LEBESGUE DENSITY AND STATISTICAL CONVERGENCE

SZYMON GŁĄB

Abstract.

Let $A \subset \mathbb{R}$ be measurable. λ stands for Lebesgue measure on \mathbb{R} . We say that 0 is Lebesgue right density point of A if

$$d^+(A,0) = \lim_{h \to 0^+} \frac{\lambda(A \cap [0,h])}{h} = 1.$$

Note that

$$\frac{\lambda(A\cap[0,\frac{1}{n+1}])}{\frac{1}{n+1}}\cdot\frac{n}{n+1}\leq\frac{\lambda(A\cap[0,h])}{h}\leq\frac{\lambda(A\cap[0,\frac{1}{n}])}{\frac{1}{n}}\cdot\frac{n+1}{n}.$$

Therefore $d^+(A, 0) = 1$ if and only if

$$\lim_{n \to \infty} n\lambda \left(A \cap [0, 1/n] \right) = 1.$$

Let $a_n = \lambda(A \cap [1/(n+1), 1/n])$. Then

$$\lambda(A \cap [0, 1/n]) = \sum_{k=n}^{\infty} \lambda(A \cap [1/(k+1), 1/k]) = \sum_{k=n}^{\infty} a_k$$

The intuition is the following. If $d^+(A,0) = 1$, then $\lambda(A \cap [1/(n+1), 1/n])$ should be closed to the length 1/(n(n+1)) of [1/(n+1), 1/n] if n tends to ∞ , and thus $a_n/(1/n - 1/(n+1)) = n(n+1)a_n$ should tend to 1.

In fact the following holds.

Theorem 1. $d^+(A, 0) = 1$ if and only if $n(n+1)a_n$ tends statistically to 1.

Proof. First note that $d^+(A, 0) = 1$ is equivalent to $\lim_{n \to \infty} n \sum_{k=n}^{\infty} a_k = 1$. Assume that $n(n+1)a_k$ does not tend statistically to 1. So that there are s

Assume that $n(n+1)a_n$ does not tend statistically to 1. So that there are $\varepsilon, \delta > 0$ and a sequence $N_1 < N_2 < N_3 < \dots$ such that

$$\frac{|\{k \leq N_i: k(k+1)a_k < 1-\varepsilon\}|}{N_i} > \delta$$

for every $i \in \mathbb{N}$. Let $m \in \mathbb{N}$ be such that $\delta \geq 2/m$. We will prove that $d^+(A^c, 0) \geq \limsup_{i \to \infty} N_i \lambda(A^c \cap [0, 1/N_i]) > 0$. We may assume that N_i divisible by m. We consider the worse possible case when the set $\{k \leq mN_i : k(k+1)a_k < 1-\varepsilon\} = [1, N_i) \cup [(m-1)N_i, mN_i)$. Then

$$N_i \lambda(A^c \cap [0, 1/N_i]) \ge N_i \sum_{k=N_i}^{mN_i} (\frac{1}{k(k+1)} - a_k) \ge N_i \sum_{k=m-1N_i}^{mN_i - 1} \frac{\varepsilon}{k(k+1)} = N_i \varepsilon (\frac{1}{(m-1)N_i} - \frac{1}{mN_i}) = \frac{\varepsilon}{m(m-1)} > 0.$$

Now, assume that $n(n+1)a_n$ tends statistically to 1. Then for every $\varepsilon, \delta > 0$ there is $i(\varepsilon, \delta) \in \mathbb{N}$ such that

$$\frac{|\{k \le N : k(k+1)a_k < 1 + \varepsilon\}|}{N} \le \delta$$

for every $N \ge i(\varepsilon, \delta)$.

Let $\varepsilon > 0$ and $m \in \mathbb{N}$. Let $i := i(\varepsilon, 1/m)$. As in the previous part of the proof we consider only the worse case. Let $N = lm \ge i$.

¹⁹⁹¹ Mathematics Subject Classification. Primary: 40A05; Secondary: 15A03.

Key words and phrases. Lebesgue density, statistical convergence.

Consider the family \mathcal{B} of all sets $B \subseteq \mathbb{N}$ such that

- 1. $[1, N] \cap B = \emptyset$ and

2. $\frac{|B \cap [1,n]|}{n} \leq \frac{1}{m} \text{ for every } n \in \mathbb{N}.$ Define $C = [N+1, N+l] \cup \{N+l+im : i \in \mathbb{N}\}.$ Note that $C \in \mathcal{B}$ and $|C \cap [1,n]| \geq |B \cap [1,n]|$ for every $B \in \mathcal{B}$ and every $n \in \mathbb{N}$.

In the worse possible case $a_k = 0$ if $k \in C$ and $k(k+1)a_k = 1 - \varepsilon$ if $k \notin C$. Then

$$(N+1)\lambda(A \cap [0, 1/(N+1)]) \ge (N+1)\sum_{k=N+1}^{\infty} a_k = \\ = (N+1)\sum_{i=0}^{\infty}\sum_{j=1}^{m-1} \frac{1-\varepsilon}{(N+l+im+j)(N+l+im+j+1)} = \\ = (N+1)(1-\varepsilon)\sum_{i=0}^{\infty} (\frac{1}{N+l+im+1} - \frac{1}{N+l+(i+1)m}) = \\ = (N+1)(1-\varepsilon)(\frac{1}{N+l+1} - \frac{1}{N+l+m} + \frac{1}{N+l+m+1} - \frac{1}{N+l+2m} + \frac{1}{N+l+2m+1} - \dots) \ge \\ \ge (N+1)(1-\varepsilon)(\frac{1}{N+l+1} - \sum_{i=1}^{\infty} \frac{1}{(N+l+im)^2}) \ge \\ \ge (N+1)(1-\varepsilon)(\frac{1}{N+l+1} - \int_{1}^{\infty} \frac{1}{(N+l+m-1)^2} dx) = \\ \ge (N+1)(1-\varepsilon)(\frac{1}{N+l+1} - \frac{1}{m(N+l+m-1)}).$$

Since l = N/m, then tending with m to ∞ we obtain that $(N+1)\lambda(A \cap [0, 1/(N+1)]) \ge (1-\varepsilon)$. Therefore $d^+(A, 0) = 1$.

Theorem 1 justifies the following definition. Let \mathcal{I} be an ideal of subset of \mathbb{N} . We say that x is an \mathcal{I} -right-density point of a measurable set A, in symbols $d_{+}^{\mathcal{I}}(A, x) = 1$, if $n(n+1)\lambda(A \cap [x + \frac{1}{n+1}, x + \frac{1}{n}])$ tends to 1 with respect to \mathcal{I} . Theorem 1 says that $d^{\mathcal{I}_d}_+(A, x) = 1 \iff d_+(A, x)$ where \mathcal{I}_d stands for the density zero ideal. By Fin we denote the ideal of finite subsets of \mathbb{N} . Note that if $\mathcal{I} \subset \mathcal{J}$, then $d^{\mathcal{I}}_{+}(A, x) = 1$ implies $d^{\mathcal{J}}_{+}(A, x) = 1$.

Lemma 2 ([1]). Let $G : [a,b] \to \mathbb{R}$ be a continuous function and let $U \subset (a,b)$ be an open set. Then the set

$$U_G := \{x \in U : \text{ there is } y > x \text{ with } (x, y) \subseteq U \text{ and } G(x) > G(y) \}$$

is also open. Moreover, if (c, d) is a component of U_G , then $G(c) \ge G(d)$.

The following is the strengthening of Lebesgue's one-dimensional density theorem. We mimic the proof of Lebesgue's density theorem presented by Faure in [1].

Theorem 3. Let $A \subset \mathbb{R}$ be measurable. Then $\lambda(\{x \in A : d_+^{\text{Fin}}(A, x) \neq 1\}) = 0$.

Proof. Note that

$$d^{\operatorname{Fin}}_{+}(A,x) \neq 1 \iff \liminf_{n \to \infty} n(n+1)\lambda(A \cap [x + \frac{1}{n+1}, x + \frac{1}{n}]) < 1 \iff \\ \iff \exists k \exists^{\infty} n \quad n(n+1)\lambda(A \cap [x + \frac{1}{n+1}, x + \frac{1}{n}]) < \frac{k}{k+1}.$$

Let $E_{n,k} = \{x \in A : n(n+1)\lambda(A \cap [x + \frac{1}{n+1}, x + \frac{1}{n}]) < \frac{k}{k+1}\}$. Consider the map $G : [-k, k] \to \mathbb{R}$ define by

$$G(x) = \lambda(A \cap (-k, x)) - \frac{k}{k+1}x$$

Let $\varepsilon > 0$. There is an open set $U \subset (-k,k)$ such that $E_{n,k} \subseteq U$ and $\lambda(U) < \lambda(E_{n,k}) + \varepsilon$. Let $E_k = \{x \in A : \underline{d}_+^{\text{Fin}}(A, x) < \underline{k}_{k+1}\}$. We need to prove that each E_k has measure zero. Note that $E_k = \bigcap_l \bigcup_{n>l} E_{n,k} \subseteq \bigcup_n E_{n,k}$. Therefore it is enough to show that each $E_{n,k}$ has measure zero.

Let $x \in E_{n,k}$. Then

$$\begin{split} n(n+1)\lambda(A \cap [x+\frac{1}{n+1},x+\frac{1}{n}]) < \frac{k}{k+1} \\ & \frac{\lambda(A \cap [x+\frac{1}{n+1},x+\frac{1}{n}])}{(x+\frac{1}{n}) - (x+\frac{1}{n+1})} < \frac{k}{k+1} \\ \lambda(A \cap (-k,x+\frac{1}{n}]) - \lambda(A \cap (-k,x+\frac{1}{n+1}]) < \frac{k}{k+1}(x+\frac{1}{n}) - \frac{k}{k+1}(x+\frac{1}{n+1}) \\ & G(x+\frac{1}{n+1}) > G(x+\frac{1}{n}). \end{split}$$

Then $\frac{1}{n+1} + E_{n,k} \subseteq U_G$. By Lemma we obtain that $G(c_l) \ge G(d_l)$ for every component (c_l, d_l) of U_G . But the inequality $G(c_l) \ge G(d_l)$ is equivalent to $\lambda(A \cap (c_l, d_l)) \le \frac{k}{k+1}(d_l - c_l)$. Thus

$$\lambda(E_{n,k}) = \lambda(\frac{1}{n+1} + E_{n,k}) \le \sum_{l} \lambda(\frac{1}{n+1} + E_{n,k} \cap (c_l, d_l)) \le \sum_{l} \frac{k}{k+1} (d_l - c_l) =$$
$$= \frac{k}{k+1} \lambda(U_G) \le \frac{k}{k+1} (\lambda(E_{n,k}) + \varepsilon).$$

Therefore $\lambda(E_{n,k}) \leq k\varepsilon$. Since $\varepsilon > 0$ is arbitrary, then $\lambda(E_{n,k}) = 0$.

References

[1] C. A. Faure, A short proof of Lebesgue's density theorem. Amer. Math. Monthly 109 (2002), no. 2, 194–196.

INSTITUTE OF MATHEMATICS, ŁÓDŹ UNIVERSITY OF TECHNOLOGY, WÓLCZAŃSKA 215, 93-005 ŁÓDŹ, POLAND *E-mail address:* szymon.glab@p.lodz.pl