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Within the finite order approach to the split calculus of variations on fibred
manifolds we cast the set of Euler–Lagrange expressions in the guise of a volume
semi-basic differential form with values in the dual to the bundle V of vertical
tangent vectors on some fibration Y → B. Although this treatment in not
new, it helps to establish a simple relation between the operators dπ of fiber
derivative and D of semi-basic derivative in the appropriate bigraded tensor
algebra of cross-sections of the vector bundle ∧•V ∗

r ⊗
Yr
∧•T ∗B on one hand,

and the operators dV and dH previously introduced by Tulczyjew in the total
bigraded algebra of exterior differential forms on the corresponding jet bundle
prolongation πr : Yr → B, on the other hand. The split bigraded algebra
Sec

( ∧• V ∗
r ⊗

Yr
∧•T ∗B)

may be converted into the total algebra ∧•T ∗Yr+1

applying the dual of the Cartan contact form morphism T ∗Yr+1 → Vr together
with subsequent alternation. By means of this mapping operators dV and dH

correspond to the operators dπ and D respectively.
Let yα

N denote standard coordinates in Yr with multiindex N of order ‖N‖ ≤
r. Let ιidyα

N = dyα
N−1i

be the order-reducing operators similar to those intro-
duced by Tulczyjew, and let Di =< ∂i, D >. The split Lagrange differential δ
is first defined on the cross-sections of ∧•V ∗

r as

δϕ = deg(dπϕ) +
∑

‖N‖≥0

(−1)‖N‖

N!
DNιNdπϕ ,

and then extended to the total algebra Sec
(∧•V ∗

r ⊗Yr
∧•T ∗B)

by trivial action
on the subalgebra of scalar differential forms on B.

As conventionally assumed, the variational derivative of the Lagrange density
λ ∈ Sec

(∧dim B T ∗B
)

at the extremal section υ of Y is an rth order differential
operator Eυ acting from the space of cross-sections of the induced vertical tan-
gent bundle υ−1V to the space Sec

(∧dim B T ∗B
)
. Then the transpose operator

tEυ is given by the formula

t
(Eυ

)(
1
)

=
(
j2rυ

)∗
δλ ,

where δλ ∈ V ∗⊗Y2r
∧dim BT ∗B, and the pull-back of V ∗–valued differential form(

j2rυ
)∗

δλ is a cross-section of the vector bundle υ−1V ∗ ⊗ ∧dim BT ∗B.
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