DESCRIPTIVE PROPERTIES RELATED TO POROSITY AND DENSITY FOR COMPACT SETS ON THE REAL LINE

SZYMON GŁA̧B (WARSAW)

Abstract

Given $r \in[0,1]$ we study descriptive complexity of the set P_{r} (respectively D_{r}) of all compact sets K in the hyperspace $\mathcal{K}(\mathbb{R})$ with porosity r (density r) at 0 . We also show that the set $N B P$ of all nowhere bilaterally porous compact sets in $\mathcal{K}(\mathbb{R})$ is Π_{1}^{1}-complete, and we prove a similar fact for density.

1. INTRODUCTION

Consider the hyperspace $\mathcal{K}(\mathbb{R})$ of all nonempty compact sets equipped with the Vietoris topology (i.e. the one generated by the sets of the form $\{K \in \mathcal{K}(\mathbb{R}): K \subset U\}$ and $\{K \in \mathcal{K}(\mathbb{R}): K \cap U \neq \emptyset\}$, for U open in \mathbb{R}; equivalently it is given by the Hausdorff metric). The aim of our paper is to investigate descriptive complexity of families in $\mathcal{K}(\mathbb{R})$ that consist of sets with prescribed porosity and density at a given point. Both notions of porosity and metric density describe in various manners a local size of sets. They play significant role in real analysis (see [2]). The origins of our studies come from the paper [5] by Zajiček and Zelený where it was shown that compact σ-porous sets form a Π_{1}^{1}-complete subset of $\mathcal{K}(\mathbb{R})$.

Let us recall the notion of porosity on the real line. (Many facts on the porosity can be found in the survey papers [6] and [7].) Let $E \subset \mathbb{R}, x \in \mathbb{R}$ and $R>0$. Denote by $\lambda^{+}(x, R, E)$ the length of the largest open subinterval of $(x, x+R)$ which does not intersect E. The right-hand porosity of E at x is defined by the formula

$$
p^{+}(E, x)=\limsup _{R \rightarrow 0^{+}} \frac{\lambda^{+}(x, R, E)}{R}
$$

1991 Mathematics Subject Classification. Primary: 28A05, 03E15; Secondary: 54B20.
Key words and phrases. porosity, density points, Vietoris topology, Π_{1}^{1}-complete sets.

Analogously we define the left-hand porosity of E at x, and denote it by $p^{-}(E, x)$. If $\lambda^{+}(x, R, E)$ denotes the length of the largest open subinterval of $(x-R, x+R)$ which does not intersect E, then $p(E, x)=\limsup _{R \rightarrow 0^{+}} \frac{\lambda(x, R, E)}{2 R}$ is the porosity of E at x. A set E is called porous (strongly porous) from the right at x if $p^{+}(E, x)>0$ $\left(p^{+}(E, x)=1\right)$. A set E is called bilaterally porous (strongly porous) at x if it is porous (strongly porous) both from the right and from the left at x.

Let μ stand for Lebesgue measure on \mathbb{R}. For a measurable $E \subset \mathbb{R}$ and $x \in \mathbb{R}$, by $d^{+}(x, E)$ we denote the right-hand density of E at the point x, that is $d^{+}(x, E)=$ $\lim _{h \rightarrow 0^{+}} \frac{\mu([x, x+h] \cap E)}{h}$, provided the limit exists, and by $d(x, E)=\lim _{h \rightarrow 0^{+}} \frac{\mu([x-h, x+h] \cap E)}{2 h}$ we denote density of E at the point x, provided the limit exists. By symbol $\underline{d^{+}}(x, E)$ we denote the lower right-hand density of E at x, that is, the number $\lim _{\inf }^{h \rightarrow 0^{+}} \frac{\mu([x, x+h] \cap E)}{h}$. Similarly we define $\overline{d^{+}}(x, E)$ - the upper right-hand density of E at the point x. If $d^{+}(x, E)=1$ then x is called a right-hand density point of E. Analogously we introduce the notions of left-hand density and left-hand density points.

We use standard set theoretic notation. See [4]. Let $\mathbb{N}=\{0,1,2, \ldots\}$. Let X be a Polish space. For ordinals $\alpha, 1 \leq \alpha \leq \omega_{1}$, we define the following pointclasses of Borel sets by transfinite induction: Σ_{1}^{0} - open sets, Π_{1}^{0} - closed sets; and for $1<\alpha<\omega_{1}$, $\Sigma_{\alpha}^{0}=\left\{\bigcup_{n \in \mathbb{N}} A_{n}: A_{n} \in \bigcup_{\beta<\alpha} \Pi_{\beta}^{0}\right\}$ and $\Pi_{\alpha}^{0}=\left\{\mathbb{R} \backslash A: A \in \Sigma_{\alpha}^{0}\right\}$. A subset A of X is called analytic if it is the projection of a Borel subset B of $X \times X$. A subset C of X is called coanalytic if $X \backslash C$ is analytic. The pointclasses of analytic and coanalytic sets are denoted by Σ_{1}^{1} and Π_{1}^{1}, respectively. The symbol \exists^{∞} means "for infinitely many". By $T r$ we denote the Polish space of all trees on \mathbb{N}.

2. Compact sets with prescribed porosity and density

Lemma 1. Let $0<\varepsilon<1$ and $R>0$. Then $\left\{K \in \mathcal{K}(\mathbb{R}): \lambda^{+}(0, R, K)>\varepsilon R\right\}$ and $\left\{K \in \mathcal{K}(\mathbb{R}): \lambda^{+}(0, R, K)<\varepsilon R\right\}$ are open sets.

Proof. Let $K_{0} \in \mathcal{K}(\mathbb{R})$ be such that $\lambda^{+}\left(0, R, K_{0}\right)>\varepsilon R$. Then there is a closed interval $I \subset(0, R)$ of length εR such that $I \cap K_{0}=\emptyset$. The set $\{K \in \mathcal{K}(\mathbb{R}): K \subset \mathbb{R} \backslash I\}$ is an open neighbourhood of K_{0} contained in $\left\{K \in \mathcal{K}(\mathbb{R}): \lambda^{+}(0, R, K)>\varepsilon R\right\}$.

For every finite sequence $0 \leq x_{0}<x_{1}<\ldots<x_{n}$ such that $x_{i}-x_{i-1}<\varepsilon R$ for $i=1,2, \ldots, n$ there is $\delta>0$ such that $x_{i}-x_{i-1}+2 \delta<\varepsilon R$ and $x_{i}-x_{i-1}>2 \delta$ for $i=1,2, \ldots, n$. We have $\left\{K \in \mathcal{K}(\mathbb{R}): \lambda^{+}(0, R, K)<\varepsilon R\right\}=\bigcup\left\{K \in \mathcal{K}(\mathbb{R}): K \cap\left(x_{i}-\delta, x_{i}+\delta\right) \neq \emptyset, \quad i=0,1, \ldots, n\right\}$. where the union is taken over all described above finite sequences x_{0}, \ldots, x_{n}.

Theorem 2. Let $r \in[0,1]$ and $P_{r}^{+}=\left\{K \in \mathcal{K}(\mathbb{R}): p^{+}(K, 0)=r\right\}$. Then
(a) P_{r}^{+}is Π_{3}^{0}-complete;
(b) P_{1}^{+}is Π_{2}^{0}-complete.

Proof. (a) Denote by \mathbb{Q}_{+}the set of all positive rationals. Observe that

$$
\begin{gathered}
P_{r}^{+}=\left\{K \in \mathcal{K}(\mathbb{R}): \forall \varepsilon>0 \exists R_{0}>0 \forall R \in\left(0, R_{0}\right) \frac{\lambda^{+}(0, R, K)}{R} \leq(1+\varepsilon) r\right\} \cap \\
\left\{K \in \mathcal{K}(\mathbb{R}): \forall \varepsilon>0 \forall R_{0}>0 \exists R \in\left(0, R_{0}\right) \frac{\lambda^{+}(0, R, K)}{R} \geq(1-\varepsilon) r\right\}= \\
\bigcap_{\varepsilon \in \mathbb{Q}_{+}} \bigcup_{R_{0} \in \mathbb{Q}_{+}} \bigcap_{R \in\left(0, R_{0}\right) \cap_{\mathbb{Q}_{+}}\left\{K \in \mathcal{K}(\mathbb{R}): \frac{\lambda^{+}(0, R, K)}{R} \leq(1+\varepsilon) r\right\} \cap} \bigcap_{\varepsilon \in \mathbb{Q}_{+}} \bigcap_{R_{0} \in \mathbb{Q}_{+}} \bigcup_{R \in\left(0, R_{0}\right) \cap \mathbb{Q}_{+}}\left\{K \in \mathcal{K}(\mathbb{R}): \frac{\lambda^{+}(0, R, K)}{R} \geq(1-\varepsilon) r\right\} .
\end{gathered}
$$

Hence by Lemma 1 we have that P_{r}^{+}is Π_{3}^{0}.
Let $t \in(0,1-r), b_{n}=t^{n}$ and $a_{n}^{k}=\left(b_{n+1} \frac{k}{1-r}+b_{n}\right) /(k+1)$ for $n, k \in \mathbb{N}$. We have $b_{n+1}<a_{n}^{k}<b_{n}$ for all $n, k \in \mathbb{N}$. Define $F_{r}: \mathbb{N}^{\mathbb{N}} \rightarrow \mathcal{K}(\mathbb{R})$ by

$$
F_{r}(\alpha)=\{0\} \cup \bigcup_{n \in \mathbb{N}}\left[a_{n}^{\alpha(n)}, b_{n}\right], \alpha \in \mathbb{N}^{\mathbb{N}} .
$$

Let $\varepsilon>0$. Fix $n \in \mathbb{N}$ such that $b_{n}<\varepsilon$ and let $\alpha, \alpha^{\prime} \in \mathbb{N}^{\mathbb{N}}$ be such that $\alpha(k)=\alpha^{\prime}(k)$ for $k \leq n$. Then $d_{H}\left(F_{r}(\alpha), F_{r}\left(\alpha^{\prime}\right)\right)<\varepsilon$ where d_{H} stands for the Hausdorff metric induced by the natural metric on \mathbb{R}. This shows the continuity of F_{r}.

Recall that $C_{3}=\left\{\alpha \in \mathbb{N}^{\mathbb{N}}: \lim _{n \rightarrow \infty} \alpha(n)=\infty\right\}$ is Π_{3}^{0}-complete (see [4, 23.A]). Our proof will be finished if we show that $F_{r}(\alpha) \in P_{r}^{+} \Longleftrightarrow \alpha \in C_{3}$.

Let $\alpha \in C_{3}$. Then

$$
\begin{gathered}
p^{+}\left(F_{r}(\alpha), 0\right)=\limsup _{n \rightarrow \infty} \frac{a_{n}^{\alpha(n)}-b_{n+1}}{a_{n}^{\alpha(n)}}=\limsup _{n \rightarrow \infty}\left(1-\frac{b_{n+1}}{a_{n}^{\alpha(n)}}\right)= \\
\limsup _{n \rightarrow \infty}\left(1-\frac{b_{n+1}(\alpha(n)+1)}{b_{n+1} \frac{\alpha(n)}{1-r}+b_{n}}\right)=1-(1-r)=r .
\end{gathered}
$$

Hence $F_{r}(\alpha) \in P_{r}^{+}$.
Let $\alpha \notin C_{3}$. Then there are a strictly increasing sequence $\left\{n_{k}\right\}$ of natural numbers and a number $N \in \mathbb{N}$ such that $\alpha\left(n_{k}\right)=N$ for all $k \in \mathbb{N}$. Hence

$$
\begin{gathered}
p^{+}\left(F_{r}(\alpha), 0\right)=\limsup _{n \rightarrow \infty} \frac{a_{n}^{\alpha(n)}-b_{n+1}}{a_{n}^{\alpha(n)}} \geq \limsup _{k \rightarrow \infty} \frac{a_{n_{k}\left(n_{k}\right)}^{\alpha\left(b_{n_{k}+1}\right.}}{a_{n_{k}}^{\alpha\left(n_{k}\right)}}= \\
\limsup _{k \rightarrow \infty}\left(1-\frac{b_{n_{k}+1} N+b_{n_{k}+1}}{b_{n_{k}+1} \frac{N}{1-r}+b_{n_{k}}}\right)=\limsup _{k \rightarrow \infty}\left(1-\frac{b_{n_{k}+1} N+b_{n_{k}+1}}{b_{n_{k}+1} \frac{N}{1-r}+t^{-1} b_{n_{k}+1}}\right)= \\
1-\frac{N+1}{\frac{N}{1-r}+t^{-1}}=1-\frac{(N+1)(1-r)}{N+t^{-1}(1-r)} .
\end{gathered}
$$

Note that

$$
1-\frac{(N+1)(1-r)}{N+t^{-1}(1-r)}-r=\frac{r^{2} t^{-1}+r\left(1-2 t^{-1}\right)+t^{-1}-1}{N+t^{-1}(1-r)} .
$$

Let $f(r)=r^{2} t^{-1}+r\left(1-2 t^{-1}\right)+t^{-1}-1$. It is easy to check that $f(r)=0$ if and only if either $r=1-t$ or $r=1$. Then $f(r)>0$ for $r \in[0,1-t)$. Hence $p^{+}\left(F_{r}(\alpha), 0\right)>r$ and $F_{r}(\alpha) \notin P_{r}^{+}$.
(b) We have

$$
\begin{gathered}
P_{1}^{+}=\left\{K \in \mathcal{K}(\mathbb{R}): \limsup _{R \rightarrow 0^{+}} \frac{\lambda^{+}(0, R, K)}{R}=1\right\}= \\
\left\{K \in \mathcal{K}(\mathbb{R}): \forall \varepsilon>0 \forall R_{0}>0 \exists R \in\left(0, R_{0}\right) \frac{\lambda^{+}(0, R, K)}{R}>(1-\varepsilon)\right\}= \\
\bigcap_{\varepsilon \in \mathbb{Q}_{+}} \bigcap_{R_{0} \in \mathbb{Q}_{+}} \bigcup_{R \in\left(0, R_{0}\right) \cap \mathbb{Q}_{+}}\left\{K \in \mathcal{K}(\mathbb{R}): \frac{\lambda^{+}(0, R, K)}{R}>(1-\varepsilon)\right\} .
\end{gathered}
$$

By Lemma 1 we infer that P_{1}^{+}is Π_{2}^{0}.

Recall that $N_{2}=\left\{\alpha \in\{0,1\}^{\mathbb{N}}: \exists^{\infty} n(\alpha(n)=0)\right\}$ is Π_{2}^{0}-complete (see [4, 23.A]). Define $G:\{0,1\}^{\mathbb{N}} \rightarrow \mathcal{K}(\mathbb{R})$ by

$$
G(\alpha)=\{0\} \cup \bigcup_{\alpha(n)=1}\left[\frac{1}{(n+1)!}, \frac{1}{n!}\right], \quad \alpha \in\{0,1\}^{\mathbb{N}} .
$$

To show continuity of G we employ exactly the same argument as for F_{r}. Hence our proof will be complete if we show that $G(\alpha) \in P_{1}^{+} \Longleftrightarrow \alpha \in N_{2}$.

Let $\alpha \in N_{2}$ and let $\left\{n_{k}\right\}$ be a strictly increasing sequence of natural numbers such that $\alpha\left(n_{k}\right)=0$ for $k \in \mathbb{N}$. Then

$$
p^{+}(G(\alpha), 0) \geq \limsup _{k \rightarrow \infty} \frac{\frac{1}{n_{k}!}-\frac{1}{\left(n_{k}+1\right)!}}{\frac{1}{n_{k}!}}=\limsup _{k \rightarrow \infty} \frac{n_{k}}{n_{k}+1}=1 .
$$

Hence $G(\alpha) \in P_{1}^{+}$.
Let $\alpha \notin N_{2}$. So, there is $N \in \mathbb{N}$ such that $\alpha(n)=1$ for $n \geq N$. Then $G(\alpha) \supset\left[0, \frac{1}{N!}\right]$ and $p^{+}(G(\alpha), 0)=0$. Hence $G(\alpha) \notin P_{1}^{+}$.

Corollary 3. The set $P_{0}^{+}\left(S P_{0}^{+}\right)$of all compact sets which are porous (strongly porous) from the right at 0 is Σ_{3}^{0}-complete (Π_{2}^{0}-complete).

Now, we will prove the analogue of Theorem 2 when the operator of porosity is replaced by the operator of density.

Lemma 4. Let $0<\varepsilon<1, h>0$. Then $\{K \in \mathcal{K}(\mathbb{R}): \mu([0, h] \cap K)<\varepsilon h\}$ is open.

Proof. Observe that

$$
\begin{gathered}
\{K \in \mathcal{K}(\mathbb{R}): \mu([0, h] \cap K)<\varepsilon h\}= \\
\{K \in \mathcal{K}(\mathbb{R}): \exists U-\text { an open set, } \mu(U \cap[0, h])<\varepsilon h \text { and } K \subset U\} .
\end{gathered}
$$

This is an open set as the union of basic open sets in $\mathcal{K}(\mathbb{R})$.
Proposition 5. Let $r \in[0,1]$ and let $D_{r}^{+}=\left\{K \in \mathcal{K}(\mathbb{R}): d^{+}(0, K)=r\right\}$. Then D_{r}^{+}is Π_{4}^{0}.

Proof. Let $r \in[0,1]$. For a measurable set $E \subset \mathbb{R}$ and $t \in[0,1]$ we have

$$
\lim _{h \rightarrow 0^{+}} \frac{\mu(E \cap[0, h])}{h}=t \Longleftrightarrow \lim _{n \rightarrow \infty} \frac{\mu(E \cap[0,1 / n])}{1 / n}=t .
$$

Using this we obtain

$$
\begin{gathered}
D_{r}^{+}=\{K \in \mathcal{K}(\mathbb{R}): \forall \varepsilon>0 \exists N \forall n \geq N \quad r-\varepsilon \leq n \mu(K \cap[0,1 / n])<r+\varepsilon\}= \\
\bigcap_{\varepsilon \in \mathbb{Q}_{+}} \bigcup_{N \in \mathbb{N}} \bigcap_{n \geq N}\{K \in \mathcal{K}(\mathbb{R}): r-\varepsilon \leq n \mu(K \cap[0,1 / n])<r+\varepsilon\} .
\end{gathered}
$$

By Lemma 4 the set $\{K \in \mathcal{K}(\mathbb{R}): r-\varepsilon \leq n \mu(K \cap[0,1 / n])<r+\varepsilon\}$ is Π_{2}^{0}. Hence D_{r}^{+} is Π_{4}^{0}.

Theorem 6. D_{1}^{+}is Π_{3}^{0}-complete.

Proof. Observe that

$$
\begin{gathered}
D_{1}^{+}=\left\{K \in \mathcal{K}(\mathbb{R}): \forall \varepsilon>0 \exists h^{\prime}>0 \forall h \in\left(0, h^{\prime}\right) \quad \mu([0, h] \cap K) \geq(1-\varepsilon) h\right\}= \\
\bigcap_{\varepsilon \in \mathbb{Q}_{+}} \bigcup_{h^{\prime} \in \mathbb{Q}_{+}} \bigcap_{h \in \mathbb{Q}_{+} \cap(0, h)}\{K \in \mathcal{K}(\mathbb{R}): \mu([0, h] \cap K) \geq(1-\varepsilon) h\} .
\end{gathered}
$$

By Lemma 4 the set D_{1}^{+}is Π_{3}^{0}.
Put $b_{n}=\frac{1}{2^{n}}$ and $a_{n}^{k}=\frac{k b_{n+1}+b_{n}}{k+1}$. Define $F: \mathbb{N}^{\mathbb{N}} \rightarrow \mathcal{K}(\mathbb{R})$ by

$$
F(\alpha)=\{0\} \cup \bigcup_{n \in \mathbb{N}}\left[a_{n}^{\alpha(n)}, b_{n}\right], \alpha \in \mathbb{N}^{\mathbb{N}}
$$

The argument for the continuity of F is the same as in the proof of Theorem 2 for F_{r}. Hence our proof will be finished if we show that $F(\alpha) \in D_{1}^{+} \Longleftrightarrow \alpha \in C_{3}$.

Fix $\alpha \in C_{3}$. Let $0<\varepsilon<1$ and pick $N \in \mathbb{N}$ be such that $\frac{N}{N+2}>1-\varepsilon$. Then there is $k \in \mathbb{N}$ such that for all $n \geq k$ we have $\alpha(n) \geq N$. Notice that

$$
\begin{gathered}
\underline{d^{+}}(0, F(\alpha)) \geq \liminf _{k \rightarrow \infty}\left(\frac{1}{a_{k}^{\alpha(k)}} \sum_{n=k+1}^{\infty}\left(b_{n}-a_{n}^{\alpha(n)}\right)\right)= \\
\liminf _{k \rightarrow \infty}\left(\frac{\alpha(k)+1}{\alpha(k) b_{k+1}+b_{k}} \sum_{n=k+1}^{\infty}\left(b_{n}-\frac{\alpha(n) b_{n+1}+b_{n}}{\alpha(n)+1}\right)\right)=
\end{gathered}
$$

$$
\begin{gathered}
\liminf _{k \rightarrow \infty}\left(\frac{\alpha(k)+1}{\alpha(k) 2^{-k-1}+2^{-k}} \sum_{n=k+1}^{\infty} \frac{\alpha(n)\left(b_{n}-b_{n+1}\right)}{\alpha(n)+1}\right) \geq \\
\liminf _{k \rightarrow \infty}\left(\frac{N+1}{N 2^{-k-1}+2^{-k}} \cdot \frac{N}{N+1} \sum_{n=k+1}^{\infty} \frac{1}{2^{n+1}}\right)=\frac{N}{N+2}>1-\varepsilon .
\end{gathered}
$$

Hence $F(\alpha) \in D_{1}^{+}$.
Let $\alpha \notin C_{3}$. There are a strictly increasing sequence $\left\{n_{k}\right\}$ of natural numbers and a number $N \in \mathbb{N}$ such that $\alpha\left(n_{k}\right)=N$ for all $k \in \mathbb{N}$. Then

$$
\begin{gathered}
\overline{d^{+}}(0, F(\alpha)) \leq \limsup _{k \rightarrow \infty}\left(\frac{1}{b_{n_{k}}} \sum_{n=n_{k}}^{\infty}\left(b_{n}-a_{n}^{\alpha(n)}\right)\right)=\limsup _{k \rightarrow \infty}\left(2^{n_{k}} \sum_{n=n_{k}}^{\infty} \frac{\alpha(n)}{\alpha(n)+1} \cdot \frac{1}{2^{n+1}}\right) \leq \\
\limsup _{k \rightarrow \infty}\left(2^{n_{k}}\left(\frac{N}{N+1} \cdot \frac{1}{2^{n_{k}+1}}+\sum_{n=n_{k}+1}^{\infty} \frac{1}{2^{n+1}}\right)\right)=\left(\frac{N}{N+1}+1\right) \frac{1}{2}<1 .
\end{gathered}
$$

Hence $F(\alpha) \notin D_{1}^{+}$.
Remark. All results of this section remain true if we consider $p^{-}(K, 0)$ or $p(K, 0)$ instead of $p^{+}(K, 0)$, and $d^{-}(0, K)$ or $d(0, K)$ instead of $d^{+}(0, K)$.

3. NOWHERE BILATERALLY POROUS SETS

Let us return to the notion of porosity. Consider a subspace of Tr defined by

$$
\begin{gathered}
\widetilde{\operatorname{Tr}}=\left\{T \in \operatorname{Tr}: \forall s \in \mathbb{N}^{<\mathbb{N}} \forall n \in \mathbb{N} \quad(\hat{s} n \in T \Rightarrow \forall m \in \mathbb{N} \quad \hat{s} m \in T)\right\}= \\
\bigcap_{s \in \mathbb{N}<\mathbb{N}} \bigcap_{n \in \mathbb{N}}\left(\left\{T \in \operatorname{Tr}: \hat{s^{\prime} n} \notin T\right\} \cup \bigcap_{m \in \mathbb{N}}\{T \in \operatorname{Tr}: \hat{s} m \in T\}\right) .
\end{gathered}
$$

Note that $\widetilde{T r}$ is a Polish space as a closed subset of Tr. By $\widetilde{W F}$ we denote $W F \cap \widetilde{T r}$, where $W F$ is the set of all well-founded trees on \mathbb{N}. We have
T is well-founded $\Longleftrightarrow T \cup\left\{s^{\wedge} m \in \mathbb{N}^{<\mathbb{N}}:(\exists n \in \mathbb{N} s \wedge n \in T)\right.$ and $\left.m \in \mathbb{N}\right\} \in \widetilde{W F}$.
It is well know that $W F$ is Π_{1}^{1}-complete. The following map

$$
T \mapsto T \cup\left\{\hat{s} m \in \mathbb{N}^{<\mathbb{N}}:\left(\exists n \in \mathbb{N} \hat{\left.\left.s^{\wedge} n \in T\right) \text { and } m \in \mathbb{N}\right\}, ~(\exists)}\right.\right.
$$

is Borel as a pointwise limit of continuous maps $R_{k}: \operatorname{Tr} \rightarrow \widetilde{\operatorname{Tr}}$ defined by

$$
R_{k}(T)=T \cup\left\{s^{\wedge} m \in \mathbb{N}^{<\mathbb{N}}:(\exists n \in \mathbb{N} \hat{s} n \in T) \text { and } m<k\right\}
$$

Since the notions of Π_{1}^{1}-completeness and Borel Π_{1}^{1}-completeness coincide (see [3]), $\widetilde{W F}$ is a Π_{1}^{1}-complete subset of $\widetilde{T r}$.

Now, we are ready to prove the following:

Theorem 7. Let $N B P \subset \mathcal{K}(\mathbb{R})$ be of the form

$$
N B P=\left\{K \in \mathcal{K}(\mathbb{R}): \forall x \in \mathbb{R}\left[x \in K \Rightarrow\left(p^{-}(K, x)=0 \text { or } p^{+}(K, x)=0\right)\right]\right\}
$$

Then $N B P$ is Π_{1}^{1}-complete.

Proof. First we will show that $N B P$ is coanalytic. Plainly $N B P$ is co-projection of the set

$$
\left\{(K, x) \in \mathcal{K}(\mathbb{R}) \times \mathbb{R}: x \in K \Rightarrow\left(p^{-}(K, x)=0 \text { or } p^{+}(K, x)=0\right)\right\}
$$

We need only to show that

$$
A=\left\{(K, x) \in \mathcal{K}(\mathbb{R}) \times \mathbb{R}: p^{+}(K, x)=0\right\}
$$

is Borel. We have

$$
\begin{gathered}
A=\left\{(K, x) \in \mathcal{K}(\mathbb{R}) \times \mathbb{R}: \limsup _{R \rightarrow 0^{+}} \frac{\lambda^{+}(x, R, K)}{R}=0\right\}= \\
\left\{(K, x) \in \mathcal{K}(\mathbb{R}) \times \mathbb{R}: \forall \varepsilon>0 \exists R_{0}>0 \forall R \in\left(0, R_{0}\right) \lambda^{+}(x, R, K)<\varepsilon R\right\}= \\
\bigcap_{\varepsilon \in \mathbb{Q}_{+}} \bigcup_{R_{0} \in \mathbb{Q}_{+}} \bigcap_{R \in\left(0, R_{0}\right) \cap \mathbb{Q}}\left\{(K, x) \in \mathcal{K}(\mathbb{R}) \times \mathbb{R}: \lambda^{+}(x, R, K)<\varepsilon R\right\} .
\end{gathered}
$$

To finish the proof of Borelness, it is enough to check that

$$
\left\{(K, x) \in \mathcal{K}(\mathbb{R}) \times \mathbb{R}: \lambda^{+}(x, R, K)<\varepsilon R\right\}
$$

is open. Let (K, x) be such that $\lambda^{+}(x, R, K)<\varepsilon R$, for fixed positive rational numbers R and ε. Put $\delta=\varepsilon R-\lambda^{+}(x, R, K)$. Using the compactness of K, pick a family $\left\{U_{1}, \ldots, U_{k}\right\}$ of open intervals, with diameters less than $\delta / 3$, such that

$$
K \subset \bigcup_{i=1}^{k} U_{i} \text { and } K \cap U_{i} \neq \emptyset \text { for } i=1, \ldots, k
$$

Let

$$
\mathcal{V}=\left\{L \in \mathcal{K}(\mathbb{R}): L \cap U_{i} \neq \emptyset \text { for } i=1, . ., k\right\}
$$

This is an open neighbourhood of K. Let $(L, y) \in \mathcal{V} \times(x-\delta / 3, x+\delta / 3)$. Then

$$
\lambda^{+}(y, R, L) \leq \lambda^{+}(x, R, K)+\frac{2}{3} \delta<\varepsilon R .
$$

We have shown that $\left\{(K, x) \in \mathcal{K}(\mathbb{R}) \times \mathbb{R}: \lambda^{+}(x, R, K)<\varepsilon R\right\}$ is open. Hence $N B P$ is Π_{1}^{1}. For $a, b \in \mathbb{R}$ such that $a<b$, let

$$
\phi_{[a, b]}(x)=\phi_{(a, b)}(x)=a+(b-a) x, \text { for } x \in \mathbb{R}
$$

This is an affine function which maps $[0,1]$ onto $[a, b]$. Let $K_{\emptyset}=\emptyset$ and $L_{\emptyset}=[0,1]$. For $n, m \in \mathbb{N}$ let

$$
K_{n}=\phi_{\left[\frac{1}{3}, \frac{2}{3}\right]}\left(\left[\frac{1}{2 n+2}, \frac{1}{2 n+1}\right]\right), L_{n}=\phi_{\left[\frac{1}{3}, \frac{2}{3}\right]}\left(\left(\frac{1}{2 n+3}, \frac{1}{2 n+2}\right)\right)
$$

For $s \in \mathbb{N}^{<\mathbb{N}}$ and $m \in \mathbb{N}$ we define inductively

$$
K_{s^{\wedge} m}=\phi_{L_{s}}\left(K_{m}\right), L_{s^{\wedge} m}=\phi_{L_{s}}\left(L_{m}\right) .
$$

Let $T \in \widetilde{T r}$. Then the mapping

$$
T \mapsto c l\left(\bigcup_{s \in T} K_{s}\right) \in \mathcal{K}(\mathbb{R})
$$

is continuous. For $\alpha \in \mathbb{N}^{\mathbb{N}}$ let x_{α} be the unique point of $\bigcap_{n \in \mathbb{N}} L_{\alpha \mid n}$. Then x_{α} is a limit of any sequence $\left(x_{n}\right)$ such that $x_{n} \in K_{\alpha \mid n}$ for all n. For $s \in \mathbb{N}^{<\mathbb{N}}$ let $y_{s}=$ $\inf L_{s}+\frac{1}{3}\left(\sup L_{s}-\inf L_{s}\right)$. Then y_{s} is a limit of any sequence $\left(y_{n}\right)$ such that $y_{n} \in K_{s^{\wedge} n}$ for all n.

To prove the assertion, it suffices to show that $T \in \widetilde{W F} \Longleftrightarrow c l\left(\bigcup_{s \in T} K_{s}\right) \in N B P$. This is exactly the reduction of the Π_{1}^{1}-complete set $\widetilde{W F}$ to $N B P$ by a continuous function.

Suppose that $T \in \widetilde{W F}$ and let $x \in \operatorname{cl}\left(\bigcup_{s \in T} K_{s}\right)$. If $x \in K_{s}$ for some $s \in T$, then x can not be both left-hand and right-hand porosity point of $\operatorname{cl}\left(\bigcup_{s \in T} K_{s}\right)$. If $x \notin K_{s}$ for all $s \in T$, then $x=y_{s}$ for some $s \in T$. Indeed, suppose that $x \neq y_{s}$ for all $s \in T$. There exists a sequence $y_{s_{n}} \rightarrow x$ with $y_{s_{n}} \in K_{s_{n}}$ and $s_{n} \in T$. From $x \neq y_{\langle \rangle}$(where \ranglestands for the empty sequence) it follows that $\left\{s_{n}(0)\right\}_{n \in \mathbb{N}}$ is bounded. Hence there is k_{0} such that $\left\{n \in \mathbb{N}: s_{n}(0)=k_{0}\right\}$ is infinite. Proceeding inductively one can find a sequence $\alpha=\left(k_{0}, k_{1}, k_{2}, \ldots\right)$ such that $\alpha \mid n \in T$ for all $n \in \mathbb{N}$, which yields a contradiction.

Let $R>0$ and let $n \in \mathbb{N}$ be the first number such that $L_{s^{\wedge} n} \subset(x, x+R)$. Then $\lambda^{+}\left(x, R, \operatorname{cl}\left(\bigcup_{s \in T} K_{s}\right)\right) \leq \frac{1}{n+1} R$ and $p^{+}\left(c l\left(\bigcup_{s \in T} K_{s}\right), x\right)=0$. Hence $c l\left(\bigcup_{s \in T} K_{s}\right) \in$ $N B P$.

For $a, b \in \mathbb{R}$ such that $a<b$, the intervals $\left(a, \frac{2 a+b}{3}\right),\left(\frac{2 a+b}{3}, \frac{a+2 b}{3}\right),\left(\frac{a+2 b}{3}, b\right)$ will be called the left, the central and the right subintervals of (a, b), respectively. Suppose that $T \notin \widetilde{W F}$. Then the body [T] of T is nonempty. Let $\alpha \in[T]$. Then $\alpha \mid n \in$ T for all $n \in \mathbb{N}$, and $x_{\alpha} \in \operatorname{cl}\left(\bigcup_{s \in T} K_{s}\right)$. For every $n \in \mathbb{N}$ the point x_{α} is in the central subinterval of $L_{\alpha \mid n}$ with the length $\frac{1}{3}\left|L_{\alpha \mid n}\right|$. Since both the left and the right subintervals are disjoint with $c l\left(\bigcup_{s \in T} K_{s}\right)$, we have $\lambda^{ \pm}\left(x, \frac{2}{3}\left|L_{\alpha \mid n}\right|, c l\left(\bigcup_{s \in T} K_{s}\right)\right)>\frac{1}{2}$ and thus $p^{ \pm}\left(c l\left(\bigcup_{s \in T} K_{s}\right), x\right) \geq \frac{1}{2}$. Hence $c l\left(\bigcup_{s \in T} K_{s}\right) \notin N B P$.
Remark. One can slightly modify this proof to show that the set

$$
\{K \in \mathcal{K}(\mathbb{R}): K \text { is not bilaterally strongly porous at } x \text {, for all } x \in K\}
$$

is Π_{1}^{1}-complete.
Given three sets A, B and C in the same Polish space, we say that C separates A and B if $A \subset C$ and $B \cap C=\emptyset$. A pair of disjoint coanalytic sets which cannot be separated by any Borel set is called Borel-inseparable (see [1]).

Corollary 8. Let $N B P^{\prime}$ be the family of all compact sets K in $\mathcal{K}(\mathbb{R})$ that are bilaterally porous at exactly one point $x \in K$. Then $N B P$ and $N B P^{\prime}$ is a Borel-inseparable pair of coanalytic sets.

Proof. Let $U B$ be the set of all trees on \mathbb{N} with a unique infinite branch. It is known that $W F$ and $U B$ is a Borel-inseparable pair of coanalytic sets (see [4, Exercise 35.2]). Note that

$$
T \in \widetilde{W F} \Longleftrightarrow c l\left(\bigcup_{s \in T} K_{s}\right) \in N B P \text { and } T \in \widetilde{U B} \Longleftrightarrow c l\left(\bigcup_{s \in T} K_{s}\right) \in N B P^{\prime}
$$

where $\widetilde{U B}=U B \cap \widetilde{T r}$. Hence $N B P$ and $N B P^{\prime}$ are Borel-inseparable.
The set $N B P$ introduced in Theorem 7 consists of nowhere bilaterally porous compact sets. These sets have rather "large local size". Another variant of such sets constructed by operator of density is described by the family

$$
O S D=\left\{K \in \mathcal{K}(\mathbb{R}): \forall x \in K\left(d^{-}(x, K)=1 \text { or } d^{+}(x, K)=1\right)\right\}
$$

Thus $K \in O S D$ iff every point of K is its at least one-sided density point.
Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be sequences of real numbers such that $a_{n}<b_{n}<a_{n-1}, a_{n} \rightarrow 0$ and $d^{+}\left(0, \bigcup_{n+1}^{\infty}\left[a_{n}, b_{n}\right]\right)=1$. If in the proof of Theorem 8 we put

$$
K_{n}=\phi_{\left[\frac{1}{3}, \frac{2}{3}\right]}\left(\left[a_{n}, b_{n}\right]\right) \text { and } L_{n}=\phi_{\left[\frac{1}{3}, \frac{2}{3}\right]}\left(\left(b_{n+1}, a_{n}\right)\right),
$$

then we can obtain the following counterpart of Theorem 7 for the operator of density:

Theorem 9. The set $O S D$ is Π_{1}^{1}-complete.

At the first look, it is not obvious that sets $N B P$ and $O S D$ are different. To see this, observe that $p^{+}(\{1 / n: n \in \mathbb{N}, n>0\}, 0)=0$. For every $n \geq 1$, let $\left[a_{n}, b_{n}\right]$ be an interval such that $\left(a_{n}+b_{n}\right) / 2=\frac{1}{n}$ and $d^{+}\left(0, \bigcup_{n=1}^{\infty}\left[a_{n}, b_{n}\right]\right)=0$. Then $\bigcup_{n=1}^{\infty}\left[a_{n}, b_{n}\right] \cup\{0\} \in N B P \backslash O S D$.

References

[1] Becker, H.: Some examples of Borel-inseparable pairs of coanalytic sets. Mathematika 33 (1986), no. 1, 72-79.
[2] Bruckner, A.: Differentiation of real functions. Second edition. CRM Monograph Series, 5. American Mathematical Society, Providence, RI, 1994.
[3] Kechris, A.S.: On the concept of Π_{1}^{1}-completeness. Proc. Amer. Math. Soc. 125 (1997), no. $6,1811-1814$.
[4] Kechris, A.S.: Classical Descriptive Set Theory. Springer, New York 1998.
[5] Zajiček, L.; Zelený, M.: On the complexity of some σ-ideals of σ-P-porous sets. Comment. Math. Univ. Carolinae 44 (2003), no. 3, 531-554.
[6] Zajiček, L.: Porosity and σ-porosity. Real Anal. Exchange 13 (1987/88), no. 2, 314-350.
[7] Zajiček, L.: On σ-porous sets in abstract spaces. Abstr. Appl. Anal. 2005, no. 5, 509-534.

Mathematical Institute, Polish Academy of Science, Śniadeckich 8, 00-956 Warszawa, Poland

E-mail address: szymon_glab@yahoo.com

