Szymon Głąb, Institute of Mathematics, Łódź Technical University, al. Politechniki 11, I-2, 90-924 Łódź, Poland. e-mail: szymon_glab@yahoo.com

LOCAL AND GLOBAL MONOTONICITY

Abstract

We give characterizations of sets $E \subset [0, 1]$ for which the local monotonicity of each function $f : [0, 1] \to \mathbb{R}$ from a given class \mathcal{F} , at all points $x \in E$, implies the global monotonicity of f on [0, 1]. We consider as \mathcal{F} – the families of continuous functions, differentiable functions, absolutely continuous functions, functions of class C^n $(n = 1, 2, ..., \infty)$, real analytic functions and polynomials.

We shall consider real-valued functions defined on [0, 1]. However, all our results remain true when [0, 1] is replaced by any interval J. This remark will be used without comments in some of our proofs. Let us recall the notions of local monotonicity for real functions defined on [0, 1]. They can be found in Bruckner's monograph [1]. As we know, they were introduced by E. Borel.

A function $f : [0,1] \to \mathbb{R}$ is called left non-decreasing (LND) at a point $x \in (0,1]$ if

$$\exists_{\delta>0} \forall_{y \in (x-\delta,x)} f(y) \le f(x).$$

Analogously we mean a right non-decreasing (RND) function at $x \in [0, 1)$. A function $f : [0, 1] \to \mathbb{R}$ is called non-decreasing (ND) at $x \in (0, 1)$ if it is LND and RND at x. The following theorem shows the connections between local and global monotonicity of real functions.

Theorem 1. (J. Jachymski [3]) Let $f : [0,1] \to \mathbb{R}$. The following conditions are equivalent:

- (i) f is non-decreasing;
- (ii) $\forall_{x \in [0,1]} (f \text{ is } ND \text{ at } x);$

Key Words: monotonicity, local monotonicity, Cantor set, Cantor–Bendixson derivative, condition (N) of Luzin.

Mathematical Reviews subject classification: Primary: 26A48; Secondary: 26A15, 26A46, 26A42

Received by the editors November 7, 2001

- (iii) $\forall_{x \in (0,1]} (f \text{ is } LND \text{ at } x) \text{ and} \\ \forall_{x \in [0,1)} (f \text{ is right lower-semicontinuous at } x).$
- (iv) $\forall_{x \in [0,1)} (f \text{ is } RND \text{ at } x) \text{ and} \\ \forall_{x \in (0,1]} (f \text{ is left upper-semicontinuous at } x).$

PROOF. $(i) \Rightarrow (ii)$ obvious.

 $(ii) \Rightarrow (iii)$ If f is RND at x, then $f(x) \leq \liminf_{y \to x^+} f(y)$. This means that f is right lower-semicontinuous at x.

 $(iii) \Rightarrow (i)$ Let $0 \le c < d \le 1$, $M = \{x < d : \forall_{t \in [x,d]} f(t) \le f(d)\}$ and $m = \inf M$. We now show that $m \in M$. Let $\{s_n\}$ be a sequence in M such that $s_n \to m$. We have

$$f(m) \le \liminf_{x \to m^+} f(x) \le \liminf_{n \to \infty} f(s_n) \le f(d),$$

so $m \in M$. Suppose that m > 0. Since f is LND at m, there exists $\delta > 0$ such that $f(t) \leq f(m)$ for all $t \in (m - \delta, m)$ which together with $m \in M$ contradicts the definition of m. Thus m = 0 which shows that $f(c) \leq f(d)$.

 $(ii) \Rightarrow (iv)$ goes similarly as $(ii) \Rightarrow (iii)$. $(iv) \Rightarrow (i)$ goes similarly as $(iii) \Rightarrow (i)$.

By C([0,1]) we denote the set of all continuous functions on [0,1].

Corollary 1. Let $f \in C([0,1])$. The following conditions are equivalent:

- (i) $\forall_{x \in (0,1]} (f \text{ is LND at } x);$
- (ii) f is non-decreasing.

Easy examples witness that in Theorem 1 we cannot weaken conditions (ii) and (iii) for every function $f : [0,1] \to \mathbb{R}$ in such a way that we consider " $\forall_{x \in E}$ " instead of " $\forall_{x \in [0,1]}$ " for a proper subset E of [0,1]. The aim of this paper is to study how small can be a set $E \subset [0,1]$ to make implication " $(\forall_{x \in E}(f \text{ is ND at } x)) \Rightarrow f$ is non-decreasing" true for every function f from a particular class. First we consider the class C([0,1]).

Lemma 1. Let $f : [0,1] \to \mathbb{R}$ and $x \in (0,1)$. If f is continuous and ND at any point of the set $[0,1] \setminus \{x\}$, then f is non-decreasing.

PROOF. By Theorem 1, f is non-decreasing in intervals [0, x) and (x, 1]. Since f is continuous at x, we have

$$\forall_{t < x} \forall_{s > x} (f(t) \le f(x) \le f(s)).$$

Lemma 2. Let $f \in C([0,1])$. The following conditions are equivalent:

766

(i) f is non-decreasing;

(ii) $\forall_{x \in [0,1]}$ (f is LND at x or f is RND at x).

PROOF. $(i) \Rightarrow (ii)$ is obvious.

 $(ii) \Rightarrow (i)$ Suppose that f is not non-decreasing. Then there exist numbers a_0 and b_0 such that $0 \le a_0 < b_0 \le 1$ and $f(a_0) > f(b_0)$. The Darboux property applied to f implies that there exist numbers c and d such that $a_0 < c < d < b_0$ and

$$f(c) = \frac{2f(a_0) + f(b_0)}{3}, \ f(d) = \frac{f(a_0) + 2f(b_0)}{3}$$

and there exists $g \in (c, d)$ such that $f(g) = \frac{f(c)+f(d)}{2}$. If $g - c \leq d - g$, then we take $a_1 = c$ and $b_1 = g$, otherwise $a_1 = g$ and $b_1 = d$. So $0 < b_1 - a_1 \leq \frac{d-c}{2} < \frac{b_0 - a_0}{2} \leq \frac{1}{2}$.

Proceeding inductively we get strictly increasing sequences $\{a_n\}$, $\{f(b_n)\}$ and strictly decreasing sequences $\{b_n\}$, $\{f(a_n)\}$. Furthermore $0 < b_n - a_n < \frac{1}{2^n}$ for all n. Let $x = \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$. Suppose for instance that f is LND at x. Then

$$\exists_{\delta>0} \forall_{y \in (x-\delta,x)} (f(y) \le f(x))$$

But for large enough $n \in \mathbb{N}$ we have $f(a_n) > f(x)$ and $a_n \in (x - \delta, x)$. This is a contradiction. Hence f is non-decreasing.

Lemma 3. Let $f \in C([0,1])$ and let $E \subset [0,1]$ be countable and G_{δ} . If

$$\forall_{x \in [0,1] \setminus E} (f is LND at x or f is RND at x),$$

then f is non-decreasing.

PROOF. Since E is countable and G_{δ} , there exists an ordinal $\alpha < \omega_1$ such that (*) $E^{\alpha} = \emptyset$ (the α th Cantor–Bendixson derivative of E is empty).

This is an easy exercise. See e.g. [4, 2.5.14]. We shall show inductively that f is RND or LND at any point of the set $E \setminus E^{\beta}$ for $\beta \leq \alpha$.

Let $x \in E \setminus E^1$; i.e., x is an isolated point of E. There exists $\varepsilon > 0$ such that $E \cap (x - \varepsilon, x + \varepsilon) = \{x\}$. So

$$\forall_{y \in (x-\varepsilon,x)} (f \text{ is LND at } x \text{ or } f \text{ is RND at } x).$$

Applying Lemma 2 we obtain that $f|_{(x-\varepsilon,x)}$ is non-decreasing. Similarly $f|_{(x,x+\varepsilon)}$ is non-decreasing. By Lemma 1, we get that $f|_{(x-\varepsilon,x+\varepsilon)}$ is non-decreasing. Hence, f is ND at x. From these observations we get

$$\forall_{x \in [0,1] \setminus E^1} (f \text{ is LND at } x \text{ or } f \text{ is RND at } x).$$

Let $\beta < \alpha$. Suppose that

$$\forall_{\gamma < \beta} \forall_{x \in [0,1] \setminus E^{\gamma}} (f \text{ is LND at } x \text{ or } f \text{ is RND at } x).$$

If β is a limit ordinal, then it follows that f is LND or RND at any point of the set $\bigcup_{\gamma < \beta} ([0,1) \setminus E^{\gamma}) = [0,1] \setminus \bigcap_{\gamma < \beta} E^{\gamma} = [0,1] \setminus E^{\beta}$. If β is a successor ordinal, then there exists ξ such that $\beta = \xi + 1$. With isolated points of E^{ξ} , we repeat the same reasoning as in the first step of induction.

By (*) we have

$$\forall_{x \in [0,1]} (f \text{ is LND at } x \text{ or } f \text{ is RND at } x).$$

The assertion follows from Lemma 2.

Theorem 2. Let $E \subset [0,1]$. The following conditions are equivalent:

- (i) $\forall_{f \in C([0,1])} [(\forall_{x \in E} (f \text{ is } LND \text{ at } x \text{ or } f \text{ is } RND \text{ at } x)) \Rightarrow f \text{ is non-decreasing}];$
- (ii) The set $[0,1] \setminus E$ does not contain a homeomorph of the Cantor set.

PROOF. $(ii) \Rightarrow (i)$ Fix $f \in C([0, 1])$. Denote by \mathbb{Q}^+ the positive rationals. Let

$$A = \{x \in [0,1] : f \text{ is LND at } x \text{ or } f \text{ is RND at } x\}.$$

Then

$$A = \{x \in [0,1] : \exists_{\delta_x > 0} \forall_{y \in (x-\delta_x,x)} f(y) \le f(x)\}$$
$$\cup \{x \in [0,1] : \exists_{\delta_x > 0} \forall_{y \in (x,x+\delta_x)} f(y) \ge f(x)\}$$
$$= \{x \in [0,1] : \exists_{\delta \in \mathbb{Q}^+} \forall_{y \in (x-\delta_x,x)} f(y) \le f(x)\}$$
$$\cup \{x \in [0,1] : \exists_{\delta \in \mathbb{Q}^+} \forall_{y \in (x,x+\delta_x)} f(y) \ge f(x)\},$$

so A is F_{σ} . Since $[0,1] \setminus A \subset [0,1] \setminus E$, then $[0,1] \setminus A$ does not contain a homeomorph of the Cantor set. Hence $[0,1] \setminus A$ is countable. By Lemma 3 we conclude that f is non-decreasing.

 $(i) \Rightarrow (ii)$ Assume that $[0,1] \setminus E$ contains a homeomorph of the Cantor set, say K. Let $f : [0,1] \to \mathbb{R}$ be a Cantor-type function associated with the set K such that f(0) = 1 and f(1) = 0. Since f is constant on each component of $[0,1] \setminus K$, it is ND at any point of $[0,1] \setminus K$, but it is not non-decreasing. \Box **Lemma 4.** Let $f \in C([0,1])$ and let $E \subset (0,1)$ be dense. If

$$\forall_{x \in E} (f \text{ is } ND \text{ at } x),$$

then there exists a set $U \supset E$ open in (0,1) such that for each component (a,b) of U we have $f(a) \leq f(b)$.

PROOF. Put $U = \bigcup_{x \in E} (x - \delta_x, x + \delta_x)$ where $\delta_x > 0$ is a number obtained from the definition of ND at the point x. Let (a, b) be a component of U. Consider two sequences $\{a_n\}$, $\{b_n\}$ such that $a < a_n < b_n < b$, for all $n \in \mathbb{N}$ and $a = \lim_{n \to \infty} a_n$ and $b = \lim_{n \to \infty} b_n$. Fix $n \in \mathbb{N}$. The family $\{(x - \delta_x, x + \delta_x) : x \in E \cap (a, b)\}$ is an open covering of $[a_n, b_n]$. There exists a finite subcovering $\{(x_k^n - \delta_k^n, x_k^n + \delta_k^n) : k = 0, 1, ..., k_n\}$ such that $x_0^n < x_1^n < ... < x_{k_n}^n$ and $\delta_k^n = \delta_{x_k^n}$. If necessary we remove each interval contained in any other interval in the subcovering. For $k = 0, 1, ..., k_n$ fix $y_k^n \in (x_{k-1}^n, x_{k-1}^n + \delta_{k-1}^n) \cap (x_k^n - \delta_k^n, x_k^n)$ such that $x_{k-1}^n < y_k^n < x_k^n$. Then $f(x_{k-1}^n) \le f(y_k^n) \le f(x_k^n)$ for $k = 1, ..., k_n$. Hence $f(x_0^n - \delta_0^n) \le f(x_{k_n}^n + \delta_{k_n}^n)$. Since $\lim_{n \to \infty} (x_0^n - \delta_0^n) = a$, $\lim_{n \to \infty} (x_{k_n}^n + \delta_{k_n}^n) = b$, and f is continuous we have $f(a) \le f(b)$.

Let μ stand for Lebesgue measure on \mathbb{R} .

Lemma 5. Assume that $F \in C([0,1])$ and F satisfies condition (N) of Luzin. Let $E \subset [0,1]$ be such that $\mu([0,1] \setminus E) = 0$. If

$$\forall_{x \in E} (F \text{ is } ND \text{ at } x),$$

then F is non-decreasing.

PROOF. Suppose that F is not non-decreasing. There exist numbers a and b such that $0 \le a < b \le 1$ and F(a) > F(b). By Lemma 4 applied to $E \cap (a, b)$ and [a, b] in place of E and [0, 1], there exists a sequence of pairwise disjoint intervals $(a_n, b_n) \subset [a, b]$, $n \in \mathbb{N}$, such that $F(a_n) \le F(b_n)$ and $\mu([a, b] \setminus \bigcup_{n=1}^{n} (a_i, b_n)) = 0$. We shall prove that $[F(b), F(a)] \subset F([a, b] \setminus \bigcup_{i=1}^{n} (a_i, b_i))$ for all n.

The Darboux property of F shows that for every y between F(a) and $F(a_1)$ there is $x \in (a, a_1)$ such that F(x) = y, and for every y between F(b) and $F(b_1)$ there is $x \in (b_1, b)$ such that F(x) = y. But $F(a_1) \leq F(b_1)$ so $[F(b), F(a)] \subset F([a, b] \setminus (a_1, b_1))$. Since (a_i, b_i) are pairwise disjoint intervals, either $(a_2, b_2) \subset (a, a_1)$ or $(a_2, b_2) \subset (b_1, b)$. Assume that $(a_2, b_2) \subset (a, a_1)$. Similarly as above we show that for every y between F(a) and $F(a_1)$ there is $x \in (a, a_1) \setminus (a_2, b_2)$ such that F(x) = y. So $[F(b), F(a)] \subset F([a, b] \setminus \bigcup_{i=1}^{2} (a_i, b_i))$.

Proceeding inductively we have $[F(b), F(a)] \subset F([a, b] \setminus \bigcup_{i=1}^{n} (a_i, b_i))$ for all n. Since $A_n = [0, 1] \setminus \bigcup_{i=1}^{n} (a_i, b_i), n \in \mathbb{N}$, is decreasing sequence of compact sets, we have $\bigcap_n F(A_n) = F(\bigcap_n A_n)$. Consequently $[F(b), F(a)] \subset F([a, b] \setminus \bigcup_n (a_n, b_n))$. But $\mu([a, b] \setminus \bigcup_n (a_n, b_n)) = 0$, so F does not satisfy the condition (N) of Luzin, a contradiction.

Theorem 3. Assume that \mathcal{F} is one of the following classes of functions on [0,1]: continuous functions satisfying condition (N), absolutely continuous functions, differentiable functions, Lipschitz functions. Let $E \subset [0,1]$. The following conditions are equivalent:

- (i) $\forall_{F \in \mathcal{F}} [(\forall_{x \in E} (F \text{ is ND at } x)) \Rightarrow F \text{ is non-decreasing}];$
- (ii) The set $[0,1] \setminus E$ does not contain any set of positive measure.

PROOF. $(ii) \Rightarrow (i)$ Observe that the set $A = \{x \in [0,1] : F \text{ is ND at } x\}$ is F_{σ} . So A is measurable and $\mu([0,1] \setminus A) = 0$. Now (i) follows from Lemma 5; note that functions from \mathcal{F} satisfy (N) (see e.g. [2, Thm. 6.12, Lemma 6.14]).

 $(i) \Rightarrow (ii)$ Suppose that $[0,1] \setminus E$ contains a set of positive measure. So $[0,1] \setminus E$ contains a closed set D of positive measure. Then $E \subset [0,1] \setminus D$ and $[0,1] \setminus D = \bigcup_n U_n$, where U_n are pairwise disjoint intervals which are open sets in [0,1]. We shall construct a differentiable function F satisfying Lipschitz condition, which is ND at any point of $[0,1] \setminus D$ but is not non-decreasing. This will yield a contradiction.

Let $H \subset D$ be a set of type F_{σ} of points of density of D, with $\mu(H) = \mu(D)$. By [1, Thm. 6.5, p. 22], we can find an approximately continuous function $g: [0,1] \to \mathbb{R}$ which takes values from (0,1] on H and which is 0 outside of H. Put f = g - 1. Pick a real α such that $\int_0^1 f < \alpha < 1$. For $x \in [0,1]$ put

$$F(x) = \int_0^x (f(y) - \alpha) \, dy.$$

Then F is differentiable [2, Thm. 14.8] and F satisfies Lipschitz condition. Additionally, F(0) = 0, $F(1) \le \mu([0,1] \setminus D) - \alpha < 0$ and $F \mid_{U_n}$ is non-decreasing for every n.

Theorem 4. Assume that \mathcal{F} is one of the following classes of real functions on [0,1]: functions of class $C^{(n)}$ $(n = 1, 2, ..., \infty)$, analytic functions, polynomials. Let $E \subset [0,1]$. The following conditions are equivalent:

- (i) $\forall_{f \in \mathcal{F}} [(\forall_{x \in E} (F \text{ is ND at } x)) \Rightarrow F \text{ is non-decreasing}];$
- (ii) the set E is dense in [0, 1].

PROOF. $(ii) \Rightarrow (i)$ It suffices to show that $f'(x) \ge 0$ for all $x \in (0, 1)$.

Suppose that there exists a point $x \in (0, 1)$ such that f'(x) < 0. There is an open interval $U = (x - \delta, x + \delta)$ such that f'(y) < 0 for all $y \in U$. Hence fis decreasing on U and f cannot be ND at any point of U. This violates (ii), since $U \cap E = \emptyset$ is a contradiction.

 $(i) \Rightarrow (ii)$ Suppose that E is not dense. There exists an interval $[a, b] \subset [0, 1]$ such that $E \cap [a, b] = \emptyset$. Consider a function $f : [0, 1] \to \mathbb{R}$ defined as an antiderivative of (x - a)(x - b). Then f is ND at all points of E but is not non-decreasing. This is a contradiction.

Acknowledgements. I would like to thank Jacek Jachymski who has permitted me to include his result in the paper. I also thank an anonymous referee who has suggested stronger versions of Theorems 3 and 4.

References

- A. Bruckner, Differentiation of Real Functions, CRM Monograph Series, 5, Amer. Math. Soc. (1994).
- [2] R. A. Gordon, The Integrals of Lebesgue, Denjoy, Perron, and Hendstock, Graduate Studies in Mathematics, 4, Amer. Math. Soc., Providence, (1994).
- [3] J. Jachymski, oral communication.
- [4] S. M. Srivastava, A Course on Borel Sets, Springer-Verlag, New York, 1998.

Szymon Głąb