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Abstract. Let H ⊂ C[0, 1] stand for the Polish space of all increasing autohomeo-

morphisms of [0, 1]. We show that the family of all strictly singular autohomeomor-

phisms is Π1
1–complete. This confirms a suggestion of Graf, Mauldin and Williams.

Some related results are also included.

1. introduction

The aim of this paper is to investigate the descriptive complexity of some special

sets of autohomeomorphisms of the unit interval [0, 1]. The motivation comes from

the paper [4] by Graf, Mauldin and Williams where the authors showed that the set

of all strictly singular autohomeomorphisms of the unit interval is coanalytic. They

remarked [4, Remark 5.3, p. 302] that ”very likely this set is not a Borel set in H but

we have not demonstrated this”. Theorem 1 in our paper states that this set is Π1
1–

complete, hence it is not Borel (even not analytic). Theorem 5 is related statement

in which we consider other sets of autohomeomorphisms with given conditions on

derivatives. Theorems 1 and 5 resemble the pair of classical facts that the set DIFF

of all functions from C[0, 1] (the Banach space of real–valued continuous functions

on [0, 1], with the supremum norm) which are differentiable at every point, and the

set NDIFF of all functions from C[0, 1] which are nowhere differentiable, are both

Π1
1–complete in C[0, 1] (see [5] for details).

We use standard set–theoretic notation. For the descriptive set–theoretical back-

ground we refer the reader to [5]. By H ⊂ C[0, 1] we denote the set of all increasing
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autohomeomorphisms of [0, 1]. It is easy to see that H is a Gδ subset of C[0, 1] and

hence it is a Polish space. By symbols D±f(x) and D±f(x) we denote the Dini deriva-

tives of f at a point x, the first one is the upper Dini derivative and the second one

is the lower Dini derivative, where + and − indicate the right-hand and the left-hand

sides, respectively. By f ′+(x) and f ′−(x) we denote the right-hand and the left-hand

sided derivatives of f at x, respectively. A monotone function on [0, 1] with the deriva-

tive vanishing almost everywhere is called singular. It is well-known that an increasing

continuous function is singular if and only if there is a set of full measure whose image

is null. This easily implies that the set S of strictly increasing continuous singular

functions equals
⋂∞
n=1 Sn, where Sn denotes the set of those functions f ∈ H for which

f(F ) is of measure less than 1/n for a suitable compact set F of measure greater than

1 − (1/n). It is also easy to see that Sn is relatively open in H for every n. There-

fore, S is a Gδ set. A known example of a strictly increasing, continuous and singular

function uses the so-called Cantor function. If a function f ∈ H is singular, we say

that f is a singular autohomeomorphism. We say that f ∈ H is a strictly singular

autohomeomorphism, if f has no positive finite derivative at any point, more exactly,

f has no positive finite derivative at any point of (0, 1) and no one-sided derivative at

0 and 1. Let SSH = {f ∈ H : f is strictly singular}. Let SSH+ denote the set of all

autohomeomorphisms with no positive finite right–hand sided derivative at any point

in [0, 1). Analogously we define SSH− considering the interval (0, 1].

Let X be a Polish space. A subset A of X is called analytic if it is the projection of a

Borel subset B of X×X. A subset C of X is called coanalytic if X \C is analytic. The

pointclasses of analytic and coanalytic sets are denoted by Σ1
1 and Π1

1, respectively. A

set C ⊂ X is called Π1
1–complete (Borel Π1

1–complete) if C is coanalytic and for every

zero–dimensional Polish space Y and every coanalytic set B ⊂ Y there is a continuous

(Borel) function f : Y → X such that f−1(C) = B.

Let Z and N stand for the sets of all integers and of all nonnegative integers, respec-

tively. By Z<N we denote the set of all finite sequences of integers. Let 2Z stand for the
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set of all even integers. For a sequence s = (s(0), s(1), ..., s(k − 1)) ∈ Z<N and m ∈ Z

let |s| = k, 2s = (2s(0), 2s(1), ..., 2s(k− 1)) and ŝ m = (s(0), s(1), ..., s(k− 1),m). For

a sequence α ∈ ZN and n ∈ N, let α|n = (α(0), α(1), ..., α(n − 1)) ∈ ZN. Similarly

for s ∈ Z<N and n ≤ |s|, let s|n = (s(0), s(1), ..., s(n − 1)). By Tr we denote the

set of all trees on Z and by WF ⊂ Tr we denote the set of all well-founded trees

on Z (a tree is said to be well-founded if it has no infinite branch). For T ∈ Tr let

[T ] = {α ∈ ZN : ∀n ∈ N (α|n ∈ T )}. Then T ∈ WF if and only if [T ] = ∅. It is

well known that WF is Π1
1–complete subset of Tr (cf. [5, 32.B]). To prove the Π1

1–

completeness of a set A ⊂ X one usually defines a continuous map f : Tr → X such

that f−1(A) = WF . A nontrivial part of such a proof is to find a suitable continuous

map.

2. strictly singular autohomeomorphisms

In this section we prove the following

Theorem 1. The sets SSH+, SSH− and SSH are Π1
1–complete.

To prove Theorem 1 we will use a function defined on a compact interval and

constructed by Cater in [3]. This function has the following property:

(∗) f is continuous strictly increasing, and for every x, either D−f(x) = +∞ or

D−f(x) = 0, and simultaneously, either D+f(x) = +∞ or D+f(x) = 0.

Given an interval [a, b] and a number q ∈ (0, 1), by q–division of [a, b] we mean a

family of intervals {In[a,b] : n ∈ Z} where In[a,b] = [a + q−n+1

1+q
(b − a), a + q−n

1+q
(b − a)] for

n < 0, I0
[a,b] = [a+ q

1+q
(b−a), b− q

1+q
(b−a)] and In[a,b] = [b− qn

1+q
(b−a), b− qn+1

1+q
(b−a)]

for n > 0. Then (a, b) =
⋃
n∈Z I

n
[a,b].

Lemma 2. Let {In[a,b] : n ∈ Z} be a q–division of [a, b]. Then each square In[a,b] × In[a,b]
lies under lines l2 and l3 and above lines l1 and l4 where

1. (a, a) is a common point of lines l1 and l2;

2. (b, b) is a common point of lines l3 and l4;
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l1

l2

l3

l4

r
(a, a)

r(b, b)

Figure 1. Mutual position of squares In[a,b] × In[a,b] and lines l1, l2, l3 and l4

3. the slopes of l1 and l3 are equal to q;

4. the slopes of l2 and l4 are equal to 1/q.

Proof. It is enough to have a look at Figure 1. �

Now we define a family {Is : s ∈ Z<N} of closed intervals contained in [0, 1] by the

induction on the length of s. Put I∅ = [0, 1]. Suppose that we have already defined

the intervals Is for |s| ≤ k. Let s ∈ Zk and let {Isˆn : n ∈ Z} be the k+1
k+2

–division of

Is. If |s| = k then we say that Is is an interval of the k-th generation.

Lemma 3. Let s ∈ Zk, and n, n′,m,m′ ∈ Z be such that n 6= m. Suppose that

x, f(x) ∈ Isˆnˆn′ and y, f(y) ∈ Isˆmˆm′. Then

k + 2

k + 3
≤ f(y)− f(x)

y − x
≤ k + 3

k + 2
.

Proof. Without loss of generality we may assume that n < m. Since (x, f(x)) ∈

Isˆnˆn′×Isˆnˆn′ then by Lemma 2 the point (x, f(x)) lies under the line lx3 and above the

line lx4 ; the slopes of lx3 and lx4 are k+2
k+3

and k+3
k+2

, respectively, and (max(Isˆn),max(Isˆn))
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lx4

lx3

ly1

ly2

Figure 2. Mutual position of points (x, f(x)), (y, f(y)) and lines ly1 ,

ly2 , lx3 and lx4

is a common point of lx3 and lx4 . Similarly (y, f(y)) lies above the line ly1 and under the

line ly2 ; the slopes of ly1 and ly2 are k+2
k+3

and k+3
k+2

, respectively, and (min(Isˆm),min(Isˆm))

is the common point of ly1 and ly2 . Since (max(Isˆn),max(Isˆn)) and (min(Isˆm),min(Isˆm))

lie on the graph of the indentity function, and max(Isˆn) < min(Isˆm) then the mutual

position of the points (x, f(x)) and (y, f(y)) and lines ly1 , ly2 , lx3 and lx4 looks like in the

Figure 2, and the assertion easily follows. �

Lemma 4. The following sets are Borel:

(a) {(f, x) ∈ H× [0, 1) : D+f(x) < a} for a ∈ (0,∞];

(a’) {(f, x) ∈ H× [0, 1) : D+f(x) > a} for a ∈ [0,∞);

(b) {(f, x) ∈ H× [0, 1) : D+f(x) = D+f(x)};

(c) {(f, x) ∈ H× [0, 1] : f ′(x) exists}.

The sets analogous to those described in (a) and (a’) are Borel if we replace D+ by D+,

or if we replace ”<” by ”≤” or by ”=” in (a), and ”>” by ”≥” in (a’), respectively.
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The sets analogous to those described in (a), (a’), (b) are Borel if we consider D−,

D− instead of D+, D+ for x ∈ (0, 1].

Proof. It is a routine calculation. �

Now we are ready to prove the main result.

Proof of Theorem 1. At first we show that SSH+ is coanalytic. To see this, let us

consider the complement of SSH+. By Lemma 4, the set

{(f, x) ∈ H× [0, 1) : f ′+(x) exists and 0 < f ′+(x) <∞}

is Borel. Then the set

H \ SSH+ = {f ∈ H : ∃x ∈ [0, 1) : (f ′+(x) exists and 0 < f ′+(x) <∞)}

is analytic as the projection of a Borel set. Finally, SSH+ is coanalytic. Analogously

one can show that SSH− is Π1
1. Since SSH = SSH− ∩ SSH+, the set SSH is also

coanalytic.

To show that SSH, SSH+ and SSH− are Π1
1–complete, we will reduce WF to them

by a continuous function. Fix a function g ∈ H with property (∗). We say that a

function h on [a, b] is an affine copy of g if h = (b − a)(g ◦ β) + a on [a, b], where

β : [a, b]→ [0, 1] is an increasing affine bijection.

Let T ∈ Tr. For n ∈ Z let fT0 on I(n) be an affine copy of g. Additionally define

fT (0) = 0 and fT (1) = 1. Next we define inductively the functions fTn for n ∈ N. To

obtain fTn+1 we modify fTn an each interval I2s for |s| = n and s ∈ T putting on each

interval I(2s)ˆkˆl, k, l ∈ Z, an affine copy of g. On the rest of [0, 1], the function fTn

remains unchanged, i.e. fTn+1(x) = fTn (x). Note that fTn ∈ H implies that fTn+1 ∈ H.

By an easy induction it follows that fTn ∈ H for all n ∈ N.

Let m,n ∈ N and 0 < m < n. By the construction, the supremum norm ||fTm− fTn ||

in C[0, 1] is less than the length of an interval It where t is the sequence of m zeros,

hence it is less than 2−m. Indeed, the graphs of fTm and fTn may differ at least in

the squares Is × Is for |s| > m, and each of these squares is smaller than the square
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It × It. Hence (fTn )n∈N is a Cauchy sequence in C[0, 1], and then it converges to some

function fT ∈ C[0, 1] such that fT (0) = 0 and fT (1) = 1. It is clear that fT is strictly

increasing. Then fT ∈ H.

To show that T 7→ fT is a continuous map from Tr to H, let n ∈ N, fix s 7→ [s], a

bijection from Z
<N onto N, a number N ∈ N such that the length of Is is less than

2−n if [s] ≥ N , and let S and T be two trees on Z such that

T ∩ {s ∈ Z<N : [s] < N} = S ∩ {s ∈ Z<N : [s] < N}.

Then ||fT − fS|| < 2−n which proves the continuity of T 7→ fT .

To finish the proof, it remains to verify that

T ∈ WF ⇐⇒ fT ∈ SSH+ ⇐⇒ fT ∈ SSH− ⇐⇒ fT ∈ SSH.

Let T ∈ WF . We have to check that fT has no right-hand sided positive derivative

at any x ∈ [0, 1) and has no left-hand sided positive derivative at any x ∈ (0, 1]. Let

x ∈ [0, 1]. We have the following cases:

(a) ∃s ∈ T ∃n /∈ 2Z (x ∈ int(I(2s)ˆn));

(b) ∃s ∈ T ∃n ∈ Z (ŝ n /∈ T and x ∈ I2sˆn);

(c) x is a common point of two intervals of the type Is described in (a) and (b);

(d) ∃s ∈ T [(∃n ∈ Z ŝ n ∈ T ) and (x = min(I2s) or x = max(I2s))].

In cases (a) and (b), in some open neighborhood of x the function fT is an affine

copy of g, and so it has no one-sided finite and positive derivatives at x. In case (c),

the point x connects two affine copies of g. Hence fT has no one-sided finite positive

derivatives at x. In case (d) assume that x = min(I2s) (for x = max(I2s) the proof is

similar). At first we see that fT (x) = x. Since g is not the indentity function, there

is x0 such that g(x0) 6= x0. It is clear from the construction that there is a sequence

(xk) converging from the right to x such that fT (xk) = xk for every k. It is enough to

consider endpoints of the intervals I(2s)ˆk. Since fT equals an affine copy of g in the

intervals I(2s)ˆkˆl for every l and every even k, there is a sequence (yk) converging from

the right to x such that (fT (yk) − fT (x))/(yk − x) = g(x0)/x0 for every k, and such
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that all points x and each yk lie on one line. The slope of this line is strictly between

g(x0)/x0 and 1. Therefore, fT has neither finite nor infinite right hand side derivative

at x.

Assume now, that T /∈ WF . Then there exists α ∈ [T ]. Let x be the unique point

of
⋂
n∈N I(2α)|n. We will show that (fT )′(x) = 1. Let zm → x where zm ∈ [0, 1] for

m ∈ N. For each m ∈ N denote by km the maximal number of generation in which

there is an interval containing x and zm. Then clearly km → ∞. Since x is not the

end point of any interval of type Is, then by Lemma 3 we obtain

km + 2

km + 3
≤ fT (zm)− fT (x)

zm − x
≤ km + 3

km + 2
.

Tending with m to ∞ we have (fT )′(x) = 1. �

3. other sets of autohomeomorphisms

In this section, Tr denotes the set of all trees on N and WF – the set of all well-

founded trees on N. We will use notation for sequences in N<N and NN similar to that

used for sequences in Z<N and ZN. We will consider the set

∆<∞ = {f ∈ H : ∀x ∈ [0, 1)(D+f(x) <∞) and ∀x ∈ (0, 1](D−f(x) <∞)},

of all autohomeomorphisms with finite Dini derivatives, and the set

∆>0 = {f ∈ H : ∀x ∈ [0, 1)(D+f(x) > 0) and ∀x ∈ (0, 1](D−f(x) > 0)}.

of all autohomeomorphisms with positive Dini derivatives.

Theorem 5. The families ∆<∞, ∆>0 and ∆<∞ ∩∆>0 are Π1
1–complete subsets of H.

Proof. By Lemma 4 and the definitions of sets ∆<∞ and ∆>0 it is easy to see that

they are coanalytic. The set ∆<∞ ∩∆>0 is also coanalytic as the intersection of two

coanalytic sets.

First we show that ∆<∞ is Π1
1–complete. Let I(n) = [2−n, 2−n−1] for n ∈ N. We

define inductively closed intervals Is and Js for s ∈ N<N, |s| ≥ 1 such that
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1. |Js| = 1
41/|Is| |Is|;

2. Js is concentric in Is.

3. ∀n ∈ N (Isˆn = [min(Js) + 2−n−1|Js|,min(Js) + 2−n|Js|];

Fix T ∈ Tr. Let fT0 = id[0,1]. We define the functions fTn , n ≥ 1, inductively in

the following way: To obtain fTn+1 we modify fTn on each interval Is where s ∈ T and

|s| = n+ 1. On Js we define fTn+1 as an affine function with slope 2n+1 and such that

fTn+1(center(Js)) = fTn (center(Is)). On Is \ Js we define fTn+1 as a piecewise affine

function such that fTn+1(min Is) = fTn (min Is), f
T
n+1(max Is) = fTn (max Is) and fTn+1 is

continuous on Is.

Note that fTn ∈ H for n ∈ N. Since ||fTn+1 − fTn || ≤ 1
2n+1 then for m > n we have

||fTm − fTn || ≤ ||fTm − fTm−1||+ ...+ ||fTn+1 − fTn || ≤
1

2m
+ ...+

1

2n+1
<

1

2n
.

Hence fTn tends to some fT in C[0, 1] and so fT is continuous. Moreover fT (0) = 0

and fT (1) = 1. By the construction, fT is strictly increasing. Hence fT ∈ H. One

can show that T 7→ fT is a continuous map from Tr to H in the same way as in the

proof of the Theorem 1.

Our proof will be complete if we show that for all T ∈ Tr,

T ∈ WF ⇐⇒ fT ∈ ∆<∞.

Let T ∈ WF and x ∈ [0, 1]. If x 6= 0 and x 6= min(Js) for any s ∈ T , there are n ∈ N

and an open neighborhood U of x such that fTn |U = fT |U and we have D+fT (x) < +∞

and D−fT (x) < +∞. If x = min(Js) for some s ∈ T , then the graph of fT on small

enough right hand side neighbourhood of x is contained in the union of rectangles Rn

converging to (x, fT (x)) such that Rn has the width equal to |Isˆn|, the length equal

to 2n+1|Isˆn|, and the centers of Rn and (x, fT (x)) lie on a line with slope 2n+1. Hence

D+fT (x) ≤ 2n+2. There are n ∈ N and a right hand side neighborhood U of x such

that fTn |U = fT |U . Hence D−fT (x) < +∞. Since the graph of fT on (0, 1] is contained

in
⋃
n∈N I(n) × I(n), then D+fT (0) ≤ 2.
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l1

l2

Iα|n

Jα|n

r

r

Figure 3.

If T /∈ WF , there is an α ∈ NN such that α|n ∈ T for all n ∈ N. Let xn = min Iα|n,

yn = max Iα|n and x ∈
⋂
n∈N Iα|n =

⋂
n∈N Jα|n. For all n ∈ N, x is in the subinterval

Jα|n of Iα|n with |Jα|n| = 4−1/|Iα|n||Iα|n|. On Figure 3, the big dash rectangle has the

width equal to |Iα|n|, the length equal to 2n|Iα|n| and the graph of the function fT |Iα|n
is contained in it. The small dash rectangle has the width equal to |Jα|n|, the length

equal to 2n+1|Jα|n|, it is concentric in the big rectangle and it contains the graph of

fT |Jα|n . In particular, the small rectangle contains the point (x, fT (x)). Hence the

numbers fT (yn)−fT (x)
yn−x and fT (xn)−fT (x)

xn−x are not greater than the slopes of lines l1 and l2.

We see also that the slopes of l1 and l2 are the same and they are equal to

1
2
2n|Iα|n| − 1

2
2n+1|Jα|n|

1
2
|Iα|n|+ 1

2
|Jα|n|

=
2n|Iα|n| − 2n+14−1/|Iα|n||Iα|n|
|Iα|n|+ 4−1/|Iα|n||Iα|n|

= 2n
1− 2 · 4−1/|Iα|n|

1 + 4−1/|Iα|n|
≥

≥ 2n
1− 2 · 4−n

2
≥ 2n−2.

Since xn → x and yn → y, we obtain D+fT (x) = +∞ and D−fT (x) = +∞.
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By the construction of fT (for any tree T ∈ Tr) it follows that D+f
T (x) ≥ 1

2
for

x ∈ [0, 1) and D−f
T (x) ≥ 1

2
for x ∈ (0, 1]. Hence for each T ∈ Tr we obtain

T ∈ WF ⇐⇒ fT ∈ ∆<∞ ∩∆>0.

This proves the Π1
1–completeness of ∆<∞ ∩∆>0.

Since f 7→ f−1 is a homeomorphism between ∆<∞ and ∆>0, then ∆>0 is Π1
1–

complete. �

Remark 6. Sets A and B are said to be Borel–inseparable if there is no Borel set C

such that A ⊂ C and B ∩ C = ∅. Let UB be the set of all trees on N with a unique

infinite branch. It is known that WF and UB is a Borel–inseparable pair of coanalytic

sets (see [5, Exercise 35.2], for other examples of Borel–inseparable pair of coanalytic

sets, see [1]). Denote by SSH1 the set of all autohomeomorphisms with an exactly

one point in [0, 1] at which the derivative exists, and is finite and positive. Note that

for any T ∈ Tr

T ∈ WF ⇐⇒ fT ∈ SSH and T ∈ UB ⇐⇒ fT ∈ SSH1,

where fT is the function defined in the proof of Theorem 1. This shows that SSH

and SSH1 are Borel–inseparable. One can prove the analogous facts for SSH+, ∆<∞,

∆>0 and ∆<∞ ∩∆>0. �
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Wólczańska 215, 93-005  Lódź, Poland
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