ALGEBRAIC AND TOPOLOGICAL PROPERTIES OF SOME SETS IN ℓ_1

TARAS BANAKH, ARTUR BARTOSZEWSICZ, SZYMON GLAJB, AND EMILIA SZYMONIK

Abstract. For a sequence $x \in \ell_1 \setminus c_{00}$, one can consider the set $E(x)$ of all subsums of series $\sum_{n=1}^{\infty} x(n)$. Guthrie and Nymann proved that $E(x)$ is one of the following types of sets:

- (I) a finite union of closed intervals;
- (C) homeomorphic to the Cantor set;
- (MC) homeomorphic to the set T of subsums of $\sum_{n=1}^{\infty} b(n)$ where $b(2n-1) = 3/4^n$ and $b(2n) = 2/4^n$.

By I, C and MC denote the sets of all sequences $x \in \ell_1 \setminus c_{00}$, such that $E(x)$ has the property (I), (C) and (MC), respectively. In this note we show that I and C are strongly c-algebrable and MC is c-lineable. We show that C is a dense G_δ-set in ℓ_1 and I is a true F_σ-set. Finally we show that I is spaceable while C is not spaceable.

1. Introduction

1.1. Lineability, algebrability and spaceability. Having a linear algebra A and its subset $E \subset A$ one can ask if $E \cup \{0\}$ contains a linear subalgebra A' of A. Roughly speaking if the answer is positive, then E is algebrable. It is a recent trend in Mathematical Analysis to establish the algebrability of sets E which are far from being linear, that is $x, y \in E$ does not generally imply $x + y \in E$. Such algebrability results were obtained in sequence spaces (see [7], [6] and [8]) and in function spaces (see [2], [5], [4], [12] and [13]).

1991 Mathematics Subject Classification. Primary: 40A05; Secondary: 15A03.

Key words and phrases. subsums of series, achievement set of sequence, algebrability, strong algebrability, lineability, spaceability.
Assume that V is a linear space (linear algebra). A subset $E \subset V$ is called lineable (algebrable) whenever $E \cup \{0\}$ contains an infinite-dimensional linear space (infinitely generated linear algebra, respectively), see [3], [9] and [15].

For a cardinal $\kappa > \omega$, let us observe that the set E is κ-algebrable (i.e. it contains κ-generated linear algebra), if and only if it contains an algebra which is a κ-dimensional linear space (see [7]). Moreover, we say that a subset E of a commutative linear algebra V is strongly κ-algebrable ([7]), if there exists a κ-generated free algebra A contained in $E \cup \{0\}$.

Note, that $X = \{x_\alpha : \alpha < \kappa\} \subset E$ is a set of free generators of a free algebra $A \subset E$ if and only if the set X' of elements of the form $x_{\alpha_1}^{k_1}x_{\alpha_2}^{k_2} \cdots x_{\alpha_n}^{k_n}$ is linearly independent and all linear combinations of elements from X' are in $E \cup \{0\}$. It is easy to see that free algebras have no divisors of zero.

In practice, to prove κ-algebrability of set $E \subset V$ we have to find $X \subseteq E$ of cardinality κ such that for any polynomial P in n variables and any distinct $x_1, \ldots, x_n \in X$ we have either $P(x_1, \ldots, x_n) \in E$ or $P(x_1, \ldots, x_n) = 0$. To prove the strong κ-algebrability of E we have to find $X \subset E$, $|X| = \kappa$, such that for any non-zero polynomial P and distinct $x_1, \ldots, x_n \in X$ we have $P(x_1, \ldots, x_n) \in E$.

In general, there are subsets of linear algebras which are algebrable but not strongly algebrable. Let c_{00} be a subset of c_0 consisting of all sequences with real terms equal to zero from some place. Then the set c_{00} is algebrable in c_0 but is not strongly 1-algebrable [7].

Let X be a Banach space. The subset M of X is spaceable if $M \cup \{0\}$ contains infinitely dimensional closed subspace Y of X. Since every infinitely dimensional Banach space contains linearly independent set of the cardinality continuum, the spaceability implies \mathfrak{c}-lineability. However, the spaceability is a much stronger property than \mathfrak{c}-lineability. The notions of spaceability and \mathfrak{c}-algebrability are incomparable. We will show that even \mathfrak{c}-algebrable dense \mathcal{G}_δ-sets in ℓ_1 may not be spaceable. On the other hand, there are sets in c_0 which are spaceable but not 1-algebrable (see [7]).
1.2. The subsums of series. Let \(x \in \ell_1 \). The set of all subsums of \(\sum_{n=1}^{\infty} x(n) \), meaning the set of sums of all subseries of \(\sum_{n=1}^{\infty} x(n) \), is defined by

\[
E(x) = \{ a \in \mathbb{R} : \exists A \subset \mathbb{N} \sum_{n \in A} x(n) = a \}.
\]

Some authors call it the achievement set of \(x \). The following theorem is due to Kakeya.

Theorem 1. [18]. Let \(x \in \ell_1 \)

1. If \(x \not\in c_{00} \), then \(E(x) \) is a perfect compact set.
2. If \(|x(n)| > \sum_{i>n} |x(i)| \) for almost all \(n \), then \(E(x) \) is homeomorphic to the Cantor set.
3. If \(|x(n)| \leq \sum_{i>n} |x(i)| \) for \(n \) sufficiently large, then \(E(x) \) is a finite union of closed intervals. In the case of non-increasing sequence \(x \), the last inequality is also necessary to obtain \(E(x) \) being a finite union of intervals.

Moreover, Kakeya conjectured that \(E(x) \) is either nowhere dense or it is a finite union of intervals. Probably, the first counterexample to this conjecture was given (without a proof) by Weinstein and Shapiro [21] and, with a correct proof, by Ferens [11]. Guthrie and Nymann [16] showed that, for the sequence \(b \) given by the formulas \(b(2n-1)=\frac{3}{4^n} \) and \(b(2n)=\frac{2}{4^n} \), the set \(T = E(b) \) is not a finite union of intervals but it has nonempty interior.

In the same paper they formulated the following theorem

Theorem 2. [16] Let \(x \in \ell_1 \setminus c_{00} \), then \(E(x) \) is one of the following sets:

(i) a finite union of closed intervals;
(ii) homeomorphic to the Cantor set;
(iii) homeomorphic to the set \(T \).

A correct proof of the Guthrie and Nymann trichotomy was given by Nymann and Sáenz [20]. The sets homeomorphic to \(T \) are called Cantorvals (more precisely: M-Cantorvals). Note that Theorem 2 can be formulated as follows: The space \(\ell_1 \) is a disjoint union of the sets \(c_{00}, \mathcal{I}, \mathcal{C} \) and \(\mathcal{MC} \) where
\[\mathcal{I} \text{ consists of sequences } x \text{ with } E(x) \text{ equal to a finite union of intervals, } \mathcal{C} \text{ consists of sequences } x \text{ with } E(x) \text{ homeomorphic to the Cantor set, and } \mathcal{MC} \text{ of } x \text{ with } E(x) \text{ being an M-Cantorval.} \]

For \(x \in \ell_1 \), let \(x' \) be an arbitrary finite modification of \(x \), and let \(|x| \) denote the sequence \(y \in \ell_1 \) such that \(y(n) = |x(n)| \). Then \(x \in \mathcal{I} \iff |x| \in \mathcal{I} \iff x' \in \mathcal{I} \). The same equivalences hold for sets \(\mathcal{C} \) and \(\mathcal{MC} \).

2. Algebraic substructures in \(\mathcal{C}, \mathcal{I} \) and \(\mathcal{MC} \).

Jones in a very nice paper [17] gives the following example. Let \(x(n) = 1/2^n \) and \(y(n) = 1/3^n \). Then clearly \(x \in \mathcal{I} \) and \(y \in \mathcal{C} \). Moreover, \(x + y \in \mathcal{C} \) and \(x - y \in \mathcal{I} \). Since \(x = (x + y) - y \) and \(y = -(x - y) + x \), then neither \(\mathcal{I} \) nor \(\mathcal{C} \) is closed under pointwise addition. However, in the present paper we show that the sets \(\mathcal{C}, \mathcal{I} \) and \(\mathcal{MC} \) contain large (\(c \)-generated) algebraic structures. To prove the strong \(c \)-algebrability of \(\mathcal{C} \) and \(\mathcal{I} \), we will combine Theorem 1 and the method of linearly independent exponents, which was successful in [6] and [7]. In the next theorem we construct generators as the powers of one geometric series \(x_q (x(n) = q^n) \) for \(0 < q < \frac{1}{2} \). Clearly, by Theorem 1, \(x_q \in \mathcal{C} \).

Theorem 3. \(\mathcal{C} \) is strongly \(c \)-algebraable.

Proof. Fix \(q \in (0, 1/2) \). Let \(\{r_\alpha : \alpha < c\} \) be a linearly independent (over the field of all rationals \(\mathbb{Q} \)) set of reals greater than 1. Let \(x_\alpha(n) = q^{r_\alpha n} \). We will show that the set \(\{x_\alpha : \alpha < c\} \) generates a free algebra \(\mathcal{A} \) which, except for the null sequence, is contained in \(\mathcal{C} \).

To do this, we will show that for any \(\beta_1, \beta_2, \ldots, \beta_m \in \mathbb{R} \setminus \{0\} \), any matrix \([k_{ij}]_{i \leq m, j \leq \beta} \) of natural numbers with nonzero distinct rows, and any \(\alpha_1 < \alpha_2 < \cdots < \alpha_j < c \), the sequence \(x \) given by

\[
x(n) = P(x_{\alpha_1}, \ldots, x_{\alpha_j})(n)
\]
where

\[P(z_1, \ldots, z_j) = \beta_1 z_1^{k_{11}} z_2^{k_{12}} \cdots z_j^{k_{1j}} + \cdots + \beta_m z_1^{k_{m1}} z_2^{k_{m2}} \cdots z_j^{k_{mj}} \]

is in \(C \). In other words,

\[x(n) = \beta_1 q^{n(r_{\alpha_1} k_{11} + \cdots + r_{\alpha_j} k_{1j})} + \cdots + \beta_m q^{n(r_{\alpha_1} k_{m1} + \cdots + r_{\alpha_j} k_{mj})} \]

Since \(r_{\alpha_1}, \ldots, r_{\alpha_j} \) are linearly independent and the rows of \([k_{il}]_{i \leq m, l \leq j} \) are distinct, the numbers \(r_1 := r_{\alpha_1} k_{11} + \cdots + r_{\alpha_j} k_{1j}, \ldots, r_m := r_{\alpha_1} k_{m1} + \cdots + r_{\alpha_j} k_{mj} \) are distinct. We may assume that \(r_1 < \cdots < r_m \). Then

\[
\frac{|x(n)|}{\sum_{i>n} |x(i)|} = \frac{|\beta_1 q^{nr_1} + \cdots + \beta_m q^{nr_m}|}{\sum_{i>n} |\beta_1 q^{ir_1} + \cdots + \beta_m q^{ir_m}|} \\
\geq \frac{|\beta_1 q^{nr_1} + \cdots + \beta_m q^{nr_m}|}{\sum_{i>n} (|\beta_1 q^{ir_1} + \cdots + |\beta_m q^{ir_m}|)} = \frac{|\beta_1 q^{nr_1} + \cdots + \beta_m q^{nr_m}|}{\beta_1 q^{nr_1} + \cdots + \beta_m q^{nr_m}} \\
\to \frac{1 - q^{r_1}}{q^{r_1}} > 1.
\]

Therefore there is \(n_0 \), such that \(|x(n)| > \sum_{i>n} |x(i)| \) for all \(n \geq n_0 \). Hence, by Theorem 1, we obtain that \(x \in C \).

\[\square \]

It is obvious that the geometric sequence \(x_q \), even for \(q > \frac{1}{2} \), is not useful to construct the generators of linear algebra contained in \(\mathcal{I} \). Indeed, for sufficiently large exponent \(k \), the sequence \(x^k_q \) belongs to \(C \). So, in the next theorem we use the harmonic series.

Theorem 4. \(\mathcal{I} \) is strongly \(t \)-algebrable.

Proof. Let \(K \) be a linearly independent subset of \((1, \infty)\) of cardinality \(c \). For \(\alpha \in K \), let \(x_\alpha \) be a sequence given by the formula \(x_\alpha(n) = \frac{1}{n^\alpha} \). We will show that the set \(\{x_\alpha : \alpha \in K\} \) generates a free algebra \(\mathcal{A} \) which is contained in \(\mathcal{I} \cup \{0\} \). To do this, we will show that for any \(\beta_1, \beta_2, \ldots, \beta_m \in \mathbb{R} \setminus \{0\} \), any matrix \([k_{il}]_{i \leq m, l \leq j} \) of natural numbers with nonzero distinct rows, and any \(\alpha_1 < \alpha_2 < \cdots < \alpha_j \), the sequence \(x \) defined by

\[
x = P(x_{\alpha_1}, x_{\alpha_2}, \ldots, x_{\alpha_j})
\]
\[x(n) = P(x_{\alpha_1}, x_{\alpha_2}, \ldots, x_{\alpha_j})(n) \]

Note that \(p_1, \ldots, p_m \) are distinct. Assume that \(p_1 < p_2 < \cdots < p_m \). We have

\[
\sum_{k>n}|x(k)| \leq \frac{\beta_1}{\sum_{k>n} \frac{1}{n^{\frac{k}{p_1}}}} + \beta_2 \frac{1}{n^{\frac{2}{p_2}}} + \cdots + \beta_m \frac{1}{n^{\frac{m}{p_m}}}
\]

Observe that the first inequality holds for \(n \) large enough. Therefore there is \(n_0 \) such that \(|x(n)| \leq \sum_{i>n} |x(i)| \) for any \(n \geq n_0 \). Hence, by Theorem 1 we obtain that \(x \in I \).

The method described in the next lemma belongs to the mathematical folklore and was used to construct sequences \(x \)'s with \(E(x) \) being Cantorvals. We present its proof since we did not find it explicitly formulated in the mathematical literature.

Lemma 5. Let \(x \in \ell_1 \) be such that

(i) \(E(x) \) contains an interval;

(ii) \(|x(n)| > \sum_{i>n} |x(i)| \) for infinitely many \(n \);

(iii) \(|x_n| \geq |x_{n+1}| \) for almost all \(n \).

Then \(x \in MC \).
Proof. By (ii)-(iii), the point \(x \) does not belong to \(\mathcal{I} \). By (i), the point \(x \) does not belong to \(\mathcal{C} \). Hence, by Theorem 2 we get \(x \in \mathcal{MC} \). \(\square \)

Up to last years, there were only known a few examples of sequences belonging to \(\mathcal{MC} \). These examples were not very useful to construct a large number of linearly independent sequences. Recently, Jones in [17] has constructed a one-parameter family of sequences in \(\mathcal{MC} \). We shall use some modification of the example given by Jones in the proof of our next theorem.

Theorem 6. \(\mathcal{MC} \) is \(c \)-lineable.

Proof. Let

\[
x_q = (4, 3, 2, 4q, 3q, 2q, 4q^2, 3q^2, 2q^2, 4q^3, \ldots)
\]

and

\[
y_q = (1, 1, 1, 1, q, q, q, q, q^2, q^2, q^2, q^2, q^3, \ldots)
\]

for \(q \in \left[\frac{1}{6}, \frac{2}{11}\right) \).

Observe that the sequences \(x_q, q \in \left[\frac{1}{6}, \frac{2}{11}\right) \) are linearly independent. We need to show that each non-zero linear combination of sequences \(x_q \) fulfils the assumptions (i)–(iii) of Lemma 5 and therefore it is actually in \(\mathcal{MC} \). To prove this, let us fix \(q_1 > q_2 > \cdots > q_m \in \left[\frac{1}{6}, \frac{2}{11}\right), \beta_1, \beta_2, \ldots, \beta_m \in \mathbb{R} \) and define sequences \(x \) and \(y \) by

\[
x(n) = \beta_1 x_{q_1}(n) + \beta_2 x_{q_2}(n) + \cdots + \beta_m x_{q_m}(n)
\]

and

\[
y(n) = \beta_1 y_{q_1}(n) + \beta_2 y_{q_2}(n) + \cdots + \beta_m y_{q_m}(n).
\]

At first, we will check that for almost all \(n \)

(1) \(2|\beta_1 q_1^n + \beta_2 q_2^n + \cdots + \beta_m q_m^n| > 9 \sum_{k>n} |\beta_1 q_1^k + \beta_2 q_2^k + \cdots + \beta_m q_m^k| \).

We have

\[
\frac{2|\beta_1 q_1^n + \beta_2 q_2^n + \cdots + \beta_m q_m^n|}{9 \sum_{k>n} |\beta_1 q_1^k + \beta_2 q_2^k + \cdots + \beta_m q_m^k|} \geq \frac{2|\beta_1 q_1^n + \beta_2 q_2^n + \cdots + \beta_m q_m^n|}{9 \sum_{k>n} |\beta_1 q_1^k| + |\beta_2 q_2^k| + \cdots + |\beta_m q_m^k|}
\]
= \frac{2|\beta_1 q_1^n + \beta_2 q_2^n + \cdots + \beta_m q_m^n|}{9(\|\beta_1 q_1^{n+1} + \beta_2 q_2^{n+1} + \cdots + \beta_m q_m^{n+1}\|)} \rightarrow \frac{2}{9} \frac{1 - q_1}{q_1} > \frac{2}{9} \frac{1 - \frac{2}{11}}{\frac{2}{11}} = 1.

Note that if \(n \) is not divisible by 3, then \(|x(n)| \geq |x(n + 1)|\). On the other hand, if \(n = 3l \), then

\[|x(n)| = 2|\beta_1 q_1^l + \cdots + \beta_m q_m^l| \]

and

\[|x(n + 1)| = 3|\beta_1 q_1^{l+1} + \cdots + \beta_m q_m^{l+1}| \leq 9 \sum_{k > l} |\beta_1 q_1^k + \cdots + \beta_m q_m^k|. \]

Hence by (1) we obtain \(|x(n)| \geq |x(n + 1)|\) for almost all \(n \). By (1) we also have \(|x(n)| > \sum_{i > n} |x(i)|\) for infinitely many \(n \).

Now we will show that

\begin{equation}
(2) \quad |\beta_1 q_1^n + \beta_2 q_2^n + \cdots + \beta_m q_m^n| \leq \frac{5}{5} \sum_{k > n} |\beta_1 q_1^k + \beta_2 q_2^k + \cdots + \beta_m q_m^k|.
\end{equation}

We have

\[
\begin{aligned}
\frac{|\beta_1 q_1^n + \beta_2 q_2^n + \cdots + \beta_m q_m^n|}{5 \sum_{k > n} |\beta_1 q_1^k + \beta_2 q_2^k + \cdots + \beta_m q_m^k|} &\leq \frac{|\beta_1 q_1^n + \beta_2 q_2^n + \cdots + \beta_m q_m^n|}{5 |\beta_1 q_1^n + \beta_2 q_2^n + \cdots + \beta_m q_m^n|} \\
&= \frac{|\beta_1 + \beta_2 q_1^n + \cdots + \beta_m q_m^n|}{5 |\beta_1 \sum_{i > 0} q_1^i + \beta_2 q_2^i + \cdots + \beta_m q_m^n|} \\
&\rightarrow_{n \rightarrow \infty} \frac{1}{5} \cdot \frac{1 - q_1}{q_1} \leq \frac{1}{5} \cdot \frac{1 - \frac{1}{6}}{\frac{1}{6}} = 1.
\end{aligned}
\]

By (2) we obtain that \(|y(n)| \leq \sum_{k > n} |y(k)|\) for almost all \(n \). Therefore by Theorem 1, the set \(E(y) \) is a finite union of closed intervals. Thus \(E(y) \) has non-empty interior.

To end the proof we need to show that \(E(x) \) has non-empty interior. We will prove that

\[2 \sum_{n=0} |\beta_1 q_1^n + \beta_2 q_2^n + \cdots + \beta_m q_m^n| + E(y) \subseteq E(x). \]

Let \(t \in \sum_{n=0} |\beta_1 q_1^n + \beta_2 q_2^n + \cdots + \beta_m q_m^n| + E(y). \)
Note that any element t of $E(y)$ is of the form
\[t = k_0(\beta_1 + \beta_2 + \cdots + \beta_m) + k_1(\beta_1 q_1 + \beta_2 q_2 + \cdots + \beta_m q_m) + k_2(\beta_1 q_1^2 + \beta_2 q_2^2 + \cdots + \beta_m q_m^2) + \cdots \]
where $k_n \in \{0, 1, 2, 3, 4, 5\}$. Thus t is of the form
\[t = \sum_{n=0}^{\infty} (\beta_1 q_1^n + \beta_2 q_2^n + \cdots + \beta_m q_m^n) + \]
\[+ k_0(\beta_1 + \beta_2 + \cdots + \beta_m) + k_1(\beta_1 q_1 + \beta_2 q_2 + \cdots + \beta_m q_m) + \]
\[+ k_2(\beta_1 q_1^2 + \beta_2 q_2^2 + \cdots + \beta_m q_m^2) + \cdots \]
Note that each number from $\{2, 3, 4, 5, 6, 7\}$, that is every number of the form $2 + k_n$, can be written as a sum of numbers $4, 3, 2$. Hence $t \in E(x)$ and $E(x)$ has non-empty interior. So $x \in MC$. \qed

3. The topological size and Borel classification of C, I and MC.

Let us observe that all the sets c_{00}, C, I and MC are dense in ℓ_1. Moreover, c_{00} is an F_σ-set of the first category. We are interested in studying the topological size and Borel classification of considered sets. To do it, let us consider the hyperspace $H(\mathbb{R})$, that is the space of all non-empty compact subsets of reals, equipped with the Vietoris topology (see [19], 4F, pp.24-28). Recall, that the Vietoris topology is generated by the subbase of sets of the form $\{K \in H(\mathbb{R}) : K \subset U\}$ and $\{K \in H(\mathbb{R}) : K \cap U \neq \emptyset\}$ for all open sets U in \mathbb{R}. This topology is metrizable by the Hausdorff metric d_H given by the formula
\[d_H(A, B) = \max\{\max_{t \in A} d(t, B), \max_{s \in B} d(s, A)\} \]
where d is the natural metric in \mathbb{R}. It is known that the set N of all nowhere dense compact sets is a G_δ-set in $H(\mathbb{R})$ and the set F of all compact sets
with finite number of connected components is an \mathcal{F}_σ-set. To see this, it is enough to observe that

- K is nowhere dense if and only if for any set U_n from a fixed countable base of natural topology in \mathbb{R} there exists a set U_m from this base, such that $\text{cl}(U_m) \subset U_n$ and $K \subset (\text{cl}(U_m))^c$;
- K has more then k components if and only if there exist pairwise disjoint open intervals $J_1, J_2, \ldots, J_{k+1}$, such that $K \subset J_1 \cup J_2 \cup \cdots \cup J_{k+1}$ and $K \cap J_i \neq \emptyset$ for $i = 1, 2, \ldots, k+1$.

Now, let us observe that if we assign the set $E(x)$ to the sequence $x \in \ell_1$, we actually define the function $E : \ell_1 \to H(\mathbb{R})$.

Lemma 7. The function E is Lipschitz with Lipschitz constant $L = 1$, hence it is continuous.

Proof. Let $t \in E(x)$. Then there exists a subset A of \mathbb{N} such that $t = \sum_{n \in A} x(n)$. We have

$$d(t, E(y)) = d(t, \sum_{n \in A} y(n)) = \left| \sum_{n \in A} (x(n) - y(n)) \right| \leq \sum_{n \in A} |(x(n) - y(n))| = \left\| x - y \right\|_1$$

where $\left\| \cdot \right\|_1$ denotes the norm in ℓ_1. Hence, $d_H(E(x), E(y)) \leq \left\| x - y \right\|_1$. □

Theorem 8. The set \mathcal{C} is a dense G_δ-set (and hence residual), \mathcal{I} is a true \mathcal{F}_σ-set (i.e. it is \mathcal{F}_σ but not G_δ) of the first category, and \mathcal{MC} is in the class $(\mathcal{F}_{\sigma\delta} \cap G_{\delta\sigma}) \setminus G_{\delta}$.

Proof. Let us observe that $\mathcal{C} \cup c_{00} = E^{-1}[N]$ and $\mathcal{I} \cup c_{00} = E^{-1}[F]$ where N, F, E are defined as before. Hence $\mathcal{C} \cup c_{00}$ is G_δ-set and $\mathcal{I} \cup c_{00}$ is \mathcal{F}_σ-set. Thus \mathcal{C} is G_δ-set (because c_{00} is \mathcal{F}_σ-set) and $\mathcal{I} \cup c_{00}$ is \mathcal{F}_σ-set. Thus \mathcal{C} is G_δ-set and $\mathcal{I} \cup \mathcal{MC}$ is \mathcal{F}_σ. Moreover, $\mathcal{I} = (\mathcal{I} \cup c_{00}) \cap (\mathcal{I} \cup \mathcal{MC})$ is \mathcal{F}_σ-set, too. By the density of \mathcal{C}, \mathcal{C} is residual. Since \mathcal{I} is dense of the first category, it cannot be G_δ-set. For the same reason, \mathcal{MC} also cannot be G_δ-set. Since \mathcal{MC} is a difference of two \mathcal{F}_σ-sets, it is in the class $\mathcal{F}_{\sigma\delta} \cap G_{\delta\sigma}$. □
Remark 9. In [7] it was shown the following similar result by the use of quite different methods: the set of bounded sequences, with the set of limit points homeomorphic to the Cantor set, is strongly c-algebrable and residual in l^∞.

4. Spaceability

In this section we will show that I is spaceable while C is not spaceable. This shows that there is a subset M of ℓ_1 containing a dense G_δ subset and such that it contains a linear subspace of dimension \mathfrak{c}, but $Y \setminus M \neq \emptyset$ for any infinitely dimensional closed subspace Y of ℓ_1.

Theorem 10. Let I_1 be a subset of I which consists of those $x \in \ell_1$ for which $E(x)$ is an interval. Then I_1 is spaceable.

Proof. Let A_1, A_2, \ldots be a partition of \mathbb{N} into infinitely many infinite subsets. Let $A_n = \{k_n^1 < k_n^2 < k_n^3 < \ldots \}$. Define $x_n \in \ell_1$ in the following way. Let $x_n(k_n^j) = 2^{-j}$ and $x_n(i) = 0$ if $i \notin A_n$. Then $\|x_n\|_1 = 1$ and $\{x_n : x \in \mathbb{N}\}$ forms a normalised basic sequence. Let Y be a closed linear space generated by $\{x_n : x \in \mathbb{N}\}$. Then

$$y \in Y \iff \exists t \in \ell_1 \left(y = \sum_{n=1}^{\infty} t(n)x_n \right).$$

Since $E(x_n) = [0, 1]$, then $E\left(\sum_{n=1}^{\infty} t(n)x_n\right) = \bigcup_{n=1}^{\infty} I_n$ where I_n is an interval with endpoints 0 and $t(n)$. Put $t^+(n) = \max\{t(n), 0\}$ and $t^-(n) = \min\{-t(n), 0\}$. Then $E\left(\sum_{n=1}^{\infty} t(n)x_n\right) = [\sum_{n=1}^{\infty} t^-(n), \sum_{n=1}^{\infty} t^+(n)]$ and the result follows.

Let us remark the very recent result by Bernal-González and Ordóñez Cabrera [10, Theorem 2.2]. The authors gave sufficient conditions for spaceability of sets in Banach spaces. Using that result, one can prove spaceability of I but it cannot be used to prove Theorem 10, since the assumptions are not fulfilled.
However we do not know more results giving the sufficient conditions for a set in Banach space to not be spaceable. An interesting example of a non-spaceable set was given in the classical paper [14] by Gurarii where it was proved that the set of all differentiable functions from $C[0, 1]$ is not spaceable. It is well known that the set of all differentiable functions in $C[0, 1]$ is dense but meager. We will prove that even dense $G_δ$-sets in Banach spaces may not be spaceable.

Theorem 11. Let Y be an infinitely dimensional closed subspace of $ℓ_1$. Then there is $y \in Y$ such that $E(y)$ contains an interval.

Proof. Let Y be an infinitely dimensional closed subspace of $ℓ_1$. Let $ε_n ↘ 0$.

Let x_1 be any nonzero element of Y with $\|x_1\|_1 = 1 + ε_1$. Since $x_1 ∈ ℓ_1$, there is n_1 with $\sum_{n=n_1+1}^{∞} |x_1(n)| ≤ ε_1$. Let E_1 consist of finite sums $\sum_{n=1}^{n_1} δ_n x_1(n)$ where $δ_i ∈ \{0, 1\}$. Then E_1 is a finite set with $\min E_1 = ∑_{n=1}^{n_1} x_1^−(n)$, $\max E_1 = ∑_{n=1}^{n_1} x_1^+(n)$ and $1 ≤ \max E_1 - \min E_1 ≤ 1 + ε_1$.

Let $Y_1 = Y \cap \{x ∈ ℓ_1 : x(n) = 0 \text{ for every } n ≤ n_1\}$. Since $\{x ∈ ℓ_1 : x(n) = 0 \text{ for every } n ≤ n_1\}$ has a finite co-dimension, then Y_1 is infinitely dimensional. Let x_2 be any nonzero element of Y_1 with $\|x_2\|_1 = 1 + ε_2$. Since $x_2 ∈ ℓ_1$, there is $n_2 > n_1$ with $\sum_{n=n_2+1}^{∞} |x_2(n)| ≤ ε_2$, $i = 1, 2$. Let E_2 consist of finite sums $\sum_{n=n_1+1}^{n_2} δ_n x_2(n)$, where $δ_i ∈ \{0, 1\}$. Then E_2 is a finite set with $\min E_2 = ∑_{n=n_1+1}^{n_2} x_2^−(n)$, $\max E_2 = ∑_{n=n_1+1}^{n_2} x_2^+(n)$ and $1 ≤ \max E_2 - \min E_2 ≤ 1 + ε_2$.

Proceeding inductively, we define natural numbers $n_1 < n_2 < n_3 < \ldots$, infinitely dimensional closed spaces $Y ⊃ Y_1 ⊃ Y_2 ⊃ \ldots$ such that $Y_k = \{x ∈ Y : x(n) = 0 \text{ for every } n ≤ n_k\}$, nonzero elements $x_k ∈ Y_{k-1}$ with $\|x_k\|_1 = 1 + ε_k$ and $\sum_{n=n_k+1}^{∞} |x_k(n)| ≤ ε_k$, $i = 1, 2, \ldots, k$, and finite sets E_k consisting of sums $\sum_{n=n_k+1}^{n_{k+1}} δ_n x_k(n)$ where $δ_i ∈ \{0, 1\}$. Note that $1 ≤ \text{diam}(E_k) ≤ 1 + ε_k$. Consider $y = ∑_{k=1}^{∞} x_k/2^k$. We claim that $E(y)$ contains an interval $I := [\min E_1, \max E_1]$.
Note that for any \(t \in I \) there is \(t_1 \in E_1 \) with \(|t - t_1| \leq (1 + \varepsilon_1)/2 \). Since \(1 \leq \text{diam}(E_2) \leq 1 + \varepsilon_2 \), there is \(t_2 \in E_1 + \frac{1}{2}E_2 \) with \(|t - t_2| \leq (1 + \varepsilon_2)/2^2 \). Hence, there is \(\tilde{t} \in E(x_1 + x_2/2) \) with \(|t - \tilde{t}| \leq (1 + \varepsilon_2)/2^2 + \varepsilon_1 \). Since \(1 \leq \text{diam}(E_k) \leq 1 + \varepsilon_k \), then inductively we can find \(t_k \in E_1 + \frac{1}{2}E_2 + \cdots + \frac{1}{2^{k-1}}E_k \) with \(|t - t_k| \leq (1 + \varepsilon_k)/2^k \). Hence, there is \(\tilde{t} \in E(x_1 + x_2/2 + \cdots + x_k/2^{k-1}) \) with \(|t - \tilde{t}| \leq (1 + \varepsilon_k)/2^k + \varepsilon_k - 1/2 + \cdots + \varepsilon_k - 1/2^{k-1} \leq (1 + \varepsilon_k)/2^k + 2\varepsilon_k - 1 \). Since \(E(y) \) is closed and it contains \(E(x_1 + x_2/2 + \cdots + x_k/2^{k-1}) \), then \(t \in E(y) \) and consequently \(I \subset E(y) \). □

Immediately we get the following.

Corollary 12. The set \(C \) is not spaceable.

We end the paper with the list of open questions on the set \(\mathcal{M}C \).

Problem 13.

(i) Is \(\mathcal{M}C \) \(c \)-algebra-ble?

(ii) Is \(\mathcal{M}C \) an \(\mathcal{F}_\sigma \) subset of \(\ell_1 \)?

(iii) Is \(\mathcal{M}C \) spaceable?

Acknowledgment. The second and the third authors have been supported by the Polish Ministry of Science and Higher Education Grant No. N N201 414939 (2010-2013). We want to thank F. Prus-Wiśniowski who has informed us about the trichotomy of Guthrie and Nymann, and other references on subsums of series.

References

T. Banakh: Ivan Franko University of Lviv (Ukraine) and Jan Kochanowski University in Kielce (Poland)
E-mail address: t.o.banakh@gmail.com

Institute of Mathematics, Technical University of Łódź, Wólczańska 215, 93-005 Łódź, Poland
E-mail address: arturar@p.lodz.pl

Institute of Mathematics, Technical University of Łódź, Wólczańska 215, 93-005 Łódź, Poland
E-mail address: szymon.glab@p.lodz.pl

Institute of Mathematics, Technical University of Łódź, Wólczańska 215, 93-005 Łódź, Poland
E-mail address: szymonikemilka@wp.pl