ADDITIVITY AND LINEABILITY IN VECTOR SPACES

ARTUR BARTOSZEWICZ AND SZYMON GŁĄB

ABSTRACT. Gámez-Merino, Munoz-Fernández and Seoane-Sepúlveda proved that if additivity $\mathcal{A}(\mathcal{F}) > \mathfrak{c}$, then \mathcal{F} is $\mathcal{A}(\mathcal{F})$ -lineable where $\mathcal{F} \subseteq \mathbb{R}^{\mathbb{R}}$. They asked if $\mathcal{A}(\mathcal{F}) > \mathfrak{c}$ can be weakened. We answer this question in negative. Moreover, we introduce and study the notions of homogeneous lineability number and lineability number of subsets of linear spaces.

1. Introduction

A subset M of a linear space V is κ -lineable if $M \cup \{0\}$ contains a linear subspace of dimension κ (see [1], [2], [3], [23], [26]). If additionally V is a linear algebra, then in a similar way one can define albegrability of subsets of V (see [2], [4], [5], [6], [7], [9], [10], [11], [12], [24], [25], [26]). If V is a linear topological space, then $M \subseteq V$ is called spaceable (dense-lineable) if M contains a closed infinitely dimensional subspace (dense subspace) (see [13], [14], [27]). The lineability problem of subsets of linear spaces of functions or sequences have been studied by many authors. The most common way of proving κ -lineability is to construct a set of cardinality κ of linearly independent elements of V and to show that any linear combination of them is in M.

We will concentrate on a non-constructive method in lineability. Following the paper [21], we will consider a connection between lineability and additivity. This method does not give a specific large linear space, but ensures that such a space exists.

Let $\mathcal{F} \subseteq \mathbb{R}^{\mathbb{R}}$. The additivity of \mathcal{F} is defined as the following cardinal number

$$\mathcal{A}(\mathcal{F}) = \min(\{|F| : F \subseteq \mathbb{R}^{\mathbb{R}}, \ \varphi + F \not\subseteq \mathcal{F} \text{ for every } \varphi \in \mathbb{R}^{\mathbb{R}}\} \cup \{(2^{\mathfrak{c}})^+\}).$$

The notion of additivity was introduced by Natkaniec in [29] and then studied by several authors [17], [16], [18], [19] and [30].

A family $\mathcal{F} \subseteq \mathbb{R}^{\mathbb{R}}$ is called star-like if $a\mathcal{F} \subseteq \mathcal{F}$ for all $a \in \mathbb{R} \setminus \{0\}$. Gámez-Merino, Munoz-Fernández and Seoane-Sepúlveda proved the in [21] following result which connects the lineability and the additivity of star-like families.

Theorem 1.1. Let $\mathcal{F} \subseteq \mathbb{R}^{\mathbb{R}}$ be star-like. If $\mathfrak{c} < \mathcal{A}(\mathcal{F}) \leq 2^{\mathfrak{c}}$, then \mathcal{F} is $\mathcal{A}(\mathcal{F})$ -lineable.

The authors noted that there is a star-like family \mathcal{F} such that $\mathcal{A}(\mathcal{F}) = 2$ and \mathcal{F} is not 2-lineable. They asked if the above result is true for $2 < \mathcal{A}(\mathcal{F}) \le \mathfrak{c}$. We will answer this question in negative. This will show that Theorem 1.1 is sharp.

²⁰¹⁰ Mathematics Subject Classification. Primary: 15A03; Secondary: 28A20, 26A15.

Key words and phrases. lineability, additivity.

The authors have been supported by the Polish Ministry of Science and Higher Education Grant No. N N201 414939 (2010-2013).

Let us observe that the notion of additivity can be stated for abelian groups as follows. If (G, +) is an abelian group and $\mathcal{F} \subseteq G$, then the additivity of \mathcal{F} is the cardinal number

$$\mathcal{A}(\mathcal{F}) = \min(\{|F| : F \subseteq G \text{ and } \forall \varphi \in G(\varphi + F \not\subseteq \mathcal{F})\} \cup \{|G|^+\}).$$

On the other hand, the lineability is a natural notion in vector spaces. We say that a set $\mathcal{F} \subseteq V$, where V is a linear space, is λ -lineable if there exists a subspace W of V such that $W \subseteq \mathcal{F} \cup \{0\}$ and $\dim W = \lambda$. Now, the lineability $\mathcal{L}(\mathcal{F})$ is the cardinal number

$$\mathcal{L}(\mathcal{F}) = \min\{\lambda : \mathcal{F} \text{ is not } \lambda\text{-lineable}\}.$$

Clearly $\mathcal{L}(\mathcal{F})$ is a cardinal number less or equal to $(\dim V)^+$ and it can take any value between 1 and $(\dim V)^+$ – see Proposition 2.4.

2. Results

The following Lemma 2.1 and Theorem 2.2 are generalizations of [21, Lemma 2.2 and Theorem 2.4] in the settings of abelian groups and vector spaces over infinite fields, respectively. Short proofs of this facts are essentially the same as those in [21], but our presentation is more general and from the proof of Theorem 2.2 we extract a new notion of lineability, namely homogeneus lineability. Moreover the authors of [21] claimed that Theorem 1.1 held true also in the case $\mathfrak{c} = \mathcal{A}(\mathcal{F})$. However we will show (see Theorem 2.5 and Theorem 2.6) that this is not true. Let us remark that all examples of families $\mathcal{F} \subseteq \mathbb{R}^{\mathbb{R}}$ discussed in [21] have additivity $\mathcal{A}(\mathcal{F})$ greater than \mathfrak{c} , so the described mistake has almost no impact on the value of this nice paper.

Lemma 2.1. Let (G,+) be an abelian group. Assume that F is a subgroup of G and $\mathcal{F} \subseteq G$ is such that

$$(1) 2|F| < \mathcal{A}(\mathcal{F}).$$

Then there is $g \in \mathcal{F} \setminus F$ with $g + F \subseteq \mathcal{F}$. That means actually that some coset of F different from F is contained in \mathcal{F} .

Proof. Let $h \in G \setminus F$ and put $F_h = (h+F) \cup F$. Then $|F_h| = 2|F|$. By (1) there is $g \in G$ such that $g + F_h \subseteq \mathcal{F}$. Thus $g + F \subseteq \mathcal{F}$, $(g+h) + F \subseteq \mathcal{F}$ and $0 \in F$, and consequently $g \in \mathcal{F}$ and $g + h \in \mathcal{F}$. It is enough to show that $g \notin F$ or $g + h \notin F$. Suppose to the contrary that $g, g + h \in F$. Then $h = (g+h) - g \in F$ which is a contradiction.

Let us remark that if $\mathcal{A}(\mathcal{F})$ is an infinite cardinal, then the condition $|F| < \mathcal{A}(\mathcal{F})$ implies condition (1).

Assume that V is a vector space, $A \subseteq V$ and $f_1, \ldots, f_n \in V$. Fix the following notation $[A] = \operatorname{span}(A)$ and $[f_1, \ldots, f_n] = \operatorname{span}(\{f_1, \ldots, f_n\})$.

Theorem 2.2. Let V be a vector space over a field \mathbb{K} with $\omega \leq |\mathbb{K}| = \mu < \dim V$. Assume that $\mathcal{F} \subseteq V$ is star-like, that is $a\mathcal{F} \subseteq \mathcal{F}$ for every $a \in \mathbb{K} \setminus \{0\}$, and

(2)
$$\mu < \mathcal{A}(\mathcal{F}) \le \dim V.$$

Then $\mathcal{F} \cup \{0\}$ is $\mathcal{A}(\mathcal{F})$ -lineable, in symbols $\mathcal{L}(\mathcal{F}) > \mathcal{A}(\mathcal{F})$. Moreover, any linear subspace Y of V contained in \mathcal{F} of dimension less than $\mathcal{A}(\mathcal{F})$ can be extended to $\mathcal{A}(\mathcal{F})$ -dimensional subspace also contained in \mathcal{F} .

Proof. Let Y be a linear subspace of V with $Y \subseteq \mathcal{F} \cup \{0\}$. Let X be a maximal element, with respect to inclusion, of the family

$$\{X: Y \subseteq X \subseteq \mathcal{F} \cup \{0\}, X \text{ is a linear subspace of } V\}.$$

Suppose to the contrary that $|X| < \mathcal{A}(\mathcal{F})$. Then by Lemma 2.1 there is $g \in \mathcal{F} \setminus X$ with $g + X \subseteq \mathcal{F}$. Let Z = [g] + X and take any $z \in Z \setminus X$. Then there is $x \in X$ and nonzero $a \in \mathbb{K}$ with $z = ag + x = a(g + x/a) \in \mathcal{F}$. Since $X \subseteq \mathcal{F}$ we obtain that $Z \subseteq \mathcal{F}$. This contradicts the maximality of X. Therefore $\mathcal{A}(\mathcal{F}) \leq |X| < \mathcal{L}(\mathcal{F})$.

The assertion of Theorem 2.2 leads us to the following definition of a new cardinal function. We define the **homogeneous lineability number** of \mathcal{F} as the following cardinal number

$$\mathcal{HL}(\mathcal{F}) = \min(\{\lambda : \text{there is linear space } Y \subseteq \mathcal{F} \cup \{0\} \text{ with } \dim Y < \lambda$$

which cannot be extended to a linear space $X \subseteq \mathcal{F} \cup \{0\}$ with $\dim X = \lambda\} \cup \{|V|^+\}$.

Now the assertion of Theorem 2.2 can be stated briefly.

Corollary 2.3. Let V be a vector space over a field \mathbb{K} with $\omega \leq |\mathbb{K}| = \mu < \dim V$. Assume that \mathcal{F} is star-like and $\mu < \mathcal{A}(\mathcal{F}) \leq \dim V$. Then $\mathcal{HL}(\mathcal{F}) > \mathcal{A}(\mathcal{F})$.

Now we will show basic connections between $\mathcal{HL}(\mathcal{F})$ and $\mathcal{L}(\mathcal{F})$.

Proposition 2.4. Let V be a vector space. Then

- (i) $\mathcal{HL}(\mathcal{F}) \leq \mathcal{L}(\mathcal{F})$ for every $\mathcal{F} \subseteq V$;
- (ii) For every successor cardinal $\kappa \leq (\dim V)^+$ there is $\mathcal{F} \subseteq V$ with $\mathcal{HL}(\mathcal{F}) = \mathcal{L}(\mathcal{F}) = \kappa$;
- (iii) For every $\lambda, \kappa \leq (\dim V)^+$ such that $\lambda^+ < \kappa$ there is $\mathcal{F} \subseteq V$ with $\mathcal{HL}(\mathcal{F}) = \lambda^+$ and $\mathcal{L}(\mathcal{F}) = \kappa$;
- (iv) $\mathcal{HL}(\mathcal{F})$ is a successor cardinal.

Proof. Note that the cardinal number $\mathcal{L}(\mathcal{F})$ can be defined in the similar terms as it was done for $\mathcal{HL}(\mathcal{F})$, namely $\mathcal{L}(\mathcal{F})$ is the smallest cardinal λ such that the trivial linear space $Y = \{0\}$ cannot be extended to a linear space $X \subseteq \mathcal{F} \cup \{0\}$ with dim $V = \lambda$. Therefore $\mathcal{HL}(\mathcal{F}) \leq \mathcal{L}(\mathcal{F})$.

To see (ii) take any successor cardinal $\kappa \leq |V|^+$. There is $\lambda \leq |V|$ with $\lambda^+ = \kappa$. Let \mathcal{F} be a linear subspace of V of dimension λ . Then \mathcal{F} is λ -lineable but not λ^+ -lineable. Thus $\mathcal{L}(\mathcal{F}) = \kappa$. Note that any linear subspace of \mathcal{F} can be extended to a λ -dimensional space \mathcal{F} , but cannot be extended to a κ -dimensional space. Thus $\mathcal{HL}(\mathcal{F}) = \kappa$.

Let $\operatorname{Card}[\lambda,\kappa) = \{\nu : \lambda \leq \nu < \kappa \text{ and } \nu \text{ is a cardinal number}\}$. For every $\nu \in \operatorname{Card}[\lambda,\kappa)$ we find B_{ν} of cardinality ν such that $B = \bigcup \{B_{\nu} : \nu \in \operatorname{Card}[\lambda,\kappa)\}$ is a linearly independent subset of V. Let $W_{\nu} = [B_{\nu}]$. Let $\mathcal{F} = \bigcup_{\nu \in \operatorname{Card}[\lambda,\kappa)} W_{\nu}$. Clearly \mathcal{F} is ν -lineable for any $\nu < \kappa$. Take any linear space $W \subseteq \mathcal{F}$. Since $[\mathcal{F}] = [B]$, then any element x of W is of the form $\sum_{i=1}^k \sum_{j=1}^{n_i} \alpha_{ij} w_{ij}$ where $\alpha_{ij} \in \mathbb{K}$

and w_{i1}, \ldots, w_{in_i} are distinct elements of B_{ν_i} , $\lambda \leq \nu_1 < \cdots < \nu_k < \kappa$. If $x \in W_{\nu}$ for some ν , then $x = \sum_{p=1}^m \alpha_p w_p$, $\alpha_p \in \mathbb{K}$, $w_1, \ldots, w_m \in B_{\nu}$ are distinct. Then

$$\sum_{i=1}^k \sum_{j=1}^{n_i} \alpha_{ij} w_{ij} = \sum_{p=1}^m \alpha_p w_p.$$

Now, if $\nu \notin \{n_0, \ldots, \nu_k\}$, then $\alpha_{ij} = 0 = \alpha_p$ for every i, j, p. Thus x = 0. If $\nu = \nu_l$, then $\alpha_{ij} = 0$ for every $i \neq l$. Thus $x \in W_{\nu}$. This shows that W does not contain any nontrivial linear combination of $\alpha_1 x_1 + \cdots + \alpha_n x_n$ with $x_i \in W_{\nu_i}$ for distinct ν_1, \ldots, ν_n . Therefore $W \subseteq W_{\nu}$ for some ν . Consequently $\dim W < \kappa$, which means that \mathcal{F} is not κ -lineable. Hence $\mathcal{L}(\mathcal{F}) = \kappa$.

Take any linear space $Y \subseteq \mathcal{F}$ of dimension less than λ . As before we obtain that Y is a subset of some W_{ν} . Therefore Y can be extended to a linear subspace of \mathcal{F} of dimension λ . On the other hand $Y = W_{\lambda}$ cannot be extended to a linear space contained in \mathcal{F} of dimension λ^+ . Hence $\mathcal{HL}(\mathcal{F}) = \lambda^+$.

To prove (iv) assume that $\mathcal{HL}(\mathcal{F}) = \kappa$. Then for any $\lambda < \kappa$ and any linear space $Y \subseteq \mathcal{F} \cup \{0\}$ of dimension less than λ there is a linear space $X \supset Y$ contained in $\mathcal{F} \cup \{0\}$ of dimension λ . Suppose to the contrary that κ is a limit cardinal. There are cardinals $\tau_{\nu} < \kappa$, $\nu < \mathrm{cf}(\kappa) \le \kappa$ with $\bigcup_{\nu < \mathrm{cf}(\kappa)} \tau_{\nu} = \kappa$. Since $\mathcal{HL}(\mathcal{F}) = \kappa$, then for any linear space $Y \subseteq \mathcal{F}$ of dimension less than κ we can inductively define an increasing chain $\{Y_{\nu} : \dim Y < \nu < \mathrm{cf}(\kappa)\}$ of linear spaces with $\dim Y_{\nu} = \tau_{\nu}$ and $Y_{\nu} \subseteq \mathcal{F} \cup \{0\}$. Then $Y' = \bigcup Y_{\nu}$ is a linear space of dimension κ such that $Y \subseteq Y' \subseteq \mathcal{F}$. Hence $\mathcal{HL}(\mathcal{F}) \ge \kappa^+$ which is a contradiction.

Theorem 2.5. Assume that $3 \le \kappa \le \mu$, \mathbb{K} is a field of cardinality μ and V is a linear space over \mathbb{K} with dim $V = 2^{\mu}$. Then there is a star-like family $\mathcal{F} \subseteq V$ with $\mathcal{A}(\mathcal{F}) = \kappa$ which is not 2-lineable.

Proof. Let $\{G_{\xi}: \xi < 2^{\mu}\}$ be an enumeration of all subsets of V of cardinality less than κ . Let $\mathcal{I} \subseteq V$ be a linearly independent set of cardinality κ . Inductively for any $\xi < 2^{\mu}$ we construct $\varphi_{\xi} \in V$ and $X_{\xi} \subseteq V$ such that

- (a) $\varphi_{\xi} + f \notin Y_{\xi} := [\mathcal{I} \cup \bigcup_{\beta < \xi} X_{\beta}] \text{ for any } f \in G_{\xi};$
- (b) $X_{\xi} = \bigcup_{f \in G_{\xi}} [\varphi_{\xi} + f].$

Suppose that we have already constructed φ_{ξ} and X_{ξ} for every $\xi < \alpha$. Let $Y_{\alpha} = [\mathcal{I} \cup \bigcup_{\xi < \alpha} X_{\xi}]$. Since $\dim[X_{\xi}] < \kappa$, then $\dim Y_{\alpha} \leq |\alpha|\kappa + \kappa$. Thus $|Y_{\alpha}| < 2^{\mu}$ and we can choose $\varphi_{\alpha} \notin Y_{\alpha} - G_{\alpha}$ (equivalently $\varphi_{\alpha} + f \notin Y_{\alpha}$ for every $f \in G_{\alpha}$). Define $X_{\alpha} = \bigcup_{f \in G_{\alpha}} [\varphi_{\alpha} + f]$.

Observe that $X_{\xi} \cap X_{\xi'} = \{0\}$ and $Y_{\xi} \subseteq Y_{\xi'}$ for $\xi < \xi'$. Moreover $Y_{\xi} \cap X_{\xi'} = \{0\}$ and $X_{\xi} \cap [\mathcal{I}] = \{0\}$ for $\xi \leq \xi'$. Define $\mathcal{F} = \bigcup_{\xi < 2^{\mu}} X_{\xi}$. Take any $G \subseteq V$ with $|G| < \kappa$. There is ξ with $G = G_{\xi}$. Then $\varphi_{\xi} + G_{\xi} \subseteq X_{\xi} \subseteq \mathcal{F}$. Therefore $\mathcal{A}(\mathcal{F}) \geq \kappa$.

Now, we will show that for any $\varphi \in V$ there is $i \in \mathcal{I}$ with $\varphi + i \notin \mathcal{F}$. Suppose to the contrary that it is not the case, that is there is $\varphi \in V$ such that for any $i \in \mathcal{I}$ we have $\varphi + i \in \mathcal{F}$. Then there are distinct $i, i' \in \mathcal{I}$ with $\varphi + i, \varphi + i' \in \mathcal{F}$. Suppose first that $\varphi + i \in X_{\xi}$ and $\varphi + i' \in X_{\xi'}$ with $\xi < \xi'$. Then

$$X_{\xi'} \ni \varphi + i' = \varphi + i + (i' - i) \in [X_{\xi} \cup \mathcal{I}] \subseteq Y_{\xi}.$$

Thus $\varphi + i' = 0$. Therefore $\varphi \in [\mathcal{I}]$ and consequently $\varphi + \mathcal{I} \subseteq [\mathcal{I}]$. Since $i \neq i'$, then $X_{\xi} \ni \varphi + i = \varphi + i' + (i - i') = i - i' \in [\mathcal{I}]$ which contradicts the fact that $X_{\xi} \cap [\mathcal{I}] = \{0\}$. Hence there is ξ such that $\varphi + i \in X_{\xi}$ for every $i \in \mathcal{I}$. Since $|G_{\xi}| < \kappa$ and $|\mathcal{I}| = \kappa$, there are two distinct $i, i' \in \mathcal{I}$ such that

 $\varphi + i = a(\varphi_{\xi} + f)$ and $\varphi + i' = a'(\varphi_{\xi} + f)$ for some $a, a' \in \mathbb{K}$ and $f \in G_{\xi}$. Thus $i - i' = (a - a')(\varphi_{\xi} + f)$ and therefore $\varphi_{\xi} + f \in [\mathcal{I}]$ which is a contradiction.

Finally we obtain that $\varphi + \mathcal{I} \nsubseteq \mathcal{F}$ for every $\varphi \in V$, which means that $\mathcal{A}(\mathcal{F}) \leq \kappa$. Hence $\mathcal{A}(\mathcal{F}) = \kappa$. Let U = [h, h'] for two linearly independent elements $h, h' \in \mathcal{F}$. Then $h \in X_{\xi}$ and $h' \in X_{\xi'}$ for some ξ and ξ' . If $\xi < \xi'$, then $h \in Y_{\xi'}$ and $h' \notin Y_{\xi'}$. Let $f \in U \setminus ([h] \cup [h'])$. Then f = ah + a'h' for some $a, a' \in \mathbb{K} \setminus \{0\}$. If $f \in Y_{\xi'}$, then $h' = (f - ah)/a' \in Y_{\xi'}$ which leads to contradiction. Thus $f \notin Y_{\xi'}$ which means that $U \cap Y_{\xi'} = [h]$. Since two-dimensional space U cannot be covered by less than μ many sets of the form [g], then $U \nsubseteq Y_{\xi'} \cup X_{\xi'}$. However $U \subseteq [Y_{\xi'} \cup X_{\xi'}]$. Therefore $U \cap X_{\alpha} = \{0\}$ for every $\alpha > \xi'$. Hence $U \nsubseteq \mathcal{F}$.

If $h, h' \in X_{\xi}$, then $U \cap \bigcup_{\beta \neq \xi} X_{\beta} = \{0\}$ and $U \not\subseteq X_{\xi}$. That implies that \mathcal{F} does not contains two-dimensional vector space.

Finally, note that \mathcal{F} is star-like.

The next result, which is a modification of Theorem 2.5, shows that if $\mathcal{A}(\mathcal{F}) \leq |\mathbb{K}|$, then $\mathcal{L}(\mathcal{F})$ can be any cardinal not greater than $(2^{\mu})^+$.

Theorem 2.6. Assume that $3 \le \kappa \le \mu$, \mathbb{K} is a field of cardinality μ and V is a linear space over \mathbb{K} with dim $V = 2^{\mu}$. Let $1 < \lambda \le (2^{\mu})^+$. There is star-like family $\mathcal{F} \subseteq V$ such that $\kappa \le \mathcal{A}(\mathcal{F}) \le \kappa + 1$ and $\mathcal{L}(\mathcal{F}) = \lambda$.

Proof. Let $\{G_{\xi}: \xi < 2^{\mu}\}$ be an enumeration of all subsets of V of cardinality less than κ . Write V as a direct sum $V_1 \oplus V_2$ of two vector spaces V_1 and V_2 with dim $V_1 = \dim V_2 = 2^{\mu}$. Let $\operatorname{Card}(\lambda) = \{\nu < \lambda : \nu \text{ is a cardinal number}\}$. As in the proof of Proposition 2.4(iii) we can find vector spaces $W_{\nu} \subseteq V_1$, $\nu \in \operatorname{Card}(\lambda)$ such that dim $W_{\nu} = \nu$ and the union of bases of all W_{ν} 's forms a linearly independent set. Put $Z = \bigcup_{\nu \in \operatorname{Card}(\lambda)} W_{\nu} \subseteq V_1$ and note that $\mathcal{L}(Z) = \lambda$. Let $\mathcal{I} \subseteq V_2$ be a linearly independent set of cardinality $\kappa + 1$. Inductively for any $\xi < 2^{\mu}$ we construct $\varphi_{\xi} \in V$ and $X_{\xi} \subseteq V$ such that φ_{ξ} and X_{ξ} satisfy the formulas (a) and (b) from the proof of Theorem 2.5. Define $\mathcal{F} = Z \cup \bigcup_{\xi < 2^{\mu}} X_{\xi}$. Then $\mathcal{A}(\mathcal{F}) \geq \kappa$.

Now, we will show that for any $\varphi \in V$ there is $i \in \mathcal{I}$ with $\varphi + i \notin \mathcal{F}$. Suppose to the contrary that it is not the case, that is there is $\varphi \in V$ such that for any $i \in \mathcal{I}$ we have $\varphi + i \in \mathcal{F}$. Then there are $i, i' \in \mathcal{I}$ with $\varphi + i, \varphi + i' \in \mathcal{F}$. Suppose first that $\varphi + i \in Z$ and $\varphi + i' \in Z$. Then $i - i' \in V_1$. Since $[\mathcal{I}] \cap V_1 = \{0\}$, then i = i'. Thus there is at most one element $i \in \mathcal{I}$ with $\varphi + i \in Z$. Now there are at least $\kappa \geq 3$ elements $i \in \mathcal{I}$ such that $\varphi + i \in \bigcup_{\xi < 2^{\mu}} X_{\xi}$. Using the argument as in the proof of Theorem 2.5 we reach a contradiction and we obtain that $\varphi + \mathcal{I} \not\subseteq \mathcal{F}$ for every $\varphi \in V$, which means that $\mathcal{A}(\mathcal{F}) \leq \kappa + 1$. Hence $\kappa \leq \mathcal{A}(\mathcal{F}) \leq \kappa + 1$.

Since $Z \subseteq \mathcal{F}$ and $\mathcal{L}(Z) = \lambda$, then $\mathcal{L}(\mathcal{F}) \geq \lambda$. From the proof of Theorem 2.5 we obtain that $\bigcup_{\xi < 2^{\mu}} X_{\xi}$ does not contain 2-dimensional vector space. To show that $\mathcal{L}(\mathcal{F}) = \lambda$ it suffices to show that each 2-dimensional space W contained in \mathcal{F} must be a subset of Z.

Let W be a 2-dimensional space which is not contained in Z. In the proof of Theorem 2.5 we have shown that the cardinality of the family of one-dimensional subspaces of W is less than μ . Moreover, by the construction of Z, W has at most two one-dimensional subspaces contained in Z. Consequently W is not a subset of \mathcal{F} .

Note that $\mathcal{HL}(\mathcal{F}) = 2$ for \mathcal{F} constructed in the proofs of Theorem 2.5 and Theorem 2.6.

3. LINEABILITY OF RESIDUAL STAR-LIKE SUBSETS OF BANACH SPACES

Let us present the following example. Let \mathcal{J} be an ideal of subsets of some set X which does not contain X. By $\operatorname{add}(\mathcal{J})$ we denote the cardinal number defined as $\min\{|\mathcal{G}|: \mathcal{G} \subseteq \mathcal{J} \text{ and } \bigcup \mathcal{G} \notin \mathcal{J}\}$ where $|\mathcal{G}|$ stands for cardinality of \mathcal{G} . Let \mathcal{N} and \mathcal{M} stands for σ -ideal of null and meager subsets of the real line, respectively. Then $\omega_1 \leq \operatorname{add}(\mathcal{N}) \leq \operatorname{add}(\mathcal{M}) \leq \mathfrak{c}$. Moreover, if X is an uncountable complete separable metric space and \mathcal{M}_X is an ideal of meager subsets of X, then $\operatorname{add}(\mathcal{M}) = \operatorname{add}(\mathcal{M}_X)$.

Let $V = \mathbb{R}$ be a linear space over $\mathbb{K} = \mathbb{Q}$. Let \mathcal{J} be a translation invariant proper σ -ideal of subsets of \mathbb{R} and let \mathcal{F} be a \mathcal{J} -residual subset of \mathbb{R} , i.e. $\mathcal{F}^c \in \mathcal{J}$. It turns out that $\mathcal{A}(\mathcal{F}) \geq \operatorname{add} \mathcal{J}$. To see it fix $F \subseteq \mathbb{R}$ with $|F| < \operatorname{add} \mathcal{J}$. For any $f \in F$ consider a set

$$T_f = \{t \in \mathbb{R} : t + f \notin \mathcal{F}\} = \{t \in \mathbb{R} : \exists g \in \mathcal{F}^c (t = g - f)\} \subseteq \mathcal{F}^c - f.$$

Thus $T_f \in \mathcal{J}$. Since $|F| < \operatorname{add} \mathcal{J}$, then also $\bigcup_{f \in F} T_f \in \mathcal{J}$. Therefore there is $t \in \mathbb{R}$ such that $t + f \in \mathcal{F}$ for any $f \in F$.

If we additionally assume that \mathcal{F} is star-like, then by Theorem 2.2 we obtain that $\mathcal{HL}(\mathcal{F}) > \operatorname{add} \mathcal{J}$. In particular if A is positive Lebesgue measure (non-meager with Baire property), then $\mathbb{Q}A = \{qa: q \in \mathbb{Q}, a \in A\}$ is $(\mathbb{Q}$ -)star-like of full measure (residual) and therefore $\mathcal{HL}(\mathcal{F}) > \operatorname{add}(\mathcal{N})$ (> $\operatorname{add}(\mathcal{M})$). Using a similar reasoning one can prove the following.

Theorem 3.1. Assume that X is a separable Banach space. Let $\mathcal{F} \subseteq X$ be residual and star-like, and let $\mathbb{K} \subseteq \mathbb{R}$ be a field of cardinality less than $\operatorname{add}(\mathcal{M})$. Consider X as a linear space over \mathbb{K} . Then $\mathcal{HL}_{\mathbb{K}}(\mathcal{F}) > \operatorname{add}(\mathcal{M})$. In particular \mathcal{F} contains an uncountably dimensional vector space over \mathbb{K} .

Let $\hat{C}[0,1]$ stand for the family of functions from C[0,1] which attain the maximum only at one point. Then $\hat{C}[0,1]$ is star-like and residual but not 2-lineable, see [15] and [28] for details. This shows that Theorem 3.1 would be false for $\mathbb{K} = \mathbb{R}$. On the other hand, Theorem 3.1 shows that for any field $\mathbb{K} \subseteq \mathbb{R}$ of cardinality less than $\mathrm{add}(\mathcal{M})$ there is uncountable family $\mathcal{F} \subseteq \hat{C}[0,1]$ such that any nontrivial linear combination of elements from \mathcal{F} with coefficients from \mathbb{K} attains the maximum only at one point.

4. Homogeneous lineability and lineability numbers of some subsets of $\mathbb{R}^{\mathbb{R}}$

In this section we will apply Theorem 2.2 to obtain homogeneous lineability of families of functions from $\mathbb{R}^{\mathbb{R}}$. We will consider those families for which the additivity has been already computed.

Let $f \in \mathbb{R}^{\mathbb{R}}$. We will say that

- (1) $f \in D(\mathbb{R})$ (f is Darboux) if f maps connected sets onto connected sets.
- (2) $f \in ES(\mathbb{R})$ (f is everywhere surjective) if $f(U) = \mathbb{R}$ for every nonempty open set U;
- (3) $f \in SES(\mathbb{R})$ (f is strongly everywhere surjective) if f takes each real value \mathfrak{c} many times in each interval;
- (4) $f \in PES(\mathbb{R})$ (f is perfectly everywhere surjective) if $f(P) = \mathbb{R}$ for every perfect set P;
- (5) $f \in J(\mathbb{R})$ (f is Jones function) if the graph of f intersects every closed subset of \mathbb{R}^2 with uncountable projection on the x-axis.
- (6) $f \in AC(\mathbb{R})$ (f is almost continuous, in the sense of J. Stallings) if every open set containing the graph of f contains also the graph of some continuous function.

- (7) If $h: X \to \mathbb{R}$, where X is a topological space, $h \in \text{Conn}(X)$ (h is a connectivity function) if the graph of $h|_C$ is connected for every connected set $C \subseteq X$.
- (8) $f \in \text{Ext}(\mathbb{R})$ (f is extendable) if there is a connectivity function $g : \mathbb{R} \times [0,1] \to \mathbb{R}$ such that f(x) = g(x,0) for every $x \in \mathbb{R}$.
- (9) $f \in PR(\mathbb{R})$ (f is a perfect road function) if for every $x \in \mathbb{R}$ there is a perfect set $P \subseteq \mathbb{R}$ such that x is a bilateral limit point of P and $f|_P$ is continuous at x.
- (10) $f \in PC(\mathbb{R})$ (f is peripherally continuous) if for every $x \in \mathbb{R}$ and pair of open sets $U, V \subseteq \mathbb{R}$ such that $x \in U$ and $f(x) \in V$ there is an open neighborhood W of x with $W \subseteq U$ and $f(\mathrm{bd}(W)) \subseteq V$.
- (11) $f \in SZ(\mathbb{R})$ (f is a Sierpiński–Zygmund function) if f is not continuous on any subset of the real line of cardinality \mathfrak{c} .

We start from recalling two cardinal numbers:

$$e_{\mathfrak{c}} = \min\{|F| : F \subseteq \mathbb{R}^{\mathbb{R}}, \forall \varphi \in \mathbb{R}^{\mathbb{R}} \exists f \in F(\operatorname{card}(f \cap \varphi) < \mathfrak{c})\},\$$
$$d_{\mathfrak{c}} = \min\{|F| : F \subseteq \mathbb{R}^{\mathbb{R}}, \forall \varphi \in \mathbb{R}^{\mathbb{R}} \exists f \in F(\operatorname{card}(f \cap \varphi) = \mathfrak{c})\}.$$

It was proved in [17] that $\mathcal{A}(D(\mathbb{R})) = \mathcal{A}(AC(\mathbb{R})) = e_{\mathfrak{c}}$. Therefore $\mathcal{HL}(D(\mathbb{R}))$, $\mathcal{HL}(AC(\mathbb{R})) \geq e_{\mathfrak{c}}^+$. More recently in [21] it was proved that $\mathcal{A}(J(\mathbb{R})) = e_{\mathfrak{c}}$. Thus $\mathcal{HL}(J(\mathbb{R})) \geq e_{\mathfrak{c}}^+$. On the other hand, by the result of [20], $\mathcal{L}(J(\mathbb{R})) = (2^{\mathfrak{c}})^+$. Since $J(\mathbb{R}) \subseteq PES(\mathbb{R}) \subseteq SES(\mathbb{R}) \subseteq ES(\mathbb{R}) \subseteq D(\mathbb{R})$, then additivity number for the classes $PES(\mathbb{R})$, $SES(\mathbb{R})$, $SES(\mathbb{R})$ is $e_{\mathfrak{c}}$ while their lineability number is largest possible. Since in some model of ZFC we have $e_{\mathfrak{c}} < 2^{\mathfrak{c}}$, our method does not give optimal solution for lineability number in this cases.

It was proved in [19] that $\mathcal{A}(\mathrm{Ext}(\mathbb{R})) = \mathcal{A}(\mathrm{PR}(\mathbb{R})) = \mathfrak{c}^+$. Thus $\mathcal{HL}(\mathrm{Ext}(\mathbb{R})), \mathcal{HL}(\mathrm{Ext}(\mathbb{R})) \geq \mathfrak{c}^{++}$. These two classes were not considered in the context of lineability.

In [18] it was proved that $\mathcal{A}(\mathrm{SZ}(\mathbb{R})) = d_{\mathfrak{c}}$. Thus $\mathcal{HL}(\mathrm{SZ}(\mathbb{R})) \geq d_{\mathfrak{c}}^+$. In [7] it was shown that $\mathrm{SZ}(\mathbb{R})$ is κ -lineable if there exists a family of cardinality κ consisting of almost disjoint subsets of \mathfrak{c} . On the other hand in [24] the authors proved that if there is no family of cardinality κ consisting of almost disjoint subsets of \mathfrak{c} , then $\mathrm{SZ}(\mathbb{R})$ is not κ -lineable. In [18] the authors proved that it is consistent with $\mathrm{ZFC}+\mathrm{CH}$ and $\mathcal{A}(\mathrm{SZ}(\mathbb{R}))=\mathfrak{c}^+<2^{\mathfrak{c}}$. However, if CH holds, then there is a family of cardinality $2^{\mathfrak{c}}$ consisting of almost disjoint subsets of \mathfrak{c} and therefore $\mathrm{SZ}(\mathbb{R})$ is $2^{\mathfrak{c}}$ -lineable. Consequently, as in previous examples, consistently $\mathcal{A}(\mathrm{SZ}(\mathbb{R}))^+<\mathcal{L}(\mathrm{SZ}(\mathbb{R}))$.

It was proved in [19] that $\mathcal{A}(PC(\mathbb{R})) = 2^{\mathfrak{c}}$. Therefore $\mathcal{HL}(PC(\mathbb{R})) = (2^{\mathfrak{c}})^+$ is the largest possible. Note that Darboux functions are peripherally continuous. Since the set of all functions which everywhere discontinuous and Darboux are strongly $2^{\mathfrak{c}}$ -algebrable, see [8], then so is $PC(\mathbb{R})$, which is much stronger property that $2^{\mathfrak{c}}$ -lineability.

If V is a vector space over \mathbb{K} with $|\mathbb{K}| = \mu \geq \omega$, \mathcal{F} is star-like, $\mathcal{F} \subseteq V$ and $\mathcal{A}(\mathcal{F}) = \kappa > \mu$, then $\mathcal{F} \cup \{0\} = \bigcup \mathcal{B}$, where every member B of \mathcal{B} is a linear space of dimension dim $B \geq \kappa$. It follows from the fact that for any $f \in \mathcal{F} \setminus \{0\}$ and any maximal vector space B contained in \mathcal{F} such that $[f] \subseteq B$ by Theorem 2.2 we have dim $B \geq \kappa$.

Theorem 4.1. Let $\mathcal{F} \subseteq V$ be such that $\mathcal{A}(\mathcal{F}) = \kappa > |\mathbb{K}|$. Assume that there is a vector space $X \subseteq V$ such that $X \cap \mathcal{F} \subseteq \{0\}$ with dim $X = \tau \leq \kappa$. Then \mathcal{B} contains at least τ many pairwise distinct elements.

Proof. Assume first that $\dim X = \kappa$ Let $X = \bigcup_{\xi < \kappa} X_{\xi}$ be such that $X_{\xi} \subseteq X_{\xi'}$ provided $\xi < \xi'$ and X_{ξ} is a linear space with $\dim X_{\xi} = |\xi|$ for every $\xi < \kappa$. Since $|X_{\xi}| < \mathcal{A}(\mathcal{F})$, there is $\varphi_{\xi} \in \mathcal{F}$ with $\varphi_{\xi} + X_{\xi} \subseteq \mathcal{F}$. Take any two distinct elements $x, y \in X$. There is ξ such that $x, y \in X_{\xi}$ and $\varphi_{\xi} + x, \varphi_{\xi} + y \in \mathcal{F}$. Thus $x - y \in X$. Hence x, y are not in the same B from B. Consequently $|B| \ge \kappa$. If $\dim X < \kappa$, the proof is similar and a bit simpler.

The fact that $\mathcal{F} \cup \{0\}$ can be represented as a union of at least τ linear spaces, each of dimension at least κ we denote by saying that \mathcal{F} has property $B(\kappa, \tau)$. Surprisingly families of strange function defined by non-linear properties can be written as unions of large linear spaces.

Corollary 4.2. (1) $D(\mathbb{R})$, $ES(\mathbb{R})$, $SES(\mathbb{R})$, $PES(\mathbb{R})$ and $J(\mathbb{R})$ have $B(e_{\mathfrak{c}}, e_{\mathfrak{c}})$.

- (2) $AC(\mathbb{R})$ has $B(e_{\mathfrak{c}}, \mathfrak{c})$.
- (3) $PC(\mathbb{R})$ has $B(2^{\mathfrak{c}}, \mathfrak{c})$.
- (4) $PR(\mathbb{R})$ have $B(\mathfrak{c}^+, \mathfrak{c}^+)$.
- (5) SZ(\mathbb{R}) has $B(d_{\mathfrak{c}}, d_{\mathfrak{c}})$.

Proof. We need only to show that for each of the given families of functions there is a large linear space disjoint from it. This is in fact the same as saying that complements of these families are τ -lineable for an appropriate τ . Note that $X_1 = \{f \in \mathbb{R}^{\mathbb{R}} : f(x) = 0 \text{ for every } x \leq 0\}$ is disjoint from $ES(\mathbb{R})$, $SES(\mathbb{R})$, $PES(\mathbb{R})$, $J(\mathbb{R})$ and $SZ(\mathbb{R})$. Let X_2 be a space of dimension $2^{\mathfrak{c}}$ such that $X_2 \setminus \{0\}$ consists of nowhere continuous functions with a finite range. Such a space X_2 was constructed in [23]. Clearly, X_2 is disjoint from $D(\mathbb{R})$. Let X_3 be a linear space of dimension \mathfrak{c} such that $X_3 \setminus \{0\}$ consists of functions which has dense set of jump discontinuities. Such a space X_3 was constructed in [27]. Then $X_3 \cap AC(\mathbb{R}) = X_3 \cap PC(\mathbb{R}) = \{0\}$. Let X_4 be a linear space of dimension $2^{\mathfrak{c}}$ such that $X_4 \setminus \{0\} \subseteq PES(\mathbb{R})$. Such a space X_4 was constructed in [22]. Then $X_4 \cap PR(\mathbb{R}) = \{0\}$.

We end the paper with the list of open questions:

- 1. Is it true that $\mathcal{A}(\mathcal{F})^+ \geq \mathcal{HL}(\mathcal{F})$ for any family $\mathcal{F} \subseteq \mathbb{R}^{\mathbb{R}}$?
- 2. What is are homogeneous lineability numbers of the following families $D(\mathbb{R})$, $AC(\mathbb{R})$, $PES(\mathbb{R})$, $J(\mathbb{R})$, $Ext(\mathbb{R})$, $PR(\mathbb{R})$ and $SZ(\mathbb{R})$?
- 3. Are the families $\operatorname{Ext}(\mathbb{R})$ and $\operatorname{PR}(\mathbb{R})$ 2°-lineable in ZFC?
- 4. Are the complements of the families $\operatorname{Ext}(\mathbb{R})$, $\operatorname{PC}(\mathbb{R})$ and $\operatorname{AC}(\mathbb{R})$ 2^c-lineable?

References

- [1] A. Aizpuru, C. Pérez-Eslava, F. J. García-Pacheco, J. B. Seoane-Sepúlveda, *Lineability and coneability of discontinuous functions on* ℝ, Publ. Math. Debrecen **72** (2008), no. 1-2, 129–139.
- [2] R.M. Aron, J.A. Conejero, A. Peris, J.B. Seoane-Sepúlveda, Uncountably generated algebras of everywhere surjective functions, Bull. Belg. Math. Soc. Simon Stevin 17 (2010), no. 3, 571–575.
- [3] R.M. Aron, V.I. Gurariy, J. B. Seoane-Sepúlveda, Lineability and spaceability of sets of functions on ℝ, Proc. Amer. Math. Soc. 133 (2005), no. 3, 795–803
- [4] R.M. Aron, D. Pérez-Garcia, J. B. Seoane-Sepúlveda, Algebrability of the set of non-convergent Fourier series, Studia Math. 175 (2006), no. 1, 83–90.
- [5] R.M. Aron, J.B. Seoane-Sepúlveda, Algebrability of the set of everywhere surjective functions on C, Bull. Belg. Math. Soc. Simon Stevin 14 (2007), no. 1, 25–31.
- [6] A. Bartoszewicz, M. Bienias, S. Głąb, Independent Bernstein sets and algebraic constructions, J. Math. Anal. Appl. 393 (2012), 138–143.

- [7] A. Bartoszewicz, S. Głąb, D. Pellegrino and J. B. Seoane-Sepúlveda, *Algebrability, non-linear properties, and special functions*, to appear in Proc. Amer. Math. Soc.
- [8] A. Bartoszewicz, S. Głąb, A. Paszkiewicz, Large free linear algebras of real and complex functions, Linear Algebra Appl. 438 (2013), 3689–3701.
- [9] A. Bartoszewicz, S. Głąb, T. Poreda, On algebrability of nonabsolutely convergent series, Linear Algebra Appl. 435 (2011), no. 5, 1025–1028.
- [10] A. Bartoszewicz, S. Głąb, Strong algebrability of sets of sequences and functions, Proc. Amer. Math. Soc. 141 (2013), 827–835.
- [11] A. Bartoszewicz, S. Głąb, Algebrability of conditionally convergent series with Cauchy product, J. Math. Anal. Appl. 385 (2012) 693–697.
- [12] F. Bayart and L. Quarta, Algebras in sets of queer functions. Israel J. Math. 158 (2007), 285–296.
- [13] L. Bernal-González, Algebraic genericity of strict-order integrability. Studia Math. 199 (2010), no. 3, 279–293.
- [14] L. Bernal-González, M. Ordónez Cabrera, Spaceability of strict order integrability. J. Math. Anal. Appl. 385 (2012), no. 1, 303–309.
- [15] G. Botelho, D. Cariello, V. V. Fávaro, D. Pellegrino, and J. B. Seoane-Sepúlveda, On very non-linear subsets of continuous functions, arXiv:1212.4395v1.
- [16] K. Ciesielski, A. Maliszewski, Cardinal invariants concerning bounded families of extendable and almost continuous functions. Proc. Amer. Math. Soc. 126 (1998), no. 2, 471–479.
- [17] K. Ciesielski, A. W. Miller, Cardinal invariants concerning functions whose sum is almost continuous. Real Anal. Exchange 20 (1994/95), no. 2, 657–672.
- [18] K. Ciesielski, T. Natkaniec, Algebraic properties of the class of Sierpiski-Zygmund functions. Topology Appl. 79 (1997), no. 1, 75–99.
- [19] K. Ciesielski, I. Recław, Cardinal invariants concerning extendable and peripherally continuous functions. Real Anal. Exchange 21 (1995/96), no. 2, 459–472.
- [20] J.L. Gámez-Merino, Large algebraic structures inside the set of surjective functions. Bull. Belg. Math. Soc. Simon Stevin 18 (2011), no. 2, 297–300.
- [21] J.L. Gámez-Merino, G.A. Munoz-Fernández, J.B. Seoane-Sepúlveda, Lineability and additivity in ℝ^R. J. Math. Anal. Appl. 369 (2010), no. 1, 265–272.
- [22] J.L. Gámez-Merino, G.A. Munoz-Fernández, V.M. Sánchez, J.B. Seoane-Sepúlveda, Sierpiński-Zygmund functions and other problems on lineability, Proc. Amer. Math. Soc. 138 (11) (2010) 3863–3876.
- [23] J.L. Gámez-Merino, G.A. Munoz-Fernández, J.B. Seoane-Sepúlveda, A characterization of continuity revisited, Amer. Math. Monthly 118 (2011), no. 2, 167–170.
- [24] J. L. Gámez-Merino, J. B. Seoane-Sepúlveda, An undecidable case of lineability in $\mathbb{R}^{\mathbb{R}}$, J. Math. Anal. Appl. 401 (2013), no. 2, 959–962.
- [25] F.J. García-Pacheco, M. Martín, J.B Seoane-Sepúlveda, Lineability, spaceability and algebrability of certain subsets of function spaces, Taiwanese J. Math. 13 (2009), no. 4, 1257–1269.
- [26] F.J. García-Pacheco, N. Palmberg, J.B Seoane-Sepúlveda, Lineability and algebrability of pathological phenomena in analysis, J. Math. Anal. Appl. 326 (2007), 929–939.
- [27] S. Głąb, P. Kaufmann, L. Pellegrini, Spaceability and algebrability of sets of nowhere integrable functions, Proc. Amer. Math. Soc. 141 (2013), 2025–2037.
- [28] V. I. Gurariy, L. Quarta, On lineability of sets of continuous functions, J. Math. Anal. Appl. 294 (2004), 62–72.
- [29] T. Natkaniec, Almost continuity, Real Anal. Exchange 17 (1991/92), no. 2, 462–520.
- [30] T. Natkaniec, New cardinal invariants in real analysis, Bull. Polish Acad. Sci. Math. 44 (1996), no. 2, 251–256.

Institute of Mathematics, Łódź University of Technology, Wólczańska 215, 93-005 Łódź, Poland $E\text{-}mail\ address$: arturbar@p.lodz.pl

Institute of Mathematics, Łódź University of Technology, Wólczańska 215, 93-005 Łódź, Poland *E-mail address*: szymon.glab@p.lodz.pl