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In mathematics, before the 1970s, the term umbral calculus (or Finite
Operator Calculus) was understood to mean the surprising similarities be-
tween otherwise unrelated polynomial equations, and certain shadowy tech-
niques that can be used to 'prove’ them. These techniques were introduced in
the 19th century and are sometimes called Blissard’s symbolic method, and
sometimes attributed to James Joseph Sylvester, or to Edouard Lucas. In
the 1970s, Gian-Carlo Rota, and others [1-5] developed the umbral calculus
as the Finite Operator Calculus by means of linear operators on spaces of
polynomials. Currently, umbral calculus is understood primarily to mean the
study of Sheffer sequences, including polynomial sequences of binomial type
and Appell sequences. Already since thirties of XX-th century it had been
realized that operator methods might be extend to the use of any polynomial
sequences instead of these of binomial type only. The very foundations of
such an extensions were laid in 1937 by M.Ward, [6] . The next major contri-
butions we owe to Viskov [7, 8] and Markowsky [9]. The main statements of
- extended Rota’s finite operator calculus were given by A.K.Kwa$niewski
[10-12]. I'll present some topics related to this theory.
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