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The classical result by Nadler, Quinn and Stavrokas [1] asserts that the hyperspace of
convex compact subsets in Rn , n ≥ 2 , is a contractible Q-manifold. Recall that a Q-manifold
is a manifold modeled on the Hilbert cube Q = [0, 1]ω .

Let Rmax = R∪{−∞} . Given x, y ∈ Rn and λ ∈ R , we denote by x⊕y the coordinatewise
maximum of x and y and by λ ¯ x the vector obtained from x by adding λ to every its
coordinate. A subset A in Rn is said to be tropically convex if α¯a⊕β¯ b ∈ A for all a, b ∈ A

and α, β ∈ Rmax with α ⊕ β = 0 . The tropical convexity (or max-plus convexity, in another
terminology) was introduced in [2].

The main result states that the hyperspace of compact max-plus convex sets in Rn , n ≥ 2 ,
is a contractible Q-manifold Q \ {∗} . This is a max-plus counterpart of the mentioned result
from [1].

We conjecture that, for a nonempty open subset U of Rn , n ≥ 2 , the hyperspace of
compact max-plus convex sets contained in U is homeomorphic to the Q-manifold Q×[0, 1)×U .
The corresponding result for the hyperspace of compact convex sets is proved by L. Montejano
[3].
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