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Abstract. Let µ be a purely atomic �nite measure. By the range of µ we understand the set rng(µ) = {µ(E) :

E ⊂ N}. We are interested in the two following questions. Which set can be a range of some measure µ? Can

the purely atomic measure µ be uniquely recovered from its range?

1. Introduction

Assume that µ is a purely atomic �nite measure. We may assume that µ is de�ned on N and µ({n}) ≥
µ({n + 1}). Throughout the paper we assume that measures are always purely atomic, �nite and they are

de�ned on N such that their n+1-st atoms have measures not greater than their n-th atoms. We are interested

in the following questions:

• For which subsets R of R there is a measure µ such that R is its range (i.e. R = rng(µ) := {µ(E) :

E ⊂ N})?
• For which subsets R of R there is exactly one measure µ with R = rng(µ)?

To simplify the notation let xn = µ({n}) be a measure of the n-th largest atom of µ. Note that

rng(µ) = {µ(E) : E ⊂ N} = {
∑
n∈E

µ({n}) : E ⊂ N} = {
∞∑
n=1

εnxn : εn = {0, 1}N}.

The latter set is also denoted by A(xn) and it is called the achievement set of (xn) (see [16]). Let us present

here two simple examples.

Example 1.1. Consider the procedure of rolling dice until the value on the dice is less than 5. For E ⊂ N let

µ1(E) be the probability that the procedure stops for some n from E. Then µ1({n}) = 2
3n . It is easy to see

that for xn = µ1({n}) the set A(xn), or rng(µ1), is equal to the classical Cantor ternary set C.

Example 1.2. Consider the procedure of tossing a fair coin until the head appears. For E ⊂ N let µ2(E) be

the probability that the procedure stops for some n from E. Then µ2({n}) = 1
2n and rng(µ2) = [0, 1].

Achievement sets of sequences, de�ned for all summable sequences (xn), have been considered by many

authors; some results have been rediscovered several times. Let us list basic properties of A(xn) (some of them

were observed by Kakeya in [17] in 1914):

(i) A(xn) is a compact perfect or �nite set,

(ii) If |xn| >
∑
i>n |xi| for all su�ciently large n's, then A(xn) is homeomorphic to the ternary Cantor set

C,

(iii) If |xn| ≤
∑
i>n |xi| for all su�ciently large n's, then A(xn) is a �nite union of closed intervals. Moreover,

if |xn| ≥ |xn+1| for all but �nitely many n's and A(xn) is a �nite union of closed intervals, then

|xn| ≤
∑
i>n |xi| for all but �nitely many n's.
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In particular, for decreasing sequence (xn) the inequality xn ≤
∑
i>n xi for all n is equivalent to A(xn) being

an interval.

One can see that A(xn) is �nite if and only if xn = 0 for all but �nite number of n's, i.e. (xn) ∈ c00. Kakeya

conjectured that if (xn) ∈ `1 \ c00, then A(xn) is always a Cantor set C or it is a �nite union of intervals.

On the other hand, in 1970 Renyi in [25] repeated the results of Kakeya in terms of purely atomic measures

and he asked if the Cantor sets and �nite unions of closed intervals are the only possible sets being the ranges

of �nite measures. Geometric properties of achievement sets of sequences and ranges of purely atomic �nite

measures are the same. This follows from the simple observation, that the set of sums of subseries for the

series
∑∞
n=1 xn is isometric to the analogous set for the series of their absolute values

∑∞
n=1 |xn|. Therefore a

positive answer for the Renyi's question is equivalent to the Kakeya's conjecture.

In 1980 Weinstein and Shapiro in [26] gave an example which showed that the Kakeya conjecture is false.

It follows from the references of their paper that they did not know the Renyi's problem. On the other hand,

Ferens in [12] has given the example similar to that of Weinstein and Shapiro, solving the problem of Renyi.

In this case, the author did not know the conjecture of Kakeya.

In [13] Guthrie and Nymann gave a very simple example of a sequence whose achievement set is not a �nite

union of closed intervals but it has a nonempty interior. They used the sequence (tn) = ( 3
4 ,

2
4 ,

3
16 ,

2
16 , . . .).

Moreover, they formulated the following:

Theorem 1.3. For any (xn) ∈ `1 \ c00, the set A(xn) is one of the following types:

(i) a �nite union of closed intervals,

(ii) a Cantor set C,

(iii) homeomorphic to the set T = A(tn) = A( 3
4 ,

2
4 ,

3
16 ,

2
16 ,

3
64 , . . .).

Although their proof had a gap, the theorem is true and the correct proof was given by Nymann and Saenz

in [24]. Guthrie, Nymann and Saenz have observed that the set T is homeomorphic to the set N described by

the formula

N = [0, 1] \
⋃
n∈N

U2n,

where Un denotes the union of 2n−1 open middle thirds which are removed from the interval [0, 1] at the n-th

step in the construction of the classic Cantor ternary set C. Such sets are called Cantorvals in the literature (to

emphasize the similarity to the interval and to the Cantor set simultaneously). It is known that a Cantorval

is just a nonempty compact set in R, that it is the closure of its interior and both endpoints of any nontrivial

component are accumulation points of its trivial components. Other topological characterizations of Cantorvals

can be found in [6] and [20].

All known examples of sequences whose achievement sets are Cantorvals belong to the class of multigeometric

sequences or are linear combinations of such sequences, see [2],[3]. This class was deeply investigated in [16],

[7], [4] and [1]. In particular, the achievement sets of multigeometric series and similar sets obtained in more

general case are the attractors of a�ne iterated function systems, see [1]. More information on achievement

sets can be found in the surveys [6], [21] and [22].

It is almost obvious that any achievement set E of a summable sequence contains zero and is symmetric in

the sense that there exists a number t such that if t − x ∈ E then t + x ∈ E too. It is a natural question if

every compact, perfect set with these properties is an achievement set for some sequence. This question was

posted by W. Kubi± in �ód¹ in 2015. In particular, in [4] the authors ask if the Cantorval N is an achievement

set of any sequence.
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The negative answer to the last question was recently given in [5]. Independently the authors of [8] have

showed that the Cantorval T̃ for which the gaps are the intervals of the Guthrie-Nymann-Cantorval T and

vice-versa, is not an achievement set for any sequence.

On the other hand, T. Banakh in Lviv in 2016 asked if Cantor achievement sets are uniquely de�ned, i. e.

they are achievement sets of only one sequence.

The paper is organized as follows. In Section 2 we present gap lemmas and the center of distances notion

which are useful tools in succeeding sections. In Section 3 we show that if the range of a mesure µ is an

interval, in other words µ is interval �lling, then there is a measure ν such that the sets {µ(n) : n ∈ N} and
{ν(n) : n ∈ N} are pairwise disjoint. We also give an example of a symmetric set which is a �nite union

of intervals but is not the range of any measure. In Section 4 we give su�cient conditions on a Cantor set

which is the range of some measure to be the range of no other measure. We present also su�cient conditions

for a set R to be a Cantor set achieved by a unique measure µ. In Section 5 there is given a connection

between achievement sets of multigeometric sequences and IFS fractals. We show that the Guthrie-Nymann

Cantorval is uniquely achieved. In Section 6 we show that some Ferens fractals which are symmetric Cantors or

Cantorvals are not ranges of any measure. In Section 7 we brie�y discus the Guthrie-Nymann-Jones Cantorvals

A(r) of one parameter r = 1, 2, . . . which generalize the Guthrie-Nymann Cantorval. For some r, A(r) is not

a range of any measure; for some r, A(r) can be achieved in continuum many ways by measure range; A(1) is

a Guthrie-Nymann Cantorval which is uniquely achieved.

2. The Gaps Lemmas and Center of Distances

In the whole paper let us assume that (xn) is a nonincreasing summable sequence of positive real

numbers � the measures µ({n}) of µ-atoms. Denote (as in [13], [24], [6]):

R = A(xn) =

{ ∞∑
n=1

εnxn : (εn) ∈ {0, 1}N
}
; Fk =

{
k∑

n=1

εnxn : (εn) ∈ {0, 1}k
}
.

So Fk is a �nite approximation of the range R. Let rk :=
∑∞
n=k+1 xn. By a gap in the range R we understand

any interval (a, b) such that a ∈ R, b ∈ R and (a, b) ∩ R = ∅. The following two lemmas can be found in [6].

The �rst is obvious.

Lemma 2.1. (First Gap Lemma) If xk > rk then (rk, xk) is a gap in the range R.

The next observation is extracted from the proof of the crucial Lemma 4 of [24], where it was formulated as

not a quite correct claim (however the Lemma and the main result of [24] are true). It can be found in [5] or

in [6].

Lemma 2.2. (Second Gap Lemma) Let (a, b) be a gap in the range R, and let p be de�ned by the formula

p := max{n : xn ≥ b− a}. Then:

(i) b ∈ Fp,
(ii) If Fp = {f (p)

1 < f
(p)
2 < . . . < f

(p)
m(p)} and b = f

(p)
j , then a = f

(p)
j−1 + rp.

The next Lemma has recently been proved in [5]. Since it will be used several times and for the reader's

convenience, we present it with the proof.

Lemma 2.3. (Third Gap Lemma) Suppose that (a, b) is a gap in the range R such that for any gap (a1, b1)

with b1 < a we have b − a > b1 − a1 (in other words (a, b) is the longest gap from the left). Then for some

k ∈ N we have b = xk and a = rk.
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Proof. By the Second Gap Lemma b is a �nite sum of terms of (xn). Let b = xn1
+...+xnm

with xn1
≥ ... ≥ xnm

.

Suppose that m ≥ 2. Firstly observe that xnm
≥ b− a (indeed, if xnm

< b− a then b− xnm
∈ (a, b) ∩R which

is impossible). Of course xnm
< b and, since (a, b) is a gap, xnm

≤ a. Any gap in the set X := R ∩ [0, xnm
] is

shorter than b−a. On the other hand, b ∈ X+(b− xnm) andX+(b− xnm) ⊂ R, so (a, b)∩(X + (b− xnm)) = ∅,
and hence (a − b + xnm , xnm) is the gap in X which gives a contradiction. Thus m = 1 which means that

b = xk for some k ∈ N.
Since a ∈ R, rk ≥ a. Suppose that rk > a. Let m be the smallest number satisfying

∑m
n=k+1 xn > a. Hence∑m

n=k+1 xn > b, because (a, b) is a gap. Let now X := R ∩ [0, xm]. Then the set X +
∑m−1
n=k+1 xn is included

in E and it has all gaps shorter than b− a, which gives a contradiction again. �

In [8] the authors have introduced the notion of the center of distances of a metric space X, de�ned as

S(X) = {α : ∀x∈X∃y∈Xd(x, y) = α}. They especially consider the case when X is the achievement set of a

sequence (xn) and observe the following.

Lemma 2.4. ([8]) {xn : n ∈ N} ⊂ S(A(xn)) ⊂ A(xn).

We present a short proof of this for the readers' convenience.

Proof. Let n ∈ N. Fix t ∈ A(xn). Then there is E ⊂ N with t =
∑
m∈E xm. If n ∈ E, then t− xn ∈ A(xn). If

n /∈ E, then t + xn ∈ A(xn). Therefore for any t ∈ A(xn) there is s ∈ A(xn) with |t − s| = xn, which means

that xn ∈ S(A(xn)). Since 0 ∈ A(xn), then for any t ∈ S(A(xn)) by the de�nition of the center of distances

there is s ∈ A(xn) with |s− 0| = t. Since A(xn) consists of nonnegative real numbers, s = t and consequently

S(A(xn)) ⊂ A(xn). �

The authors of [8] have given a variety of examples of sequences for which the equality S(X) = {xn} ∪ {0}
holds. Some of them are geometric sequences (aqn)∞n=1 with q < 1

2 , a ≥ 0. The authors also proved that for

the Guthrie-Nymann-Cantorval T = A(xn), where x2n−1 = 3
4n , x2n = 2

4n we also get S(X) = {xn} ∪ {0}. For
more details see [13].

The previous Lemma can be completed as follows.

Lemma 2.5. If xk = xk+1 = · · · = xk+2j−2 for some k and j, then jxk belongs to S(A(xn)).

Proof. Let us observe that if we replace the terms xk, xk+1, . . . , xk+j−1 in the sequence (xn) by one term jxk,

then in the modi�ed sequence we can obtain any number mxk where m = 1, 2, . . . , k + 2j − 2 by summing up

some of the new terms jxk, xk+1, . . . , xk+2j−2. Consequently A(xn) equals the achievement set of the modi�ed

sequence. Therefore by Lemma 2.4 we obtain that jxk ∈ S(A(xn)). �

3. Interval filling sequences

We say that a purely atomic �nite measure is interval �lling if its range is an interval. A sequence of values

of such a measure on its atoms is called an interval �lling sequence. This notion was introduced in [9] and

intensively studied f.e. in [10], [11] and in many other papers. By the Kakeya Theorem, a nonincreasing,

summable sequence (xn) of positive numbers is interval �lling if and only if it is slowly convergent, i.e. if for

every n the term xn is no greater than the rest rn =
∑∞
k=n+1 xk (the authors of [9] have rediscovered this

result). It is almost obvious that we cannot uniquely recover a sequence if its achievement set is an interval.

Example 3.1. [0, 1] = A(xn) = A(yn), where xn = 1
2n , y2n−1 = 1

3n = y2n. One can easily observe, that the

both sequences (xn) and (yn) are slowly convergent and
∑∞
n=1 xn =

∑∞
n=1 yn = 1.

It is worth noticing that it follows from the above example that an algebraic sum of two copies of the Cantor

ternary set is an interval, what was proved by Steinhaus [14] (see [15]) about three years later than Kakeya
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has published his results. It is also interesting that the sets of values of (xn) and (yn) are not only di�erent

but even disjoint. We denote this by (xn) ∩ (yn) = ∅. However, with additional assumptions, the authors of

[18], [19], [23] have obtained some uniqueness results for interval �lling �nite measures. The following theorem

is an improvement of Example 3.1.

Theorem 3.2. For a given set R which is the range of some measure, the following conditions are equivalent:

(i) R is an interval,

(ii) there are two purely atomic measures µ and ν, both with range R, such that the µ-measures of atoms

are all distinct from the ν-measures of atoms,

(iii) for any purely atomic measure µ with range R, there is another purely atomic measure ν whose values

on atoms are distinct from those of µ,

(iv) for any purely atomic measure µ with range R, there is another purely atomic measure ν whose values

on �nite nonempty sets are distinct from those of µ.

Proof. Evidently (iv)⇒ (iii) and (iii)⇒ (ii).

(ii)⇒ (i). Let us assume that R = A(xn) = A(yn), where xn = µ({n}) and yn = ν({n}), and suppose that R

is not an interval. Then R has a gap. Let (a, b) be the longest gap in R (there may be �nitely many longest

gaps and we choose the one from the left side). By Lemma 2.3 there exist natural numbers k and l for which

xk = yl = b. Thus µ({k}) = ν({l}) which yields a contradiction with (ii).

(i) ⇒ (iv). Without loss of generality we may assume that the range R of µ equals [0, 1]. Let us construct

inductively (yn) such that

(a) y1 is any number in ( 1
3 ,

1
2 ) \ {µ(F ) : F is �nite};

(b) yn+1 >
1
3 (1−

∑n
i=1 yi);

(c) yn+1 <
1
2 (1−

∑n
i=1 yi);

(d) yn+1 6= µ(F )−
∑n
i=1 εiyi for any �nite F ⊂ N and any (εi)

n
i=1 ∈ {0, 1}n.

Since the set of forbidden numbers µ(F )−
∑n
i=1 εiyi for yn+1 prescribed in (d) is countable, the choice of such

sequence (yn) is possible.

We will show inductively that 1 −
∑n+1
i=1 yi < ( 2

3 )n+1. By (a) we have y1 >
1
3 which implies 1 − y1 <

2
3 .

Using (b) and the inductive assumption we obtain

1−
n+1∑
i=1

yi = 1−
n∑
i=1

yi − yn+1 < 1−
n∑
i=1

yi −
1

3
(1−

n∑
i=1

yi) =
2

3
(1−

n∑
i=1

yi) <
2

3
· (2

3
)n = (

2

3
)n+1.

Hence
∑∞
n=1 yn = 1. By (a) we have y1 <

1
2 , which implies

∑∞
n=2 yn = 1− y1 >

1
2 > y1. Using (c) we obtain

yn+1 <
1
2 (1 −

∑n
i=1 yi) = 1

2

∑∞
i=n+1 yi = 1

2yn+1 + 1
2

∑∞
i=n+2 yi. Thus yn <

∑∞
i=n+1 yi for every n. Therefore

A(yn) = R.

Let ν be a measure such that ν({n}) = yn. Finally we will show that ν(G) /∈ {µ(F ) : F is �nite and nonempty}
for every nonempty G ⊂ N. If maxG = 1, then G = {1} and ν(G) = y1. By (a) we obtain that ν(G) /∈ {µ(F ) :

F is �nite}. Assume now that that maxG = n + 1 for some n ∈ N. Then ν(G) = yn+1 +
∑n
i=1 εiyi for some

(εi)
n
i=1 ∈ {0, 1}n. By (d) we obtain that ν(G) /∈ {µ(F ) : F is �nite} as well. �

Recall that if the inequality xn ≤
∑∞
i=n+1 xi holds for all n > k, then A(xn) is a �nite union of closed

intervals. More precisely A(xn) = {
∑n
i=1 εixi : (εi)

k
i=1 ∈ {0, 1}k}+A((xn)n>k). So, we have:

Proposition 3.3. The range R of a measure is a �nite union of intervals if and only if there exist two measures

µ and ν with R = rng(µ) = rng(ν) and the set {µ({n}) : n ∈ N} ∩ {ν({n}) : n ∈ N} is �nite.

Proof. It follows from Lemma 2.3 and Theorem 3.2. �
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We already know that if the range R of a measure is a �nite union of intervals, then the measure µ with

R = rng(µ) is not unique. Let us consider the opposite question � for which sets X being a �nite union of

intervals is there a measure with rng(µ) = X? As it was mentioned in the Introduction the range rng(µ) of

a measure µ, or achievement set A(xn), contains zero and is symmetric. More precisely, 1
2µ(N) is a point of

re�ection of rng(µ). To see it, �x E ⊂ N and note that µ(E) + µ(N \ E) = µ(N).

Note that if achievement set is a union of two closed intervals, then both of them have the same length by

symmetry. It is clear that A(xn) = [0, a]∪ [b, b+ a], where b > a, holds for x1 = b and xn+1 = a
2n for n ∈ N, so

we may obtain any union of two closed intervals having the same length as an achievement set. Moreover (a, b)

is the only gap, so by Lemma 2.3 we get y1 = b for any (yn) such that A(yn) = [0, a]∪[b, b+a]. The case become

more complicated when we consider the union of three closed intervals, that is [0, a]∪ [b, b+c]∪ [2b−a+c, 2b+c]

� this is a general form of symmetric union of three disjoint intervals which contains zero. The question is

whether there exists a sequence (xn) such that A(xn) = [0, a]∪ [b, b+ c]∪ [2b− a+ c, 2b+ c]. It turns out that

some sets of the form [0, a] ∪ [b, b+ c] ∪ [2b− a+ c, 2b+ c] are not ranges of measures, while some others are.

We are far from the full characterization of �nite unions of intervals (or even unions of three intervals) which

are ranges of measures, but we present some partial results which suggest that such characterization will be

complicated.

Proposition 3.4. If 2a < c < 2b, then [0, a] ∪ [b, b + c] ∪ [2b − a + c, 2b + c] is not a range of purely atomic

measure.

Proof. Suppose that A(xn) = [0, a] ∪ [b, b + c] ∪ [2b − a + c, 2b + c] for some (xn). By Lemma 2.3 there exists

l ∈ N such that xl = b. By Lemma 2.4 we obtain b ∈ S(A(xn)). Let x := b + c
2 . Then x ∈ A(xn), and

consequently x+ b ∈ A(xn) or x− b ∈ A(xn). But x+ b = 2b+ c
2 ∈ (b+ c, 2b− a+ c) and x− b = c

2 ∈ (a, b),

which are the gaps of A(xn). A contradiction. �

Proposition 3.5. If a ≤ c ≤ 2a, then there exists a sequence (xn) such that A(xn) = [0, a] ∪ [b, b+ c] ∪ [2b−
a+ c, 2b+ c].

Proof. De�ne x1 = b+ c− a, x2 = b, xn+2 = a
2n for n ∈ N. It is clear that A(xn) = [0, a]∪ [b, b+ c]∪ [2b− a+

c, 2b+ c]. �

Proposition 3.6. If b = 2a and c ≥ 2b, then there exists a sequence (xn) such that A(xn) = [0, a]∪ [b, b+ c]∪
[2b− a+ c, 2b+ c].

Proof. Let c ≥ 2b. Then there exist unique k ≥ 2 and c ∈ [0, b) such that c = kb + c. De�ne x1 = 3a + c
2 ,

x2 = 2a+ c
2 , xn = 2a for n ∈ {3, . . . , k + 1}, xn = a

2n−k−1 for n ≥ k + 2 (or any other slowly convergent series

with sum a). Thus

A(xn) = {
k+1∑
i=1

εixi : (εi)
k+1
i=1 ∈ {0, 1}

k+1}+A((xn)n≥k+2)

=

k−1⋃
m=0

{2ma, 2a+
c

2
+ 2ma, 3a+

c

2
+ 2ma, 5a+ c+ 2ma}+ [0, a].

Hence

A(xn) = [0, a] ∪ [2a, c+ 2ka] ∪ [a+ c+ 2ka, 2a+ c+ 2ka] = [0, a] ∪ [b, b+ c] ∪ [2b− a+ c, 2b+ c].

�

Now we present a characterization of �nite unions of intervals which are ranges of purely atomic measures.

However, this characterization will not be very informative. It is hard to prove using it that some �nite union

of intervals is not a range of any measure.
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Proposition 3.7. Let X be a �nite union of intervals. Then X is a range of a �nite measure if and only if

there is a measure ν on a �nite set such that X = rng ν + [0, a] for some a > 0.

Proof. Assume that X = rng(µ) for some measure µ on N. Let xn = µ({n}). Then there is m ∈ N such that

xn ≤ rn for every n ≥ m. Hence the achievement set A((xn)n≥m) is an interval, say [0, a]. Let ν(n) = µ({n})
for n < m. Then ν is a �nite measure de�ned on {1, 2, . . . ,m− 1}. Thus

rng(µ) = {
∞∑
n=1

εnxn : εn = 0, 1} = {
m−1∑
n=1

εnxn +

∞∑
n=m

εnxn : εn = 0, 1} =

{
m−1∑
n=1

εnxn : εn = 0, 1}+ {
∞∑
n=m

εnxn : εn = 0, 1} = rng(ν) + [0, a].

On the other hand if X = rng(ν) + [0, a] for some measure ν on a �nite set F = {1, 2, . . . , n}. Let λ be a

measure on {n+1, n+2, . . . } with rng(λ) = [0, a]. Thus the measure µ de�ned as µ(E) = ν(E∩{1, 2, . . . , n})+

λ(E ∩ {n+ 1, n+ 2, . . . }) has the range equal to X. �

4. Uniquely achieved Cantor sets

Let us start from the following example.

Example 4.1. Let R be the range of the measure from Example 1.1, that is µ({n}) = 2
3n . Observe that

the numbers xn = 2
3n are the right ends of the longest gaps of R from the left. Suppose that A(yn) = R for

some sequence (yn) with y1 ≥ y2 ≥ . . . . Then {xn : n ∈ N} ⊂ {yn : n ∈ N}. Observe that
∑∞
n=1 xn = 1, so

yn = xn for every n ∈ N. Hence the ternary Cantor set is obtained in the unique way as achievement set of

nonincreasing sequence by the sequence (xn).

Now, let us consider the question: which sets R are ranges of the uniquely de�ned measures µ. More

precisely, for which sets R = rng(µ) for some measure µ, the equality R = rng(ν) for some measure ν implies

that µ = ν. A sequence from Example 4.1 satis�es xn = 2rn for each n ∈ N and A(xn) is the ternary Cantor

set, which is obtained in the unique way. Simple observation shows that the uniqueness of a sequence (xn)

generating the achievement set A(xn) can be obtained as a direct consequence of Lemma 2.3 if xn ≥ 2rn for

each n ∈ N. The next theorem improves that result.

Theorem 4.2. Assume that µ({n}) > 2µ({n+ 1}) for n ∈ N. If rng(µ) = rng(ν) then µ = ν.

Proof. Fix m ∈ N. As usually xm = µ({m}). Observe that xm > rm, where rm =
∑∞
k=m+1 xk. Indeed

xm > 2xm+1 > xm+1 + 2xm+2 > xm+1 + xm+2 + 2xm+3 > . . . .

Hence xm > rm− rm+k +xm+k for each k ∈ N. Since (rm− rm+k +xm+k)∞k=1 is a decreasing sequence tending

to rm, we get xm > rm.

By Lemma 2.1 we obtain that (rm, xm) ∩ A(xn) = ∅. Now we will show that (rm, xm) is the longest gap

from the left in A(xn). Indeed for each m ∈ N we have

xm − rm = xm −
∞∑

k=m+1

xk > 2xm+1 −
∞∑

k=m+1

xk = xm+1 −
∞∑

k=m+2

xk = xm+1 − rm+1.

Hence no gap of the form (rk, xk) is longer than (rm, xm) for m < k. Suppose now that (a, b) is the longest

gap from the left and b /∈ {xn : n ∈ N}. However by Lemma 2.3 the point b should be a term of any sequence

(yn) for which A(xn) = A(yn). This yields a contradiction.

Finally by Lemma 2.3 we get that if A(yn) = A(xn) then (yn) ⊂ (xn). By comparing sums of the series∑∞
n=1 xn and

∑∞
n=1 yn we get yn = xn. �
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Remark 4.3. Recall that the conditon xn > 2xn+1 > 0 implies that xn > rn for each n ∈ N. We call such

a series quickly convergent. In [17] it is proved that an achievement set of a quickly convergent sequence is

homeomorphic to the ternary Cantor set.

Example 4.4. All Cantor sets of the form A(qn) for q < 1
2 are uniquely de�ned.

Theorem 4.2 can be used to obtain uniquely de�ned Cantor sets with positive Lebesgue measure.

Example 4.5. Let q ∈ (0, 1
2 ) and xn = 1

2n + qn for n ∈ N. Then a sequence (xn) satis�es a condition given

in Theorem 4.2, so the set A(xn) is the achievement set of the only one sequence. Moreover the Lebesgue

measure of the set A(xn) can be calculated by the formula given in [6], namely λ(A(xn)) = limn→∞ 2nrn =

limn→∞ 2n( 1
2n + qn+1

1−q ) = 1. Hence we constructed a family of uniquely de�ned Cantors with positive Lebesgue

measure.

The next example shows that the assumption xn > 2xn+1 for n ∈ N in Theorem 4.2 is optimal in some sense.

One may think that if we assume weaker condition that a series is quickly convergent, in symbols xn > rn for

n ∈ N, then the assertion of Theorem 4.2 is still true. However it is not, even when we additionally assume

that xn ≥ 2xn+1 for n ∈ N.

Example 4.6. Let us consider the multigeometric sequence de�ned as x2n−1 = 2
5n , x2n = 1

5n for each n ∈ N.
Observe that xn > rn and xn ≥ 2xn+1 for each n ∈ N, so the series

∑∞
n=1 xn is quickly convergent, but

the condition xn > 2xn+1 is satis�ed only for even n's. De�ne y3n−2 = y3n−1 = y3n = 1
5n . Then we have

A(xn) = A(yn).

Theorem 4.7. Assume that R = rng(µ) and {(an, bn) : n ∈ N} is a sequence of gaps in R such that

(1) (a1, b1) is the longest gap in R and any other gap in R is shorter;

(2) |bn+1 − an+1| < |bn − an| for every n ∈ N;
(3) (an+1, bn+1) is the longest gap in R ∩ [0, an] and any other gap in R ∩ [0, an] is shorter.

Then µ({n}) = bn. Moreover, R is a Cantor set.

Proof. Since (a1, b1) is the only longest gap in R, then the middle point of (a1, b1) equals 1
2µ(N). Thus

b1 >
1
2µ(N). By Lemma 2.3 the number b1 is equal to some µ({n}) and a1 = µ(N \ {1, 2, . . . . , n}). Since only

one µ({n}) may be greater than 1
2µ(N), then b1 = µ({1}) and a1 = µ(N \ {1}). Consider a measure µ1 de�ned

on N\{1} given by µ1(E) = µ(E) for E ⊂ N\{1}. Then rng(µ1) = R∩ [0, a1]. Then (a2, b2) is the only longest

gap in rng(µ1). Repeating the same argument we obtain that b2 = µ1({2}) = µ({2}). Proceeding inductively

we obtain that µ({n}) = bn.

The "moreover" part of the assertion follows from the inequality bn >
∑
m>n bm for every n and from

Kakeya's Theorem. �

Note that the existence of a sequence {(an, bn) : n ∈ N} of gaps in R ful�lling conditions (1)�(3) from the

Theorem 4.7 is equivalent to the following statement: between every two gaps of the same length there is a

longer gap.

Theorem 4.8. Assume that R is a compact subset of the real line with minR = 0, a0 = maxR > 0 and

{(an, bn) : n ∈ N} is a sequence of gaps in R such that

(1) |bn+1 − an+1| < |bn − an| for every n ∈ N;
(2) (an+1, bn+1) is the longest gap in R∩ [0, an] and any other gap in R∩ [0, an] is shorter for every n ≥ 0;

(3) 1
2an is a point of re�ection of R ∩ [0, an] for every n ≥ 0.

Then R = rng(µ) with µ({n}) = bn. Moreover, R is a Cantor set.
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Proof. Since (a1, b1) is the only longest gap in R and a0/2 is the point of re�ection of R, then a0/2 is the

middle point of (a1, b1). Similarly (a2, b2) is the only longest gap in R ∩ [0, a1] and a0/2 is the point of

re�ection of R ∩ [0, a2]. Thus a1/2 is the middle point of (a2, b2). Since a0/2 is the point of re�ection of R,

then (b1 + a2, b1 + b2) is a gap in R. Note that |a0 − (b1 + b2)| = a2.

The same as in the previous two steps one can show that a2/2 is the middle point of (a3, b3) and since a0/2

is the point of re�ection of R, then (b1 + b2 +a3, b1 + b2 + b3) is a gap in R. Note that |a0− (b1 + b2 + b3)| = a3.

Since an → 0, then proceeding inductively we obtain that
∑∞
n=1 bn = a0 = maxR.

Let R′ = A(bn). Note that bn > an =
∑
m>n bm. Therefore R

′ is a Cantor set. By Lemma 2.2 the gaps in R′

are of the form (an + f
(n)
j−1, f

(n)
j ) where Fn = {0 = f

(n)
1 < f

(n)
2 < · · · < f

(n)
m(n)}. Since b1 > b2 > . . . , then there

are no elements of A(bn) in (an+
∑n−1
i=1 εibi, bn+

∑n−1
i=1 εibi) where εi = 0, 1, which shows that these intervals are

gaps in R′. Clearly any gap of the length |bn−an| must be of the form (an+
∑n−1
i=1 εibi, bn+

∑n−1
i=1 εibi) for some

εi = 0, 1. Therefore the set of all gaps in R′ is the following {(an+
∑n−1
i=1 εibi, bn+

∑n−1
i=1 εibi) : n ∈ N, εi = 0, 1}.

Now we will prove inductively that every gap of R′ is also a gap of R. Clearly R has exactly one gap (a1, b1)

of the length |b1 − a1|. Suppose that we have already proved that R has 2n−1 gaps of the length |bn − an| of
the form (an +

∑n−1
i=1 εibi, bn +

∑n−1
i=1 εibi) for εi = 0, 1.

Since an/2 is the middle point of (an+1, bn+1), then an = bn+1 +an+1. Since an−1/2 is the point of re�ection

of [0, an−1]∩R, then (an+1, bn, bn+1 + bn) is a gap in [0, an−1]∩R. Now, since an−2/2 is the point of re�ection

of [0, an−2]∩R, then (an+1 +bn−1, bn+1 +bn−1) and (an+1 +bn+bn−1, bn+1 +bn+bn−1) are gap in [0, an−2]∩R.
By a simple induction we obtain that each interval of the form (an +

∑n−1
i=1 εibi, bn +

∑n−1
i=1 εibi) for εi = 0, 1

is a gap in R.

Note that R′ is the closure of the endpoints of its gaps. These endpoints belong also to R. Since R is

compact, then R′ ⊂ R. This shows that R has no other gaps than those described above (each such gap would

be a gap of R′ as well). Since

R′ = [0, a0] \
⋃
{(an +

n−1∑
i=1

εibi, bn +

n−1∑
i=1

εibi) : n ∈ N, εi = 0, 1},

then R ⊂ R′, and consequently R = R′ = A(bn). �

Theorem 4.9. Assume that R = rng(µ) and there is ε > 0 such that between any two gaps of the same length

smaller than ε there is a longer gap in R. Then R is a Cantor set.

Proof. There exists a sequence of gaps {(an, bn) : n ∈ N} of R such that

(1) (a1, b1) is the longest gap from the left of the length b1 − a1 < ε;

(2) |bn+1 − an+1| < |bn − an| for every n ∈ N;
(3) (an+1, bn+1) is the longest gap in R∩ [0, an] and any other gap in R∩ [0, an] is shorter for every n ∈ N.

By Lemma 2.3 b1 = µ({m}) and a1 = µ({m + 1,m + 2, . . . }). Let Fm = {µ(E) : E ⊂ {1, 2, . . . ,m}}.
Then rng(µ) = Fm + rng(µ1) where µ1 is a measure on {m + 1,m + 2, . . . } given by µ1(E) = µ(E) for

E ⊂ {m + 1,m + 2, . . . }. By Theorem 4.7 rng(µ1) is a Cantor set. Thus rng(µ) is a Cantor set as well as a

union of �nitely many shifts of a Cantor set rng(µ1). �

Immediately by Theorem 4.9 we obtain the necessary condition for a measure range to be a Cantorval.

Corollary 4.10. If rng(µ) is a Cantorval, then there are in�nitely many pairs of gaps in rng(µ) of the same

length which are not separated by a longer gap.
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5. Multigeometric sequences and attractors of the affine IFS's

Let us consider the sequences of the form

xkm+1 = k1q
k, xkm+2 = k2q

k, . . . , xkm+m = kmq
k

for k = 0, 1, 2, . . . . Such a sequence we call multigeometric of the rank m and denote by (k1, k2, . . . , km; q). As

we have mentioned in the Introduction, almost all known examples of sequences whose achievement sets are

Cantorvals belong to this class, see [1], [2], [3], [7] and [16]. Let us observe that the Guthrie-Nymann Cantorval

T (described in Theorem 1.3) is an achievement set of the bigeometric sequence ( 3
4 ,

2
4 ; 1

4 ) = ( 3
4 ,

2
4 ,

3
16 ,

2
16 , . . . ).

It is not di�cult to see that the achievement set A(k1, . . . , km; q) is equal to the set {
∑∞
n=1 δnq

n−1 : (δn) ∈ ΣN}
where Σ = {

∑m
i=1 εiki : (εi) ∈ {0, 1}m}. Consequently, A(k1, . . . , km; q) is an attractor for the iterated function

system, in short IFS, consisting of the a�ne functions of the form fσ(x) = qx+δ where δ ∈ Σ, and therefore it is

the unique set A = A(Σ, q) satisfying the equality A = Σ+qA. Not all attractors of a�ne IFS's are achievement

sets of sequences (or ranges of purely atomic measures). Let us observe that if A = A(Σ, q) = A(xn) for some

sequence (xn) of positive terms, then 0 ∈ A and 1
2

∑∞
n=1 xn is a point of re�ection of A. Hence 0 ∈ Σ and Σ is

symmetric as well. It turns out that these two conditions for Σ are not su�cient. Recently the authors of [5]

showed that the Cantorval N related to the construction of the ternary Cantor set is not an achievement set

of any sequence but it is an attractor of some a�ne IFS.

Let us use the multigeometric sequences to show that there are Cantor sets as well as Cantorvals which can

be de�ned by continuum many di�erent sequences.

Example 5.1. Consider the Jones-Velleman sequence (xn) = (4, 3, 2; q), de�ned as follows x3n−2 = 4qn−1, x3n−1 =

3qn−1, x3n = 2qn−1 and its modi�cation (yn) = (3, 2, 2, 2; q), de�ned as follows y4n−3 = 3qn−1, x4n−2 =

2qn−1, x4n−1 = 2qn−1, x4n = 2qn−1, where q ∈ (0, 1). For more details see [16], where the author considered

among others the sequence (xn) with q = 1
5 . Let us observe that the given modi�cation does not change

the achievement set and we have A(xn) = A(yn) (compare the proof of Lemma 2.5). We de�ne a family of

sequences F as a family of all sequences (zn) which are constructed as follows:

• in each step we de�ne three or four succeeding elements of (zn)

• in n-th step we de�ne zkn−1+i = x3n−3+i for i ∈ {1, 2, 3} or zkn−1+i = y4n−4+i for i ∈ {1, 2, 3, 4} if
we have decided to de�ne three or four elements respectively, where kn−1 is the number of de�ned

elements in the �rst n− 1 steps, k0 = 0

Then A(zn) = A(xn) for each sequence (zn) which belongs to F . Moreover, if we have two sequences

(sn), (wn) ∈ F then wn = sn for each n ∈ N if and only if in each step of constructions of (sn) and (wn)

we de�ne the same numbers of elements. Hence the cardinality of F is continuum. We will call the sequences

belonging to F as multigeometric-like. It is known that the achievement set A(xn) for some q can be an interval

(q ≥ 2
11 ), a Cantor set with Lebesgue measure zero (q < 1

8 ) or a Cantorval (q ∈ [ 1
6 ,

2
11 )). For more details see

[16] and [7].

For the next theorem the fact, proved by Bielas, Plewik and Walczy«ska in [8], that the Guthrie�Nymann�

Cantorval's center of distances consists exactly of the terms of its generating sequence and zero will be crucial.

Theorem 5.2. Let X = A(xn), where x2n−1 = 3
4n , x2n = 2

4n . If X = A(yn) and y1 ≥ y2 ≥ y3 ≥ . . . , then

yn = xn.

Proof. First note that {yn : n ∈ N} ⊂ {xn : n ∈ N}. Take any k ∈ N. By Lemma 2.4 we obtain that

yk ∈ S(A(yn)) = S(A(xn)). By the result of Bielas, Plewik and Walczy«ska mentioned above, S(A(xn)) =

{xn : n ∈ N} ∪ {0}. Thus yk ∈ {xn : n ∈ N}.
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Now we will prove that the set {yn :∈ N} of all terms of (yn) contains every even term of the basic sequence

(xn). Let m ∈ N. Observe that x2m > r2m. Indeed

r2m =

∞∑
n=2m+1

xn =

∞∑
n=m+1

3

4n
+

∞∑
n=m+1

2

4n
=

4

3
· 5

4m+1
=

5

3 · 4m
<

2

4m
= x2m.

Therefore the interval (r2m, x2m) is a gap in X and by Lemma 2.3 we obtain that xm ∈ {yn : n ∈ N}.
We have already proved that {x2n : n ∈ N} ⊂ {yn : n ∈ N} ⊂ {xn : n ∈ N}. Since the sequence (xn) is

one-to-one and S(X) = {xn : n ∈ N} ∪ {0}, then by Lemma 2.5 none term of (yn) can be repeated more than

two times. However, if {yn : n ∈ N} 6= {xn : n ∈ N}, then some terms of (yn) must be repeated. This easily

follows from the equality
∑∞
n=1 xn =

∑∞
n=1 yn.

Now we are ready to prove the assertion. Let us start from the �rst step of the inductive prove. Since (yn)

is non-increasing, then y1 equals x1 or x2 (all even terms of (xn) are among terms of (yn)). Suppose that

y1 6= x1 = 3
4 . Since every term of (yn) can be repeated at most two times, we have the following inequality

∞∑
n=1

yn ≤ 2 ·
∞∑
n=2

xn =
11

6
.

Moreover 5
3 = maxX and 11

6 −
5
3 = 1

6 , which means that to obtain (yn) from the sequence (x2, x2, x3, x3, x4, x4, . . .)

we need to remove elements which sum equals precisely 1
6 . Since

1
2 and 3

16 are greater than 1
6 , then y1 = y2 = 1

2 ,

y3 = y4 = 3
16 . Note that y5 = x4 = 1

8 because we have to use all even terms of (xn). Observe that y6 6= 1
8 .

Indeed, if y6 = 1
8 then y3 + y5 + y6 = 7

16 ∈ ( 5
12 ,

1
2 ) but (r2, x2) = ( 5

12 ,
1
2 ) is a gap in X. Moreover y6 6= x5 = 3

64 .

Indeed, if y6 = 3
64 then y3 + y4 + y6 = 27

64 ∈ ( 5
12 ,

1
2 ). It means that we need to remove one element x4 and two

elements x5 from the sequence (x2, x2, x3, x3, x4, x4, . . .). But

x4 + 2x5 =
1

8
+

6

64
=

14

64
=

42

192
>

32

192
=

1

6

which yields a contradiction. Thus y1 = x1.

Now assume that yi = xi for each i ∈ {1, . . . , 2m− 1} for some m ∈ N. We will show that y2m = x2m and

y2m+1 = x2m+1. If y2m 6= x2m then y2m = x2m−1 and y2m+1 = x2m. Hence
∑2m+1
k=1 yk =

∑2m
k=1 xk + x2m−1 >∑2m

k=1 xk + r2m = 5
3 , which brings a contradiction. Therefore y2m = x2m. Suppose that y2m+1 6= x2m+1.

Observe that (A(4mxn)∞n=2m+1) = A(xn). Moreover, if A(xn) = A(yn) and yi = xi for each i ∈ {1, . . . , 2m}
then A((xn)∞n=2m+1) = A((yn)∞n=2m+1). Thus A(xn) = 4mA((yn)∞n=2m+1) = A((4myn)∞n=2m+1). By the �rst

step of induction we obtain that 4my2m+1 = x1 = 3
4 . Thus y2m+1 = x1

4m = x2m+1. This ends the inductive

proof. �

6. The Ferens fractals

Let us consider A = A(Σ; q) = {
∑∞
n=1 xnq

n−1 : (xn) ∈ ΣN}, where Σ is a �nite set. We have Σ + qA = A

which means that A is the attractor of the a�ne IFS system {fσ}σ∈Σ, where fσ(x) = qx+ σ. We also call the

set A a fractal - it is more general than the theory of multigeometric sequences, because Σ does not have to be

the achievement set of any �nite sequence. The important class of attractors are so called Ferens fractals for

which Σ = {0, p, p+ 1, . . . , p+ r, 2p+ r} for some p, r ∈ N, p ≥ 2. It is known that for q ≥ p
3p+r the set A(Σ; q)

is an interval and for q < p
3p+r the set A(Σ; q) is not a union of closed intervals, in particular for q < 1

|Σ| = 1
r+3

it is a null Cantor set, see [1], [4] and [7].

Theorem 6.1. Let p ∈ N, p ≥ 2. The Ferens fractal A = A(Σ; q) for r = p, that is Σ = {0, p, p + 1, . . . , p +

r, 2p+ r} = {0, p, p+ 1, . . . , 2p, 3p} and q < 1
4 cannot be obtained as an achievement set for any sequence.

Proof. Note that (a, b) = ( 3pq
1−q , p) is the longest gap in A from the left. By Lemma 2.3 and the properties of

the center of distances we get p ∈ S(A). We consider the gaps (a, b) and (2p+ a, 2p+ b). Firstly assume that
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q ∈ (0, p−1
4p−1 ), which is equivalent to a < p− 1. Fix x = 2p− 1 ∈ A. Then x+ p = 3p− 1 ∈ (2p+ a, 2p+ b) and

x− p = p− 1 ∈ (a, b). Hence p /∈ S(A). Now assume that q ∈ ( p−1
4p−1 ,

1
4 ). Then p− 1 < a < p. Since (a, b) is the

longest gap in A∩ [0, b) one can �nd y ∈ (1 +a− b, 1)∩A. Fix x = 2p−1 +y ∈ A. Then x+p = 3p−1 +y and

2p+ a = 3p+ a− b < 3p− 1 + y < 3p = 2p+ b, so x+ p ∈ (2p+ a, 2p+ b). Analogously we prove x− p ∈ (a, b).

Hence p /∈ S(A).

If q = p−1
4p−1 then (a, b) = (p − 1, p) and we take any z ∈ (0, 1) ∩ A and then de�ne x = 2p − 1 + z. Thus

x− p ∈ (a, b) and x+ p ∈ (2p+ a, 2p+ b). The proof is �nished. �

On the other hand there exist p ∈ N, p ≥ 2 and r 6= p such that the Ferens fractal A = A(Σ; q) with

Σ = {0, p, p + 1, . . . , p + r, 2p + r} is obtained as an achievement set for each q ∈ (0, 1). Let us consider the

following examples.

Example 6.2. Let us consider the Ferens fractal A = A(Σ; q) for Σ = {0, 2, 3, 4, 6}. It is known that for

q ≥ 1
4 the set A is the interval. By Theorem 6.1 the set A for q < 1

4 cannot be obtained as an achievement set

for any sequence.

Example 6.3. Let Σ = {0, 2, 3, 5}. Here we have r = 1 < 2 = p. Then A = A(xn) for the multigeometric

sequence x2n+1 = 3qn, x2n+2 = 2qn for n = 0, 1, 2, . . .. In particular for q = 1
4 we get rescaled by 4 Guthrie

and Nymann's Cantorval. It is also the Ferens fractal for p = 2, r = 1, q = 1
4 . Note that for each p ∈ N and

r = 1 we obtain a Ferens fractal, which can be obtained by the multigeometric sequence.

Example 6.4. Let Σ = {0, 2, 3, 4, 5, 7}. Here we have r = 3 > 2 = p. Then A = A(xn) for a multigeometric

sequence x3n+1 = 3qn, x3n+2 = 2qn, x3n+3 = 2qn for n = 0, 1, 2, . . ..

So, there are Ferens fractals which are also achievement sets. The next theorem gives the example of

large class of such fractals and shows that for each natural p ≥ 2 we can �nd r such that the Ferens fractal

A = A(Σ; q) is also an achievement set. We will base our calculation on a simple observation that if Σ is the

achievement set of a �nite sequence {a1, . . . , ak} then A(Σ; q) can be obtained by the multigeometric sequence

(xn) de�ned as follows xkn+j = ajq
n for n ∈ N ∪ {0} and j ∈ {1, . . . , k}.

Lemma 6.5. Let p ∈ N, p ≥ 2, r = 3p2−3p
2 . Then Σ = {0, p, p + 1, . . . , p + r, 2p + r} = {0, p, p +

1, . . . , 3p2−p
2 , 3p2+p

2 } is the set of subsums for some �nite sequence.

Proof. De�ne a1 = p, aj = (p+ j − 2) for j ∈ {2, . . . , p+ 1}. Then Σ = A((an)p+1
n=1). �

As a result we immediately obtain:

Theorem 6.6. Let p ∈ N, p ≥ 2, q ∈ (0, 1). The Ferens fractal A = A(Σ; q) for r = 3p2−3p
2 (so Σ =

{0, p, p+ 1, . . . , 3p2−p
2 , 3p2+p

2 }) is an achievement set for some multigeometric sequence.

Proof. De�ne x(p+1)n+1 = pqn, x(p+1)n+j = (p + j − 2)qn for n ∈ N ∪ {0}, j ∈ {2, . . . , p + 1}. Then A =

A(xn). �

Lemma 6.7. Let p ∈ N, p ≥ 2, r ≥ 3p2−p
2 . Then Σ = {0, p, p+ 1, . . . , p+ r, 2p+ r} is the set of subsums for

some �nite sequence.

Proof. Let us �rst consider r = 3p2−p
2 . De�ne aj = (p+ j − 1) for j ∈ {1, . . . , p+ 1}. Then Σ = A((an)p+1

n=1).

Let now consider r > 3p2−p
2 , r = 3p2−p

2 + k, where k = mp + r for m ∈ N ∪ {0}, r ∈ {0, 1, . . . , p − 1}. De�ne
aj = p for j ∈ {1, . . . , 2 + m}, aj = (p + j −m − 2) for j ∈ {3 + m, . . . , 2 + m + k}, aj = (p + j −m − 3) for

j ∈ {3 +m+ k, . . . , 2 +m+ p}. Then Σ = A((an)2+m+p
n=1 ). �
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Corollary 6.8. Let p ∈ N, p ≥ 2, q ∈ (0, 1). The Ferens fractal A = A(Σ; q) for r ≥ 3p2−p
2 is an achievement

set for some multigeometric sequence.

Lemma 6.9. Let p ∈ N, p ≥ 3, r ∈ (1, 3p2−3p
2 ). Then Σ = {0, p, p + 1, . . . , p + r, 2p + r} is not the set of

subsums for any �nite sequence.

Proof. Let r ≥ p. Assume that Σ = A(xn) for some �nite sequence (xn). Since p is the smallest non-zero

element, we know that the smallest sum of two or more elements equals 2p. We know that p+r ≥ 2p. Therefore

we get {p, p+ 1, . . . , 2p− 1} ⊂ (xn). Since 2p ∈ Σ we have to add the another term xn equal to 2p or one more

term xn equal to p. Thus its sum is an element of Σ, but p+ (p+ 1) + . . .+ 2p ≥ p+ p+ (p+ 1) + . . . 2p− 1 =
3p2+p

2 = 2p+ 3p2−3p
2 > 2p+ r = max Σ. We get contraditions for both cases.

Let r ∈ (1, . . . , p). Since p, p + 1, p + 2 ∈ Σ and p + 2 < 2p we get p, p + 1, p + 2 ∈ (xn). Therefore we have

3p+ 3 ∈ Σ, but max Σ = 2p+ r < 3p < 3p+ 3, which gives us a contradition. �

Lemma 6.10. Let p ∈ N, p ≥ 2, r ∈ ( 3p2−3p
2 , 3p2−p

2 ). Then Σ = {0, p, p+ 1, . . . , p+ r, 2p+ r} is not the set of

subsums for any �nite sequence.

Proof. Note that 2p+ r > 3p2+p
2 > p+ (p+ 1) + . . .+ (2p− 1). Hence 2p ∈ Σ. We can obtain it by adding 2p

or one more p to our terms. If we add 2p then p+ (p+ 1) + . . .+ (2p− 1) + 2p = 3p2+3p
2 > 2p+ r, which yields

a contradition. So let us consider (xn) = {p, p, p + 1, . . . , 2p − 1}. We have
∑
xn = 3p2+p

2 ∈ (p + r, 2p + r).

Since
∑
xn < 2p+ r we have to add next element to the sequence (xn), but we cannot add an element which

is smaller than p. Therefore
∑
xn + p > 2p+ r, which yields a contradition. �

Corollary 6.11. Let p, r ∈ N, q be a positive real number and Σ = {0, p, p+ 1, . . . , p+ r, 2p+ r}.

(1) If p ≥ 3, q ∈ (0, p
3p+r ) and r ∈ (1, 3p2−3p

2 )∪ ( 3p2−3p
2 , 3p2−p

2 ), then the Ferens fractal A = A(Σ; q) is not

an achievement set for the multigeometric sequence (k1, . . . , km; q) with {
∑m
i=1 εiki : (εi) ∈ {0, 1}m} =

Σ.

(2) If p = 2, q ∈ (0, p
3p+r ) and r ∈ ( 3p2−3p

2 , 3p2−p
2 ), then the Ferens fractal A = A(Σ; q) is not an

achievement set for the multigeometric sequence (k1, . . . , km; q) with {
∑m
i=1 εiki : (εi) ∈ {0, 1}m} = Σ.

7. Guthrie�Nymann�Jones Cantorvals (GNJ Cantorvals)

In this section we will deal with Ferens fractals of the type A(r) = A(Σ, q) for Σ = {0, 2, 3, . . . , r + 2, r + 4}
and q = 1

|Σ| = 1
r+3 . It is known that sets A(r) for r = 1, 2, . . . are Cantorvals. It follows from Kenyon Theorem,

(see [21] and [22]) which states that if {n mod r : n ∈ Σ} = Zr, then A(Σ, 1/r) has nonempty interior (it can

be also deduced from proofs presented in [7]).

Note that

(1) for r = 1 the set A(r) is the rescaled Guthrie�Nymann Cantorval which, by Theorem 5.2 has the unique

representation as an achievement set.

(2) For r = 2m − 1 the set A(r) equals to A(xn) where (xn) = (3, 2, . . . , 2︸ ︷︷ ︸
m

; 1
r+3 ). If r ≥ 5, the Cantorval

A(r) has continuum many representations as an achievement set of multigeometric-like series with the

same set Σ � see Example 5.1.

(3) By Theorem 6.1 the set A(r) is not an achievement set (or a range of any measure) for r = 2.

(4) For r = 4 we know that A(r) is not an achievement set for any multigeometric series generating the

same set Σ.
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(5) For r = 2m ≥ 6 the set A(r) equals to A(xn) where (xn) = (3, 3, 2, . . . , 2︸ ︷︷ ︸
m−2

; 1
r+3 ). Using the method

from Example 5.1 for r ≥ 10 (or m− 2 ≥ 3) we observe that the Cantorval A(r) has continuum many

representations as an achievement set of multigeometric-like series with the same set Σ.

Using methods from [8] one can get some information on geometry and the center of distances for Cantorvals

A(r):

(1) A(r) ⊂ [0, (r+4)(r+3)
r+2 ].

(2) The interval [ 2(r+3)
r+2 , r + 3] is the longest component of A(r).

(3) [0, r+4
r+2 ] ∩A(r) = 1

r+3A(r).

(4) ( r+4
r+2 , 2) is the longest gap from the left and it has the same length as the longest component of

[0, 4+r
(2+r)(3+r) ] ∩A(r).

(5)
(
r+3+(A(r)∩ [0, 2(r+3)

r+2 ])
)
∪(A(r)∩ [r+3, (r+4)(r+3)

r+2 ]) = [r+3, (r+4)(r+3)
r+2 ], it follows from the fact that

the gaps of the �rst summand in the above union are exactly in the same places as the copmonents of

the second one and vice versa.

In Example 7.1 we present the idea of proving (1)�(5) based on an appropriate picture.

Note that if t ∈ ( 2(r+3)
r+2 , r+3

2 −
r+3
r+2 ), then t ∈ S(A(r)). Recall that 2(r+3)

r+2 is a left endpoint of the longest

component of A(r) and r+3
2 −

r+3
r+2 is a half of its length. Similarly we have for every longest component of

A(r) from the left. Therefore if 2
2+r <

1
2 −

1
2+r , that is if r > 4, then S(A(r)) contains a sequence of intervals.

This observation suggests that for r > 4 one can look for a multigeometric series (x′n) with Σ′ 6= Σ and

A(x′n) = A(xn).

Example 7.1. At Figure 1 we present a GNJ Cantorval A := A(6), i.e. Σ = {0, 2, 3, . . . , 8, 10} and q = 1
9 ;

there are also nine its copies τ + 1
9A, τ ∈ Σ. The �rst and the last copies, 1

9A and 10 + 1
9A, are equal to

the left A ∩ [0, 1 2
8 ] and the right A ∩ [10, 11 2

8 ] parts of the original Cantorval A, respectively. Other copies

cover the rest of A; note that 2 + 1
9A and 3 + 1

9A cover the interval [3, 3 2
8 ], since the components interiors of

(2 + 1
9A) ∩ [3, 3 2

8 ] are precisely gaps of (3 + 1
9A) ∩ [3, 3 2

8 ], and vice versa.

0 2
8

1 1 2
8

2 2 2
8

9 9 2
8

1010 2
8

1111 2
8

2 2 2
8

3 3 2
8

3 3 2
8

4 4 2
8

4 4 2
8

5 5 2
8

5 5 2
8

6 6 2
8

6 6 2
8

7 7 2
8

7 7 2
8

8 8 2
8

8 8 2
8

9 9 2
8

Figure 1

On the other hand A(6) satis�es also the equality A = Σ′ + 1
9A for

Σ′ = {0, 2, 2 2
8 , 2

4
8 , 3

2
8 , 4

2
8 , 4

4
8 , 4

6
8 , 5

2
8 , 5

4
8 , 5

6
8 , 6

6
8 , 7

4
8 , 7

6
8 , 8, 10}. Let us observe that Σ′ is an achievement set for

the �nite sequence {3 2
8 , 2

4
8 , 2

2
8 , 2} and hence A(6) = A(3 2

8 , 2
4
8 , 2

2
8 , 2; 1

9 ) as well as A(6) = A(3, 3, 2, 2; 1
9 ). For

the clarity and readers' convenience we present the next picture - Figure 2.

0 2
8

1 1 2
8

2 2 2
8

9 9 2
8

1010 2
8

1111 2
8

2 2 2
8

3 3 2
8

2 2
8

3 3 2
83 4

8

3 2
83 4

8 4 2
84 4

8

4 2
84 4

8 5 2
85 4

8

5 2
85 4

8 6 2
86 4

8

5 6
8

6 6 6
8

7

6 6
8

7 7 6
8

8

7 6
8

8 8 6
8

9

8 8 2
8

9 9 2
8

Figure 2
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Example 7.2. In [8] the authors found a center of distances of the boundary ∂A(1)
4 of the Guthrie�Nymann

Cantorval 1
4A(1). The set ∂A(1)

4 is a Cantor set arisen from A(1)
4 by removing all interiors of its nontrivial

components. It turns out that S(∂A(1)
4 ) = {1, 1

4 ,
1
42 , . . . }. Therefore if ∂A(1)

4 = A(yn) for some sequence (yn),

then {yn : n ∈ N} ⊂ {1, 1
4 ,

1
42 , . . . }. The authors, according to this observation, claimed that ∂A(1)

4 is not an

achievement set for any sequence, since 1 + 1
4 + 1

42 + · · · < 5
3 = max A(1)

4 . However, they did not observe that

terms of (yn) may repeat. By Lemma 2.5 none of the terms may repeat more than twice, since the doubling of

such term would be in S(∂A(1)
4 ). But 1 + 1

4 + 1
4 + 1

42 + 1
42 + · · · = 5

3 . It turns out that for any positive integer r

∂
A(r)

r + 3
= A(1,

1

r + 3
,

1

r + 3
,

1

(r + 3)2
,

1

(r + 3)2
, . . . ).

Indeed, by geometric properties of A(r) it follows that

[0,
2

2 + r
] ∩ ∂ A(r)

r + 3
= C 1

r+3
+ C 1

r+3
.

Thus

∂
A(r)

r + 3
= (C 1

r+3
+ C 1

r+3
) ∪ (1 + C 1

r+3
+ C 1

r+3
).
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