The Poincare conjecture and a geometric model of "black hole".

A.A.Ermolitski

Let M^n be a compact, closed, smooth manifold. Then there exists a Riemannian metric g on M^n and a smooth triangulation of M^n . Both the structures make possible to prove the following

Theorem 1. The manifold M^n has a decomposition $M^n = C^n \bigcup K^{n-1}, C^n \cap K^{n-1} = \emptyset$, where C^n is a n - dimensional cell and K^{n-1} is a connected union of some (n-1) simplexes of the triangulation.

 K^{n-1} is called a *spine* of M^n .

Using the theorem 1 we have obtained

Theorem 2. (Poincare). Let M^3 be a compact, closed, smooth simply connected manifold of dimension 3. Then M^3 is diffeomorphic to S^3 , where S^3 is the sphere of dimension 3.

For any point $z \in K^{n-1}$ we can consider the closed geodesic ball $\overline{B}(z,\varepsilon)$ of a small radius $\varepsilon > 0$. A set $Tb(K^{n-1}) = \bigcup_{z \in K^{n-1}} \overline{B}(z,\varepsilon)$ is called "black hole". It is clear that $M^n \setminus Tb(K^{n-1})$ is a cell for some small ε .

Theorem 3. Let Φ be a pseudoriemannian metric on M^n . Then there exists a deformation $\overline{\Phi}$ of Φ on M with the following properties.

a) $\overline{\Phi}$ is continuous and sectionally smooth.

b) If a point $x \in M^n \setminus Tb(K^{n-1})$ and $\overline{\Phi}$ is smooth at the point x, then the curvature tensor \overline{R}_x of $\overline{\Phi}$ vanishes. In other words, all the curvature of $\overline{\Phi}$ is concentrated in $Tb(K^{n-1})$.