_{\gamma' \ge \gamma} \left(\prod_{\gamma'' \neq \gamma'} Q_{\gamma''} \times B(Q)_{\gamma'} \right).$$

- 1. R. Cauty Suites \mathcal{F}_{σ} -absorbantes en theorie de la dimension // Fundamenta Mathematicae. – 1999. – Vol. 159. – N 194 2.P.115-126.
- 2. J.J. Dijkstra, J. van Mill and J. Mogilski. The space of infinite-dimensional compacta and other topological copies of $(l_f^2)^{\omega}$ // Pacific J. Math. 152(1992). P. 255 273.
- 3. H. Gladdines, Absorbing systems in infinite-dimensional manifolds and applications. -Amsterdam: Vrije Universiteit. - 1994. - 117 p.
- N. Mazurenko, Absorbing sets related to Hausdorff dimension// Visnyk Lviv Univ., Ser. Mech-Math. - 2003. - Vol.61. - P.121-128.

 N. Mazurenko, Topology of the hyperspaces of continua of given Hausdorff dimension in a finite-dimensional cube//Nauk. visn. Cherniv. univ. Matematyka. - 2004. - 228. - P.60 – 65.