HOMEOMORPHISM GROUPS OF NON-COMPACT MANIFOLDS

T.BANAKH, K.SAKAI, K.MINE

Lviv National University (Ukraine) Tsukuba University (Japan)

For a paracompact space X by H(X) we denote the homeomorphism group of X endowed with the Whitney (or else graph) topology generated by the base consisting of the sets $\Gamma_U = \{h \in H(X) : \Gamma_h \subset U\}$ where U runs over open subsets of X and $\Gamma_h = \{(x, h(x)) : x \in X\}$ stands for the graph of h. Let $H_c(X)$ be the connected component of H(X) containing the identity homeomorphism.

Theorem 1. For any non-compact connected 2-manifold M the homeomorphism group $H_c(M)$ is homeomorphic to $l_2 \times \mathbb{R}^{\infty}$.

Here \mathbb{R}^{∞} is the linear space with countable Hamel basis and the strongest liner topology. For higher-dimensional Euclidean spaces \mathbb{R}^n we have the following characterization connecting the topology of the group $H_c(\mathbb{R}^n)$ with the topology of the group $H_{\partial}(I^n)$ of homeomorphisms of the *n*-cube I^n that do not move the points of the boundary of I^n .

Theorem 2. The homeomorphism group $H_c(\mathbb{R}^n)$ is an $l_2 \times \mathbb{R}^\infty$ -manifold if and only if the group $H_{\partial}(I^n)$ is an ANR. For $n \leq 2$ the group $H_c(\mathbb{R}^n)$ is homeomorphic to $l_2 \times \mathbb{R}^\infty$.

It is an old open problem if the homeomorphism group $H_{\partial}(I^n)$ is an AR for $n \geq 3$. However it is known (and easily seen) that this group is contractible.