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Abstract.

Let A ⊂ R be measurable. λ stands for Lebesgue measure on R. We say that 0 is Lebesgue right
density point of A if

d+(A, 0) = lim
h→0+

λ(A ∩ [0, h])

h
= 1.

Note that
λ(A ∩ [0, 1

n+1 ])
1

n+1

· n

n+ 1
≤ λ(A ∩ [0, h])

h
≤
λ(A ∩ [0, 1

n ])
1
n

· n+ 1

n
.

Therefore d+(A, 0) = 1 if and only if

lim
n→∞

nλ (A ∩ [0, 1/n]) = 1.

Let an = λ(A ∩ [1/(n+ 1), 1/n]). Then

λ(A ∩ [0, 1/n]) =
∞∑
k=n

λ(A ∩ [1/(k + 1), 1/k]) =
∞∑
k=n

ak.

The intuition is the following. If d+(A, 0) = 1, then λ(A ∩ [1/(n + 1), 1/n]) should be closed to the
length 1/(n(n+ 1)) of [1/(n+ 1), 1/n] if n tends to ∞, and thus an/(1/n− 1/(n+ 1)) = n(n+ 1)an
should tend to 1.

In fact the following holds.

Theorem 1. d+(A, 0) = 1 if and only if n(n+ 1)an tends statisticaly to 1.

Proof. First note that d+(A, 0) = 1 is equivalent to limn→∞ n
∑∞

k=n ak = 1.
Assume that n(n+ 1)an does not tend statistically to 1. So that there are ε, δ > 0 and a sequence

N1 < N2 < N3 < . . . such that

|{k ≤ Ni : k(k + 1)ak < 1− ε}|
Ni

> δ

for every i ∈ N. Letm ∈ N be such that δ ≥ 2/m. We will prove that d+(Ac, 0) ≥ lim supi→∞Niλ(Ac∩
[0, 1/Ni]) > 0. We may assume that Ni divisible by m. We consider the worse possible case when the
set {k ≤ mNi : k(k + 1)ak < 1− ε} = [1, Ni) ∪ [(m− 1)Ni,mNi). Then

Niλ(Ac ∩ [0, 1/Ni]) ≥ Ni

mNi∑
k=Ni

(
1

k(k + 1)
− ak) ≥ Ni

mNi−1∑
k=m−1Ni

ε

k(k + 1)
=

= Niε(
1

(m− 1)Ni
− 1

mNi
) =

ε

m(m− 1)
> 0.

Now, assume that n(n + 1)an tends statistically to 1. Then for every ε, δ > 0 there is i(ε, δ) ∈ N
such that

|{k ≤ N : k(k + 1)ak < 1 + ε}|
N

≤ δ

for every N ≥ i(ε, δ).
Let ε > 0 and m ∈ N. Let i := i(ε, 1/m). As in the previous part of the proof we consider only

the worse case. Let N = lm ≥ i.
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Consider the family B of all sets B ⊆ N such that
1. [1, N ] ∩B = ∅ and

2. |B∩[1,n]
n ≤ 1

m for every n ∈ N.
Define C = [N + 1, N + l] ∪ {N + l + im : i ∈ N}. Note that C ∈ B and |C ∩ [1, n]| ≥ |B ∩ [1, n]|

for every B ∈ B and every n ∈ N.
In the worse possible case ak = 0 if k ∈ C and k(k + 1)ak = 1− ε if k /∈ C. Then

(N + 1)λ(A ∩ [0, 1/(N + 1)]) ≥ (N + 1)
∞∑

k=N+1

ak =

= (N + 1)
∞∑
i=0

m−1∑
j=1

1− ε
(N + l + im+ j)(N + l + im+ j + 1)

=

= (N + 1)(1− ε)
∞∑
i=0

(
1

N + l + im+ 1
− 1

N + l + (i+ 1)m
) =

= (N + 1)(1− ε)( 1

N + l + 1
− 1

N + l +m
+

1

N + l +m+ 1
− 1

N + l + 2m
+

1

N + l + 2m+ 1
− . . . ) ≥

≥ (N + 1)(1− ε)( 1

N + l + 1
−
∞∑
i=1

1

(N + l + im)2
) ≥

≥ (N + 1)(1− ε)( 1

N + l + 1
−
∫ ∞

1

1

(N + l +mx− 1)2
dx) =

≥ (N + 1)(1− ε)( 1

N + l + 1
− 1

m(N + l +m− 1)
).

Since l = N/m, then tending with m to ∞ we obtain that (N + 1)λ(A ∩ [0, 1/(N + 1)]) ≥ (1 − ε).
Therefore d+(A, 0) = 1. �

Theorem 1 justifies the following definition. Let I be an ideal of subset of N. We say that x is an
I-right-density point of a measurable set A, in symbols dI+(A, x) = 1, if n(n+1)λ(A∩ [x+ 1

n+1 , x+ 1
n ])

tends to 1 with respect to I. Theorem 1 says that dId+ (A, x) = 1 ⇐⇒ d+(A, x) where Id stands for
the density zero ideal. By Fin we denote the ideal of finite subsets of N. Note that if I ⊂ J , then
dI+(A, x) = 1 implies dJ+(A, x) = 1.

Lemma 2 ([1]). Let G : [a, b]→ R be a continuous function and let U ⊂ (a, b) be an open set. Then
the set

UG := {x ∈ U : there is y > x with (x, y) ⊆ U and G(x) > G(y)}
is also open. Moreover, if (c, d) is a component of UG, then G(c) ≥ G(d).

The following is the strengthening of Lebesgue’s one-dimensional density theorem. We mimic the
proof of Lebesgue’s density theorem presented by Faure in [1].

Theorem 3. Let A ⊂ R be measurable. Then λ({x ∈ A : dFin
+ (A, x) 6= 1}) = 0.

Proof. Note that

dFin
+ (A, x) 6= 1 ⇐⇒ lim inf

n→∞
n(n+ 1)λ(A ∩ [x+

1

n+ 1
, x+

1

n
]) < 1 ⇐⇒

⇐⇒ ∃k∃∞n n(n+ 1)λ(A ∩ [x+
1

n+ 1
, x+

1

n
]) <

k

k + 1
.

Let En,k = {x ∈ A : n(n + 1)λ(A ∩ [x + 1
n+1 , x + 1

n ]) < k
k+1}. Consider the map G : [−k, k] → R

define by

G(x) = λ(A ∩ (−k, x))− k

k + 1
x.

Let ε > 0. There is an open set U ⊂ (−k, k) such that En,k ⊆ U and λ(U) < λ(En,k) + ε. Let

Ek = {x ∈ A : dFin
+ (A, x) < k

k+1}. We need to prove that each Ek has measure zero. Note that

Ek =
⋂

l

⋃
n≥lEn,k ⊆

⋃
nEn,k. Therefore it is enough to show that each En,k has measure zero.
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Let x ∈ En,k. Then

n(n+ 1)λ(A ∩ [x+
1

n+ 1
, x+

1

n
]) <

k

k + 1
λ(A ∩ [x+ 1

n+1 , x+ 1
n ])

(x+ 1
n)− (x+ 1

n+1)
<

k

k + 1

λ(A ∩ (−k, x+
1

n
])− λ(A ∩ (−k, x+

1

n+ 1
]) <

k

k + 1
(x+

1

n
)− k

k + 1
(x+

1

n+ 1
)

G(x+
1

n+ 1
) > G(x+

1

n
).

Then 1
n+1 +En,k ⊆ UG. By Lemma we obtain that G(cl) ≥ G(dl) for every component (cl, dl) of UG.

But the inequality G(cl) ≥ G(dl) is equivalent to λ(A ∩ (cl, dl)) ≤ k
k+1(dl − cl). Thus

λ(En,k) = λ(
1

n+ 1
+ En,k) ≤

∑
l

λ(
1

n+ 1
+ En,k ∩ (cl, dl)) ≤

∑
l

k

k + 1
(dl − cl) =

=
k

k + 1
λ(UG) ≤ k

k + 1
(λ(En,k) + ε).

Therefore λ(En,k) ≤ kε. Since ε > 0 is arbitrary, then λ(En,k) = 0. �
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