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The purpose of this lecture is to try and show how far one can proceed in the
�nding of the metric on a 4-dimensional Lorentz manifold if the projective structure
of its Levi-Civita connection is given. This work has applications to the general
theory of relativity. It represents joint work with Dr David Lonie in Aberdeen.
Let M be a smooth 4-dimensional manifold and let g and g0 be Lorentz metrics

on M . Let r and r0 be the Levi-Civita connections associated with g and g0,
respectively. Suppose that, for each p 2 M , there exists an open subset Gp of
the tangent space TpM to M at p such that (i) each member of Gp is timelike
with respect to g and g0 and (ii) for each u 2 Gp the (unparametrised) r-geodesic
starting at p and with initial tangent u is also an (unparametrised) geodesic for r0.
The restriction to the subsets Gp simulates the restricted experimental evidence
of the principle of equivalence, that the paths of �free� particles will follow such
geodesics. It can be shown from this that r and r0 in fact share their geodesics
and are thus projectively related. In showing this, the assumption (i), introduced for
obvious physical reasons, is not used. Thus, r and r0 determine a global 1-form
 on M (the projective 1-form) and, because they are metric connections,  is a
closed 1-form [1]. There is also a convenient relationship between the curvature
tensors R and R0 from r and r0, respectively, in terms of the 1-form  . There are
two convenient equivalent statements of this projective equivalence between r and
r0 [1, 2], one relating these connections themselves and a second one which relates
the r covariant derivative of g0 to g0 and  .
To obtain information relating g and g0 under the above conditions, an approach

has been devised in [3, 4] which uses the algebraic nature of the curvature tensor,
together with the equivalent projective conditions given above. Another method
may also be applied when one of the metrics admits certain symmetries [5] because
one can then take advantage of the nice relation between the symmetries of pro-
jectively related metrics. An example of the �rst method arises in the important
situation for general relativity when one of the metrics, say g, is a vacuum (Ricci-
�at) metric. (The physical assumption that (M; g) is non-�at is also imposed, that
is, the curvature tensor R does not vanish over any non-empty open subset of M).
In this case, one may appeal to Petrov�s algebraic classi�cation of the vacuum cur-
vature tensor R [6]. In fact, one may topologically decomposeM disjointly into �ve
open subsets, one for each Petrov type, (such that each subset contains only points
of that particular Petrov type) together with a closed nowhere dense set F . It can
then be shown, using the convenient algebraic properties of the curvature tensor for
each of the Petrov types, that r and r0 agree on the open dense subset, M nF , of
M and hence onM . It follows from this that g0 is also a vacuum metric on M . Use
of holonomy theory and the fact that M is a connected manifold then shows, with
one highly specialised case excepted, that g and g0 are conformally related on M by
a constant conformal factor. (The special case concerns a subclass of the so-called
pp-waves and can be easily handled separately.) Thus, from the physical viewpoint,
knowledge of the geodesics (as described above) essentially uniquely determines the
metric up to �units of measurement�. As an example of the second method, let
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g be a member of the important class of Friedmann-Robertson-Walker-Lemaitre
(FRWL) cosmological metrics. In this case the high degree of symmetry possessed
by g is useful. Here, the known result that, with the somewhat unphysical Einstein
static and de-Sitter type metrics excluded, the dimension of the Lie algebra of pro-
jective vector �elds for (M; g) is at most seven, is useful [7, 8]. From this, and the
fact that projectively related connections have the same Lie algebras of projective
vector �elds, one can show that if g0 is projectively related to g, in the sense de�ned
above, then g0 is also an FRWL metric sharing the same space slices of constant
cosmic time and having the same Killing algebra as g and is conveniently related
to g (but not so tightly as in the vacuum case).
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