DESCRIPTIVE PROPERTIES RELATED TO POROSITY AND DENSITY FOR COMPACT SETS ON THE REAL LINE

SZYMON GŁĄB (WARSAW)

ABSTRACT. Given $r \in [0, 1]$ we study descriptive complexity of the set P_r (respectively D_r) of all compact sets K in the hyperspace $\mathcal{K}(\mathbb{R})$ with porosity r (density r) at 0. We also show that the set NBP of all nowhere bilaterally porous compact sets in $\mathcal{K}(\mathbb{R})$ is Π_1^1 -complete, and we prove a similar fact for density.

1. INTRODUCTION

Consider the hyperspace $\mathcal{K}(\mathbb{R})$ of all nonempty compact sets equipped with the Vietoris topology (i.e. the one generated by the sets of the form $\{K \in \mathcal{K}(\mathbb{R}) : K \subset U\}$ and $\{K \in \mathcal{K}(\mathbb{R}) : K \cap U \neq \emptyset\}$, for U open in \mathbb{R} ; equivalently it is given by the Hausdorff metric). The aim of our paper is to investigate descriptive complexity of families in $\mathcal{K}(\mathbb{R})$ that consist of sets with prescribed porosity and density at a given point. Both notions of porosity and metric density describe in various manners a local size of sets. They play significant role in real analysis (see [2]). The origins of our studies come from the paper [5] by Zajiček and Zelený where it was shown that compact σ -porous sets form a Π_1^1 -complete subset of $\mathcal{K}(\mathbb{R})$.

Let us recall the notion of porosity on the real line. (Many facts on the porosity can be found in the survey papers [6] and [7].) Let $E \subset \mathbb{R}$, $x \in \mathbb{R}$ and R > 0. Denote by $\lambda^+(x, R, E)$ the length of the largest open subinterval of (x, x + R) which does not intersect E. The right-hand porosity of E at x is defined by the formula

$$p^+(E,x) = \limsup_{R \to 0^+} \frac{\lambda^+(x,R,E)}{R}.$$

¹⁹⁹¹ Mathematics Subject Classification. Primary: 28A05, 03E15; Secondary: 54B20.

Key words and phrases. porosity, density points, Vietoris topology, Π_1^1 -complete sets.

Analogously we define the left-hand porosity of E at x, and denote it by $p^{-}(E, x)$. If $\lambda^{+}(x, R, E)$ denotes the length of the largest open subinterval of (x - R, x + R)which does not intersect E, then $p(E, x) = \limsup_{R \to 0^{+}} \frac{\lambda(x, R, E)}{2R}$ is the porosity of Eat x. A set E is called porous (strongly porous) from the right at x if $p^{+}(E, x) > 0$ $(p^{+}(E, x) = 1)$. A set E is called bilaterally porous (strongly porous) at x if it is porous (strongly porous) both from the right and from the left at x.

Let μ stand for Lebesgue measure on \mathbb{R} . For a measurable $E \subset \mathbb{R}$ and $x \in \mathbb{R}$, by $d^+(x, E)$ we denote the right-hand density of E at the point x, that is $d^+(x, E) = \lim_{h \to 0^+} \frac{\mu([x,x+h] \cap E)}{h}$, provided the limit exists, and by $d(x, E) = \lim_{h \to 0^+} \frac{\mu([x-h,x+h] \cap E)}{2h}$ we denote density of E at the point x, provided the limit exists. By symbol $\frac{d^+(x, E)}{2h}$ we denote the lower right-hand density of E at x, that is, the number $\liminf_{h \to 0^+} \frac{\mu([x,x+h] \cap E)}{h}$. Similarly we define $\overline{d^+}(x, E)$ – the upper right-hand density of E at the point x. If $d^+(x, E) = 1$ then x is called a right-hand density point of E. Analogously we introduce the notions of left-hand density and left-hand density points.

We use standard set theoretic notation. See [4]. Let $\mathbb{N} = \{0, 1, 2, ...\}$. Let X be a Polish space. For ordinals α , $1 \leq \alpha \leq \omega_1$, we define the following pointclasses of Borel sets by transfinite induction: Σ_1^0 – open sets, Π_1^0 – closed sets; and for $1 < \alpha < \omega_1$, $\Sigma_{\alpha}^0 = \{\bigcup_{n \in \mathbb{N}} A_n : A_n \in \bigcup_{\beta < \alpha} \Pi_{\beta}^0\}$ and $\Pi_{\alpha}^0 = \{\mathbb{R} \setminus A : A \in \Sigma_{\alpha}^0\}$. A subset A of X is called analytic if it is the projection of a Borel subset B of $X \times X$. A subset C of X is called coanalytic if $X \setminus C$ is analytic. The pointclasses of analytic and coanalytic sets are denoted by Σ_1^1 and Π_1^1 , respectively. The symbol \exists^{∞} means "for infinitely many". By Tr we denote the Polish space of all trees on \mathbb{N} .

2. Compact sets with prescribed porosity and density

Lemma 1. Let $0 < \varepsilon < 1$ and R > 0. Then $\{K \in \mathcal{K}(\mathbb{R}) : \lambda^+(0, R, K) > \varepsilon R\}$ and $\{K \in \mathcal{K}(\mathbb{R}) : \lambda^+(0, R, K) < \varepsilon R\}$ are open sets.

Proof. Let $K_0 \in \mathcal{K}(\mathbb{R})$ be such that $\lambda^+(0, R, K_0) > \varepsilon R$. Then there is a closed interval $I \subset (0, R)$ of length εR such that $I \cap K_0 = \emptyset$. The set $\{K \in \mathcal{K}(\mathbb{R}) : K \subset \mathbb{R} \setminus I\}$ is an open neighbourhood of K_0 contained in $\{K \in \mathcal{K}(\mathbb{R}) : \lambda^+(0, R, K) > \varepsilon R\}$.

For every finite sequence $0 \le x_0 < x_1 < ... < x_n$ such that $x_i - x_{i-1} < \varepsilon R$ for i = 1, 2, ..., n there is $\delta > 0$ such that $x_i - x_{i-1} + 2\delta < \varepsilon R$ and $x_i - x_{i-1} > 2\delta$ for i = 1, 2, ..., n. We have

$$\{K \in \mathcal{K}(\mathbb{R}) : \lambda^+(0, R, K) < \varepsilon R\} = \bigcup\{K \in \mathcal{K}(\mathbb{R}) : K \cap (x_i - \delta, x_i + \delta) \neq \emptyset, \ i = 0, 1, ..., n\}.$$

where the union is taken over all described above finite sequences $x_0, ..., x_n$. \Box

Theorem 2. Let $r \in [0,1]$ and $P_r^+ = \{K \in \mathcal{K}(\mathbb{R}) : p^+(K,0) = r\}$. Then (a) P_r^+ is Π_3^0 -complete; (b) P_1^+ is Π_2^0 -complete.

Proof. (a) Denote by \mathbb{Q}_+ the set of all positive rationals. Observe that

$$P_r^+ = \{ K \in \mathcal{K}(\mathbb{R}) : \forall \varepsilon > 0 \ \exists R_0 > 0 \ \forall R \in (0, R_0) \quad \frac{\lambda^+(0, R, K)}{R} \le (1 + \varepsilon)r \} \cap \{ K \in \mathcal{K}(\mathbb{R}) : \forall \varepsilon > 0 \ \forall R_0 > 0 \ \exists R \in (0, R_0) \quad \frac{\lambda^+(0, R, K)}{R} \ge (1 - \varepsilon)r \} = \bigcap_{\varepsilon \in \mathbb{Q}_+} \bigcup_{R_0 \in \mathbb{Q}_+} \bigcap_{R \in (0, R_0) \cap \mathbb{Q}_+} \{ K \in \mathcal{K}(\mathbb{R}) : \frac{\lambda^+(0, R, K)}{R} \le (1 + \varepsilon)r \} \cap \prod_{\varepsilon \in \mathbb{Q}_+} \bigcap_{R_0 \in \mathbb{Q}_+} \bigcup_{R \in (0, R_0) \cap \mathbb{Q}_+} \{ K \in \mathcal{K}(\mathbb{R}) : \frac{\lambda^+(0, R, K)}{R} \ge (1 - \varepsilon)r \}.$$

Hence by Lemma 1 we have that P_r^+ is Π_3^0 .

Let $t \in (0, 1 - r)$, $b_n = t^n$ and $a_n^k = (b_{n+1}\frac{k}{1-r} + b_n)/(k+1)$ for $n, k \in \mathbb{N}$. We have $b_{n+1} < a_n^k < b_n$ for all $n, k \in \mathbb{N}$. Define $F_r : \mathbb{N}^{\mathbb{N}} \to \mathcal{K}(\mathbb{R})$ by

$$F_r(\alpha) = \{0\} \cup \bigcup_{n \in \mathbb{N}} [a_n^{\alpha(n)}, b_n], \ \alpha \in \mathbb{N}^{\mathbb{N}}.$$

Let $\varepsilon > 0$. Fix $n \in \mathbb{N}$ such that $b_n < \varepsilon$ and let $\alpha, \alpha' \in \mathbb{N}^{\mathbb{N}}$ be such that $\alpha(k) = \alpha'(k)$ for $k \leq n$. Then $d_H(F_r(\alpha), F_r(\alpha')) < \varepsilon$ where d_H stands for the Hausdorff metric induced by the natural metric on \mathbb{R} . This shows the continuity of F_r .

Recall that $C_3 = \{ \alpha \in \mathbb{N}^{\mathbb{N}} : \lim_{n \to \infty} \alpha(n) = \infty \}$ is Π_3^0 -complete (see [4, 23.A]). Our proof will be finished if we show that $F_r(\alpha) \in P_r^+ \iff \alpha \in C_3$.

Let $\alpha \in C_3$. Then

$$p^{+}(F_{r}(\alpha), 0) = \limsup_{n \to \infty} \frac{a_{n}^{\alpha(n)} - b_{n+1}}{a_{n}^{\alpha(n)}} = \limsup_{n \to \infty} \left(1 - \frac{b_{n+1}}{a_{n}^{\alpha(n)}}\right) =$$
$$\limsup_{n \to \infty} \left(1 - \frac{b_{n+1}(\alpha(n) + 1)}{b_{n+1}\frac{\alpha(n)}{1 - r} + b_{n}}\right) = 1 - (1 - r) = r.$$

Hence $F_r(\alpha) \in P_r^+$.

Let $\alpha \notin C_3$. Then there are a strictly increasing sequence $\{n_k\}$ of natural numbers and a number $N \in \mathbb{N}$ such that $\alpha(n_k) = N$ for all $k \in \mathbb{N}$. Hence

$$p^{+}(F_{r}(\alpha), 0) = \limsup_{n \to \infty} \frac{a_{n}^{\alpha(n)} - b_{n+1}}{a_{n}^{\alpha(n)}} \ge \limsup_{k \to \infty} \frac{a_{n_{k}}^{\alpha(n_{k})} - b_{n_{k}+1}}{a_{n_{k}}^{\alpha(n_{k})}} =$$
$$\limsup_{k \to \infty} \left(1 - \frac{b_{n_{k}+1}N + b_{n_{k}+1}}{b_{n_{k}+1}\frac{N}{1-r} + b_{n_{k}}}\right) = \limsup_{k \to \infty} \left(1 - \frac{b_{n_{k}+1}N + b_{n_{k}+1}}{b_{n_{k}+1}\frac{N}{1-r} + t^{-1}b_{n_{k}+1}}\right) =$$
$$1 - \frac{N+1}{\frac{N}{1-r} + t^{-1}} = 1 - \frac{(N+1)(1-r)}{N + t^{-1}(1-r)}.$$

Note that

$$1 - \frac{(N+1)(1-r)}{N+t^{-1}(1-r)} - r = \frac{r^2t^{-1} + r(1-2t^{-1}) + t^{-1} - 1}{N+t^{-1}(1-r)}.$$

Let $f(r) = r^2 t^{-1} + r(1 - 2t^{-1}) + t^{-1} - 1$. It is easy to check that f(r) = 0 if and only if either r = 1 - t or r = 1. Then f(r) > 0 for $r \in [0, 1 - t)$. Hence $p^+(F_r(\alpha), 0) > r$ and $F_r(\alpha) \notin P_r^+$.

(b) We have

$$P_1^+ = \{ K \in \mathcal{K}(\mathbb{R}) : \limsup_{R \to 0^+} \frac{\lambda^+(0, R, K)}{R} = 1 \} =$$
$$\{ K \in \mathcal{K}(\mathbb{R}) : \forall \varepsilon > 0 \ \forall R_0 > 0 \ \exists R \in (0, R_0) \quad \frac{\lambda^+(0, R, K)}{R} > (1 - \varepsilon) \} =$$
$$\bigcap_{\varepsilon \in \mathbb{Q}_+} \bigcap_{R_0 \in \mathbb{Q}_+} \bigcup_{R \in (0, R_0) \cap \mathbb{Q}_+} \{ K \in \mathcal{K}(\mathbb{R}) : \frac{\lambda^+(0, R, K)}{R} > (1 - \varepsilon) \}.$$

By Lemma 1 we infer that P_1^+ is Π_2^0 .

Recall that $N_2 = \{ \alpha \in \{0,1\}^{\mathbb{N}} : \exists^{\infty} n \ (\alpha(n) = 0) \}$ is Π_2^0 -complete (see [4, 23.A]). Define $G : \{0,1\}^{\mathbb{N}} \to \mathcal{K}(\mathbb{R})$ by

$$G(\alpha) = \{0\} \cup \bigcup_{\alpha(n)=1} \left[\frac{1}{(n+1)!}, \frac{1}{n!}\right], \ \alpha \in \{0,1\}^{\mathbb{N}}.$$

To show continuity of G we employ exactly the same argument as for F_r . Hence our proof will be complete if we show that $G(\alpha) \in P_1^+ \iff \alpha \in N_2$.

Let $\alpha \in N_2$ and let $\{n_k\}$ be a strictly increasing sequence of natural numbers such that $\alpha(n_k) = 0$ for $k \in \mathbb{N}$. Then

$$p^+(G(\alpha), 0) \ge \limsup_{k \to \infty} \frac{\frac{1}{n_k!} - \frac{1}{(n_k+1)!}}{\frac{1}{n_k!}} = \limsup_{k \to \infty} \frac{n_k}{n_k+1} = 1.$$

Hence $G(\alpha) \in P_1^+$.

Let $\alpha \notin N_2$. So, there is $N \in \mathbb{N}$ such that $\alpha(n) = 1$ for $n \geq N$. Then $G(\alpha) \supset [0, \frac{1}{N!}]$ and $p^+(G(\alpha), 0) = 0$. Hence $G(\alpha) \notin P_1^+$. \Box

Corollary 3. The set P_0^+ (SP_0^+) of all compact sets which are porous (strongly porous) from the right at 0 is Σ_3^0 -complete (Π_2^0 -complete).

Now, we will prove the analogue of Theorem 2 when the operator of porosity is replaced by the operator of density.

Lemma 4. Let $0 < \varepsilon < 1$, h > 0. Then $\{K \in \mathcal{K}(\mathbb{R}) : \mu([0,h] \cap K) < \varepsilon h\}$ is open.

Proof. Observe that

$$\{K \in \mathcal{K}(\mathbb{R}) : \mu([0,h] \cap K) < \varepsilon h\} =$$

$$\{K \in \mathcal{K}(\mathbb{R}) : \exists U - \text{an open set}, \ \mu(U \cap [0,h]) < \varepsilon h \text{ and } K \subset U\}.$$

This is an open set as the union of basic open sets in $\mathcal{K}(\mathbb{R})$. \Box

Proposition 5. Let $r \in [0,1]$ and let $D_r^+ = \{K \in \mathcal{K}(\mathbb{R}) : d^+(0,K) = r\}$. Then D_r^+ is Π_4^0 .

Proof. Let $r \in [0, 1]$. For a measurable set $E \subset \mathbb{R}$ and $t \in [0, 1]$ we have

$$\lim_{h \to 0^+} \frac{\mu(E \cap [0, h])}{h} = t \iff \lim_{n \to \infty} \frac{\mu(E \cap [0, 1/n])}{1/n} = t$$

Using this we obtain

$$D_r^+ = \{ K \in \mathcal{K}(\mathbb{R}) : \forall \varepsilon > 0 \; \exists N \; \forall n \ge N \quad r - \varepsilon \le n\mu(K \cap [0, 1/n]) < r + \varepsilon \} = \bigcap_{\varepsilon \in \mathbb{Q}_+} \bigcup_{N \in \mathbb{N}} \bigcap_{n \ge N} \{ K \in \mathcal{K}(\mathbb{R}) : r - \varepsilon \le n\mu(K \cap [0, 1/n]) < r + \varepsilon \}.$$

By Lemma 4 the set $\{K \in \mathcal{K}(\mathbb{R}) : r - \varepsilon \leq n\mu(K \cap [0, 1/n]) < r + \varepsilon\}$ is Π_2^0 . Hence D_r^+ is Π_4^0 . \Box

Theorem 6. D_1^+ is Π_3^0 -complete.

Proof. Observe that

$$D_1^+ = \{ K \in \mathcal{K}(\mathbb{R}) : \forall \varepsilon > 0 \ \exists h' > 0 \ \forall h \in (0, h') \quad \mu([0, h] \cap K) \ge (1 - \varepsilon)h \} = \bigcap_{\varepsilon \in \mathbb{Q}_+} \bigcup_{h' \in \mathbb{Q}_+} \bigcap_{h \in \mathbb{Q}_+ \cap (0, h)} \{ K \in \mathcal{K}(\mathbb{R}) : \mu([0, h] \cap K) \ge (1 - \varepsilon)h \}.$$

By Lemma 4 the set D_1^+ is Π_3^0 .

Put $b_n = \frac{1}{2^n}$ and $a_n^k = \frac{kb_{n+1}+b_n}{k+1}$. Define $F : \mathbb{N}^{\mathbb{N}} \to \mathcal{K}(\mathbb{R})$ by $F(\alpha) = \{0\} \cup \bigcup_{n \in \mathbb{N}} [a_n^{\alpha(n)}, b_n], \alpha \in \mathbb{N}^{\mathbb{N}}.$

The argument for the continuity of F is the same as in the proof of Theorem 2 for F_r . Hence our proof will be finished if we show that $F(\alpha) \in D_1^+ \iff \alpha \in C_3$.

Fix $\alpha \in C_3$. Let $0 < \varepsilon < 1$ and pick $N \in \mathbb{N}$ be such that $\frac{N}{N+2} > 1 - \varepsilon$. Then there is $k \in \mathbb{N}$ such that for all $n \ge k$ we have $\alpha(n) \ge N$. Notice that

$$\underline{d^+}(0, F(\alpha)) \ge \liminf_{k \to \infty} \left(\frac{1}{a_k^{\alpha(k)}} \sum_{n=k+1}^{\infty} \left(b_n - a_n^{\alpha(n)} \right) \right) = \\ \liminf_{k \to \infty} \left(\frac{\alpha(k) + 1}{\alpha(k)b_{k+1} + b_k} \sum_{n=k+1}^{\infty} \left(b_n - \frac{\alpha(n)b_{n+1} + b_n}{\alpha(n) + 1} \right) \right) =$$

$$\liminf_{k \to \infty} \left(\frac{\alpha(k) + 1}{\alpha(k) 2^{-k-1} + 2^{-k}} \sum_{n=k+1}^{\infty} \frac{\alpha(n)(b_n - b_{n+1})}{\alpha(n) + 1} \right) \ge \\ \liminf_{k \to \infty} \left(\frac{N+1}{N2^{-k-1} + 2^{-k}} \cdot \frac{N}{N+1} \sum_{n=k+1}^{\infty} \frac{1}{2^{n+1}} \right) = \frac{N}{N+2} > 1 - \varepsilon.$$

Hence $F(\alpha) \in D_1^+$.

Let $\alpha \notin C_3$. There are a strictly increasing sequence $\{n_k\}$ of natural numbers and a number $N \in \mathbb{N}$ such that $\alpha(n_k) = N$ for all $k \in \mathbb{N}$. Then

$$\overline{d^{+}}(0, F(\alpha)) \leq \limsup_{k \to \infty} \left(\frac{1}{b_{n_k}} \sum_{n=n_k}^{\infty} (b_n - a_n^{\alpha(n)}) \right) = \limsup_{k \to \infty} \left(2^{n_k} \sum_{n=n_k}^{\infty} \frac{\alpha(n)}{\alpha(n) + 1} \cdot \frac{1}{2^{n+1}} \right) \leq \lim_{k \to \infty} \sup_{k \to \infty} \left(2^{n_k} \left(\frac{N}{N+1} \cdot \frac{1}{2^{n_k+1}} + \sum_{n=n_k+1}^{\infty} \frac{1}{2^{n+1}} \right) \right) = \left(\frac{N}{N+1} + 1 \right) \frac{1}{2} < 1.$$
Hence $F(\alpha) \notin D^+$

Hence $F'(\alpha) \notin D_1'$. \square

Remark. All results of this section remain true if we consider $p^{-}(K, 0)$ or p(K, 0)instead of $p^+(K,0)$, and $d^-(0,K)$ or d(0,K) instead of $d^+(0,K)$.

3. NOWHERE BILATERALLY POROUS SETS

Let us return to the notion of porosity. Consider a subspace of Tr defined by

$$\widetilde{Tr} = \{T \in Tr : \forall s \in \mathbb{N}^{<\mathbb{N}} \ \forall n \in \mathbb{N} \ (s\hat{\ }n \in T \Rightarrow \forall m \in \mathbb{N} \ s\hat{\ }m \in T)\} = \bigcap_{s \in \mathbb{N}^{<\mathbb{N}}} \bigcap_{n \in \mathbb{N}} (\{T \in Tr : s\hat{\ }n \notin T\} \cup \bigcap_{m \in \mathbb{N}} \{T \in Tr : s\hat{\ }m \in T\}).$$

Note that \widetilde{Tr} is a Polish space as a closed subset of Tr. By \widetilde{WF} we denote $WF \cap \widetilde{Tr}$, where WF is the set of all well-founded trees on \mathbb{N} . We have

 $T \text{ is well-founded } \iff T \cup \{\hat{s m} \in \mathbb{N}^{<\mathbb{N}} : (\exists n \in \mathbb{N} \ \hat{s n} \in T) \text{ and } m \in \mathbb{N}\} \in \widetilde{WF}.$

It is well know that WF is Π_1^1 -complete. The following map

$$T \mapsto T \cup \{\hat{s}m \in \mathbb{N}^{<\mathbb{N}} : (\exists n \in \mathbb{N} \ \hat{s}n \in T) \text{ and } m \in \mathbb{N}\}$$

is Borel as a pointwise limit of continuous maps $R_k: Tr \to \widetilde{Tr}$ defined by

$$R_k(T) = T \cup \{\hat{s} \in \mathbb{N}^{<\mathbb{N}} : (\exists n \in \mathbb{N} \ \hat{s} \in T) \text{ and } m < k\}.$$

Since the notions of Π_1^1 -completeness and Borel Π_1^1 -completeness coincide (see [3]), \widetilde{WF} is a Π_1^1 -complete subset of \widetilde{Tr} .

Now, we are ready to prove the following:

Theorem 7. Let $NBP \subset \mathcal{K}(\mathbb{R})$ be of the form

$$NBP = \{ K \in \mathcal{K}(\mathbb{R}) : \forall x \in \mathbb{R} \ [x \in K \Rightarrow (p^-(K, x) = 0 \ or \ p^+(K, x) = 0)] \}.$$

Then NBP is Π_1^1 -complete.

Proof. First we will show that NBP is coanalytic. Plainly NBP is co-projection of the set

$$\{(K,x) \in \mathcal{K}(\mathbb{R}) \times \mathbb{R} : x \in K \Rightarrow (p^-(K,x) = 0 \text{ or } p^+(K,x) = 0)\}.$$

We need only to show that

$$A = \{ (K, x) \in \mathcal{K}(\mathbb{R}) \times \mathbb{R} : p^+(K, x) = 0 \}$$

is Borel. We have

$$A = \{ (K, x) \in \mathcal{K}(\mathbb{R}) \times \mathbb{R} : \limsup_{R \to 0^+} \frac{\lambda^+(x, R, K)}{R} = 0 \} =$$
$$\{ (K, x) \in \mathcal{K}(\mathbb{R}) \times \mathbb{R} : \forall \varepsilon > 0 \ \exists R_0 > 0 \ \forall R \in (0, R_0) \ \lambda^+(x, R, K) < \varepsilon R \} =$$
$$\bigcap_{\varepsilon \in \mathbb{Q}_+} \bigcup_{R_0 \in \mathbb{Q}_+} \bigcap_{R \in (0, R_0) \cap \mathbb{Q}} \{ (K, x) \in \mathcal{K}(\mathbb{R}) \times \mathbb{R} : \lambda^+(x, R, K) < \varepsilon R \}.$$

To finish the proof of Borelness, it is enough to check that

$$\{(K, x) \in \mathcal{K}(\mathbb{R}) \times \mathbb{R} : \lambda^+(x, R, K) < \varepsilon R\}$$

is open. Let (K, x) be such that $\lambda^+(x, R, K) < \varepsilon R$, for fixed positive rational numbers R and ε . Put $\delta = \varepsilon R - \lambda^+(x, R, K)$. Using the compactness of K, pick a family $\{U_1, ..., U_k\}$ of open intervals, with diameters less than $\delta/3$, such that

$$K \subset \bigcup_{i=1}^{k} U_i$$
 and $K \cap U_i \neq \emptyset$ for $i = 1, ..., k$.

Let

$$\mathcal{V} = \{ L \in \mathcal{K}(\mathbb{R}) : L \cap U_i \neq \emptyset \text{ for } i = 1, ..., k \}.$$

This is an open neighbourhood of K. Let $(L, y) \in \mathcal{V} \times (x - \delta/3, x + \delta/3)$. Then

$$\lambda^+(y, R, L) \le \lambda^+(x, R, K) + \frac{2}{3}\delta < \varepsilon R.$$

We have shown that $\{(K, x) \in \mathcal{K}(\mathbb{R}) \times \mathbb{R} : \lambda^+(x, R, K) < \varepsilon R\}$ is open. Hence NBP is Π_1^1 . For $a, b \in \mathbb{R}$ such that a < b, let

$$\phi_{[a,b]}(x) = \phi_{(a,b)}(x) = a + (b-a)x, \text{ for } x \in \mathbb{R}.$$

This is an affine function which maps [0, 1] onto [a, b]. Let $K_{\emptyset} = \emptyset$ and $L_{\emptyset} = [0, 1]$. For $n, m \in \mathbb{N}$ let

$$K_n = \phi_{\left[\frac{1}{3}, \frac{2}{3}\right]} \left(\left[\frac{1}{2n+2}, \frac{1}{2n+1} \right] \right), \ L_n = \phi_{\left[\frac{1}{3}, \frac{2}{3}\right]} \left(\left(\frac{1}{2n+3}, \frac{1}{2n+2} \right) \right).$$

For $s \in \mathbb{N}^{<\mathbb{N}}$ and $m \in \mathbb{N}$ we define inductively

$$K_{s\hat{m}} = \phi_{L_s}(K_m), \ L_{s\hat{m}} = \phi_{L_s}(L_m)$$

Let $T \in \widetilde{Tr}$. Then the mapping

$$T \mapsto cl(\bigcup_{s \in T} K_s) \in \mathcal{K}(\mathbb{R})$$

is continuous. For $\alpha \in \mathbb{N}^{\mathbb{N}}$ let x_{α} be the unique point of $\bigcap_{n \in \mathbb{N}} L_{\alpha|n}$. Then x_{α} is a limit of any sequence (x_n) such that $x_n \in K_{\alpha|n}$ for all n. For $s \in \mathbb{N}^{<\mathbb{N}}$ let $y_s = \inf L_s + \frac{1}{3}(\sup L_s - \inf L_s)$. Then y_s is a limit of any sequence (y_n) such that $y_n \in K_{s n}$ for all n.

To prove the assertion, it suffices to show that $T \in \widetilde{WF} \iff cl(\bigcup_{s \in T} K_s) \in NBP$. This is exactly the reduction of the Π^1_1 -complete set \widetilde{WF} to NBP by a continuous function.

Suppose that $T \in \widetilde{WF}$ and let $x \in cl(\bigcup_{s \in T} K_s)$. If $x \in K_s$ for some $s \in T$, then x can not be both left-hand and right-hand porosity point of $cl(\bigcup_{s \in T} K_s)$. If $x \notin K_s$ for all $s \in T$, then $x = y_s$ for some $s \in T$. Indeed, suppose that $x \neq y_s$ for all $s \in T$. There exists a sequence $y_{s_n} \to x$ with $y_{s_n} \in K_{s_n}$ and $s_n \in T$. From $x \neq y_{\langle \rangle}$ (where $\langle \rangle$ stands for the empty sequence) it follows that $\{s_n(0)\}_{n \in \mathbb{N}}$ is bounded. Hence there is k_0 such that $\{n \in \mathbb{N} : s_n(0) = k_0\}$ is infinite. Proceeding inductively one can find a sequence $\alpha = (k_0, k_1, k_2, ...)$ such that $\alpha \mid n \in T$ for all $n \in \mathbb{N}$, which yields a contradiction.

Let R > 0 and let $n \in \mathbb{N}$ be the first number such that $L_{s \cap n} \subset (x, x + R)$. Then $\lambda^+(x, R, cl(\bigcup_{s \in T} K_s)) \leq \frac{1}{n+1}R$ and $p^+(cl(\bigcup_{s \in T} K_s), x) = 0$. Hence $cl(\bigcup_{s \in T} K_s) \in NBP$.

For $a, b \in \mathbb{R}$ such that a < b, the intervals $(a, \frac{2a+b}{3}), (\frac{2a+b}{3}, \frac{a+2b}{3}), (\frac{a+2b}{3}, b)$ will be called the left, the central and the right subintervals of (a, b), respectively. Suppose that $T \notin \widetilde{WF}$. Then the body [T] of T is nonempty. Let $\alpha \in [T]$. Then $\alpha | n \in$ T for all $n \in \mathbb{N}$, and $x_{\alpha} \in cl(\bigcup_{s \in T} K_s)$. For every $n \in \mathbb{N}$ the point x_{α} is in the central subinterval of $L_{\alpha|n}$ with the length $\frac{1}{3}|L_{\alpha|n}|$. Since both the left and the right subintervals are disjoint with $cl(\bigcup_{s \in T} K_s)$, we have $\lambda^{\pm}(x, \frac{2}{3}|L_{\alpha|n}|, cl(\bigcup_{s \in T} K_s)) > \frac{1}{2}$ and thus $p^{\pm}(cl(\bigcup_{s \in T} K_s), x) \geq \frac{1}{2}$. Hence $cl(\bigcup_{s \in T} K_s) \notin NBP$. \Box

Remark. One can slightly modify this proof to show that the set

 $\{K \in \mathcal{K}(\mathbb{R}) : K \text{ is not bilaterally strongly porous at } x, \text{ for all } x \in K\}$

is Π_1^1 -complete.

Given three sets A, B and C in the same Polish space, we say that C separates Aand B if $A \subset C$ and $B \cap C = \emptyset$. A pair of disjoint coanalytic sets which cannot be separated by any Borel set is called Borel–inseparable (see [1]). **Corollary 8.** Let NBP' be the family of all compact sets K in $\mathcal{K}(\mathbb{R})$ that are bilaterally porous at exactly one point $x \in K$. Then NBP and NBP' is a Borel-inseparable pair of coanalytic sets.

Proof. Let UB be the set of all trees on \mathbb{N} with a unique infinite branch. It is known that WF and UB is a Borel–inseparable pair of coanalytic sets (see [4, Exercise 35.2]). Note that

$$T \in \widetilde{WF} \iff cl(\bigcup_{s \in T} K_s) \in NBP \text{ and } T \in \widetilde{UB} \iff cl(\bigcup_{s \in T} K_s) \in NBP',$$

where $\widetilde{UB} = UB \cap \widetilde{Tr}$. Hence NBP and NBP' are Borel–inseparable. \Box

The set NBP introduced in Theorem 7 consists of nowhere bilaterally porous compact sets. These sets have rather "large local size". Another variant of such sets constructed by operator of density is described by the family

$$OSD = \{ K \in \mathcal{K}(\mathbb{R}) : \forall x \in K \ (d^-(x, K) = 1 \text{ or } d^+(x, K) = 1) \}$$

Thus $K \in OSD$ iff every point of K is its at least one-sided density point.

Let (a_n) and (b_n) be sequences of real numbers such that $a_n < b_n < a_{n-1}, a_n \to 0$ and $d^+(0, \bigcup_{n+1}^{\infty} [a_n, b_n]) = 1$. If in the proof of Theorem 8 we put

$$K_n = \phi_{[\frac{1}{3},\frac{2}{3}]}([a_n, b_n])$$
 and $L_n = \phi_{[\frac{1}{3},\frac{2}{3}]}((b_{n+1}, a_n)),$

then we can obtain the following counterpart of Theorem 7 for the operator of density:

Theorem 9. The set OSD is Π_1^1 -complete.

At the first look, it is not obvious that sets NBP and OSD are different. To see this, observe that $p^+(\{1/n : n \in \mathbb{N}, n > 0\}, 0) = 0$. For every $n \ge 1$, let $[a_n, b_n]$ be an interval such that $(a_n + b_n)/2 = \frac{1}{n}$ and $d^+(0, \bigcup_{n=1}^{\infty} [a_n, b_n]) = 0$. Then $\bigcup_{n=1}^{\infty} [a_n, b_n] \cup \{0\} \in NBP \setminus OSD$.

SZYMON GŁĄB (WARSAW)

References

- Becker, H.: Some examples of Borel-inseparable pairs of coanalytic sets. Mathematika 33 (1986), no. 1, 72–79.
- Bruckner, A.: Differentiation of real functions. Second edition. CRM Monograph Series, 5.
 American Mathematical Society, Providence, RI, 1994.
- [3] Kechris, A.S.: On the concept of Π¹₁-completeness. Proc. Amer. Math. Soc. **125** (1997), no.
 6, 1811–1814.
- [4] Kechris, A.S.: Classical Descriptive Set Theory. Springer, New York 1998.
- [5] Zajiček, L.; Zelený, M.: On the complexity of some σ -ideals of σ -P-porous sets. Comment. Math. Univ. Carolinae **44** (2003), no. 3, 531–554.
- [6] Zajiček, L.: Porosity and σ -porosity. Real Anal. Exchange **13** (1987/88), no. 2, 314–350.
- [7] Zajiček, L.: On σ -porous sets in abstract spaces. Abstr. Appl. Anal. 2005, no. 5, 509–534.

MATHEMATICAL INSTITUTE, POLISH ACADEMY OF SCIENCE, ŚNIADECKICH 8, 00-956 WARSZAWA, POLAND

E-mail address: szymon_glab@yahoo.com