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LOCAL AND GLOBAL MONOTONICITY

Abstract

We give characterizations of sets E ⊂ [0, 1] for which the local mono-
tonicity of each function f : [0, 1]→ R from a given class F , at all points
x ∈ E, implies the global monotonicity of f on [0, 1]. We consider as
F – the families of continuous functions, differentiable functions, abso-
lutely continuous functions, functions of class Cn (n = 1, 2, ...,∞), real
analytic functions and polynomials.

We shall consider real-valued functions defined on [0, 1]. However, all our
results remain true when [0, 1] is replaced by any interval J . This remark will
be used without comments in some of our proofs. Let us recall the notions of
local monotonicity for real functions defined on [0, 1]. They can be found in
Bruckner’s monograph [1]. As we know, they were introduced by E. Borel.

A function f : [0, 1] → R is called left non-decreasing (LND) at a point
x ∈ (0, 1] if

∃δ>0∀y∈(x−δ,x)f(y) ≤ f(x).

Analogously we mean a right non-decreasing (RND) function at x ∈ [0, 1). A
function f : [0, 1]→ R is called non-decreasing (ND) at x ∈ (0, 1) if it is LND
and RND at x. The following theorem shows the connections between local
and global monotonicity of real functions.

Theorem 1. (J. Jachymski [3]) Let f : [0, 1] → R. The following conditions
are equivalent:

(i) f is non-decreasing;

(ii) ∀x∈[0,1](f is ND at x);
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(iii) ∀x∈(0,1](f is LND at x) and
∀x∈[0,1)(f is right lower-semicontinuous at x).

(iv) ∀x∈[0,1)(f is RND at x) and
∀x∈(0,1](f is left upper-semicontinuous at x).

Proof. (i)⇒ (ii) obvious.
(ii) ⇒ (iii) If f is RND at x, then f(x) ≤ lim infy→x+ f(y). This means

that f is right lower-semicontinuous at x.
(iii) ⇒ (i) Let 0 ≤ c < d ≤ 1, M = {x < d : ∀t∈[x,d]f(t) ≤ f(d)} and

m = inf M. We now show that m ∈ M. Let {sn} be a sequence in M such
that sn → m. We have

f(m) ≤ lim inf
x→m+

f(x) ≤ lim inf
n→∞

f(sn) ≤ f(d),

so m ∈M. Suppose that m > 0. Since f is LND at m, there exists δ > 0 such
that f(t) ≤ f(m) for all t ∈ (m−δ,m) which together with m ∈M contradicts
the definition of m. Thus m = 0 which shows that f(c) ≤ f(d).

(ii)⇒ (iv) goes similarly as (ii)⇒ (iii).
(iv)⇒ (i) goes similarly as (iii)⇒ (i).

By C([0, 1]) we denote the set of all continuous functions on [0, 1].

Corollary 1. Let f ∈ C([0, 1]). The following conditions are equivalent:

(i) ∀x∈(0,1](f is LND at x);

(ii) f is non-decreasing.

Easy examples witness that in Theorem 1 we cannot weaken conditions
(ii) and (iii) for every function f : [0, 1] → R in such a way that we consider
”∀x∈E” instead of ”∀x∈[0,1]” for a proper subset E of [0, 1]. The aim of this
paper is to study how small can be a set E ⊂ [0, 1] to make implication
”(∀x∈E(f is ND at x))⇒ f is non-decreasing” true for every function f from
a particular class. First we consider the class C([0, 1]).

Lemma 1. Let f : [0, 1] → R and x ∈ (0, 1). If f is continuous and ND at
any point of the set [0, 1] \ {x}, then f is non-decreasing.

Proof. By Theorem 1, f is non-decreasing in intervals [0, x) and (x, 1]. Since
f is continuous at x, we have

∀t<x∀s>x(f(t) ≤ f(x) ≤ f(s)).

Lemma 2. Let f ∈ C([0, 1]). The following conditions are equivalent:
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(i) f is non-decreasing;

(ii) ∀x∈[0,1] (f is LND at x or f is RND at x).

Proof. (i)⇒ (ii) is obvious.
(ii)⇒ (i) Suppose that f is not non-decreasing. Then there exist numbers

a0 and b0 such that 0 ≤ a0 < b0 ≤ 1 and f(a0) > f(b0). The Darboux property
applied to f implies that there exist numbers c and d such that a0 < c < d < b0
and

f(c) =
2f(a0) + f(b0)

3
, f(d) =

f(a0) + 2f(b0)
3

and there exists g ∈ (c, d) such that f(g) = f(c)+f(d)
2 . If g− c ≤ d− g, then we

take a1 = c and b1 = g, otherwise a1 = g and b1 = d. So 0 < b1 − a1 ≤ d−c
2 <

b0−a0
2 ≤ 1

2 .
Proceeding inductively we get strictly increasing sequences {an}, {f(bn)}

and strictly decreasing sequences {bn}, {f(an)}. Furthermore 0 < bn−an < 1
2n

for all n. Let x = limn→∞ an = limn→∞ bn. Suppose for instance that f is
LND at x. Then

∃δ>0∀y∈(x−δ,x)(f(y) ≤ f(x)).

But for large enough n ∈ N we have f(an) > f(x) and an ∈ (x− δ, x). This is
a contradiction. Hence f is non-decreasing.

Lemma 3. Let f ∈ C([0, 1]) and let E ⊂ [0, 1] be countable and Gδ. If

∀x∈[0,1]\E(f is LND at x or f is RND at x),

then f is non-decreasing.

Proof. Since E is countable and Gδ, there exists an ordinal α < ω1 such that
(∗) Eα = ∅ (the αth Cantor–Bendixson derivative of E is empty).
This is an easy exercise. See e.g. [4, 2.5.14]. We shall show inductively that f
is RND or LND at any point of the set E \ Eβ for β ≤ α.

Let x ∈ E \ E1; i.e., x is an isolated point of E. There exists ε > 0 such
that E ∩ (x− ε, x+ ε) = {x}. So

∀y∈(x−ε,x)(f is LND at x or f is RND at x).

Applying Lemma 2 we obtain that f |(x−ε,x) is non-decreasing. Similarly
f |(x,x+ε) is non-decreasing. By Lemma 1, we get that f |(x−ε,x+ε) is non-
decreasing. Hence, f is ND at x. From these observations we get

∀x∈[0,1]\E1(f is LND at x or f is RND at x).
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Let β < α. Suppose that

∀γ<β∀x∈[0,1]\Eγ (f is LND at x or f is RND at x).

If β is a limit ordinal, then it follows that f is LND or RND at any point of
the set

⋃
γ<β([0, 1) \ Eγ) = [0, 1] \

⋂
γ<β E

γ = [0, 1] \ Eβ . If β is a successor
ordinal, then there exists ξ such that β = ξ + 1. With isolated points of Eξ,
we repeat the same reasoning as in the first step of induction.

By (∗) we have

∀x∈[0,1](f is LND at x or f is RND at x).

The assertion follows from Lemma 2.

Theorem 2. Let E ⊂ [0, 1]. The following conditions are equivalent:

(i) ∀f∈C([0,1])[(∀x∈E(f is LND at x or f is RND at x))⇒
f is non-decreasing];

(ii) The set [0, 1] \ E does not contain a homeomorph of the Cantor set.

Proof. (ii)⇒ (i) Fix f ∈ C([0, 1]). Denote by Q+ the positive rationals. Let

A = {x ∈ [0, 1] : f is LND at x or f is RND at x}.

Then

A = {x ∈ [0, 1] : ∃δx>0∀y∈(x−δx,x)f(y) ≤ f(x)}

∪{x ∈ [0, 1] : ∃δx>0∀y∈(x,x+δx)f(y) ≥ f(x)}

= {x ∈ [0, 1] : ∃δ∈Q+∀y∈(x−δx,x)f(y) ≤ f(x)}

∪{x ∈ [0, 1] : ∃δ∈Q+∀y∈(x,x+δx)f(y) ≥ f(x)},

so A is Fσ. Since [0, 1] \ A ⊂ [0, 1] \ E, then [0, 1] \ A does not contain a
homeomorph of the Cantor set. Hence [0, 1] \A is countable. By Lemma 3 we
conclude that f is non-decreasing.

(i)⇒ (ii) Assume that [0, 1]\E contains a homeomorph of the Cantor set,
say K. Let f : [0, 1]→ R be a Cantor-type function associated with the set K
such that f(0) = 1 and f(1) = 0. Since f is constant on each component of
[0, 1] \K, it is ND at any point of [0, 1] \K, but it is not non-decreasing.
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Lemma 4. Let f ∈ C([0, 1]) and let E ⊂ (0, 1) be dense. If

∀x∈E(f is ND at x),

then there exists a set U ⊃ E open in (0, 1) such that for each component (a, b)
of U we have f(a) ≤ f(b).

Proof. Put U =
⋃
x∈E(x−δx, x+δx) where δx > 0 is a number obtained from

the definition of ND at the point x. Let (a, b) be a component of U . Consider
two sequences {an}, {bn} such that a < an < bn < b, for all n ∈ N and
a = limn→∞ an and b = limn→∞ bn. Fix n ∈ N. The family {(x− δx, x+ δx) :
x ∈ E∩ (a, b)} is an open covering of [an, bn]. There exists a finite subcovering
{(xnk − δnk , xnk + δnk ) : k = 0, 1, ..., kn} such that xn0 < xn1 < ... < xnkn and δnk =
δxnk . If necessary we remove each interval contained in any other interval in the
subcovering. For k = 0, 1, ..., kn fix ynk ∈ (xnk−1, x

n
k−1+δnk−1)∩(xnk−δnk , xnk ) such

that xnk−1 < ynk < xnk . Then f(xnk−1) ≤ f(ynk ) ≤ f(xnk ) for k = 1, ..., kn. Hence
f(xn0−δn0 ) ≤ f(xnkn+δnkn). Since limn→∞(xn0−δn0 ) = a, limn→∞(xnkn+δnkn) = b,
and f is continuous we have f(a) ≤ f(b).

Let µ stand for Lebesgue measure on R.

Lemma 5. Assume that F ∈ C([0, 1]) and F satisfies condition (N) of Luzin.
Let E ⊂ [0, 1] be such that µ([0, 1] \ E) = 0. If

∀x∈E(F is ND at x),

then F is non-decreasing.

Proof. Suppose that F is not non-decreasing. There exist numbers a and b
such that 0 ≤ a < b ≤ 1 and F (a) > F (b). By Lemma 4 applied to E ∩ (a, b)
and [a, b] in place of E and [0, 1], there exists a sequence of pairwise disjoint
intervals (an, bn) ⊂ [a, b], n ∈ N, such that F (an) ≤ F (bn) and µ([a, b] \⋃
n(an, bn)) = 0. We shall prove that [F (b), F (a)] ⊂ F ([a, b] \

⋃n
i=1(ai, bi)) for

all n.
The Darboux property of F shows that for every y between F (a) and

F (a1) there is x ∈ (a, a1) such that F (x) = y, and for every y between F (b)
and F (b1) there is x ∈ (b1, b) such that F (x) = y. But F (a1) ≤ F (b1) so
[F (b), F (a)] ⊂ F ([a, b] \ (a1, b1)). Since (ai, bi) are pairwise disjoint intervals,
either (a2, b2) ⊂ (a, a1) or (a2, b2) ⊂ (b1, b). Assume that (a2, b2) ⊂ (a, a1).
Similarly as above we show that for every y between F (a) and F (a1) there
is x ∈ (a, a1) \ (a2, b2) such that F (x) = y. So [F (b), F (a)] ⊂ F ([a, b] \⋃2
i=1(ai, bi)).
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Proceeding inductively we have [F (b), F (a)] ⊂ F ([a, b] \
⋃n
i=1(ai, bi)) for

all n. Since An = [0, 1]\
⋃n
i=1(ai, bi), n ∈ N, is decreasing sequence of compact

sets, we have
⋂
n F (An) = F (

⋂
nAn). Consequently [F (b), F (a)] ⊂ F ([a, b] \⋃

n(an, bn)). But µ([a, b]\
⋃
n(an, bn)) = 0, so F does not satisfy the condition

(N) of Luzin, a contradiction.

Theorem 3. Assume that F is one of the following classes of functions on
[0, 1]: continuous functions satisfying condition (N), absolutely continuous
functions, differentiable functions, Lipschitz functions. Let E ⊂ [0, 1]. The
following conditions are equivalent:

(i) ∀F∈F [(∀x∈E(F is ND at x))⇒ F is non-decreasing];

(ii) The set [0, 1] \ E does not contain any set of positive measure.

Proof. (ii)⇒ (i) Observe that the set A = {x ∈ [0, 1] : F is ND at x} is Fσ.
So A is measurable and µ([0, 1] \A) = 0. Now (i) follows from Lemma 5; note
that functions from F satisfy (N) (see e.g. [2, Thm. 6.12, Lemma 6.14]).

(i) ⇒ (ii) Suppose that [0, 1] \ E contains a set of positive measure. So
[0, 1] \E contains a closed set D of positive measure. Then E ⊂ [0, 1] \D and
[0, 1] \ D =

⋃
n Un, where Un are pairwise disjoint intervals which are open

sets in [0, 1]. We shall construct a differentiable function F satisfying Lipschitz
condition, which is ND at any point of [0, 1] \ D but is not non-decreasing.
This will yield a contradiction.

Let H ⊂ D be a set of type Fσ of points of density of D, with µ(H) = µ(D).
By [1, Thm. 6.5, p. 22], we can find an approximately continuous function
g : [0, 1]→ R which takes values from (0, 1] on H and which is 0 outside of H.
Put f = g − 1. Pick a real α such that

∫ 1

0
f < α < 1. For x ∈ [0, 1] put

F (x) =
∫ x

0

(f(y)− α) dy.

Then F is differentiable [2, Thm. 14.8] and F satisfies Lipschitz condition.
Additionally, F (0) = 0, F (1) ≤ µ([0, 1]\D)−α < 0 and F |Un is non-decreasing
for every n.

Theorem 4. Assume that F is one of the following classes of real functions on
[0, 1]: functions of class C(n) (n = 1, 2, ...,∞), analytic functions, polynomials.
Let E ⊂ [0, 1]. The following conditions are equivalent:

(i) ∀f∈F [(∀x∈E(F is ND at x))⇒ F is non-decreasing];

(ii) the set E is dense in [0, 1].
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Proof. (ii)⇒ (i) It suffices to show that f ′(x) ≥ 0 for all x ∈ (0, 1).
Suppose that there exists a point x ∈ (0, 1) such that f ′(x) < 0. There is

an open interval U = (x− δ, x+ δ) such that f ′(y) < 0 for all y ∈ U . Hence f
is decreasing on U and f cannot be ND at any point of U . This violates (ii),
since U ∩ E = ∅ is a contradiction.

(i) ⇒ (ii) Suppose that E is not dense. There exists an interval [a, b] ⊂
[0, 1] such that E ∩ [a, b] = ∅. Consider a function f : [0, 1]→ R defined as an
antiderivative of (x − a)(x − b). Then f is ND at all points of E but is not
non-decreasing. This is a contradiction.
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