ALGEBRABILITY OF CONDITIONALLY CONVERGENT SERIES WITH CAUCHY PRODUCT

ARTUR BARTOSZEWICZ AND SZYMON GŁA̧B

> Abstract. We show that the set of conditionally convergent real series considered with Cauchy product is ($\omega, 1$)-algebrable.

By FS we denote the linear space of all formal series over \mathbb{R}. We can consider FS as a linear algebra with two different products, namely for $\sum_{n=0}^{\infty} x_{n}$ and $\sum_{n=0}^{\infty} y_{n}$ let

$$
\left(\sum_{n=0}^{\infty} x_{n}\right) \cdot\left(\sum_{n=0}^{\infty} y_{n}\right)=\sum_{n=0}^{\infty} x_{n} y_{n}
$$

(point-wise product) and

$$
\left(\sum_{n=0}^{\infty} x_{n}\right) \times\left(\sum_{n=0}^{\infty} y_{n}\right)=\sum_{n=0}^{\infty} \sum_{k=0}^{n} x_{k} y_{n-k}
$$

(Cauchy product). By CCS we denote the set of all conditionally convergent series. In [APS] Aizpuru et al. proved \mathfrak{c}-lineability of CCS and they consider the algebras in (FS, \cdot) consisting of elements from CCS and c_{00}.

We say that subset E of some linear algebra is (α, β)-algebrable if there is a β-generated algebra A such that $A \subset E \backslash\{0\}$ such that A is not τ generated for any $\tau<\beta$ and linear dimension of A is equal to α. The notion of algebrability was considered by many authors [ACPS], [APS1], [AS], [GPS], [GS1], [BG].

It is easy to see that CCS is not algebrable in (FS, •). However if we consider the series of complex numbers, it appears that the set of all conditionally convergent series with point-wise product is $(\mathfrak{c}, \mathfrak{c})$-algebrable [BGP]. This note is devoted to show that CCS is $(\omega, 1)$-algebrable in (FS, \times).

Our main tool will be the following classical result by Pringsheim. A family $\left\{\sum_{n=0}^{\infty} x_{n}^{s}: s \in S\right\}$ of series is absolutely equi-convergent if for any $\varepsilon>0$ there is N such that $\sum_{k=n}^{\infty}\left|x_{n}^{s}\right|<\varepsilon$ for any $n \geq N$ and $s \in S$.

Theorem 1. [P] Let $\sum_{n=0}^{\infty} a_{n}$ and $\sum_{n=0}^{\infty} b_{n}$ be convergent series. Assume that the series

$$
\left(a_{0}+a_{1}\right)+\left(a_{2}+a_{3}\right)+\left(a_{4}+a_{5}\right)+\ldots
$$

is absolutely convergent. Suppose moreover that the family of series

$$
\mathcal{F}=\left\{\sum_{n=0}^{\infty} a_{\varphi(n)} b_{\psi(n)}: \varphi, \psi: \mathbb{N} \rightarrow \mathbb{N} \text { with } \varphi(n), \psi(n) \geq n\right\}
$$

is absolutely equi-convergent. Then $\sum_{n=0}^{\infty} c_{n}=\left(\sum_{n=0}^{\infty} a_{n}\right) \times\left(\sum_{n=0}^{\infty} b_{n}\right)$ is convergent.

1. CONDITIONALLY CONVERGENT SERIES

We say that series $\sum_{n=0}^{\infty} a_{n}$ is alternating if $a_{2 n} \geq 0$ and $a_{2 n+1} \leq 0$ for any $n=0,1,2, \ldots$ It is an easy observation that the Cauchy product of two alternating series is alternating.

Theorem 2. CCS is $(\omega, 1)$-algebrable in (FS, \times).
Proof. Put $a_{n}=\frac{(-1)^{n}}{n+1}$ for any $n \in \mathbb{N}$. Note that the series $\sum_{n=0}^{\infty} a_{n}$ is alternating. Define numbers $a_{n}^{(k)}$ inductively: $a_{n}^{(1)}=a_{n}$ for any $n \in \mathbb{N}$ and

$$
a_{n}^{(k+1)}=\sum_{m=0}^{n} a_{m}^{(k)} a_{n-m}^{(1)}
$$

for any $k \geq 1$. We will use the well-known fact that

$$
\lim _{n \rightarrow \infty}\left(\sum_{m=0}^{n} \frac{1}{m+1}-\ln (n+1)\right)=\gamma(\text { Euler-Mascheroni constant })
$$

Then there are $0<C_{1}<C_{2}<\infty$ such that

$$
C_{1} \ln (n+1) \leq \sum_{m=0}^{n} \frac{1}{m+1} \leq C_{2} \ln (n+1)
$$

for any $n \geq 1$. Having this we will show inductively that

$$
\frac{C_{1}^{(k)} \ln ^{k-1}(n+1)}{n+1} \leq\left|a_{n}^{(k)}\right| \leq \frac{C_{2}^{(k)} \ln ^{k-1}(n+1)}{n+1}
$$

for any $n, k \geq 1$ and certain positive constants $C_{1}^{(k)}$ and $C_{2}^{(k)}$. This is obvious for $k=1$. Assume that this is true for some k. Then

$$
\begin{aligned}
& \left|a_{n}^{(k+1)}\right|=\left|\sum_{m=0}^{n} a_{m}^{(k)} a_{n-m}^{(1)}\right|=\sum_{m=0}^{n}\left|a_{m}^{(k)}\right|\left|a_{n-m}^{(1)}\right| \leq \sum_{m=0}^{n} \frac{C_{2}^{(k)} \ln ^{k-1}(m+1)}{m+1} \cdot \frac{1}{n+1-m} \leq \\
& \leq C_{2}^{(k)} \ln ^{k-1}(n+1) \sum_{m=0}^{n} \frac{1}{m+1} \cdot \frac{1}{n+1-m}=\frac{C_{2}^{(k)} \ln ^{k-1}(n+1)}{n+2} \sum_{m=0}^{n}\left(\frac{1}{m+1}+\frac{1}{n+1-m}\right) \leq \\
& \leq \frac{2 C_{2}^{(k)} \ln ^{k-1}(n+1)}{n+2} \sum_{m=0}^{n} \frac{1}{m+1} \leq \frac{2 C_{2}^{(k)} C_{2} \ln ^{k}(n+1)}{n+2} \leq \frac{2 C_{2}^{(k)} C_{2} \ln ^{k}(n+1)}{n+1}
\end{aligned}
$$

Put $C_{2}^{(k+1)}=2 C_{2}^{(k)} C_{2}$. We also have

$$
\begin{aligned}
&\left|a_{n}^{(k+1)}\right|=\left|\sum_{m=0}^{n} a_{m}^{(k)} a_{n-m}^{(1)}\right|=\sum_{m=0}^{n}\left|a_{m}^{(k)}\right|\left|a_{n-m}^{(1)}\right| \geq \sum_{m=0}^{n} \frac{C_{1}^{(k)} \ln ^{k-1}(m+1)}{m+1} \cdot \frac{1}{n+1-m} \geq \\
& \sum_{m=n / 2}^{n} \frac{C_{1}^{(k)} \ln ^{k-1}(m+1)}{m+1} \cdot \frac{1}{n+1-m} \geq C_{1}^{(k)} \ln ^{k-1}\left(\frac{n}{2}\right) \sum_{m \geq(n-1) / 2}^{n} \frac{1}{m+1} \cdot \frac{1}{n+1-m} \geq \\
& \geq \frac{C_{1}^{(k)} \ln ^{k-1}(\sqrt{n-1})}{n+2} \sum_{m \geq(n-1) / 2}^{n}\left(\frac{1}{m+1}+\frac{1}{n+1-m}\right) \geq \\
& \quad \geq \frac{C_{1}^{(k)} \ln ^{k-1}(n-1)}{2^{k-1}(n+2)} \sum_{m=0}^{n} \frac{1}{m+1} \geq \frac{C_{1}^{(k)} C_{1} \ln ^{k}(n-1)}{2^{k-1}(n+2)}= \\
&= \frac{C_{1}^{(k)} C_{1} \ln ^{k}(n+1)}{2^{k-1}(n+1)} \cdot \frac{(n+1) \ln ^{k}(n-1)}{(n+2) \ln ^{k}(n+1)} \geq \frac{C_{1}^{(k)} C_{1} \tilde{C} \ln ^{k}(n+1)}{2^{k-1}(n+1)},
\end{aligned}
$$

where

$$
0<\tilde{C} \leq \frac{(n+1) \ln ^{k}(n-1)}{(n+2) \ln ^{k}(n+1)}
$$

for any $n \in \mathbb{N}$. Put $C_{1}^{(k+1)}=C_{1}^{(k)} C_{1} / 2^{k} \tilde{C}$.
Let N be such that the map $n \mapsto \frac{\ln ^{k-1}(n+1)}{n+1}$ is decreasing on $\{N, N+$ $1, N+2, \ldots\}$ Note that for $m \geq N$

$$
\sum_{n=m}^{\infty}\left|a_{\varphi(n)}^{(1)}\right|\left|a_{\psi(n)}^{(k)}\right| \leq \sum_{n=m}^{\infty} \frac{1}{\varphi(n)+1} \cdot \frac{C_{2}^{(k)} \ln ^{k-1}(\psi(n)+1)}{\psi(n)+1} \leq
$$

$$
\leq \sum_{n=m}^{\infty} \frac{1}{n+1} \cdot \frac{C_{2}^{(k)} \ln ^{k-1}(n+1)}{n+1}=\sum_{n=m}^{\infty} \frac{C_{2}^{(k)} \ln ^{k-1}(n+1)}{(n+1)^{2}}<\infty
$$

for any $\varphi, \psi: \mathbb{N} \rightarrow \mathbb{N}$ with $\varphi(n), \psi(n) \geq n$. See that $\left|a_{n}^{(1)}+a_{n+1}^{(1)}\right| \leq$ $\frac{1}{n+1}-\frac{1}{n+2} \leq \frac{1}{(n+1)^{2}}$. Hence using Theorem 1 we obtain that $\sum_{n=0}^{\infty} a_{n}^{(k+1)}$ is convergent.

Let A be a sub-algebra of (FS, \times) generated by $\sum_{n=0}^{\infty} a_{n}$. To end the proof it is enough to show that the series

$$
\sum_{n=0}^{\infty}\left(c_{1} a_{n}^{(1)}+c_{2} a_{n}^{(2)}+\ldots+c_{k} a_{n}^{(k)}\right)
$$

is conditionally convergent for any natural number k and any reals c_{1}, \ldots, c_{k} with $c_{k} \neq 0$. This follows from the fact that $\left(\sum_{n=0}^{\infty} a_{n}\right)^{k}=\sum_{n=0}^{\infty} a_{n}^{(k)}$. This series is clearly convergent as a linear combination of convergent series. We will show that it is not absolutely convergent.

We may assume that $c_{k}=1$ and $k \geq 2$. Let $M_{1}=\max _{i=1,2, \ldots, k-1} \frac{\left|c_{i}\right|}{\left|c_{k}\right|}$, $M_{2}=\max _{i=1,2, \ldots, k}\left|C_{2}^{(i)}\right|$. Let $m_{0} \in \mathbb{N}$ be such that

$$
\ln (n+1)>\frac{2(k-1) M_{1} M_{2}}{C_{1}^{(k)}}
$$

for any $n \geq m_{0}$. Then

$$
\begin{aligned}
& \left|a_{n}^{(k)}\right| \geq \frac{C_{1}^{(k)} \ln ^{k-1}(n+1)}{n+1}=\ln (n+1) \cdot \frac{C_{1}^{(k)} \ln ^{k-2}(n+1)}{n+1}>\frac{2(k-1) M_{1} M_{2}}{C_{1}^{(k)}} \cdot \frac{C_{1}^{(k)} \ln ^{k-2}(n+1)}{n+1} \geq \\
& \geq 2 M_{1} M_{2}\left(\frac{\ln ^{k-2}(n+1)}{n+1}+\frac{\ln ^{k-1}(n+1)}{n+1}+\ldots+\frac{\ln (n+1)}{n+1}+\frac{1}{n+1}\right) \geq \\
& \quad \geq 2 M_{1}\left(\left|a_{n}^{(k-1)}\right|+\left|a_{n}^{(k-2)}\right|+\ldots+\left|a_{n}^{(2)}\right|+\left|a_{n}^{(1)}\right|\right) \geq \\
& \geq \\
& \quad \frac{2}{\left|c_{k}\right|}\left(\left|c_{k-1} a_{n}^{(k-1)}\right|+\left|c_{k-2} a_{n}^{(k-2)}\right|+\ldots+\left|c_{2} a_{n}^{(2)}\right|+\left|c_{1} a_{n}^{(1)}\right|\right) \geq \\
& \quad \frac{2}{\left|c_{k}\right|}\left|c_{k-1} a_{n}^{(k-1)}+c_{k-2} a_{n}^{(k-2)}+\ldots+c_{2} a_{n}^{(2)}+c_{1} a_{n}^{(1)}\right| .
\end{aligned}
$$

Therefore

$$
\left|c_{k} a_{n}^{(k)}\right|-\left|c_{1} a_{n}^{(1)}+c_{2} a_{n}^{(2)}+\ldots+c_{k-1} a_{n}^{(k-1)}\right| \geq\left|c_{k} a_{n}^{(k)}\right|-\frac{1}{2}\left|c_{k} a_{n}^{(k)}\right|=\frac{1}{2}\left|c_{k} a_{n}^{(k)}\right|
$$

Hence

$$
\begin{aligned}
& \sum_{n=0}^{\infty}\left|c_{1} a_{n}^{(1)}+c_{2} a_{n}^{(2)}+\ldots+c_{k} a_{n}^{(k)}\right| \geq \sum_{n=m_{0}}^{\infty}\left|c_{1} a_{n}^{(1)}+c_{2} a_{n}^{(2)}+\ldots+c_{k} a_{n}^{(k)}\right| \geq \\
& \sum_{n=m_{0}}^{\infty}| | c_{k} a_{n}^{(k)}\left|-\left|c_{1} a_{n}^{(1)}+c_{2} a_{n}^{(2)}+\ldots+c_{k-1} a_{n}^{(k-1)}\right|\right| \geq \sum_{n=m_{0}}^{\infty} \frac{\left|c_{k} a_{n}^{(k)}\right|}{2}=\infty .
\end{aligned}
$$

Note that in particular we have proved that the set $\left\{\left(\sum_{n=0}^{\infty} a_{n}\right)^{k}: k \geq 1\right\}$ is linearly independent.

2. Appendix

Since Prinsheim's paper [P] is not readily accessible, we reproduce here the proof of Theorem 1 for the sake of completeness of this note.

Proof. First we will show that $c_{n} \rightarrow 0$. We have

$$
\begin{gathered}
c_{2 m}=\sum_{k=0}^{m} a_{k} b_{2 m-k}+\sum_{k=0}^{m} a_{2 m-k} b_{k}-a_{m} b_{m} \\
c_{2 m+1}=\sum_{k=0}^{m} a_{k} b_{2 m+1-k}+\sum_{k=0}^{m} a_{2 m+1-k} b_{k} .
\end{gathered}
$$

Hence

$$
\left|c_{n}\right| \leq \sum_{k=0}^{m}\left|a_{k} b_{n-k}\right|+\sum_{k=0}^{m}\left|a_{n-k} b_{k}\right|+\left|a_{m} b_{m}\right|
$$

where $m=\max \{k \in \mathbb{Z}: k \leq n / 2\}$. Since \mathcal{F} is absolutely equi-convergent, we find $N \in \mathbb{N}$ with

$$
\sum_{k=N}^{m}\left|a_{k} b_{n-k}\right|<\frac{\varepsilon}{5} \quad \text { and } \quad \sum_{k=N}^{m}\left|a_{n-k} b_{k}\right|<\frac{\varepsilon}{5}
$$

Let n be such that

$$
\begin{aligned}
& \left|b_{n}\right|,\left|b_{n-1}\right|, \ldots,\left|b_{n-N+1}\right|<\frac{\varepsilon}{\max _{i \in \mathbb{N}}\left|a_{i}\right| 4 N} \\
& \left|a_{n}\right|,\left|a_{n-1}\right|, \ldots,\left|a_{n-N+1}\right|<\frac{\varepsilon}{\max _{i \in \mathbb{N}}\left|b_{i}\right| 4 N}
\end{aligned}
$$

and $\left|a_{m} b_{m}\right|<\varepsilon / 5$. Then

$$
\sum_{k=0}^{N-1}\left|a_{k} b_{n-k}\right|<\frac{\varepsilon}{5} \quad \text { and } \quad \sum_{k=0}^{N-1}\left|a_{n-k} b_{k}\right|<\frac{\varepsilon}{5}
$$

Hence

$$
\begin{gathered}
\left|c_{n}\right| \leq \sum_{k=0}^{m}\left|a_{k} b_{n-k}\right|+\sum_{k=0}^{m}\left|a_{n-k} b_{k}\right|+\left|a_{m} b_{m}\right|= \\
\sum_{k=0}^{N-1}\left|a_{k} b_{n-k}\right|+\sum_{k=N}^{m}\left|a_{k} b_{n-k}\right|+\sum_{k=0}^{N-1}\left|a_{n-k} b_{k}\right|+\sum_{k=N}^{m}\left|a_{n-k} b_{k}\right|+\left|a_{m} b_{m}\right|<\varepsilon .
\end{gathered}
$$

Therefore $c_{n} \rightarrow 0$.
Recall that if the series $\sum_{n=0}^{\infty} c_{n}$ is convergent to some C, then $C=A B$, where $A=\sum_{n=0}^{\infty} a_{n}$ and $B=\sum_{n=0}^{\infty} b_{n}$. Since $c_{n} \rightarrow 0$, it is enough to show that

$$
D_{4 m}=C_{4 m}-A_{2 m} B_{2 m}=\sum_{k=0}^{4 m} c_{k}-\sum_{k=0}^{2 m} a_{k} \sum_{l=0}^{2 m} b_{l}
$$

tends to zero, if $m \rightarrow \infty$.
We have

$$
\begin{gathered}
D_{4 m}=\sum_{k=0}^{4 m} \sum_{l=0}^{k} a_{l} b_{k-l}-\sum_{k=0}^{2 m} a_{k} \sum_{l=0}^{2 m} b_{l}= \\
a_{0} \sum_{l=0}^{4 m} b_{l}+a_{1} \sum_{l=0}^{4 m-1} b_{l}+\ldots+a_{4 m-1} \sum_{l=0}^{1} b_{l}+a_{4 m} b_{0}-\left(a_{0}+a_{1}+\ldots+a_{2 m}\right) \sum_{l=0}^{2 m} b_{l}= \\
a_{0} \sum_{l=2 m+1}^{4 m} b_{l}+a_{1} \sum_{l=2 m+1}^{4 m-1} b_{l}+\ldots+a_{2 m-1} b_{2 m+1}+a_{2 m+1} \sum_{l=0}^{2 m-1} b_{l}+a_{2 m+2} \sum_{l=0}^{2 m-2} b_{l}+\ldots+a_{4 m} b_{0}= \\
\left(a_{0}+a_{1}\right) \sum_{l=2 m+1}^{4 m-1} b_{l}+\left(a_{2}+a_{3}\right) \sum_{l=2 m+1}^{4 m-3} b_{l}+\ldots+\left(a_{2 m-2}+a_{2 m-1}\right) b_{2 m+1}+ \\
+\left(a_{2 m}+a_{2 m+1}\right) \sum_{l=0}^{2 m-1} b_{l}+\left(a_{2 m+2}+a_{2 m+3}\right) \sum_{l=0}^{2 m-3} b_{l}+\ldots+\left(a_{4 m-2}+a_{4 m-1}\right)\left(b_{0}+b_{1}\right)+ \\
a_{0} b_{4 m}+a_{2} b_{4 m-2}+\ldots+a_{2 m-2} b_{2 m+2}+a_{2 m} b_{2 m}+a_{2 m+2} b_{2 m-2}+\ldots+a_{4 m} b_{0}
\end{gathered}
$$

Hence

$$
\begin{aligned}
& \left|D_{4 m}\right| \leq \sum_{k=0}^{m-1}\left|a_{2 k}+a_{2 k+1}\right|\left|\sum_{l=2 m+1}^{4 m-(2 k+1)} b_{l}\right|+\sum_{k=0}^{m-1}\left|a_{2 m+2 k}+a_{2 m+2 k+1}\right| \sum_{l=0}^{2 m-(2 k+1)} b_{l} \mid+ \\
& +\sum_{k=0}^{2 m}\left|a_{2 k} b_{4 m-2 k}\right|+\left|a_{m}\right|\left|\sum_{k=0}^{2 m} b_{k}\right|
\end{aligned}
$$

Let $G=\max \left\{\sum_{k=0}^{\infty}\left|a_{2 k}+a_{2 k+1}\right|,\left|\sum_{k=0}^{\infty} b_{k}\right|\right\}<\infty$. Let $\varepsilon>0$ Let $M \in \mathbb{N}$ be such that the following inequalities hold for any $m \geq M$

$$
\begin{gathered}
\left|\sum_{l=2 m+1}^{4 m-(2 k+1)} b_{l}\right|<\frac{\varepsilon}{4 G} \\
\sum_{k=0}^{m-1}\left|a_{2 m+2 k}+a_{2 m+2 k+1}\right|<\frac{\varepsilon}{4 G} \\
\left|a_{2 m}\right|<\frac{\varepsilon}{4 G} \\
\sum_{k=0}^{2 m}\left|a_{2 k} b_{4 m-2 k}\right|<\frac{\varepsilon}{4}
\end{gathered}
$$

To find such m in the last inequality one should repeat the same reasoning as in the first part of the proof where it has been shown that $c_{n} \rightarrow 0$. Now, if $m \geq M$, then $\left|D_{4 m}\right|<\varepsilon$ and the result follows.

Acknowledgement. The authors would like to thank Juan SeoaneSepúlveda for the careful examination of the paper and for valuable suggestions.

References

[APS] Aizpuru, A.; Pérez-Eslava, C.; Seoane-Sepúlveda, J. B. Linear structure of sets of divergent sequences and series. Linear Algebra Appl. 418 (2006), no. 2-3, 595-598.
[APS1] Aron, R. M.; Pérez-García, D.; Seoane-Sepúlveda, J. B. Algebrability of the set of non-convergent Fourier series. Studia Math. 175 (2006), no. 1, 83-90.
[AS] Aron, R. M.; Seoane-Sepúlveda, J. B. Algebrability of the set of everywhere surjective functions on C. Bull. Belg. Math. Soc. Simon Stevin 14 (2007), no. 1, 25-31.
[ACPS] Aron, R. M. ; Conejero, J. A.; Peris, A.; Seoane-Sepúlveda, J. B. Uncountably Generated Algebras of Everywhere Surjective Functions. Bull. Belg. Math. Soc. Simon Stevin 17 (2010), 571-575
[BG] Bartoszewicz, A.; Gła̧b, S. Strong algebrability of sets of sequences and functions, submitted.
[BGP] Bartoszewicz, A.; Gła̧b, S.; Poreda, T. On algebrability of nonabsolutely convergent series, to appear in Linear Algebra Appl. doi:10.1016/j.laa.2011.02.008
[GS1] García-Pacheco, F. J.; Martín, M.; Seoane-Sepúlveda, J. B. Lineability, spaceability, and algebrability of certain subsets of function spaces. Taiwanese J. Math. 13 (2009), no. 4, 1257-1269.
[GPS] García-Pacheco, F. J.; Palmberg, N.; Seoane-Sepúlveda, J. B. Lineability and algebrability of pathological phenomena in analysis. J. Math. Anal. Appl. 326 (2007), no. 2, 929-939.
[P] Pringsheim, A.; Ueber die Multiplication bedingt convergenter Reihen. Math. Ann. 21 (1883), no. 3, 327-378.

Institute of Mathematics, Technical University of Łódź, Wólczańska 215, 93-005 ŁóDź, Poland

E-mail address: arturbar@p.lodz.pl

Institute of Mathematics, Technical University of Łódź, Wólczańska 215, 93-005 ŁÓdź, Poland

E-mail address: szymon_glab@yahoo.com

