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Abstract. We show that the set of Lebesgue integrable functions in [0, 1] which are
nowhere essentially bounded is spaceable, improving a result from [7], and that it is
strongly c-algebrable. We prove strong c-algebrability and non-separable spaceability
of the set of functions of bounded variation which have a dense set of jump discon-
tinuities. Applications to sets of Lebesgue-nowhere-Riemann integrable and Riemann-
nowhere-Newton integrable functions are presented as corollaries. In addition we prove
that the set of Kurzweil integrable functions which are not Lebesgue integrable is space-
able (in the Alexievicz norm) but not 1-algebrable. We also show that there exists an
infinite dimensional vector space S of differentiable functions such that each element of
the C([0, 1])-closure of S is a primitive to a Kurzweil integrable function, in connection to
a classic spaceability result from [10].

1. Introduction and terminology

This work is a contribution to the study of large linear and algebraic structures within
essentially nonlinear sets of functions which satisfy special properties; the presence of such
structures is often described using the terminology lineable, algebrable and spaceable. Recall
that a subset S of a topological vector space X is said to be lineable (respectively, spaceable)
if S ∪ {0} contains an infinite dimensional vector subspace (respectively, a closed infinite
dimensional vector subspace) of X; this terminology was first introduced in [5] (see also
[1]). The term algebrability was introduced later in [2]; if X has some algebraic structure, S
is said to be κ-algebrable if S∪{0} contains an infinitely generated algebra, with a minimal
set of generators of cardinality κ (see [2] for details). We shall work with a strenghtened
notion of κ-algebrability, namely, strong κ-algebrability. The definition follows:

Definition 1.1. We say that a subset S of an algebra A is strongly κ-algebrable, where
κ is a cardinal number, if there exists a κ-generated free algebra B contained in S ∪ {0}.

We recall that, for a cardinal number κ, to say that an algebra A is a κ-generated free
algebra, means that there exists a subset Z = {zα : α < κ} ⊂ A such that any function f
from Z into some algebra A′ can be uniquely extended to a homomorphism from A into A′.
The set Z is called a set of free generators of the algebra A. If Z is a set of free generators
of some subalgebra B ⊂ A, we say that Z is a set of free generators in the subalgebra A.
If A is commutative, a subset Z = {zα : α < κ} ⊂ A is a set of free generators in A if for
each polynomial P and for any zα1 , zα2 , . . . , zαn ∈ Z we have

P (zα1 , zα2 , . . . , zαn) = 0 if and only if P = 0.
1
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The definition of strong κ-algebrability was introduced in [3], though in several papers, sets
which are shown to be algebrable are in fact strongly algebrable, and that is seen clearly
by the proofs. See [2] and [8], among others. Strong algebrability is in effect a stronger
condition than algebrability: for example, c00 is ω-algebrable in c0 but it is not strongly
1-algebrable (see [3]).

All functions in this paper are real valued and defined in [0, 1], unless stated otherwise.
We are particularly interested in functions which are integrable with respect to some defini-
tion of integral, but nowhere integrable with respect to a different definition of integral. We
clarify that the notation f is nowhere T-integrable, for some integration process T, means
that f is not T-integrable in any subinterval of the domain. In section 2, we show that
the set G of nowhere essentially bounded (not essentially bounded in any subinterval of
the domain) Lebesgue integrable functions is spaceable and strongly c-algebrable. The fact
that G is spaceable improves a result from Garćıa-Pacheco, Mart́ın, and Seoane-Sepúlveda
[7], which states that the set of Lebesgue integrable functions which are not equivalent to
Riemann integrable functions is spaceable. The improvement is seen clearly in Corollary
2.3.

In section 3, we investigate spaceability and algebrability properties of the set of functions
of bounded variation which have a dense set of jump discontinuities - which are, in turn, all
Riemann-nowhere-Newton integrable. A connection with a result from [8] will be pointed
out.

Section 4 is dedicated to Kurzweil integrable functions. We show that the set J of
Kurzweil integrable functions which are not Lebesgue integrable is spaceable, but J does
not contain any nontrivial algebra. We discuss the relation with a result from Gurariy
[10], which states that the set of differentiable functions is lineable but not spaceable in
C([0, 1]).

At the end of sections 2 and 4, we include some problems left open and remarks which
stimulate further investigation.

2. Spaceability and algebrability of sets of Lebesgue integrable
functions

Let G be the set of all Lebesgue integrable functions in [0, 1] which are nowhere essentially
bounded. The main results is this Section are that G is spaceable in the L1 norm and that
it is strongly c-algebrable. Our construction of functions in G involves infinite unions of
Cantor sets. We recall that a Cantor set A in [a, b] is a perfect, not countable, nowhere
dense subset of [a, b] of diameter b − a which is obtained by subtracting from [a, b] a
countable union of open sets in a special way, so that A can measure from zero to strictly
less than b − a. We shall call these open sets the holes of A, and use also the following
notation:

Definition 2.1. We say that a nonvoid subset B of [a, b] of the form B = ∪{Aj : j ∈ Γ}
is Cantor-built (with Cantor components Aj) if
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(1) each Aj is a Cantor set in some subinterval [cj, dj] of [a, b];
(2) if j 6= k, then m([cj, dj] ∩ [ck, dk]) = 0, where m denotes Lebesgue measure.

Remark. Clearly a Cantor-built set has an at most countable ammount of Cantor com-
ponents. The index set Γ is therefore nonvoid and at most countable.

For each subset A ⊂ [0, 1] and each subinterval I = [a, b] ⊂ [0, 1], let us denote

AI
.
= {(b− a)x+ a : x ∈ A} .

Note that, if A is measurable, then AI is measurable and m(AI) = (b− a)m(A).

We shall now define a family of functions fj in G. First we define a family of pairwise
disjoint subsets Aj of [0, 1] as follows. Let A1 be a Cantor set in [0, 1] of measure 2−1.
Define

A2
.
= ∪{(A1)I : I is a hole of A1}.

Then A2 is Cantor-built, with Cantor components (A1)I like above, and m(A2) = 2−2. Let
j ≥ 3, suppose that Aj ⊂ [0, 1] is Cantor-built, and that m(Aj) = 2−j. Define

Aj+1
.
= ∪{(A1)I : I is a hole of a Cantor component of Aj}.

Then Aj+1 is Cantor-built, with Cantor components (A1)I , and m(Aj+1) = 2−(j+1). We
have obtained a sequence (Aj) of Cantor-built subsets of [0, 1] satisfying

(1) m(Aj ∩ Ak) = 0, when j 6= k;
(2) m(∪jAj) = 1 (thus ∪jAj is dense in [0, 1]);
(3) for each subinterval J ⊂ [0, 1], there is a natural number j0 such that Aj has a

Cantor component contained in J for each j ≥ j0.

Let 1 < θ < 2, write Θ
.
=
∑

j(θ/2)j and define, for each j, fj
.
= θjχAj . Suppose that, for

each natural number k, (nkj )j is a strictly increasing sequence of natural numbers, and that
those sequences are pairwise disjoint. For each k define

gk
.
=
∑
j

fnkj .

Note that each gk ∈ G, and

0 <

∫
gk =

∑
j

∫
fnkj =

∑
j

(
θ

2

)nkj
< Θ;

moreover, {gk}k is linearly independent in L1, since the sets {x ∈ [0, 1] : gk(x) 6= 0} all
have positive measure and m({x ∈ [0, 1] : gk(x) 6= 0} ∩ {x ∈ [0, 1] : gj(x) 6= 0}) is zero
whenever j 6= k.

Theorem 2.2. span({gk}k) ⊂ G ∪ {0}. In particular, G is spaceable in L1.

Proof. For each natural numbers m1 < m2 and each a1, . . . , am2 ∈ R the inequality
‖
∑m1

k=1 akgk‖ ≤ ‖
∑m2

k=1 akgk‖ holds, thus (gk)k is a basic sequence, and therefore a Schauder
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basis to span({gk}k). It follows that, for a given nonzero f ∈ span({gk}k), there is a nonzero
sequence (αk)k of real numbers satisfying

f =
∑
k

αkgk. (2.1)

Suppose αk0 6= 0, and let J ⊂ [0, 1] be an open interval. There exists a natural number j0

such that there is a Cantor component Bj of A
n
k0
j

contained in J , for each j ≥ j0. Since

each Bj has positive measure, f |Bj ≡ θn
k0
j and {θn

k0
j : j ∈ N} is unbounded, it follows that

f is not essentially bounded in J .♠

Since Riemann integrable functions are bounded, we have the following:

Corollary 2.3. The set of Lebesgue integrable functions in [0, 1] which are not equivalent
to a Riemann integrable function in any subinterval of the domain is spaceable.

We will now study the strong algebrability aspect of the set G. First, note that the
construction of the sequence of Cantor-Built sets Aj is associated to the convergent series∑

j 2−j. It is not hard to see that with some technical effort we can build a similar sequence

of Cantor-built sets Bj in [0, 1] associated to the series
∑

j
1
e

1
j!

, satisfying m(Bj) = 1
e

1
j!

and

the Aj-like properties:

(1) m(Bj ∩Bk) = 0, when j 6= k;
(2) m(∪jBj) = 1;
(3) for each subinterval J ⊂ [0, 1], there is a natural number j0 such that Bj has a

Cantor component contained in J for each j ≥ j0.

Let {θα : α < c} a set of real numbers strictly greater than 1 such that the set {ln(θα) :
α < c} is linearly independent over the rational numbers. For each α < c, define

gα =
∞∑
j=1

θjαχBj .

For each α the series
∑

j
θjα
j!

converges, thus each gα is Lebesgue integrable.

Theorem 2.4. {gα : α < c} is a set of free generators, and the algebra generated by this
set is contained in G ∪ {0}. In particular, G is strongly c-algebrable.

Proof. It suffices to show that, for every m and n positive integers, for every matrix
(kij : i = 1, . . . ,m, j = 1, . . . , n) of non-negative integers with non-zero and distinct rows,
for every α1, . . . , αn < c and for every β1, . . . , βm ∈ R which do not vanish simultaneously,
the function

g = β1g
k11
α1
. . . gk1nαn + · · ·+ βmg

km1
α1

. . . gkmnαn

is in G. g is in L1 since∫
|g| ≤

∫ [ ∞∑
j=1

(|β1|(θk11α1
· · · θk1nαn )j + ...+ |βm|(θkm1

α1
· · · θkmnαn )j)χBj

]
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=
1

e

∞∑
j=1

|β1|(θk11α1
· · · θk1nαn )j + ...+ |βm|(θkm1

α1
· · · θkmnαn )j

j!
<∞.

Since ln(θki1α1
· · · θkinαn ) = ki1 ln θα1 + ... + kin ln θαn and ln θα1 , ..., ln θαn are Q-linearly in-

dependent, the numbers ln(θki1α1
· · · θkinαn ), i = 1, ...,m, are distinct. Then by the strict

monotonicity of the logarithmic function we may assume that

θk11α1
· · · θk1nαn > θk21α1

· · · θk2nαn > ... > θkm1
α1
· · · θkmnαn ; (2.2)

we also may assume β1 6= 0. To simplify the notation put θi = θki1α1
· · · θkinαn . Then we can

write

g =
∞∑
j=1

(β1θ
j
1 + ...+ βmθ

j
m)χBj .

From (2.2) and since β1 is assumed to be nonzero, we can find j0 ∈ N such that

|β2|θj2 + ...+ |βm|θjm <
1

2
|β1|θj1

for all j ≥ j0. Then for those j

|β1θ
j
1 + ...+ βmθ

j
m| ≥ |β1|θj1 −

∣∣β2θ
j
2 + ...+ βmθ

j
m

∣∣
≥ |β1|θj1 −

(
|β2|θj2 + ...+ |βm|θjm

)
>

1

2
|β1|θj1.

Since each nonvoid open subset of [0, 1] intercepts all Bj in a non-null set (for high enough
j), the inequality above shows that g is nowhere essentially bounded. ♠

In parallel to Corollary 2.3, we have the following:

Corollary 2.5. The set of Lebesgue integrable functions which are not equivalent to a
Riemann integrable function in any subinterval of the domain is strongly c-algebrable.

2.1. Further questions on the algebrability of G. It is unknown to the authors wether
G ∪ {0} admits a closed algebra within it. We do not even know wether the free algebra
constructed in the proof of Proposition 2.4 has its closure contained in G ∪ {0}; a positive
answer would imply automatically on the spaceability of G.

By another point of view, note the following:

Proposition 2.6. The set of nowhere essentially bounded functions is co-meager in L1.

Proof. Let N ∈ N and I be any subinterval of [0, 1] with rational endpoints. Let
M = {f ∈ L1 : |f(x)| ≤ N for a.e. x ∈ I}. To end the proof it suffices to show that M is
nowhere dense.

Let B(f,R) be a ball in L1 centered in some f with a radius R > 0, and take a subinterval
J of I with length R

6N
. Define g : [0, 1]→ R by

g(x) =

{
2N, if x ∈ J,
f(x), if x ∈ [0, 1] \ J.
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Then

‖g − f‖ =

∫
J

‖2N − f‖ ≤ m(J)3N =
R

6N
· 3N =

R

2
.

Consider the ball B(g,R/7), and let h ∈ B(g,R/7). Then h ∈M would imply

R/7 ≥ ‖h− g‖ =

∫ 1

0

|h− g| ≥
∫
J

|h− g| ≥ m(J)N = R/6,

a contradiction. ♠

In particular, G is dense in L1. This motivates the search of algebras within G ∪ {0}
which are dense in L1. It is not of the knowledge of the authors wether these algebras
exist. Note that the algebra constructed in the proof of Proposition 2.4 cannot be dense,
since functions contained in the closure are all constant when restricted to each Bj.

3. Spaceability and algebrability of sets of functions of bounded
variation

In in Theorem 4.1 from [8], Garćıa-Pacheco, Palmberg and Seoane-Sepúlveda exibited
a c-lineable, c-algebrable set of bounded functions with removable singularities in each
rational, and everywhere else continuous and zero-valued. In particular, this shows that
the set of Riemann integrable, nowhere Newton integrable1 functions is c-lineable and c-
algebrable. This comes from the fact that bounded, a.e. continuous functions are all
Riemann integrable, and derivatives never have removable discontinuities.

In this section we investigate the set, which we will denote by F , of functions of bounded
variation with a dense set of jump discontinuities. This set is related to the mentioned result
of [8], since each element of F is also Riemann integrable and nowhere Newton integrable;
only this time the nowhere Newton integrability comes from the fact that derivatives do not
have jump discontinuities. Let us denote by BV [0, 1] the set of real-valued, letft-continuous
functions of bounded variation, equipped with the norm

‖f‖BV
.
= |f(0)|+ V (f),

where V (f) is the total variation of f . Recall that, equipped with this norm, BV [0, 1] is
a non-separable Banach space. Fix a sequence (qi)i of all rational numbers in (0, 1), and
consider

f =
∞∑
n=1

2−iχ(qi,1]. (3.1)

Then f belongs to F ; more specifically, it is monotone, continuous in [0, 1] \Q, and has a
jump discontinuity in each rational number in (0, 1). Constructions based on this function
will be used to prove the main results of this section, namely Theorems 3.1 and 3.2.

1Recall that we say that a function F : [a, b]→ R is the antiderivative of f : [a, b]→ R if F is continuous
and F ′ = f in (a, b). Some authors refer to functions which have antiderivatives as Newton integrable, and
this terminology is naturally convenient for us.
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Theorem 3.1. There is a non-separable closed subspace of BV [0, 1] contained in F ∪{0}.

Proof. Define the Vitalli relation on (0, 1) in the following way: x ∼ y ⇐⇒ x− y ∈ Q.
Let V be a selector of the Vitalli relation, consider the function f defined in (3.1), and for
each v ∈ V define

fv(x)
.
=

{
f(x− v), if x− v ∈ [0, 1],
f(x− v + 1), otherwise.

Note that the one-sided limits of fv at v are fv(v
−) = 1 and fv(v

+) = 0.
Take any distinct v, v′ ∈ V . Then fv′ is continuous at v, (fv′ − fv)(v−) = fv′(v)− 1 and

(fv′ − fv)(v+) = fv′(v), from which follows that

V (fv′ − fv) ≥ 1.

This shows that the set {fv : v ∈ V } is a discrete subset of BV [0, 1] of cardinality c. Let
f = α1fv1 + ...+ αkfvk be a linear combination such that αi 6= 0 and vi are distinct. Then
the set of all points of jump discontinuity of f equals (0, 1) ∩ ({vi : i = 1, . . . , k}+ Q).

Now, let g ∈ span{fv : v ∈ V }. Then there is a sequence (vi) of distinct elements of V

such that g ∈ span{fvi : i ∈ N}. Let us show that (fvi) is a basic sequence. Note that
‖fvi‖ ≤ 3. Fix a sequence of real numbers (βi)i, and n < m. Then

‖β1fv1 + · · ·+ βnfvn‖ ≤
n∑
i=1

|βi|‖fvi‖ = 3
n∑
i=1

|βi|.

For simplicity put h = β1fv1 + · · ·+ βmfvm . Then |h(v+
i )− h(v−i )| = |βi|, and therefore

‖h‖ ≥ V (h) ≥
m∑
i=1

|βi|.

Hence,
‖β1fv1 + · · ·+ βnfvn‖ ≤ 3‖β1fv1 + · · ·+ βmfvm‖,

and (fvi)i is a basic sequence. Then there exists a sequence (ai) of real numbers with
g =

∑∞
i=1 aifvi . Clearly the set of discontinuities of g is dense in (0, 1). ♠

It is possible to prove the spaceability of F more directly, and without using non-
measurable sets, as a consequence of Theorem 2.2. Non-separability, although, is lost.
We will include this alternative proof at the end of the section.

Theorem 3.2. F is strongly c-algebrable.

To prove Theorem 3.2, we will need Lemmas 3.3 and 3.4.

Lemma 3.3. The algebra A of continuous functions in [0, 1] which are analytic in (0, 1)
admits a set of free generators of cardinality c.

.
Proof. Take Q-linearly independent set of real numbers {rα : α < c}. Then {x 7→ erαx :

α < c} is a set of free generators. ♠
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Lemma 3.4. Suppose that Gj ∈ A, j = 1, . . . , k, and that Gk is non-zero. Then

g
.
=

k∑
j=1

Gjf
j,

where f was defined in (3.1), satisfies the following properties:

(1) both one-sided limits of g exist at each x ∈ (0, 1), and at each qi ∈ Q they are given

by g(q+
i ) =

∑k
j=1 Gj(qi)(f(qi) + 2−i)j and g(q−i ) =

∑k
j=1Gj(qi)f

j(qi);

(2) g is in BV [0, 1], and in particular it is left-continuous;
(3) g has has a dense set of jump discontinuities.

Proof. (1) and (2) are easily checked. Let us prove (3). Suppose first that g = G1f ,
where G1 ∈ A \ {0}. For any subinterval [a, b] ⊂ [0, 1], since G1 is analytic in (0, 1) and
non-zero, there is an x0 ∈ [a, b] such that G1(x0) 6= 0. By the continuity of G1, there is a
rational number q ∈ (a, b) satisfying G1(q) 6= 0. Then

(G1f)(q−) = G1(q)f(q−) 6= G1(q)f(q+) = (G1f)(q+),

thus g = G1f has a jump discontinuity at q.
Suppose now that the Lemma holds for 1, . . . , k − 1, and let g =

∑k
j=1Gjf

j, where

G1, . . . , Gk ∈ A and Gk is non-zero. For clearness, denote ai
.
= 2−i. For each qi ∈ Q we

have that

g(q+
i )− g(q−i ) =

k∑
j=1

Gj(qi)((f(qi) + ai)
j − f j(qi))

=
k∑
j=1

Gj(qi)

(
j∑

m=0

(
j

m

)
ami f

j−m(qi)− f j(qi)

)

=
k∑
j=1

Gj(qi)

j∑
m=1

(
j

m

)
ami f

j−m(qi)

=
k∑

m=1

ami Pm(Gm(qi), . . . , Gk(qi), f(qi)),

where Pm(xm, . . . , xk, y)
.
=
∑k

j=m

(
j
m

)
xjy

j−m. Note that there is an M > 0 such that

|Gj(x)| ≤M,

for all j = 1, . . . , k and all x ∈ [0, 1]. Since Pm are polynomials, there is an N > 0 such
that

|Pm(xm, . . . , xk, y)| ≤ N,

for all m = 1, . . . , k and all (xm, . . . , xk, y) ∈ [−M,M ]k−m × [0, 1]. In particular,

|Pm(Gm(x), . . . , Gk(x), f(x))| ≤ N

for all m = 1, . . . , k and x ∈ [0, 1].
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Let [a, b] be any subinterval of (0, 1). Consider the function

h(x)
.
= P1(G1(x), . . . , Gk(x), f(x)). = G1(x) +

k∑
j=2

(
j

1

)
Gj(x)f j−1(x).

By the induction hypothesis,
∑k

j=2

(
j
1

)
Gj(·)f j−1(·) has has a dense set of jump disconti-

nuities in [a, b]. Since G1 is continuous, h has jump discontinuities at the same points. In
particular, there exist ε > 0 and x0 ∈ (a, b] such that |h(x0)| > ε. Since h is left-continuous,
|h(x)| > ε for each x < x0 which is close enough to x0. In particular, the set

S
.
= {i : qi ∈ [a, b], |h(qi)| ≥ ε}

is infinite. For each i ∈ S we have that

|g(q+
i )− g(q−i )| =

∣∣∣∣∣
k∑

m=1

ami Pm(Gm(qi), . . . , Gk(qi), f(qi))

∣∣∣∣∣ ≥
≥ |aih(qi)| −

k∑
m=2

|ami Pm(Gm(qi), . . . , Gk(qi), f(qi))| ≥

≥ aiε−
k∑

m=2

ami N =
1

2i
ε−N

k∑
m=2

1

2mi
≥ 1

2i
ε−N

∞∑
m=2

1

2mi
=

1

2i

(
ε−N 1

2i − 1

)
.

Since S is infinite, there is i0 ∈ S such that ε−N 1
2i0−1

> 0. Then g has a jump disconti-
nuity at qi0 . ♠

Proof (of Theorem 3.2). Let {gα : α < c} be a set of free generators in A, and
consider the function f defined in (3.1). We will show that {gαf : α < c} is a set of free
generators in F , and that the algebra generated by this set is entirely contained in F∩{0}.

Let p be a polynomial of n variables and real coefficients, with no constant term, and let

g
.
= p(gα1f, . . . , gαnf) =

∑
γ∈Γ

λγg
γ1
α1
. . . gγnαnf

|γ|. (3.2)

To complete our proof it suffices to show that g ∈ F ∪ {0} and that g = 0 if and only if
λγ = 0 for all γ ∈ Γ. We can rewrite the sum in (3.2) as

k∑
j=1

 ∑
γ∈Γ, |γ|=j

λγg
γ1
α1
. . . gγnαn

 f j =
k∑
j=1

Gjf
j,

where each Gj
.
= λγg

γ1
α1
. . . gγnαn clearly belongs to A. Note that, since {gα : α < c} is a set of

free generators in A, then for each j, Gj = 0 implies that λγ = 0 for each γ ∈ Γ satisfying
|γ| = j. The result follows from Lemma 3.4. ♠
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3.1. An alternative proof of the spaceability of F . Recall that L1 is isometrically
imbedded in BV [0, 1] via the natural map ψ which takes each Lebesgue integrable function
into its primitive. The image of ψ is denoted by AC0, and it consists of all absolutely con-
tinuous functions starting at zero. Note that each nowhere essentially bounded Lebesgue
integrable function is mapped via ψ into a continuous function which is not identically zero
in any subinterval of the domain; therefore by Theorem 2.2 there is an infinite dimensional
closed subspace S of BV [0, 1], each non-zero element of which satisfies that property. Note
also that, for each non-zero g ∈ S, fg has dense set of jump discontinuities, where f was

defined in (3.1). The conclusion follow from the fact that g ∈ AC0
ϕ7→ fg ∈ BV [0, 1] is

an isomorphism onto its image, and thus ϕ[S] is a closed, infinite-dimensional subspace of
BV [0, 1] contained in F ∪ {0}.

4. Spaceability of sets of Kurzweil integrable functions

Consider the vector space K([0, 1]) of all Kurzweil integrable functions equipped with
the Alexievicz norm given by

||f ||A
.
= ||F ||∞,

where F is the (Kurzweil) primitive function of f . Like in L1, inK([0, 1]) equivalence classes
of almost everywhere equal functions are considered, and Kurzeil integrable functions which
are equal a.e. have the same primitive. Since all primitives to Kurzweil integrable functions
are continuous, K([0, 1]) can be isometrically imbedded, through the natural identification
f 7→ F , onto a (dense, since all polynomials are primitives for Kurzweil integrable func-
tions) subspace of C([0, 1]), which we will denote by K, or K([0, 1]). One of the main
properties of K is that it includes AC0 (which is another way of saying that all Lebesgue
integrable functions are Kurzweil integrable) and C0([0, 1]), the subspace of C([0, 1]) con-
sisting of all differentiable functions; for details see e.g. [9]. Another feature of the Kurzweil
integral, lacked by the Lebesgue integral, is Hake’s Theorem:

Theorem 4.1 (Hake). f : [0, 1] → R is Kurzweil integrable if and only if for each small
ε > 0, the restriction f |[ε,1] ∈ K([ε, 1]), and the limit

lim
ε→0

∫
[ε,1]

f (4.1)

exists. In that case,
∫

[0,1]
f equals (4.1).

We will also need the following standard result which relates the Kurzweil and the
Lebesgue integrals:

Proposition 4.2. f : [0, 1]→ R is Lebesgue integrable if and only if f and |f | are Kurzweil
integrable, and in that case the values of the Lebesgue and the Kurzweil integrals of f
coincide.

We are interested in the set J of Kurzweil integrable functions which are not Lebesgue
integrable. In the following we will construct a class of such functions which satisfy nice
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properties. Define Φ : [0, 1]→ R by

Φ(x)
.
=


4x2 sin

(
π

4x2

)
if x ∈]0, 1/2];

−4(1− x)2 sin
(

π
4(1−x)2

)
if x ∈]1/2, 1[;

0 if x = 0 or x = 1.

Then Φ is everywhere differentiable and

φ(x)
.
= Φ′(x) =


8x sin

(
π

4x2

)
− 2π

x
cos
(
π

4x2

)
if x ∈]0, 1/2];

8(1− x) sin
(

π
4(1−x)2

)
− 2π

1−x cos
(

π
4(1−x)2

)
if x ∈]1/2, 1[;

0 if x ∈ R\]0, 1[.

For each subinterval I = [a, b], define ΦI : [0, 1]→ R by

ΦI(x)
.
=

{
Φ
(
x−a
b−a

)
if x ∈ I;

0 otherwise.
(4.2)

Then ΦI is also everywhere differentiable, and the derivative is given by

φI(x)
.
= Φ′I(x) =

{
1
b−a φ

(
x−a
b−a

)
if x ∈ I;

0 otherwise.
(4.3)

Each φI is Kurzweil integrable (with (K)
∫
φI = 0), but is not Lebesgue integrable, since

its positive and negative parts have infinite integral. For each natural number k, consider
Ik

.
= [2k+1, 2k]. Clearly {φIk : k ∈ N} is linearly independent. We can now state our first

result on lineability for sets of Kurzweil integrable functions:

Proposition 4.3. span({ΦIk : k ∈ N}) ⊂ (C0([0, 1]) \ AC0)∪{0}. In particular, (C0([0, 1]) \ AC0)
and J are lineable.

Proof. It suffices to show that span({φIk : k ∈ N}) ∩ L1([0, 1]) = {0}. Let f be a
nontrivial linear combination of the φIk . Then there is a nonzero sequence (αk)k ∈ c00 such
that

f =
∑
k

αkφIk .

Suppose that αk0 6= 0. Then f |Ik0 = αk0φIk0 , which is not Lebesgue integrable. ♠

Remark 4.4. It is natural to ask wether Proposition 4.3 can be generalized analogously
to Corollary 2.3 or not. That is, whether the set of Kurzweil integrable functions which
are not Lebesgue integrable in any subinterval is lineable or not. The generalization is
impossible, the reason being that, as it is known (see again [9]), each Kurzweil integrable
function must be Lebesgue integrable in some subinterval.

Proposition 4.5. span({φIk : k ∈ N})
‖·‖A ⊂ J ∪ {0}. In particular, J is spaceable in

K([0, 1]).



12 G LA̧B, KAUFMANN, PELLEGRINI

Proof. Suppose that f ∈ span({φIk : k ∈ N})
‖·‖A

. Consider a sequence (fm)m, such
that each fm ∈ span({φIk : k ∈ N}). Then for each m there is a sequence (αmk ) ∈ c00 such
that

fm =
∑
k

αmk φIk .

An easy computation gives us that, for each k, (αmk )m converges in m to a real number αk,
and that we can write

f =
∑
k

αkφIk . (4.4)

An argument identical to the one in the proof of Proposition 4.3 shows that f is not
Lebesgue integrable. ♠

If we consider, instead of the closure in K([0, 1]) of span({φIk : k ∈ N}), the closure in
C([0, 1]) of span({ΦIk : k ∈ N}) (with the sup norm), then it is easily seen that a function

F ∈ span({ΦIk : k ∈ N})
‖·‖∞

, as in (4.4), is of the form

F =
∑
k

αkΦIk .

For each small ε > 0, F |[ε,1] ∈ K([ε, 1]), and by the continuity of F the limit limε→0(F (1)−
F (ε)) exists. Then by Hake’s Theorem 4.1, F ∈ K([0, 1]). Thus, in addition to Proposition
4.5, we have the following:

Proposition 4.6. Given x0 ∈ [0, 1], C0([0, 1]) admits an infinite dimensional subspace S

such that each element F of S
‖·‖∞

in C([0, 1]) satisfies:

(1) F is a primitive to a Kurzweil integrable function;
(2) F is differentiable everywhere except perhaps at x0.

Remark 4.7. As it was mentioned, Gurariy proved that C0([0, 1]) is not spaceable in
C([0, 1]), which means that every infinite dimensional space of differentiable functions
has limit points which are not differentiable. Proposition 4.6 allows us to expect some
control on the closure of infinite dimensional spaces of differentiable functions, if these
spaces are constructed carefully. This raise the natural question: which are the minimal
conditions that a closed subspace of C([0, 1]), containing an infinite dimensional subspace
of C0([0, 1]), must have? In [4], Bongiorno, Di Piazza and Preiss has given a constructive
definition of integral, called C-integral, whose set of primitives is exactly AC + C0([0, 1]).
Motivated by this we might ask if there is a closed subspace E of C([0, 1]), containing an
infinite dimensional subspace of C0([0, 1]), and such that E ⊂ AC +C0([0, 1]). Since there
is not a Hake-like Theorem for the C-integral, we are not able to answer this question with
an argument analogue to the one used to prove Proposition 4.6.
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4.1. Remark on the algebrability of J . Unlike the sets studied in the previous sections
(see Theorems 2.4 and 3.2), the set J ∪{0} does not admit algebraic structures within it at
all. This is a direct consequence of the following fact: if g is a Kurzweil integrable function
such that g2 is Kurzweil integrable, then g2 is also Lebesgue integrable by Proposition 4.2.
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