Jürgen Eichhorn, Greifswald Hilbert diffeomorphism groups and their geometry for open manifolds

Abstract

Let M^n be closed, $\mathcal{D}(M) \equiv \mathrm{Diff}(M)$ the group of smooth diffeomorphisms. For many applications in PDE theory one needs a completed version $\mathcal{D}^{p,r}(M)$, $1 \leq p, r$ Sobolev index. For $r > \frac{n}{p}$ and M^n closed, this easily can be done. One defines $\mathcal{D}^{p,r}$ by means of a finite cover $\mathfrak{U} = \{U_{\alpha}, \varphi_{\alpha}\}_{1 \leq \alpha \leq m}$ and imposes Euclidean Sobolev conditions,

$$\psi_{\beta} \circ f \circ \varphi_{\alpha}^{-1} : \varphi_{\alpha}(U_{\alpha}) \longrightarrow \mathbb{R}^{n} \text{ is in } W^{p,r}(\varphi(U), \mathbb{R}^{n}).$$

It easily follows that $\mathcal{D}^{p,r}$ is independent of the choice of the finite cover. For open manifolds, this is totally wrong. We defined for open manifolds (M^n, g) of bounded geometry completed diffeomorphism groups $\mathcal{D}^{p,r}(M^n, g)$ satisfying the following conditions

- 1) $\mathcal{D}^{p,r}$ is a Banach manifold, for p=2 it is a Hilbert manifold,
- 2) it depends only on the component $\text{comp}(g) \subset \mathcal{M}^{p,r}(I, B_k)$, the completed space of metrics of bounded geometry,
- 3) if (M^n, g) is compact then our definition coincides with all other definitions and is completely independent of g.

In a second step, we construct Hilbert submanifolds of volume (element) preserving, symplectic, contact and gauge diffeomorphisms, define for them a (weak) Riemannian structure and calculate their curvature. All this has many applications in mathematical physics.