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Abstract. Let F be a family of continuous functions defined on a compact interval. We give a

sufficient condition so that F ∪ {0} contains a dense c-generated free algebra, in other words F is

densely c-strong algebrable. As an application we obtain dense c-strong algebrability of families of

nowhere Hölder functions, Bruckner-Garg functions, functions with a dense set of local maxima and

local minima and nowhere monotonous functions differentiable at all but finitely many points.

We also study the problem of the existence of large closed algebras within F ∪ {0} where F ⊂ RX

or F ⊂ CX . We prove that the set of perfectly everywhere surjective functions together with the

zero function contains a 2c-generated algebra closed in the topology of uniform convergence while it

does not contain a non-trivial algebra closed in the pointwise convergence topology. We prove that an

infinitely generated algebra which is closed in the pointwise convergence topology needs to contain two

valued functions and infinitely valued functions. We give an example of such an algebra, namely, it

was shown that there is a subalgebra of RR with 2c generators which is closed in the pointwise topology

and for any function f in this algebra, there is an open set U such that f−1(U) is a Bernstein set.

1. introduction

The algebraic properties of sets of functions have been considered in Analysis for many years. One

direction of such research is finding the so called maximal (additive, multiplicative, and so on) classes

for certain families of functions. For example it was proved in [21] that the maximal additive class

for Darboux real functions is the set of all constant functions. Recently, a new point of looking on

the largeness of sets of functions has appeared. One can call a set A, contained in some algebraic

structure of functions, a big one if A (or A∪{0}) contains a large, nice substructure inside. The first

papers written in this direction were [20], [18], [19] and then [2], [4], [5]. In these papers, the notions

contained in the following definition can be found.

Definition 1.1. Let κ be a cardinal number.

1. Let L be a vector space and A ⊂ L. We say that A is κ-lineable if A ∪ {0} contains a

κ-dimensional vector space.

2. Let L be a Banach space and A ⊂ L. We say that A is spaceable if A∪{0} contains an infinite

dimensional closed vector space.

3. Let L be a commutative algebra and A ⊂ L. We say that A is κ-algebrable if A∪{0} contains

a κ-generated algebra B (i.e., the minimal cardinality of the set generating B equals κ).

Bartoszewicz and G la̧b in [9] introduced the notion of strong algebrability:
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Definition 1.2. Let κ be a cardinal number, L be a commutative algebra, and A ⊂ L. We say that

A is strongly κ-algebrable if A ∪ {0} contains a κ-generated free algebra.

Let us observe that the notion of spaceability is not a fully algebraic property but it has a topological

ingredient (we ask about the existence of closed subspace of given Banach space). Ciesielski, Gámez-

Merino, Pellegrino, and Seoane-Sepúlveda in [15] asked about the existence of large linear subspaces,

closed in the pointwise or uniform convergence topology in RR or CC. So, following this way, one can

define spaceability in linear topological spaces.

Some authors were interested in searching for a large substructure with some other topological

property, namely dense lineability (or algebrability) of some classes of functions. For example, Bayart

and Quarta in [12] proved that the set NH of all nowhere Hölder functions is densely ω-algebrable

in C[0, 1]. In [11] Bastin, Conejero, Esser, and Seoane-Sepúlveda proved that the set of all nowhere

Gevrey functions is densely c-algebrable in C∞[0, 1].

The aim of our paper is to formulate, prove and apply some techniques of constructing dense c-

generated free algebras in the space of continuous functions on a compact interval, and to consider

the possibility of the existence of closed algebras in some sets of real or complex functions.

2. Dense strong c-algebrability in C[0, 1]

It is a simple observation that the set {x 7→ exp(rx) : r ∈ R} is linearly independent in RR.

Moreover, if X ⊂ R is linearly independent over Q, then {x 7→ exp(rx) : r ∈ X} is the set of free

generators. In [16] the authors, using the composition of a function with some needed properties

with such an exponential function, proved the c-algebrability of the set CMm([0, 1]) of continuous

functions withdense sets of local extrema. Recently, this idea has been further developed in [6] and

[7].

Let us call, after [6], a function f : R → R exponential-like of rank m whenever f is given by the

formula f(x) =
∑m

i=1 ai exp(βix) for some pairwise distinct nonzero numbers β1, . . . , βm and some

nonzero numbers a1, . . . , am. We have

Theorem 2.1 ([6]). Let F ⊆ R[0,1] and assume that there exists a function F ∈ F such that f ◦ F ∈
F \{0} for every exponential-like function f : R→ R. Then F is strongly c-algebrable. More exactly,

if H ⊆ R is a set of cardinality c and linearly independent over the rationals Q, then exp ◦ (rF ),

r ∈ H, are free generators of an algebra contained in F ∪ {0}.

Using Stone–Weierstrass Theorem, it is not difficult to observe that the algebra described in The-

orem 2.1 is dense in C[0, 1] if and only if the function F is continuous and strictly monotonic. This

argument is described in the last section of [7]. To illustrate this, consider the following two exam-

ples. Let F stand for the set of all continuous functions which are differentiable n− 1 times, but not

differentiable n times at any point of their domains. Let F be the (n−1)th antiderivative of a strictly

positive nowhere differentiable function. Then by [7, Theorem 4.5] the family F is densely c-strongly

algebrable. In turn, using [7, Theorem 4.9] and a similar argument, one can prove that the set of all

functions from C1 whose derivative is not α-Hölder (for any α ∈ (0, 1]) at all but finitely many points,

is densely c-strongly algebrable.
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However, for many classes of functions the monotonic representative does not exist. Here we

propose some method of construction of a dense algebra even if F does not contain any monotonic

function.

2.1. Nowhere constant continuous functions. Let F : [a, b]→ R be a continuous function. Then

F is called left non-decreasing at x ∈ (a, b] if there is δ > 0 such that F (y) ≤ F (x) for any y ∈ (x−δ, x).

Analogously we define a left non-increasing function at x ∈ (a, b], and right non-decreasing (non-

increasing) function at x ∈ [a, b). We say that x ∈ (a, b) is a point of local monotonicity, provided that

F is left non-decreasing or left non-increasing and F is right non-decreasing or right non-increasing,

see [17] and [13]. Note that if x is a point of local minimum (local minimizer) or a point of local

maximum (local maximizer) of F , then x is a point of local monotonicity. We say that F is nowhere

constant, provided that its restriction to any open interval is not constant.

Fix a function g ∈ C[α, β] which is nowhere constant and such that α and β are point of (one-sided)

monotonicity of g. For x ∈ [α, β] denote by H(x) the largest possible y ∈ [x, β] such that g(t) is

between g(x) and g(y) for every t ∈ [x, y] (here by [x, x] we mean the singleton {x}). Such a number

H(x) always exists by the continuity of g. Let x = H0(x) and inductively Hn+1(x) = H(Hn(x)) for

x ∈ [α, β].

Lemma 2.2. Let n ∈ N. If Hn+1(α) < β, then

(i) Hn+1(α) > Hn(α);

(ii) Hn+1(α) is a point of local extremum of g;

(iii) Hn+1(α) is a local minimizer of g if and only if Hn(α) is a local maximizer of g.

Proof. Since α is a point of right local monotonicity of g, say g is right non-decreasing at α, then

there is δ > 0 such that g(α) ≤ g(y) for every y ∈ (α, α + δ). Let t ∈ (α, α + δ] be such that

g(t) = max{g(y) : y ∈ [α, α+δ]}. Since g is nowhere constant, then g(t) > g(α). Hence H(α) ≥ t > α.

Now, we will show that H(α) is a point of right local monotonicity of g. Suppose not, then by

the definition of H, g(y) ≥ g(α) for y ∈ [α,H(α)]. Moreover g(H(α)) > g(α). Let δ > 0 be such

that |g(H(α)) − g(y)| < (g(H(α)) − g(α))/2 for y ∈ (H(α), H(α) + δ]. Then g|[H(α),H(α)+δ] attains

its maximum at some w ∈ [H(α), H(α) + δ]. Since g is not right non-increasing at H(α), then

g(H(α)) < g(w). Moreover g(α) ≤ g(y) ≤ g(w) for any y ∈ [α,w]. This contradicts the definition of

H.

Proceeding inductively we obtain that Hn+1(α) > Hn(α) or Hn+1(α) = β. Note that H1(α),

H2(α), . . . ,Hn(α) are local extrema of g. Moreover if H i(α) is a local minimizer of g, then H i+1(α)

is a local maximizer of g, and vice-versa. �

Lemma 2.3. There is n ∈ N such that Hn(α) = β.

Proof. Suppose that Hn(α) < β for every n ∈ N. By Lemma 2.2, the sequence (Hn(α))n∈N is strictly

increasing. Let w = limn→∞H
n(α). If g is left non-decreasing at w, then there is δ > 0 such that

g(y) ≤ g(w) for every y ∈ [w − δ, w]. Let n be such that Hn(α) is a local minimizer of g with

Hn(α) > w − δ. Then for any y ∈ (Hn(α), w) we have g(Hn(α)) ≤ g(y) ≤ g(w) which contradicts

the definition of Hn+1(α). In the same manner, we show that g is not left non-increasing. Therefore

w < β, since g is left monotonous at β.
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Suppose now that g is not right non-decreasing at w. Let v ∈ [w, β] be a minimizer of g on

[w, β]. Then v > w and g(v) < g(w). Let δ > 0 be such that |g(y) − g(w)| < (g(w) − g(v))/2 for

every y ∈ (w − δ, w). Then fix n ∈ N such that Hn(α) ∈ (w − δ, w) is a local maximizer of g and

g(Hk(α)) ≤ g(Hn(α)) for k ≥ n. This is possible since limk→∞ g(Hk(α)) = g(w) < g(Hn(α)) and g

is continuous. Therefore g(Hn(α)) ≥ g(y) ≥ g(v) for y ∈ (Hn(α), v), which contradicts the definition

of Hn+1(α). Similarly one can prove that the assumption that g is not right non-increasing at w

also leads to contradiction. Hence g is both right non-decreasing and right non-increasing at w. This

means that g is constant on [w,w+δ] for some positive δ, which contradicts the fact that g is nowhere

constant. This shows that Hn(α) = β for some n ∈ N. �

Lemma 2.4. Let F ∈ C[a, b] be nowhere constant and F (a) ≤ F (x) ≤ F (b) for any x ∈ [a, b]. Let

ε > 0. Then there is a partition a = x0 < x1 < x2 < · · · < xn = b such that

(i) F (x) is between F (xk) and F (xk+1) for xk ≤ x ≤ xk+1 and k = 0, 1 . . . , n− 1;

(ii) the mesh max{xi+1 − xi : i = 0, 1, . . . , n− 1} of the partition is smaller than ε.

Proof. Let a = t0 < t1 < t2 < · · · < tm = b be any partition of [a, b] with the mesh smaller than ε.

We will find a new partition a = v0 < v1 < v2 < · · · < vk = b of [a, b] such that each interval [vi, vi+1)

contains at most one tj and each vi is a point of local monotonicity of F . This new partition will also

have a mesh smaller than ε. We construct it in the following way.

If ti is a point of local monotonicity of F , then ti remains in the new partition. Otherwise by the fact

that F is nowhere constant the restriction F |[ti−ε/3,ti] attains its minimum at some wL ∈ [ti− ε/3, ti]
and maximum at some w′L ∈ [ti − ε/3, ti]. If one of the points wL, w

′
L is in (ti − ε/3, ti), then it

is a point of local monotonicity and we put it to the new partition. However, it may happen that

{wL, w′L} = {ti − ε/3, ti}, that is wL and w′L are the endpoints of the interval [ti − ε, ti]. We may

assume that wL = ti − ε/3 and F (wL) < F (ti). Take any t ∈ (ti − ε/3, ti). If t is a point of local

monotonicity of F , then we are done. Assume now that t is not a point of local monotonicity of

F . This means that either t is not a point of left monotonicity of F or it is not a point of right

monotonicity of F . We may assume that t is not a point of left monotonicity of F . Then F attains

its maximum on [wL, t] on some w ∈ (wL, t) and w is a both-sided monotonicity point of F ; w is

between ti − ε/3 and ti, and we put it to the new partition. Similarly one can find an appropriate

both-sided monotonicity point in (ti, ti + ε/3) which we put it into the new partition.

In the next step we will find a refinement a = x0 < x1 < x2 < · · · < xn = b of a = v0 < v1 < v2 <

· · · < vk = b for which (i) holds true. To find such a refinement, for every i < k we use Lemma 2.3

for the restriction g = F |[vi,vi+1], α = vi and β = vi+1. �

The assumption that F is nowhere constant in Lemma 2.4 is essential. To see it, consider a function

F given by

F (x) =


x, x ∈ [1, 2],

x sin( π2x), x ∈ (0, 1),

0, x ∈ [−1, 0],

2x+ 2, x ∈ [−2,−1).

Note that F (−2) ≤ F (x) ≤ F (2). For every partition −2 = x0 < x1 < · · · < xn = 2 with the

mesh smaller than 1, there is the largest k with xk ≤ 0. Then F (xk) = 0 and we may assume that
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F (xk+1) ≥ 0. But there is x ∈ (0, xk+1) with F (x) < 0, which means that the assertion of Lemma

2.4 does not hold for F . The problem is that F is constant on [−1, 0].

Lemma 2.5. Let E ⊂ R be a finite set which is linearly independent over Q. Let F : [a, b] → R be

a nowhere constant continuous function with F (a) ≤ F (x) ≤ F (b) for any x ∈ [a, b]. Then for any

ε > 0 there are a = x0 < x1 < x2 < · · · < xn = b and F0 ∈ C[a, b] such that

(i) ‖F0 − id ‖sup < ε;

(ii) F0(x) = akF (x) + bk for xk ≤ x ≤ xk+1, k = 0, 1, . . . , n− 1;

(iii) the set {a0, a1, . . . , an−1} ∪ E is linearly independent over Q.

Proof. By the previous Lemma there are a = x0 < x1 < x2 < · · · < xn = b such that

(i) F (x) is between F (xk) and F (xk+1) for xk ≤ x ≤ xk+1 and k = 0, 1 . . . , n− 1;

(ii) max{xi+1 − xi : i = 0, 1, . . . , n− 1} < ε/3.

We can find real numbers a0, b0 such that the set E∪{a0} is linearly independent over Q, a0F (x0)+

b0 = x0(= a) and |a0F (x1)+b0−x1| < ε/9. Let x ∈ [x0, x1]. Since F (x) is between F (x0) and F (x1),

a0F (x) + b0 is between a0F (x0) + b0 and a0F (x1) + b0. We have

|a0F (x) + b0 − x| ≤ |(a0F (x) + b0)− (a0F (x0) + b0)|+ |a0F (x0) + b0 − x0|+ |x0 − x| ≤

|(a0F (x1)+b0)−(a0F (x0)+b0)|+0+ε/3 ≤ |a0F (x1)+b0−x1|+|x1−x0|+|x0−(a0F (x0)+b0)|+ε/3 <

ε/9 + ε/3 + 0 + ε/3 ≤ ε.

In the second step we can find real numbers a1, b1 such that the set E∪{a0, a1} is linearly independent

over Q, a1F (x1) + b1 = a0F (x1) + b0 and |a1F (x2) + b1 − x2| < ε/9. Let x ∈ [x1, x2]. Since F (x) is

between F (x1) and F (x2), then a1F (x) + b1 is between a1F (x1) + b1 and a1F (x2) + b1. We have

|a1F (x) + b1 − x| ≤ |(a1F (x) + b1)− (a1F (x1) + b1)|+ |a1F (x1) + b1 − x1|+ |x1 − x| ≤

|(a1F (x2)+b1)−(a1F (x1)+b1)|+ε/9+ε/3 ≤ |a1F (x2)+b1−x2|+|x2−x1|+|x1−(a1F (x1)+b1)|+ε/9+ε/3 <

ε/9 + ε/3 + ε/9 + ε/3 + ε/9 = ε.

After n steps the construction is complete. �

2.2. Main theorem. Let F : [a, b] → R be a continuous function. We consider the following

operation on F . Let a = x0 < x1 < · · · < xn = b be a partition of [a, b]. Let EF : [a, b]→ R be such

that LF (x) = fi(F (x)) for xi ≤ x ≤ xi+1, fi is exponential-like and LF is continuous. We say that

LF is a continuous piecewise exponential-like transformation of F .

We say that a family F of continuous functions defined on compact intervals is flexible, provided

(1) F consists of nowhere constant functions;

(2) there is f ∈ F with f ∈ C[0, 1] and f(0) ≤ f(x) ≤ f(1) for x ∈ [0, 1];

(3) Ef ∈ F for every f ∈ F and for any of its continuous piecewise exponential-like transformation

Ef .

From now on we assume that F is flexible.

Theorem 2.6. F ∩ C[0, 1] is densely c-strongly algebrable in C[0, 1].
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Proof. Let F ∈ F be such that F ∈ C[0, 1] and F (0) ≤ F (x) ≤ F (1) for any x ∈ [0, 1]. Using Lemma

2.5 for ε = 1/2 and E = ∅ we find a partition 0 = x1
0 < x1

1 < · · · < x1
n1

= 1 of the unit interval and a

continuous function F1 such that

(i) ‖F1 − id ‖sup < ε;

(ii) F1(x) = a1
kF (x) + b1k for x1

k ≤ x ≤ x1
k+1, k = 0, 1, . . . , n1 − 1;

(iii) the set {a1
0, a

1
1, . . . , a

1
n1−1} is linearly independent over Q.

In the next step we use Lemma 2.5 for ε = 1/4 and E = {a1
0, a

1
1, . . . , a

1
n1−1}, we find a refinement

0 = x2
0 < x2

1 < · · · < x2
n2

= 1 of the partition 0 = x1
0 < x1

1 < · · · < x1
n1

= 1 and a continuous function

F2 such that

(i) ‖F2 − id ‖sup < ε;

(ii) F2(x) = a2
kF (x) + b2k for x2

k ≤ x ≤ x2
k+1, k = 0, 1, . . . , n2 − 1;

(iii) the set {a1
0, a

1
1, . . . , a

1
n1−1} ∪ {a2

0, a
2
1, . . . , a

2
n2−1} is linearly independent over Q, etc.

Inductively we define F1, F2, . . . . Let E =
⋃∞
k=1{ak0, ak1, . . . , aknk−1}. By the construction, E is linearly

independent over Q. We extend E to a linearly independent set H over Q of cardinality c. We may

assume that there is {hn : n ∈ N} ⊂ H \ E with hn → 0. By the assumption {exp ◦Fp : p ∈
N} ∪ {exp ◦(rF ) : r ∈ H \ E} ⊆ F . Let P be a polynomial in m variables without a constant term.

Consider a function g = P (eF1 , . . . , eFp , erp+1F , . . . , ernF ). Then g restricted to [xpl , x
p
l+1] is of the form

m∑
i=1

ci exp(F (x)(d1ki1 + d2ki2 + · · ·+ dpkip + rp+1kip+1 + · · ·+ rnkin))

where d1, . . . , dp ∈ E, rp+1, . . . , rn ∈ H\E are pairwise distinct and the vectors of integers [ki1, ki2, . . . , kin]

are pairwise distinct. Therefore the numbers d1ki1 + d2ki2 + · · · + dpkip + rp+1kip+1 + · · · + rnkin,

i = 1, . . . ,m, are distinct as well. Thus the mapping

x 7→
m∑
i=1

ci exp(F (x)(d1ki1 + d2ki2 + · · ·+ dpkip + rp+1kip+1 + · · ·+ rnkin))

is a continuous exponential-like transformation of F on [xpl , x
p
l+1]. Since F is closed under continuous

piecewise exponential-like tranformations, g ∈ F .

This shows that the algebraA generated by {exp ◦Fp : p ∈ N}∪{exp ◦(rF ) : r ∈ H\E} is a free alge-

bra of c generators. To see that A is dense in C[0, 1] note that the sequence exp(F1), exp(F2), . . . tends

to x 7→ exp(x), and thereforeA separates the points of [0, 1]. Moreover, note that limn→∞ exp(hnF ) =

1, which means that the closure of A contains all constant functions. Using Stone–Weierstrass The-

orem we obtain the assertion. �

2.3. Applications. 1. We say that a continuous function F : [a, b]→ R is nowhere Hölder, provided

that for any x ∈ [a, b] and any α ∈ (0, 1]

lim sup
y→x

|F (x)− F (y)|
|x− y|α

=∞.

Let us denote the set of all nowhere Hölder functions by NH. It was proved in [7] that f ◦ F ∈ NH
for any nonconstant analytic function f : R → R and any F ∈ NH. It can be easily seen that if

F : [a, b] → R and F ′ : [b, c] → R are nowhere Hölder with F (b) = F ′(b), then F ∪ F ′ : [a, c] → R
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is also nowhere Hölder. Therefore NH is closed under taking continuous piecewise exponential-like

transformations. Clearly NH does not contain a function which is constant on some open interval.

Now, we prove that condition (2) in definition of flexibility is fulfilled. Let F ∈ NH ∩ C[0, 1]. We

may assume that F (0) ≤ F (1) (otherwise, consider −F which is also nowhere Hölder). If F (0) ≤
F (x) ≤ F (1) for x ∈ [0, 1], then we are done. Otherwise, find a maximizer x0 ∈ (0, 1) of F . Then

F (x) ≤ F (x1) for x ∈ [0, x0]. If F (0) ≤ F (x) ≤ F (x0) for x ∈ [0, x0], then an affine transformation

t 7→ F (t/x0) of F |[0,x0] fulfills the condition (2) in the definition of a flexible family. Otherwise, find

a minimizer x1 ∈ (0, x0) of F |[0,x0]. Then F (x1) ≤ F (x) ≤ F (x0) for x ∈ [x1, x0]. Then an affine

transformation t 7→ F (t/(x0−x1)−x1/(x0−x1)) of F |[x1,x0] fulfills the condition (2) in the definition

of a flexible family. This argument will hold also for the next families.

Finally, by Theorem 2.6, the set of all nowhere Hölder functions in C[0, 1] is densely c-strongly

algebrable.

2. We say that a continuous function f : [a, b] → R is Bruckner-Garg of rank k ∈ N (shortly

f ∈ BGk), provided that there exists a countable set A ⊆ (min f,max f) with the property that for

all x ∈ A the preimage f−1({x}) is a union of a Cantor set with at most k many isolated points, and

for all x ∈ (min f,max f) \A the preimage f−1({x}) is a Cantor set. A function f is Bruckner-Garg

(shortly f ∈ BGω), provided it is Bruckner-Garg of rank k for some k ∈ N. Bruckner-Garg functions

of rank 1 were investigated in [14], where it was shown that BG1 is residual in C[0, 1]. By [7, Theorem

4.13] we can easily conclude that BGω is flexible and hence it is densely c-strongly algebrable.

3. Let CMm([0, 1]) be the set of all continuous functions such that both sets of their proper local

minima and maxima are dense in [0, 1]. Using a similar argument to that in [16] one can prove that

the set of all functions from CMm([0, 1]) is flexible and thereby it is densely c-strongly algebrable.

4. Denote by DNM the set of all functions in C[0, 1] which are nowhere monotonic and differ-

entiable in all but finitely many points, see [3]. It can be shown in a standard way that DNM is

flexible; thus it is densely c-strongly algebrable.

3. closed algebrability

Aron, Conejero, Peris and Seoane-Sepúlveda posed the following problem [1, Problem 4.1]: Charac-

terize when there exists a closed infinite dimensional algebra of functions with a particular ”strange”

property. Among the classes considered by the authors, there was the family of everywhere surjective

function f : C→ C. In the space CX or RX , X 6= ∅, we consider two natural topologies, namely the

topology τp of pointwise convergence – the weakest topology in which each projection is continuous –

and the topology τu of uniform convergence. We will show that the τp-closure of any non-trivial alge-

bra contains a two-valued function (some characteristic function). Moreover, we will give a sufficient

condition for the existence of a closed algebra inside F ∪ {0} of 2c generators.

The following proposition shows that if A is a τp-closed nontrivial algebra, then A contains a

two-valued function.

Proposition 3.1. Let A be a subalgebra of CX or RX . Then for any f ∈ A the characteristic

function χS of S := {x ∈ X : f(x) 6= 0} is in clτp(A).

Proof. Let f ∈ A ⊂ RX . Let g = χS be the characteristic function of S. Take any x1, . . . , xn ∈ X
and ε > 0. Let V = {h ∈ RX : |h(xi)− g(xi)| < ε for i = 1, . . . , n}. We need to show that A∩V 6= ∅.
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Let Y = {f(xi) : f(xi) 6= 0, i = 1, . . . , n} = {y1, . . . , yk}. Put

P (y) =

k∑
j=1

y

yj

∏
i 6=j

y − yi
yj − yi

.

Then P is a polynomial without a constant term such that P (yj) = 1 for any j = 1, . . . , k. If

f(xi) = 0, then P (f)(xi) = 0. Since xi /∈ S, f(xi) = g(xi). If f(xi) 6= 0, then yj = f(xi) for some j

and P (f)(xi) = P (yj) = 1 = g(xi). This shows that P (f) ∈ A ∩ V . �

By ES(C) we denote the family of all everywhere surjective functions f : C → C, i.e. functions

which map any nonempty open subset of C onto C. This family appeared at first in terms of

algebrability in [5]. By PES(C) we denote the family of all perfectly everywhere surjective functions

f : C → C, i.e. functions which map any perfect subset of C onto C. It was proved in [10] that

PES(C) is 2c-strongly algebrable. Since PES(C) ⊂ ES(C), ES(C) is 2c-strongly algebrable too. Let

D stand for the family of all non-constant Darboux functions. Since any non-constant Darboux

function attains c many values, we obtain the following.

Corollary 3.2. D∪{0} does not contain a nontrivial closed algebra. In particular, the set ES(C) of

all everywhere surjective functions is not 1-τp-closely algebrable.

Proposition 3.1 says that any τp-closed algebra contains two-valued functions. The next step is

searching for large τp-closed algebras in those consisting of functions with a finite range. Note that

{f ∈ RR : f has a finite range} is an algebra of cardinality 2c. However, the following shows that it

does not contain a large τp-closed (even τu-closed) algebra.

Theorem 3.3. Let A be an algebra consisting of functions with finite ranges. Then

(i) if A is finitely generated, then A is τp-closed;

(ii) if A is not finitely generated, then A is not τu-closed (in particular, it is not τp-closed).

Proof. (i) Assume that A is generated by f1, . . . , fn. Since each fi has a finite range, we can write

fi =

ki∑
j=1

cijχAij

where ci1, . . . , ciki are distinct and Ai1, . . . , Aiki is a partition of R. Let B stand for all finite Boolean

combinations of {Aij : i = 1, . . . , n, j = 1, . . . , ki}. Clearly, any member of A is B-measurable. Let

A ∈ B be a nonempty atom of the algebra B. Then there are j1, . . . , jn such that A = A1j1∩· · ·∩Anjn .

For any i = 1, . . . , n there is a polynomial Pi such that Pi(ciji) = 1 and Pi(cij) ≤ 0 for j 6= ji. Then

P1(f1(x)) + · · ·+ Pn(fn(x)) > 0 ⇐⇒ x ∈ A.

Since P1(f1) + · · · + Pn(fn) is constant on A and has finitely many values, there is a polynomial P

such that P (P1(f1) + · · · + Pn(fn)) is a characteristic function of A. Therefore any B-measurable

function is in A. Since B is a σ-algebra of sets, the family of all B-measurable functions is τp-closed

(a pointwise limit of B-measurable functions is B-measurable).

(ii) Assume now, that A is not finitely generated. There are f1, f2, · · · ∈ A which are algebraically

independent. As before, fi =
∑ki

j=1 cijχAij and let B stand for the set of all finite Boolean combina-

tions of {Aij : i ∈ N, j = 1, . . . , ki}. Suppose that B is finite. Again, any characteristic function of an
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atom in B is an algebraic combination of finitely many fi’s. Therefore there is n ∈ N such that any

B-measurable function f is an algebraic combination of f1, . . . , fn. This yields a contradiction. There-

fore B is infinite. Hence we can find pairwise disjoint sets A1, A2, · · · ∈ B. Define fn =
∑n

k=1
1
kχAk .

Since χAi ∈ A, each fn is in A. Clearly, fn tends uniformly to f =
∑∞

k=1
1
kχAk /∈ A. �

By EDF , denote the family of all functions f : R → R which are everywhere discontinuous and

f(R) is finite. It was proved in [8] that EDF is 2c-algebrable. Immediately we obtain the following.

Corollary 3.4. EDF ∪ {0} does not contain an infinitely generated τu-closed algebra.

By Proposition 3.1 and Theorem 3.3 any infinitely generated τp-closed algebra contains finite valued

and countably valued functions. It turns out that there are large τp-closed algebras of countably valued

functions. Such construction, using the existence of large σ-independent family, will be used in the

next theorem.

A family {Aα : α < κ} of subsets of Y is called σ-independent, if for every countable set X ⊂ κ

and every ε : X → {0, 1} ⋂
α∈X

Aε(α)
α 6= ∅

where A0 = A and A1 = Y \A. By the Tarski theorem [22] there exists a σ-independent family on c

of cardinality 2c.

Theorem 3.5. There is a linear algebra A ⊂ RR of 2c generators such that for any function f ∈
clτp(A) \ {0} there is open set U such that f−1(U) is a Bernstein set. In particular, if F is the

family of all non-measurable functions (having no Baire property, non-measurable in the sense of

Marczewski), then F ∪ {0} contains a τp-closed algebra of 2c generators.

Proof. We use the method of independent Bernstein sets which was introduced in [8]. Let {Bα : α < c}
be a partition of R into c many pairwise disjoint Bernstein sets. Let {Aξ : ξ < 2c} be a σ-independent

family on c. For any ξ < 2c put Cξ =
⋃
{Bα : α ∈ Aξ}. Let B be the σ-algebra generated by

{Cξ : ξ < 2c}.
Let A be the linear algebra generated by {χCξ : ξ < 2c}. Then each function in A is a simple

function of the form
∑2n

k=1 ckχDk where Dk are Boolean combinations of Cξ1 , . . . , Cξn for some distinct

ξ1, . . . , ξn < 2c. If f ∈ clτp(A) \ {0}, then there are fn ∈ A which tend pointwisely to f . Let X ⊂ 2c

be the smallest set such that each fn is measurable with respect to σ-algebra BX generated by

{Cξ : ξ ∈ X}. Clearly X is countable. There is α < c which does not belong to any Aξ, ξ ∈ X.

Consequently, Bα ⊂
⋂
ξ∈X R\Cξ. Therefore fn|Bα = 0 and f |Bα = 0. Since f is not the zero function,

f(x) 6= 0 for some x ∈ R. There is δ > 0 such that f−1(f(x) − δ, f(x) + δ) is disjoint with f−1(0).

Since f is BX -measurable, f−1(f(x) − δ, f(x) + δ) contains a Bernstein set of the form
⋂
ξ∈X C

ε(ξ)
ξ

for some ε : X → {0, 1}. Finally, a set which contains a Bernstein set and is disjoint with some other

Bernstein set is also a Bernstein set. �

Let f ∈ RX (or f ∈ CX). Fix the partition {Bξ : ξ < κ} of R (or C). By V (f) we define the set

{
⋃
ξ<κ

t(ξ)f |Bξ : t ∈ Rκ} ({
⋃
ξ<κ

t(ξ)f |Bξ : t ∈ Cκ}, resp.).
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Let g1, . . . , gn ∈ V (f) and let P (y1, . . . , yn) be a polynomial in n variables. Let ti(ξ) be such that

gi|Bξ = ti(ξ)f |Bξ . Then

P (g1, . . . , gn)|Bξ = P (g1|Bξ , . . . , gn|Bξ) = P (t1(ξ)f |Bξ , . . . , tn(ξ)f |Bξ) = P ′(f)|Bξ

where P ′(y) = P (t1(ξ)y, . . . , tn(ξ)y). Therefore the algebra A(f) generated by V (f) is of form

A(f) = {
⋃
ξ<κ

fξ : fξ ∈ Aξ}

where Aξ is a subalgebra of CBξ generated by f |Bξ .

Theorem 3.6. Assume that f |Bξ is unbounded for every ξ < κ. Then A(f) is τu-closed.

Proof. Note that τu is metrizable by the metric d(g, h) = min{1, sup{|g(x) − h(x)| : x ∈ C}}. To

prove that A(f) is τu-closed, take a sequence (gn) in A(f) tending with respect to d to some function

g. Fix ξ < κ. If g is zero on Bξ, then obviously g ∈ Aξ. Otherwise g|Bξ is nonzero. Then the

sequence (gn|Bξ)n∈N eventually consists of nonzero functions. Note that gn|Bξ = Pn(f)|Bξ for some

nonzero polynomials Pn in one variable. By the assumption f(Bξ) is unbounded. Note that the

sequence Pn : f(Bξ) → C is a Cauchy sequence with respect to d(g, h) = min{1, sup{|g(y) − h(y)| :

y ∈ f(Bξ)}} for g, h ∈ Cf(Bξ). Since f(Bξ) is unbounded, then for distinct polynomials in one variable

P,Q : f(Bξ)→ C without constant term, we have sup{|P (y)−Q(y)| : y ∈ f(Bξ)} =∞. Therefore, the

sequence (Pn) is eventually constant and equal to some polynomial P . Thus g|Bξ = P (f)|Bξ ∈ Aξ. �

Corollary 3.7. There exists a τu-closed algebra A of cardinality 2c, and hence 2c-generated, such

that A \ {0} consists of perfectly everywhere surjective functions.

Proof. Let {Bξ : ξ < c} be a decomposition of C into c many Bernstein sets. For any ξ < c let

fξ : Bξ → C be a free generator such that algebra generated by fξ consists of perfectly everywhere

surjective functions; the existence of such a function was proved in [10]. Put f =
⋃
ξ<c fξ : C → C.

Then A(f) is the desired algebra. �

For a sequence x ∈ `∞ put LIM(x) = {y ∈ R : x(nk) → y for some increasing (nk)k∈N}. It was

proved in [9] that the set of x ∈ `∞ for which LIM(x) is homeomorphic to the Cantor set is strongly

c-algebrable and comeager. We complete this result with the following.

Theorem 3.8. The set of those x ∈ `∞ for which LIM(x) is homeomorphic to the Cantor set, does

not contain any nontrivial closed algebra.

Proof. Let A be an algebra such that for any x ∈ A \ {0} the set of limit points LIM(x) is homeo-

morphic to the Cantor set. Fix nonzero x ∈ A and let C = LIM(x). There is a continuous function

f : [minC,maxC] → [0, 1] such that f(C) = [0, 1]. Let (Pn) be a sequence of polynomials, tending

uniformly to f . It is evident that Pn(x) tends in `∞ to some y with LIM(y) = [0, 1]. Since [0, 1] is

not homeomorphic to C, the algebra A cannot be closed. �
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E-mail address: arturbar@p.lodz.pl
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