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Abstract. Let K(R) stand for the hyperspace of all nonempty compact sets on

the real line and let d±(x,E) denote the (right- or left-hand) Lebesgue density of a

measurable set E ⊂ R at a point x ∈ R. In [3] it was proved that

{K ∈ K(R) : ∀x ∈ K(d+(x,K) = 1 or d−(x,K) = 1)}

is ΠΠΠ1
1–complete. In this paper we define an abstract density operator D± and we

generalize the above result. Some applications are included.

In descriptive set theory the following phenomenon is known – several kinds of sets

with a simple description can have extremely high complexity, for example they can

be ΠΠΠ1
1–complete. Many classical examples of such sets can be found in the Kechris

monograph [5]. They appear naturally in topology, in the Banach spaces theory, the

theory of real functions, and in other branches of mathematics. Descriptive properties

of families of compact sets in the hyperspace of all nonempty compact sets have been

considered in many papers (see [7], [8] and [6]). Recently, the notion of porosity has

been studied from this point of view (see [3], [9], [12], [15]).

The motivation for this note comes from our previous paper [3] in which the oper-

ators of density and porosity are studied with the use of methods of descriptive set

theory. Namely, it is proved there that the family NBP of all nowhere bilaterally

porous compact sets forms a ΠΠΠ1
1–complete subset of the space K(R) of all nonempty

compact subsets of R with the Vietoris topology. In [3] it is remarked that an analogous

fact holds true for the operator of Lebesgue density. The both notions of porosity and

Lebesgue density show the local smallness (or largeness) of a set at a point. Lebesgue

density is a basic notion in classical measure theory and the theory of real functions
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(see [1]). Porosity measures the smallness of sets in normed spaces (or more generally

in metric spaces); see [13], [14].

In this paper we generalize the results of [3] to several kinds of densities and porosi-

ties on the real line. To do it we define an abstract density operator D± on the real

line, and we prove that

(1) {K ∈ K(R) : ∀x ∈ K(D+(K, x) = 1 or D−(K, x) = 1)}

is ΠΠΠ1
1–complete.

The paper is organized as follows. In Section 1 we recall the preliminaries from

descriptive set theory. In Section 2 we define the operator D±, and we discuss the

meaning of each axiom defining D±. In Section 3 we prove the main theorem. In

Section 4 we give examples of density and porosity operators which fulfil the proposed

axioms, and in Section 5 we discuss the axiom (A5).

1. Preliminaries

We use standard set-theoretic notation (see [5] or [10]). We denote N = {0, 1, ...}.

We use the symbol | · | in several different meanings: the absolute value of a real

number, the length of an interval, the length of a finite sequence and the cardinality

of a set. This will never lead to confusion. A topological space X is Polish if it is

completely metrizable and separable. From now on, let X be an uncountable Polish

space. A set A ⊂ X is analytic if it is a projection of a Borel set B ⊂ X×X (equivalent

definitions of an analytic set can be found in [5, 14.A]). A set C ⊂ X is coanalytic if

X \ C is analytic. The classes of analytic and coanalytic sets are denoted by ΣΣΣ1
1 and

ΠΠΠ1
1, respectively.

By K(X) we denote the hyperspace of all nonempty compact subsets of X, endowed

with the Vietoris topology, i.e. the topology generated by sets {K ∈ K(X) : K ∩U 6=

∅} and {K ∈ K(X) : K ⊂ U} for any open sets U in X. The Vietoris topology is

equal to the topology generated by the Hausdorff metric

ρH(K,L) = max(max
x∈K

ρ(x, L),max
x∈L

ρ(x,K))
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where ρ(x,K) is the distance from a point x to a set K with respect to the metric ρ

on X.

Let ΓΓΓ be a point-class in the Borel or the projective hierarchies. We say that A ⊂ X

is ΓΓΓ–hard if for any zero-dimensional Polish space Y and any B ∈ ΓΓΓ(Y ) there exists

a continuous function f : Y → X such that f−1(A) = B. If additionally A ∈ ΓΓΓ(X),

then we say that A is ΓΓΓ-complete. If in the above definition we change the condition

of the existence of a continuous function to the condition of the existence of a Borel

function with the same property, then we obtain the definition of a Borel–ΓΓΓ–complete

set. If ΓΓΓ is closed under the continuous preimages, then ΓΓΓ–complete sets are the most

complicated sets in a class ΓΓΓ – they belong to ΓΓΓ but they are not in any class below

ΓΓΓ, for example a ΠΠΠ1
1–complete set is not in ΣΣΣ1

1, and a ΣΣΣ0
α–complete set is not in ΠΠΠ0

α.

The most standard way to prove the ΓΓΓ–completeness of a given set B ∈ ΓΓΓ(X) is

the following. We take a set A which is known to be ΓΓΓ–complete in some Polish space

Y . It is usually a set with a simple combinatorial structure, convenient to deal with.

Next, we find a continuous function f : Y → X with f−1(B) = A. Then it is easy to

see that B is ΓΓΓ-complete.

For a nonempty set A, by A<N we denote the set of all finite sequences (together with

the empty sequence ∅) of elements from A. For a sequence s = (s(0), ..., s(n−1)) ∈ A<N

and a ∈ A by ŝ a we denote the sequence (s(0), ..., s(n− 1), a).

For s = (s(0), ..., s(n−1)) ∈ A<N and 0 < m ≤ n put |s| = n, s|m = (s(0), ..., s(m−

1)); additionally |∅| = 0 and s|0 = ∅. A set T ⊂ A<N is called a tree on A if the empty

sequence is in T , and the following implication holds: s ∈ T ⇒ s|k ∈ T , for every

s ∈ A<N and every k < |s|. The set {x ∈ AN : ∀n ∈ N (x(0), x(1), ..., x(n)) ∈ T} of

all infinite branches of a tree T is called a body of T and is denoted by [T ]. A tree T

is called well-founded if [T ] = ∅, in other words, T is well-founded if it has no infinite

branch. From now on we will consider only trees on N. A tree can be identified with

its characteristic function, hence we can identify the set of all trees Tr with a subset of

{0, 1}N<N
(this space as a countable product of discrete spaces {0, 1} is homeomorphic

to the Cantor space). Since Tr is a Gδ subset of {0, 1}N<N
, we will treat Tr as a Polish

space.
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Proposition 1. [5, 32.B] A set WF of all well-founded trees forms a ΠΠΠ1
1–complete

subset of Tr.

Consider a subspace of Tr defined in the following way

T̃ r = {T ∈ Tr : ∀s ∈ N<N ∀n ∈ N (ŝ n ∈ T ⇒ ∀m ∈ N ŝ m ∈ T )} =

⋂
s∈N<N

⋂
n∈N

({T ∈ Tr : ŝ n /∈ T} ∪
⋂
m∈N

{T ∈ Tr : ŝ m ∈ T}).

Hence T̃ r is a Polish space as a closed subset of Tr. By W̃F denote the set WF ∩ T̃ r.

Proposition 2. [3, Section 3] W̃F is a ΠΠΠ1
1–complete subset of T̃ r.

2. Definition of D±

The operators of Lebesgue density and porosity are our start point to define an

abstract density operator. We will define a right-hand abstract density operator D+

and a left-hand abstract density operator D− by a list of conditions we want them

to fulfil, called here the axioms. Using the symbol D± in a formula we mean that

something holds simultaneously for the right-hand and the left-hand abstract density

operator, simultaneously.

For a given x ∈ R, the operator D± is defined on some family of Borel sets which

will be called the family of admissible sets at x, and denoted by A±(x). In the case

of Lebesgue density, the family of admissible sets consists of Borel sets for which the

density exists. Analogously, in the case of porosity. Usually, we will not define precisely

the family of admissible sets. The number D±(X, x) ∈ [0, 1] is called a density of a set

X at a point x. Writing D±(X, x) we always mean that X is admissible.

One difference between Lebesgue density and porosity is that big sets with respect

to density have the density 1, but big sets with respect to porosity have the porosity

0. The following axiom is natural:

(A1) ∀x ∈ R(D±(R, x) = 1 and D±(∅, x) = 0).

The operators of density and porosity are monotonic and defined locally. These two

properties of D± are described by the following conditions
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(A2) ∀x ∈ R ∀X, Y ∈ A±(x) (X ⊂ Y ⇒ D±(X, x) ≤ D±(Y, x)).

(A3) ∀x ∈ R ∀X ∈ A+(x) ∩ A−(x) ∀ε > 0 [D+(X, x) = D+(X ∩ (x, x + ε), x) and

D−(X, x) = D−(X ∩ (x, x− ε), x)].

In particular, (A2) means that a superset of a set with D±–density 1 has D±-density

1 (i.e. a superset of a set with D±–density 1 is admissible).

The next axiom states that we can construct a so-called interval set of D±–density

1. A construction of an interval set of density 1 is a useful tool for dealing with

different types of densities on the real line. Let sequences (an), (bn) be such that

∀n ∈ N(bn+1 < an < bn) and x = limn→∞ an. An interval set of D+–density 1 at a

point x is a set of the form
⋃
n∈N[an, bn] with D+(

⋃
n∈N[an, bn], x) = 1. Let (cn), (dn) be

such that ∀n ∈ N(cn+1 > dn > cn) and y = limn→∞ cn. An interval set of D−–density

1 at a point y is a set of the form
⋃
n∈N[cn, dn] with D−(

⋃
n∈N[cn, dn], y) = 1. Now, our

axiom is the following:

(A4) For every x ∈ R there exists an interval set of a D±–density 1 at the point x.

The next axiom is less intuitive than the previous ones. It is described by the notion

of an infinite game. Consider the following game G+:

Player I: (a0, b0) (a1, b1) (a2, b2) ...

Player II: c0 c1 c2 ...

The rules of G+ are the following: ci ∈ (ai, bi) and [ai+1, bi+1] ⊂ (ai, ci) for each i ∈ N.

Let x = limn→∞ cn. Player I wins if
⋃
n∈N[bn+1, cn] is an admissible set with D+–density

1 at x. Otherwise, Player II wins. Now, consider the game G−:

Player I: (a0, b0) (a1, b1) (a2, b2) ...

Player II: d0 d1 d2 ...

This time, the rules are the following: di ∈ (ai, bi), [ai+1, bi+1] ⊂ (di, bi) for each i ∈ N.

Let y = limn→∞ dn. Player I wins if
⋃
n∈N[dn, an+1] is an admissible set with D−–

density 1 at y and otherwise, Player II wins. Now, we are ready to state the next

axiom:

(A5) Player II has winning strategies in the games G+ and G−.
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The last axiom has a descriptive set-theoretical character.

(A6) The sets {(K, x) ∈ K(R) × R : D+(K, x) = 1} and {(K, x) ∈ K(R) × R :

D−(K, x) = 1} are Borel.

Without (A6) we can prove only that the set in (1) is ΠΠΠ1
1–hard. Thanks to (A6) we

are able to prove its ΠΠΠ1
1–completeness.

3. Main theorem

Lemma 3. Let X be a metric space with the metric ρ. Let F : X → K(R) be such

that the set

F−1({K ∈ K(R) : K ∩ U 6= ∅})

is open in X, for every set U open in R. Then F is Borel measurable.

Proof. To prove that F is Borel measurable it is enough to show that F−1({K ∈ K(R) :

K ⊂ U}) is Borel for every U open in R. It is obvious in the case U = R or U = ∅.

Let us assume that ∅ 6= U 6= R and put

Vn =

{
x ∈ R : ρ(x,R \ U) <

1

n+ 1

}
, n ∈ N.

Then the set

F−1({K ∈ K(R) : K ⊂ U}) = F−1({K ∈ K(R) : K ∩ (R \ U) = ∅}) =

⋃
n∈N

F−1({K ∈ K(R) : K ∩ Vn = ∅})

is of type Fσ. �

Lemma 4. Let {Ks : s ∈ N<N} be a family of pairwise disjoint closed subintervals of

[0, 1]. Let X ⊂ Tr (and we consider on X the topology induced from Tr). Define a

function F : X → K(R) by

F (T ) = cl(
⋃
s∈T

Ks) for T ∈ X.

Then F is Borel measurable.
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Proof. Let U be any open set in R. Let S = {s ∈ N<N : Ks ∩ U 6= ∅}. If T ∈ X then

S ∩ T 6= ∅ ⇐⇒ F (T ) ∩ U 6= ∅. Hence

F−1({K ∈ K(R) : K ∩ U 6= ∅}) =
⋃
s∈S

{T ∈ X : s ∈ T}

is open. By Lemma 3 the function F is Borel measurable. �

Now we are ready to prove a main theorem of the paper which generalizes the results

of [3].

Theorem 5. Assume that D± is an abstract density operator fulfilling (A1)–(A5).

Then the set

X = {K ∈ K(R) : ∀x ∈ K(D+(K, x) = 1 or D−(K, x) = 1)}

is ΠΠΠ1
1–hard. If additionally (A6) holds for D±, then X is ΠΠΠ1

1–complete.

Proof. If D± fulfills the axiom (A6), then it is standard to prove that X is coanalytic.

We need only to show that the axioms (A1)–(A5) imply the ΠΠΠ1
1–hardness of X .

We define, by induction with respect to the length of s ∈ N<N, closed subintervals

Ks of [0, 2] and real numbers cs, ds, psm, rsm, for every m ∈ N, such that the following

conditions hold:

(i) ds < psm < rsm < cs and rs0 − ds < 1/|s| for every s ∈ N<N and m ∈ N;

(ii) Ksˆm = [psm, r
s
m] for every s ∈ N<N and m ∈ N;

(iii)
⋃
m∈N[psm, r

s
m] is an interval set with D+–density 1 at ds, and ∀m ∈ N(rsm+1 <

psm < rsm) for every s ∈ N<N;

(iv) (dsˆm, csˆm) ⊂ (rsm+1, p
s
m) for every s ∈ N<N and m ∈ N;

(v) for α ∈ NN let xα be such that {xα} =
⋂
n∈N(dα|n, cα|n), then the set cl(

⋃
s∈N<N Ks)

has not D±–density 1 at xα.

Let K∅ = [1, 2]. By (A5), Player II has winning strategies in the games G+ and

G−, say σ+ and σ−. Let c∅ ∈ (0, 1) be such that ((0, 1), c∅) ∈ σ+, i.e. let c∅ be an

answer of II for (0, 1) according to the strategy σ+. Next let d∅ ∈ (0, c∅) be such that

((0, c∅), d∅) ∈ σ−. By (A4) there exists an interval set with D+–density 1 at d∅. By (A3)
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we may assume that this interval set is contained in (d∅,min{c∅, d∅ + 1/2}); suppose

that it is of the form
⋃
n∈N[p∅n, r

∅
n] with ∀n ∈ N(r∅n+1 < p∅n < r∅n). Put K(n) = [p∅n, r

∅
n].

Let k ∈ N. Assume that we have already defined intervals Ksˆm and numbers cs,

ds, psm, rsm which fulfil (i)–(iv) for every |s| ≤ k and m ∈ N. Let s ∈ N<N be such that

|s| = k and let l ∈ N. Let csˆl be an answer of Player II to the k-th move (rsl+1, p
s
l ) of

Player I in G+ according to σ+; more precisely let csˆl be such that

((0, 1); c∅; (r∅s(0)+1, p
∅
s(0)); c

s|1; (r
s|1
s(1)+1, p

s|1
s(1)); c

s|1; ...; cs; (rsl+1, p
s
l ); c

sˆl) ∈ σ+.

Next let dsˆl be an answer of Player II to the k-th move (rsl+1, c
sˆl) of Player I in G−

according to σ−; precisely let dsˆl be such that

((0, c∅); d∅; (r∅s(0)+1, c
s|1); ds|1; (r

s|1
s(1)+1, c

s|1); ds|1; ...; ds; (rsl+1, c
sˆl); dsˆl) ∈ σ−.

By (A4) there exists an interval set with D+–density 1 at dsˆl. By (A3) we may assume

that it is contained in (dsˆl,min{csˆl, dsˆl + 1/(k + 1)}); suppose that it is of the form⋃
n∈N[psˆln , rsˆln ] with ∀n ∈ N(rsˆln+1 < psˆln < rsˆln ). Put K(sˆl)ˆn = [psˆln , rsˆln ].

In this way we have defined intervals Ksˆm and numbers cs, ds, psm, rsm fulfilling the

conditions (i)–(iv) for every s ∈ N<N and m ∈ N. We show that the condition (v) holds.

Let xα be such that {xα} =
⋂
n∈N(dα|n, cα|n) (by (A1) this intersection is a singleton).

Since σ+ is a winning strategy in G+, we obtain that X+ =
⋃
n∈N[p

α|n
α(n), c

α|(n+1)] is

not a set with D+–density 1 at xα. Note that for each n ∈ N: if m ≤ α(n), then

K(α|n)ˆm = [p
α|n
m , r

α|n
m ] ⊂ X+ and if m > α(n), then r

α|n
m ≤ r

α|n
α(n)+1 < dα|(n+1) < xα.

Since cl(X+) = X+ ∪ {xα}, then (xα,∞) ∩ cl(
⋃
s∈N<N Ks) ⊂ X+, and by (A2) and

(A3) we obtain that cl(
⋃
s∈N<N Ks) has not D+–density 1 at xα. Analogously one can

show that cl(
⋃
s∈N<N Ks) has not D−–density 1 at xα.

Consider the function T 7→ cl(
⋃
s∈T Ks) which maps T̃ r to K(R). By Lemma 4 this

is a Borel function. By Proposition 2, to prove the Theorem it is enough to show that

for every T ∈ T̃ r the following equivalence holds: T ∈ W̃F ⇐⇒ cl(
⋃
s∈T Ks) ∈ X

(recall that the notions of ΠΠΠ1
1–completeness and Borel–ΠΠΠ1

1–completeness are equivalent

– see [4]).

Assume that T ∈ W̃F and x ∈ cl(
⋃
s∈T Ks). We consider two cases:
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1) If x ∈ Ks for some s ∈ T , then since Ks is an interval, then by (A1)–(A3) we

have that D−(cl(
⋃
t∈T Kt), x) = 1 or D+(cl(

⋃
t∈T Kt), x) = 1.

2) If x /∈ Ks for every s ∈ T , then x = ds for some s ∈ T . Indeed, note that

ds is a limit point of each sequence (zn) with zn ∈ Ksˆkn for every n, where

(kn) is an increasing sequence of natural numbers. By the construction if

ds ∈ cl(
⋃
t∈T Kt), then

⋃
n∈NKsˆn ⊂ cl(

⋃
t∈T Kt) (here we use the fact that

T ∈ T̃ r). Suppose now that x 6= ds for every s ∈ T . Then there exist

sequences (sn) ∈ T and (wn) such that wn → x wn ∈ Ksn for every n ∈ N.

Since x 6= d∅, then (sn(0))n∈N is bounded. Then there is k0 ∈ N such that

the set {n ∈ N : sn(0) = k0} is infinite. Proceeding inductively we define a

sequence α = (k0, k1, k2, ...) with α|n ∈ T for n ∈ N. A contradiction. Then

let s be such that x = ds. Note that by (ii) and (iii), {x} ∪
⋃
n∈NKsˆn is an

interval set with D+–density 1 at x. Since {x}∪
⋃
n∈NKsˆn ⊂ cl(

⋃
t∈T Kt), then

by (A2) we obtain D+(cl(
⋃
t∈T Kt), x) = 1. Then cl(

⋃
t∈T Kt) ∈ X .

Assume now that T /∈ W̃F . Then the body [T ] of T is nonempty. Let α ∈ [T ] and

let xα be the unique point of
⋂
n∈N(dα|n, cα|n). Note that {pα|nα(n)}n∈N is a sequence of

elements of
⋃
s∈T Ks tending to xα. Then xα ∈ cl(

⋃
s∈T Ks). By (v) and cl(

⋃
s∈T Ks) ⊂

cl(
⋃
s∈N<N Ks) we obtain that cl(

⋃
s∈T Ks) /∈ X . �

4. Applications

4.1. Lebesgue density. Let µ be Lebesgue measure on R. For a measurable set

E ⊂ R and a point x ∈ R, by d+(x,E) we denote the right-hand Lebesgue density

of the set E at x, i.e. the number d+(x,E) = limh→0+
µ([0,h]∩E)

h
, provided this limit

exists. Analogously we define d−(x,E).

Clearly the conditions (A1)–(A3) hold for Lebesgue density. To prove (A4) it is

enough to establish the existence of an interval set with d+–density 1 at 0, since

d±(E, x) = d±(E−x, 0) and d−(E, 0) = d+(−E, 0) where E−x = {y−x : y ∈ E} and

−E = {−y : y ∈ E}. Let an = 1
10n , bn = 10n−1−1

102(n−1) for n ≥ 1. Then for t ∈ ( 1
10n+1 ,

1
10n )
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we have

µ(
∞⋃
k=1

[ak, bk] ∩ (0, t)) = µ(
∞⋃

k=n+2

[ak, bk] ∪ [an+1,min(t, bn+1)]) >

t− 2|an+1 − bn+2| = t+
2

102n+2
> t(1− 10n+1 2

102n+2
) = t(1− 2

10n+1
).

Hence
⋃
n∈N[an, bn] is an interval set with d+–density 1.

Now we describe a strategy for Player II in G+: after the n-th move (an, bn) of Player

I, let Player’s II answer be cn = 1/2(an + bn). Let x = limn→∞ an. Then x ∈ (an, cn)

for every n ∈ N. Hence µ[(
⋃∞
k=1[bk+1, ck]) ∩ (x, bn)] ≤ cn − x < bn − cn and

µ[(
⋃∞
k=1[bk+1, ck]) ∩ (x, bn)]

bn − x
≤ cn − x
bn − x

=
cn − x

bn − cn + cn − x
<

1

2
.

This shows that this is a winning strategy for Player II. A winning strategy for II in

G− can be defined in a similar way. Finally this shows that d± satisfies (A5).

Note that

{(K, x) ∈ K(R)× R : d+(K, x) = 1} =

{(K, x) ∈ K(R)× R : ∀ε > 0∃δ > 0∀t ∈ (0, δ)
µ(K ∩ (x, x+ t))

t
≥ 1− ε} =

⋂
n∈N

⋃
δ∈Q+

⋂
t∈(0,δ)∩Q+

{(K, x) ∈ K(R)× R :
µ(K ∩ (x, x+ t))

t
≥ 1− 1

n
}.

To prove the Borelness of the above set, it is enough to show that the set

T = {(K, x) ∈ K(R)× R : µ(K ∩ (x, x+ t)) < t(1− 1

n
)}

is open. Let us fix (K0, x0) ∈ T . Since µ(K0 ∩ (x0, x0 + t)) < t(1 − 1
n
), then there

exists an open set U with µ(U ∩ (x0, x0 + t)) < t(1 − 1
n
). Let ε > 0 be such that

µ(U ∩ (x0, x0 + t)) + ε < t(1 − 1
n
). Then µ(U ∩ (x, x + t)) < t(1 − 1

n
) for each x ∈

(x0−ε, x0+ε). Then the following set {(K, x) ∈ K(R)×R : K ⊂ U, x ∈ (x0−ε, x0+ε)}

is open. Moreover it contains (K0, x0) and it is contained in T . This shows that T is

open. Hence (A6) holds for d±.
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4.2. Porosity. Let E ⊂ R, x ∈ R and R > 0. By λ+(x,R,E) we denote sup{b− a :

(a, b) ⊂ (x, x+R)\E} (if there is no interval (a, b) with (a, b) ⊂ (x, x+R)\E then we

put λ+(x,R,E) = 0). The right-hand porosity of the set E at the point x is defined

as

p+(E, x) = lim sup
R→0+

λ+(x,R,E)

R
.

Analogously we define the left-hand porosity of the set E at the point x and we

denote it by p−(E, x). We say that E is porous (strongly porous) from the right at x

if p+(E, x) > 0 (p+(E, x) = 1, respectively).

We define two abstract density operators: D±1 (E, x) = 1− p±(E, x) and

D±2 (E, x) =

 1, if p±(E, x) < 1;

0, if p±(E, x) = 1.

D±1 (E, x) = 1 means that E is not porous at x, and D±2 (E, x) = 1 means that E is not

strongly porous at x. The conditions (A1)–(A3) are immediate. Since a strong porous

set is porous, it is enough to verify (A4) for D1 and (A5) for D2.

Similarly as in the case of Lebesgue density, it is enough to define an interval set at

0. We claim that
⋃
n∈N[ 1

2n+2
, 1

2n+1
] has the D+

1 –density 1 at 0. Note that

p+

(⋃
n∈N

[
1

2n+ 2
,

1

2n+ 1

]
, 0

)
= lim sup

n→∞

1
2n+2

− 1
2n+3

1
2n+2

= lim
n→∞

1

2n+ 3
= 0.

Thus we show (A4) for D±1 .

We describe a winning strategy for Player II in G+ with respect to the operator D+
2 :

if (an, bn) is the n-th move of Player I, then Player II plays cn = n+1
n+2

an + 1
n+2

bn. Let

x = limn→∞ an. Then x ∈ (an, cn) for each n ∈ N. Note that

λ+(x, bn − x,
∞⋃
k=1

[bk+1, ck]) = bn − cn =
n+ 1

n+ 2
(bn − an).

Thus

λ+(x, bn − x,
⋃∞
k=1[bk+1, ck])

bn − x
≥

n+1
n+2

(bn − an)

bn − an
=
n+ 1

n+ 2
.

Hence p+(
⋃∞
k=1[bk+1, ck], x) = 1 which proves (A5) for D±2 .
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In [3, Section 3] it is proved that

A = {(K, x) ∈ K(R)× R : p+(K, x) = 0}

is Borel. Consequently, we have (A6) for D±1 . The proof that (A6) holds for D±2 is

analogous.

4.3. J –density points. Suppose that J is a nontrivial ideal of subsets of the real

line, i.e. J does not contain R and contains all singletons. We say that a is a J –

density point of a set A ⊂ R if for every increasing sequence (nm)m∈N of natural

numbers there exists a subsequence (nmp)p∈N such that

lim
p→∞

χnmp (A−a)∩(−1,1) = χ(−1,1), J – a.e.

There are also one-sided versions of the definition of J –density points. Namely, we say

that a is a right-hand J –density point of a set A ⊂ R if for every increasing sequence

(nm)m∈N of natural numbers there exists its subsequence (nmp)p∈N such that

lim
p→∞

χnmp (A−a)∩[0,1) = χ[0,1), J – a.e.

Analogously we may define a left-hand J –density points. These definitions are due to

Wilczyński [11], see also [2].

Now, we define an abstract density operator by

D+(E, x) =

 1, if x is a right-hand J –density point;

0, otherwise.

Analogously we define D−(E, x).

Since J is nontrivial, we have (A1). The conditions (A2) and (A3) can be easily

derived directly from the definition of J –density points. The existence of an interval

sets with D±–density 1 follows by Lemma [2, 2.1.4]. So, we have (A4). We shall

define a winning strategy for Player II in G+. Suppose that (a0, b0) is the first move

of Player I. The answer of Player II is c0 = a0 + (b0 − a0)/2. Additionally put k0 = 1.

Let (a1, b1) ⊂ (a0, c0) be the second move of Player I. Let

k1 = min{k ∈ N : k
b1 − a1

2
≥ b0 − a1}.
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The answer of Player II is c1 = a1 +(b1−a1)/2k1. If (a2, b2) is the next move of Player

I, then let

k2 = min{k ∈ N : k
b2 − a2

2
≥ b0 − a2}

and II plays c2 = a2 + (b2 − a2)/2k2, etc.

Let x = limn→∞ an. Consider the interval set E =
⋃∞
n=0[bn+1, cn]. We claim that

∀y ∈ (x, b0) {n ∈ N : y − x ∈ kn(E − x)} is finite,

in particular, x is not a right J –density point of E, and the condition (A5) holds.

Let y ∈ (x, b0). Note that k0(E−y)+y = E, so E∩(c0, b0) = ∅. Let n ∈ N. Assume

that y ∈ (an, cn) = (an,
bn−an

2kn
+ an). We shall prove that (kn(E− y) + y)∩ (bn, b0) = ∅.

Then

kn(bn − y) + y ≥ kn(bn −
bn − an

2kn
− an) + an = 2kn

bn − an
2

− bn − an
2

+ an ≥

2b0 −
bn − an

2
− an = b0 + [(b0 − an)− bn − an

2
] ≥ b0.

Moreover

kn(cn − y) + y ≤ kn(
bn − an

2kn
+ an − an) +

bn − an
2kn

+ an = an + (1 +
1

kn
)
bn − an

2
≤ bn.

Finally, conditions (A1)–(A5) hold for every nontrivial ideal J of subsets of the real

line. The assumption that an ideal is nontrivial is so general that it would be hard

to expect that also (A6) holds in this case. However, we show that condition (A6) is

fulfilled in a very important case when we consider the ideal M of meager sets on R.

First note that {(K, x) ∈ K(R) × R : (K − x) ∩ U 6= ∅} is open in K(R) × R

for every U open. For B ⊂ R with the Baire property, by B̃ we denote the unique

regular open set with (B \ B̃) ∪ (B̃ \ B) ∈ M. Note that for any K ∈ K(R) we have

˜(R \K) = R \ cl(R \ cl(R \K)). Let I be an open interval. Thus

I ∩ ˜(R \K) = ∅ ⇐⇒ I ∩ (R \ cl(R \ cl(R \K))) = ∅ ⇐⇒ I ⊂ cl(R \ cl(R \K)) ⇐⇒

R \ cl(R \K) is dense in I ⇐⇒ cl(R \K) is nowhere dense in I ⇐⇒

R \K is nowhere dense in I ⇐⇒ K is dense in I ⇐⇒ I ⊂ K.
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Using Theorem [2, 2.2.2] we obtain that

D+(K, x) = 1 ⇐⇒ ∀(a, b) ⊂ (0, 1), a, b ∈ Q∃ε ∈ Q+∃n0 ∈ N∀n ≥ n0

∃(c, d) ⊂ (a, b), c, d ∈ Q (|d− c| > ε and (c, d) ∩ n((R̃ \K)− x) = ∅).

Thus {(K, x) ∈ K(R) × R : D+(K, x) = 1} is Borel. Analogously we show that

{(K, x) ∈ K(R)× R : D−(K, x) = 1} is also Borel. Hence (A6) holds.

5. Discussion on (A5)

Now we give an example of an operator D which fulfills (A1)–(A4) but does not

fulfil (A5).

Example 6. Here all Borel sets are admissible. Let D+ : B(R)× R→ [0, 1] be given

by

D+(X, x) =

 1, if X ∩ (x, x+ ε) is uncountable for every ε > 0;

0, if X ∩ (x, x+ ε) is countable for some ε > 0.

Analogously we define D−. Note that every interval set has D±–density 1. Then (A5)

does not hold. It is clear that (A1)–(A4) are fulfilled for D. Note also that

{K ∈ K(R) : ∀x ∈ K(D+(K, x) = 1 or D−(K, x) = 1)}

is the family of all perfect compact subsets of the real line. Hence it is a Gδ set. This

shows that axioms (A1)–(A4) are not sufficient to prove the ΠΠΠ1
1-hardness of the above

set and some additional axiom is needed for this purpose. �

In our consideration, it is important that Lebesgue density and porosity are defined

with the use of limits. One can establish (A5) for several kinds of densities and

porosities on the real line until in their definitions the limit or the upper limit are

used. If we consider lower density, or in the definition of porosity we change lim sup

to lim inf, then (A5) simply does not hold. Player II can always make so small holes

in an interval that the lower limit of an interval set will be equal to 1.
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