# LEBESGUE DENSITY AND STATISTICAL CONVERGENCE 

SZYMON G£A̧B

## Abstract.

Let $A \subset \mathbb{R}$ be measurable. $\lambda$ stands for Lebesgue measure on $\mathbb{R}$. We say that 0 is Lebesgue right density point of $A$ if

$$
d^{+}(A, 0)=\lim _{h \rightarrow 0^{+}} \frac{\lambda(A \cap[0, h])}{h}=1 .
$$

Note that

$$
\frac{\lambda\left(A \cap\left[0, \frac{1}{n+1}\right]\right)}{\frac{1}{n+1}} \cdot \frac{n}{n+1} \leq \frac{\lambda(A \cap[0, h])}{h} \leq \frac{\lambda\left(A \cap\left[0, \frac{1}{n}\right]\right)}{\frac{1}{n}} \cdot \frac{n+1}{n} .
$$

Therefore $d^{+}(A, 0)=1$ if and only if

$$
\lim _{n \rightarrow \infty} n \lambda(A \cap[0,1 / n])=1
$$

Let $a_{n}=\lambda(A \cap[1 /(n+1), 1 / n])$. Then

$$
\lambda(A \cap[0,1 / n])=\sum_{k=n}^{\infty} \lambda(A \cap[1 /(k+1), 1 / k])=\sum_{k=n}^{\infty} a_{k} .
$$

The intuition is the following. If $d^{+}(A, 0)=1$, then $\lambda(A \cap[1 /(n+1), 1 / n])$ should be closed to the length $1 /(n(n+1))$ of $[1 /(n+1), 1 / n]$ if $n$ tends to $\infty$, and thus $a_{n} /(1 / n-1 /(n+1))=n(n+1) a_{n}$ should tend to 1 .

In fact the following holds.
Theorem 1. $d^{+}(A, 0)=1$ if and only if $n(n+1) a_{n}$ tends statisticaly to 1 .
Proof. First note that $d^{+}(A, 0)=1$ is equivalent to $\lim _{n \rightarrow \infty} n \sum_{k=n}^{\infty} a_{k}=1$.
Assume that $n(n+1) a_{n}$ does not tend statistically to 1 . So that there are $\varepsilon, \delta>0$ and a sequence $N_{1}<N_{2}<N_{3}<\ldots$ such that

$$
\frac{\left|\left\{k \leq N_{i}: k(k+1) a_{k}<1-\varepsilon\right\}\right|}{N_{i}}>\delta
$$

for every $i \in \mathbb{N}$. Let $m \in \mathbb{N}$ be such that $\delta \geq 2 / m$. We will prove that $d^{+}\left(A^{c}, 0\right) \geq \limsup \sup _{i \rightarrow \infty} N_{i} \lambda\left(A^{c} \cap\right.$ $\left.\left[0,1 / N_{i}\right]\right)>0$. We may assume that $N_{i}$ divisible by $m$. We consider the worse possible case when the set $\left\{k \leq m N_{i}: k(k+1) a_{k}<1-\varepsilon\right\}=\left[1, N_{i}\right) \cup\left[(m-1) N_{i}, m N_{i}\right)$. Then

$$
\begin{gathered}
N_{i} \lambda\left(A^{c} \cap\left[0,1 / N_{i}\right]\right) \geq N_{i} \sum_{k=N_{i}}^{m N_{i}}\left(\frac{1}{k(k+1)}-a_{k}\right) \geq N_{i} \sum_{k=m-1 N_{i}}^{m N_{i}-1} \frac{\varepsilon}{k(k+1)}= \\
=N_{i} \varepsilon\left(\frac{1}{(m-1) N_{i}}-\frac{1}{m N_{i}}\right)=\frac{\varepsilon}{m(m-1)}>0 .
\end{gathered}
$$

Now, assume that $n(n+1) a_{n}$ tends statistically to 1 . Then for every $\varepsilon, \delta>0$ there is $i(\varepsilon, \delta) \in \mathbb{N}$ such that

$$
\frac{\left|\left\{k \leq N: k(k+1) a_{k}<1+\varepsilon\right\}\right|}{N} \leq \delta
$$

for every $N \geq i(\varepsilon, \delta)$.
Let $\varepsilon>0$ and $m \in \mathbb{N}$. Let $i:=i(\varepsilon, 1 / m)$. As in the previous part of the proof we consider only the worse case. Let $N=l m \geq i$.

[^0]Consider the family $\mathcal{B}$ of all sets $B \subseteq \mathbb{N}$ such that

1. $[1, N] \cap B=\emptyset$ and
2. $\frac{\mid B \cap[1, n]}{n} \leq \frac{1}{m}$ for every $n \in \mathbb{N}$.

Define $C=[N+1, N+l] \cup\{N+l+i m: i \in \mathbb{N}\}$. Note that $C \in \mathcal{B}$ and $|C \cap[1, n]| \geq|B \cap[1, n]|$ for every $B \in \mathcal{B}$ and every $n \in \mathbb{N}$.

In the worse possible case $a_{k}=0$ if $k \in C$ and $k(k+1) a_{k}=1-\varepsilon$ if $k \notin C$. Then

$$
\begin{gathered}
(N+1) \lambda(A \cap[0,1 /(N+1)]) \geq(N+1) \sum_{k=N+1}^{\infty} a_{k}= \\
=(N+1) \sum_{i=0}^{\infty} \sum_{j=1}^{m-1} \frac{1-\varepsilon}{(N+l+i m+j)(N+l+i m+j+1)}= \\
=(N+1)(1-\varepsilon) \sum_{i=0}^{\infty}\left(\frac{1}{N+l+i m+1}-\frac{1}{N+l+(i+1) m}\right)= \\
=(N+1)(1-\varepsilon)\left(\frac{1}{N+l+1}-\frac{1}{N+l+m}+\frac{1}{N+l+m+1}-\frac{1}{N+l+2 m}+\frac{1}{N+l+2 m+1}-\ldots\right) \geq \\
\geq(N+1)(1-\varepsilon)\left(\frac{1}{N+l+1}-\sum_{i=1}^{\infty} \frac{1}{(N+l+i m)^{2}}\right) \geq \\
\geq(N+1)(1-\varepsilon)\left(\frac{1}{N+l+1}-\int_{1}^{\infty} \frac{1}{(N+l+m x-1)^{2}} d x\right)= \\
\geq(N+1)(1-\varepsilon)\left(\frac{1}{N+l+1}-\frac{1}{m(N+l+m-1)}\right) .
\end{gathered}
$$

Since $l=N / m$, then tending with $m$ to $\infty$ we obtain that $(N+1) \lambda(A \cap[0,1 /(N+1)]) \geq(1-\varepsilon)$. Therefore $d^{+}(A, 0)=1$.

Theorem 1 justifies the following definition. Let $\mathcal{I}$ be an ideal of subset of $\mathbb{N}$. We say that $x$ is an $\mathcal{I}$-right-density point of a measurable set $A$, in symbols $d_{+}^{\mathcal{I}}(A, x)=1$, if $n(n+1) \lambda\left(A \cap\left[x+\frac{1}{n+1}, x+\frac{1}{n}\right]\right)$ tends to 1 with respect to $\mathcal{I}$. Theorem 1 says that $d_{+}^{\mathcal{I}_{d}}(A, x)=1 \Longleftrightarrow d_{+}(A, x)$ where $\mathcal{I}_{d}$ stands for the density zero ideal. By Fin we denote the ideal of finite subsets of $\mathbb{N}$. Note that if $\mathcal{I} \subset \mathcal{J}$, then $d_{+}^{\mathcal{I}}(A, x)=1$ implies $d_{+}^{\mathcal{J}}(A, x)=1$.

Lemma 2 ([1]). Let $G:[a, b] \rightarrow \mathbb{R}$ be a continuous function and let $U \subset(a, b)$ be an open set. Then the set

$$
U_{G}:=\{x \in U: \text { there is } y>x \text { with }(x, y) \subseteq U \text { and } G(x)>G(y)\}
$$

is also open. Moreover, if $(c, d)$ is a component of $U_{G}$, then $G(c) \geq G(d)$.
The following is the strengthening of Lebesgue's one-dimensional density theorem. We mimic the proof of Lebesgue's density theorem presented by Faure in [1].
Theorem 3. Let $A \subset \mathbb{R}$ be measurable. Then $\lambda\left(\left\{x \in A: d_{+}^{\text {Fin }}(A, x) \neq 1\right\}\right)=0$.
Proof. Note that

$$
\begin{gathered}
d_{+}^{\text {Fin }}(A, x) \neq 1 \Longleftrightarrow \liminf _{n \rightarrow \infty} n(n+1) \lambda\left(A \cap\left[x+\frac{1}{n+1}, x+\frac{1}{n}\right]\right)<1 \Longleftrightarrow \\
\Longleftrightarrow \exists k \exists^{\infty} n \quad n(n+1) \lambda\left(A \cap\left[x+\frac{1}{n+1}, x+\frac{1}{n}\right]\right)<\frac{k}{k+1} .
\end{gathered}
$$

Let $E_{n, k}=\left\{x \in A: n(n+1) \lambda\left(A \cap\left[x+\frac{1}{n+1}, x+\frac{1}{n}\right]\right)<\frac{k}{k+1}\right\}$. Consider the map $G:[-k, k] \rightarrow \mathbb{R}$ define by

$$
G(x)=\lambda(A \cap(-k, x))-\frac{k}{k+1} x
$$

Let $\varepsilon>0$. There is an open set $U \subset(-k, k)$ such that $E_{n, k} \subseteq U$ and $\lambda(U)<\lambda\left(E_{n, k}\right)+\varepsilon$. Let $E_{k}=\left\{x \in A: \underline{d}_{+}^{\mathrm{Fin}}(A, x)<\frac{k}{k+1}\right\}$. We need to prove that each $E_{k}$ has measure zero. Note that $E_{k}=\bigcap_{l} \bigcup_{n \geq l} E_{n, k} \subseteq \bigcup_{n} E_{n, k}$. Therefore it is enough to show that each $E_{n, k}$ has measure zero.

Let $x \in E_{n, k}$. Then

$$
\begin{gathered}
n(n+1) \lambda\left(A \cap\left[x+\frac{1}{n+1}, x+\frac{1}{n}\right]\right)<\frac{k}{k+1} \\
\frac{\lambda\left(A \cap\left[x+\frac{1}{n+1}, x+\frac{1}{n}\right]\right)}{\left(x+\frac{1}{n}\right)-\left(x+\frac{1}{n+1}\right)}<\frac{k}{k+1} \\
\lambda\left(A \cap\left(-k, x+\frac{1}{n}\right]\right)-\lambda\left(A \cap\left(-k, x+\frac{1}{n+1}\right]\right)<\frac{k}{k+1}\left(x+\frac{1}{n}\right)-\frac{k}{k+1}\left(x+\frac{1}{n+1}\right) \\
G\left(x+\frac{1}{n+1}\right)>G\left(x+\frac{1}{n}\right) .
\end{gathered}
$$

Then $\frac{1}{n+1}+E_{n, k} \subseteq U_{G}$. By Lemma we obtain that $G\left(c_{l}\right) \geq G\left(d_{l}\right)$ for every component ( $c_{l}, d_{l}$ ) of $U_{G}$. But the inequality $G\left(c_{l}\right) \geq G\left(d_{l}\right)$ is equivalent to $\lambda\left(A \cap\left(c_{l}, d_{l}\right)\right) \leq \frac{k}{k+1}\left(d_{l}-c_{l}\right)$. Thus

$$
\begin{gathered}
\lambda\left(E_{n, k}\right)=\lambda\left(\frac{1}{n+1}+E_{n, k}\right) \leq \sum_{l} \lambda\left(\frac{1}{n+1}+E_{n, k} \cap\left(c_{l}, d_{l}\right)\right) \leq \sum_{l} \frac{k}{k+1}\left(d_{l}-c_{l}\right)= \\
=\frac{k}{k+1} \lambda\left(U_{G}\right) \leq \frac{k}{k+1}\left(\lambda\left(E_{n, k}\right)+\varepsilon\right) .
\end{gathered}
$$

Therefore $\lambda\left(E_{n, k}\right) \leq k \varepsilon$. Since $\varepsilon>0$ is arbitrary, then $\lambda\left(E_{n, k}\right)=0$.

## References

[1] C. A. Faure, A short proof of Lebesgue's density theorem. Amer. Math. Monthly 109 (2002), no. 2, 194-196.
Institute of Mathematics, Lódź University of Technology, Wólczańska 215, 93-005 Łódź, Poland E-mail address: szymon.glab@p.lodz.pl


[^0]:    1991 Mathematics Subject Classification. Primary: 40A05; Secondary: 15A03.
    Key words and phrases. Lebesgue density, statistical convergence.

