CONVERGENCE OF SERIES ON LARGE SET OF INDICES

SZYMON GŁĄB AND MICHAŁ OLCZYK

ABSTRACT. We prove that if $\sum_{n=1}^{\infty} a_n = \infty$ and (a_n) is non-decreasing, then $\sum_{n \in A} a_n = \infty$ for any set $A \subset \mathbb{N}$ of positive lower density. We introduce a Cauchy - like definition of \mathcal{I} -convergence of series. We prove that the \mathcal{I} -convergence of series coincides with the convergence on large set of indexes if and only if \mathcal{I} is a *P*-ideal. It turns out that \mathcal{I} -convergence of series $\sum_{n=1}^{\infty} a_n$ implies \mathcal{I} -convergence of (a_n) to zero. The converse implication does not hold for analytic *P*-ideals and it is independent of ZFC that there is \mathcal{I} ideal of naturals for which \mathcal{I} -convergence of (a_n) to zero implies \mathcal{I} -convergence of series $\sum_{n=1}^{\infty} a_n = \infty$ for every sequence (a_n) .

1. INTRODUCTION

The convergence of sequence x_n with respect to an ideal \mathcal{I} is a natural generalization of the usual convergence and the statistical convergence. The paper by Kostyrko, Šalát, and Wilczyński [14] is a well-written introduction to this topic. Recently the large progress was done in applications of \mathcal{I} -convergence in analysis (see [1], [7], [9], [10], [15] and [12]).

In this note we are interested in the \mathcal{I} -convergence of a series $\sum_{n=1}^{\infty} a_n$. There are two approaches to that concept. The first is to consider the \mathcal{I} -convergence of sequence of partial sums $\sum_{n=1}^{k} a_n$ which was considered by Dindoš, Šalát and Toma in [5]. The problem with this definition of \mathcal{I} -convergence of a series $\sum_{n=1}^{\infty} a_n$ is that it coincides with the usual convergence if the terms a_n are nonnegative. The second approach is the following. We say that $\sum_{n=1}^{\infty} a_n$ is \mathcal{I} -convergent if it is

²⁰¹⁰ Mathematics Subject Classification. Primary: 40A35; Secondary: 03E35, 40A05. Key words and phrases. asymptotic density; ideal convergence of sequence; ideal convergence of series; analytic *P*-ideals; rapid filters.

The first author has been supported by the Polish Ministry of Science and Higher Education Grant No IP2011 014671 (2012-2014).

¹

convergent on a large set of indexes, namely $\sum_{n \in A} a_n$ is convergent for some A with $\mathbb{N} \setminus A \in \mathcal{I}$. The problem with this definition is that an \mathcal{I} -limit of $\sum_{n=1}^{\infty} a_n$ is not well defined. Indeed, since we assume that \mathcal{I} contains all singletons, then if $\sum_{n \in A} a_n$ is convergent and $\mathbb{N} \setminus A \in \mathcal{I}$, then also $\sum_{n \in A \setminus F} a_n$ is convergent and $\mathbb{N} \setminus (A \setminus F) \in \mathcal{I}$ for any finite F. Moreover, in general, the \mathcal{I} -convergence of a sequence does not imply the convergence on a large set of indexes. Kostyrko, Šalát, and Wilczyński in [14] proved that such an implication holds if and only if \mathcal{I} is a P-ideal. We will focus on the second approach and we will show how to omit the mentioned problems and define an \mathcal{I} -convergence of series (see Definition 5).

Each of whose definitions of \mathcal{I} -convergence of series generalizes the usual notion of convergence. Therefore the most interesting question is under which conditions a divergent series is \mathcal{I} -convergent. First, we deal with this problem in a special case of \mathcal{I} -convergence, namely the statistical convergence. It was proved in [16] that if $A \subseteq \mathbb{N}$ is not of natural density zero, then

$$\sum_{n \in A} \frac{1}{n} = \infty.$$

It is a simple observation that if we change $\left(\frac{1}{n}\right)$ to any sequence (a_n) with $\sum_{n=1}^{\infty} a_n = \infty$ then $\sum_{n \in A} a_n = \infty$ need not hold even for $A \subseteq \mathbb{N}$ of density one. Indeed, take any infinite set $B \subseteq \mathbb{N}$ of density zero and define (a_n) as a characteristic function of B. One can produce a similar example with $a_n \to 0$.

Here we consider the following question. Can we prove a similar statement assuming that (a_n) is non-increasing? In Section 1 we show that

$$\sum_{n \in A} a_n = \infty$$

provided $\sum_{n=1}^{\infty} a_n = \infty$ and $A \subseteq \mathbb{N}$ has a positive lower density. Additionally, we give an example of a non-increasing (a_n) with $\sum_{n=1}^{\infty} a_n = \infty$, $\lim \frac{a_{n+1}}{a_n} = 1$ such that $\sum_{n \in A} a_n < \infty$ for some $A \subseteq \mathbb{N}$ with a positive upper density.

In Section 2 we introduce the notion of ideal convergence of series. Roughly speaking $\sum_{n=1}^{\infty} a_n$ is \mathcal{I} -convergent if $\sum_{n \in A} a_n < \infty$ with $\mathbb{N} \setminus A \in \mathcal{I}$. We give some equivalent condition for \mathcal{I} -convergence of $\sum_{n=1}^{\infty} a_n$.

3

At the end we prove that it is independent of ZFC that there is a P-ideal \mathcal{I} such that $\sum_{n=1}^{\infty} a_n$ is \mathcal{I} -convergent if and only if $a_n \to 0$ with respect to \mathcal{I} for every sequence (a_n) . On the other hand, for any analytic *P*-ideal \mathcal{I} , there is an \mathcal{I} -divergent series $\sum_{n=1}^{\infty} a_n$ such that $a_n \to 0$. Now, recall some basic definitions. A family \mathcal{I} of subsets of \mathbb{N} is called an

ideal if it fulfills the following conditions:

- (1) if $A \in \mathcal{I}$ and $B \subseteq A$, then $B \in \mathcal{I}$;
- (2) if $A, B \in \mathcal{I}$, then $A \cup B \in \mathcal{I}$.

We say that \mathcal{I} is admissible if $\{n\} \in \mathcal{I}$ for $n \in \mathbb{N}$, and \mathcal{I} is proper if $\mathbb{N} \notin \mathcal{I}$. A proper ideal \mathcal{I} is called *P*-ideal, if for each sequence $(A_n)_{n=1}^{\infty}$ of sets from \mathcal{I} there exists $A_{\infty} \in \mathcal{I}$ such that $A_n \setminus A_{\infty}$ is finite for all $n \in \mathbb{N}$. A proper ideal \mathcal{I} has (AP) property if for any pairwise disjoint sequence $(A_n)_{n=1}^{\infty}$ of sets from \mathcal{I} there exists a sequence $(B_n)_{n=1}^{\infty}$ such that $A_j \setminus B_j$ is finite set for all $n \in \mathbb{N}$ and $\bigcup_{n \in \mathbb{N}} B_n \in \mathcal{I}$. It turns out that notions of *P*-ideals and ideals with (AP)

property coincides, see e.g. [1]. In the sequel we will need a necessary condition for non-P-ideals.

Lemma 1. Let \mathcal{I} be an admissible ideal which is not a P-ideal. Then there is a sequence (A_n) of pairwise disjoint infinite sets from \mathcal{I} such that for any $A \in \mathcal{I}$ there is n such that the set $A_n \setminus A$ is infinite.

Proof. Since \mathcal{I} is not *P*-ideal, there is a sequence (B_n) such that $B_n \in \mathcal{I}$ and for every $A \in \mathcal{I}$ there is n such that $B_n \setminus A$ is infinite. Let $A_1 = B_1$ and $A_n = B_n \setminus \bigcup_{k=1}^{n-1} B_k$. Note that among A_1, A_2, \ldots there are infinitely many infinite sets. Suppose to the contrary that all but finitely many sets from A_1, A_2, \dots are finite. Let A be the union of all A_i which are infinite. Thus A is in \mathcal{I} and $B_n \setminus A$ is finite for each \boldsymbol{n} which yields a contradiction.

Let $K = \{j : A_j \text{ is infinite}\}$. For $i_0 = \min K$ let $A'_{i_0} = \bigcup_{i=0}^{i_0} A_i$. For any $i \in K \setminus \{i_0\}$ we define A'_i in the following way. If A_{i+1} is infinite then put $A'_i = A_i$, otherwise let $k = \max\{j > i : A_{i+1}, A_{i+2}, ..., A_j \text{ are finite}\}$ and put $A'_i = A_i \cup \cdots \cup A_k$. Then $\{A'_i : i \in K\}$ is a family of pairwise disjoint infinite sets with $B_i = \bigcup \{A'_k : k \le i, k \in K\}.$

Suppose that there is $C \in \mathcal{I}$ such that the set $A'_i \setminus C$ is finite for each $i \in K$. Then the set $B_i \setminus C = \bigcup \{A'_k : k \le i, k \in K\} \setminus C = \bigcup \{A'_k \setminus C : k \le i, k \in K\}$ is finite for $i \in K$. If $i \notin K$ then either B_i is finite or there is $j \in K$ with j < i and $B_i \setminus B_j$ is finite and in the both cases $B_i \setminus C$ is finite. This yields a contradiction. \square A function $\varphi : \mathcal{P}(\mathbb{N}) \to [0, \infty]$ is called a submeasure if $\varphi(A) \leq \varphi(A \cup B) \leq \varphi(A) + \varphi(B)$ for any $A, B \in \mathcal{P}(\mathbb{N})$. A submeasure φ is called lower semicontinuous if $\lim_{n \to \infty} \varphi(A \cap n) = \varphi(A)$. By $\operatorname{Exh}(\varphi)$ denote the set of all $A \subset \mathbb{N}$ with $\lim_{n \to \infty} \varphi(A \setminus n) = 0$. The celebrated Solecki's characterization states that an ideal \mathcal{I} is an analytic *P*-ideal if and only if it is of the form $\operatorname{Exh}(\varphi)$ for some lower semicontinuous submeasure φ on \mathbb{N} .

Let $A \subseteq \mathbb{N}$. By

$$\bar{d}(A) = \limsup_{n \to \infty} \frac{|A \cap \{1, \dots, n\}|}{n},$$

we denote the upper density of A where |A| stands for the cardinality of A. In a similar way we define the lower density $\underline{d}(A)$ of A. If $\overline{d}(A) = \underline{d}(A)$, then this common value we denote by d(A) and we call it the density of A. It is well known that the family \mathcal{I}_d of all subsets A of \mathbb{N} with d(A) = 0 is an analytic P-ideal.

Let $(a_n)_{n=1}^{\infty}$ be a sequence of positive numbers. Let $\mathcal{I}_{(a_n)} = \left\{ A \subseteq \mathbb{N} : \sum_{n \in A} a_n < \infty \right\}$. Then $\mathcal{I}_{(a_n)}$ is called a summable ideal. If $\sum_{n=1}^{\infty} a_n = \infty$, then $\mathcal{I}_{(a_n)}$ is a proper *P*-ideal.

2. Divergent monotone series diverges on large sets of indexes

Theorem 2. Let $(a_n)_{n=1}^{\infty}$ be a non-increasing sequence of positive numbers such that $\lim_{n\to\infty} a_n = 0$ and $\sum_{n=1}^{\infty} a_n = \infty$. Assume that $A \subseteq \mathbb{N}$ has a positive lower density. Then $\sum_{n\in A} a_n = \infty$.

Proof. Since A has a positive lower density, there exists $m \in \mathbb{N}$ such that $\underline{d}(A) > \frac{1}{m}$. By the definition of lower density there is n_0 such that

$$\frac{|A \cap \{1, ..., n\}|}{n} > \frac{1}{m} \tag{1}$$

for every $n \ge n_0$. In particular, for $n = mn_0 \ge n_0$, the set $A \cap \{1, 2, \dots, mn_0\}$ contains at least n_0 elements. Moreover, for $n = 2mn_0$, the set $A \cap \{1, 2, \dots, 2mn_0\}$ contains at least $2n_0$ elements. Thus the following inequalities hold

$$\sum_{k \in A \cap \{1, \dots, mn_0\}} a_k \ge \sum_{k = (m-1)n_0 + 1}^{mn_0} a_k$$

and

$$\sum_{k \in A \cap \{1, \dots, 2mn_0\}} a_k \ge \sum_{k=(m-1)n_0+1}^{mn_0} a_k + \sum_{k=(2m-1)n_0+1}^{2mn_0} a_k.$$

Now let $i \geq 2$. By the same argument as above we obtain that

$$\sum_{k \in A \cap \{1, \dots, imn_0\}} a_k \ge \sum_{k=(m-1)n_0+1}^{mn_0} a_k + \dots + \sum_{k=(im-1)n_0+1}^{imn_0} a_k.$$
 (2)

Let
$$B_p = \sum_{i=1}^{\infty} \sum_{k=(im-p)n_0+1}^{(im-p+1)n_0} a_k$$
 for $p = 1, ..., m$. By (2) we have $\sum_{k \in A} a_k \ge B_1$. Since (a_k) is non-increasing, then $B_1 \le B_2 \le ... \le B_m$. If $B'_p = \sum_{i=2}^{\infty} \sum_{k=(im-p)n_0+1}^{(im-p+1)n_0} a_k$ then $B'_2 \le B'_3 \le ... \le B'_m \le B_1$ and $B'_p < \infty$ iff $B_p < \infty$. Suppose that B_1 is finite. Then each B'_p is also finite, and therefore every B_p is finite. But this means that $B_1 + B_2 + ... + B_m = \sum_{i=2}^{\infty} a_k$ is finite and we reach a contradiction

Thus
$$B_1$$
 is infinite which implies that $\sum_{k=1}^{m} a_k$ is infinite. \Box

We cannot strengthen Theorem 2 assuming only that the set A has positive upper density. Even if the assumption that $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = 1$ is added.

Proposition 3. There exists a non-increasing sequence $(a_n)_{n=1}^{\infty}$ of positive reals such that $\lim_{n \to \infty} a_n = 0$, $\sum_{n=1}^{\infty} a_n = \infty$, $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 1$, and there is $A \subseteq \mathbb{N}$ with $\overline{d}(A) = 1, \underline{d}(A) = 0$ and $\sum_{n \in A} a_n < \infty$.

Proof. Consider a sequence (a_n) of the form

$$1, \underbrace{\frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n_1^2}}_{\underbrace{\underbrace{(n_1+1)^2}, \frac{1}{(n_1+2)^2}, \dots, \frac{1}{n_2^2}}_{\underbrace{\underbrace{(n_3+1)^2}, \frac{1}{(n_3+2)^2}, \dots, \frac{1}{n_4^2}}, \underbrace{\frac{1}{n_2^2+1}, \frac{1}{n_2^2+2}, \dots, \frac{1}{n_3^2}}_{\underbrace{\underbrace{(n_3+1)^2}, \frac{1}{(n_3+2)^2}, \dots, \frac{1}{n_4^2}}, \dots$$

The sequence (a_n) is a mixture of elements of the harmonic series $\sum_{n=1}^{\infty} 1/n$ and the 2-series $\sum_{n=1}^{\infty} 1/n^2$. Clearly (a_n) is decreasing and $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = 1$ for any choice $n_1 < n_2 < \dots$ Let A consist of those indexes where elements of the 2-series are used in the definition of (a_n) . We can choose integers n_k such that

$$\frac{1}{n_{2j}^2 + 1} + \frac{1}{n_{2j}^2 + 2} + \dots + \frac{1}{n_{2j+1}^2} > 1$$

for every j, and such that $\overline{d}(A) = 1$. Clearly $\sum_{k \in A} a_k < \infty$ and $\sum_{n=1}^{\infty} a_n = \infty$. By Theorem 2 the set A does not contain a subset of positive density, and therefore $\underline{d}(A) = 0$.

Corollary 4. Let $\alpha \in (0,1]$. Then $\sum_{n \in A} \frac{1}{n^{\alpha}} = \infty$ for $A \notin \mathcal{I}_{\left(\frac{1}{n}\right)}$. In particular if $\bar{d}(A) > 0$ then $\sum_{n \in A} \frac{1}{n^{\alpha}} = \infty$.

It is well known that $\mathcal{I}_{\left(\frac{1}{n}\right)} \subseteq \mathcal{I}_d$. It is not true in general that $\mathcal{I}_{(a_n)} \subseteq \mathcal{I}_d$ even if one assumes that $(a_n)_{n=1}^{\infty}$ is non-decreasing. This follows from Proposition 3.

Remark. An anonymous referee pointed out that Theorem 2 was actually proved by Šalát in [17] using a substantially different method.

3. \mathcal{I} -convergence of series

Dindoš, Šalát and Toma introduced in [5] the statistical convergence of series in the following way. A series $\sum_{n=1}^{\infty} a_n$ is statistically convergent to some L provided the sequence $s_n = \sum_{k=1}^{n} a_k$ of partial sums converges statistically to L. In a similar way, one can define a convergence of a series with respect to \mathcal{I} , namely as the \mathcal{I} -convergence of partial sums. Our approach is different. Since we cannot define an \mathcal{I} -sum of a series, we define \mathcal{I} -convergence of series by the Cauchy condition. Let us mention that Červeňanský, Šalát and Toma proved in [4] that in general these two definitions of \mathcal{I} -convergence of a series do not coincide and any of them do not imply the other.

Definition 5. Let \mathcal{I} be an admissible ideal. We say that a series $\sum_{n=1}^{\infty} a_n$ is \mathcal{I} -convergent if it satisfies the \mathcal{I} -Cauchy condition, that is if for every $\varepsilon > 0$ there are $n_{\varepsilon} \in \mathbb{N}$ and $A_{\varepsilon} \in \mathcal{I}$ such that

$$\left|\sum_{m\in\{l,\dots,k\}\setminus A_{\varepsilon}}a_{m}\right|<\varepsilon$$

for any $k > l > n_{\varepsilon}$.

Definition 6. Let \mathcal{I} be an admissible ideal. We say that a series $\sum_{n=1}^{\infty} a_n$ satisfies the (*)- \mathcal{I} -Cauchy condition if there exists set $A \in \mathcal{I}$ such that $\sum_{n \in \mathbb{N} \setminus A}^{\infty} a_n$ satisfies the Cauchy condition. We say that a series $\sum_{n=1}^{\infty} a_n$ is (*)- \mathcal{I} -convergent if there

is $A \in \mathcal{I}$ such that $\sum_{n \in \mathbb{N} \setminus A} a_n$ converges. Clearly the series $\sum_{n=1}^{\infty} a_n$ satisfies the (*)- \mathcal{I} -Cauchy condition if and only if $\sum_{n \in \mathbb{N} \setminus A} a_n$ is (*)- \mathcal{I} -convergent.

Now, we will show how these two definitions of Cauchy conditions are related each to other. The following is a counterpart of [1, Proposition 3].

Lemma 7. Let \mathcal{I} be an admissible ideal. If $\sum_{n=1}^{\infty} a_n$ satisfies the (*)- \mathcal{I} -Cauchy condition, then it satisfies the \mathcal{I} -Cauchy condition.

Proof. Since $\sum_{n=1}^{\infty} a_n$ satisfies the (*)- \mathcal{I} -Cauchy condition, there is $A \in \mathcal{I}$ such that $\sum_{n \in \mathbb{N} \setminus A} a_n$ satisfies the Cauchy condition. Let $\varepsilon > 0$ and choose $n_{\varepsilon} \in \mathbb{N} \setminus A$

such that
$$\left|\sum_{m \in \{l,...,k\} \setminus A} a_m\right| < \varepsilon$$
 for any $k > l > n_{\varepsilon}$. Put $A_{\varepsilon} = A \cup \{1,...,n_{\varepsilon}\}$.

Then
$$A_{\varepsilon} \in \mathcal{I}$$
 and $\left| \sum_{m \in \{l, \dots, k\} \setminus A_{\varepsilon}} a_m \right| < \varepsilon$ for any $k > l > n_{\varepsilon}$.

It turns out that the reverse implication is true if and only if \mathcal{I} is a *P*-ideal. This is a counterpart of [14, Theorem 3.2].

Theorem 8. Let \mathcal{I} be an admissible ideal. Then the following are equivalent:

- (1) \mathcal{I} is a P-ideal,
- (2) $\sum_{n=1}^{\infty} a_n$ satisfies the *I*-Cauchy condition if and only if satisfies the (*)-*I*-Cauchy condition.

Proof. Let \mathcal{I} be a P-ideal and assume that $\sum_{n=1}^{\infty} a_n$ satisfies the \mathcal{I} -Cauchy condition. Then for every $j \in \mathbb{N}$ there exist $A_j \in \mathcal{I}$ and q such that for any k > l > q we have $\left| \sum_{m \in \{l, \dots, k\} \setminus A_j} a_m \right| < \frac{1}{j}$. Since \mathcal{I} is a P-ideal, there exists $A_{\infty} \in \mathcal{I}$ such that $A_j \setminus A_{\infty}$ is finite for all $j \in \mathbb{N}$. Fix $j \in \mathbb{N}$ and let $p \in \mathbb{N}$ be such that $A_j \setminus A_{\infty} \subset \{1, \dots, p\}$. Thus for any k > l > p if $k, l \notin A_j$, then $k, l \notin A_{\infty}$ and therefore $\left| \sum_{m \in \{l, \dots, k\} \setminus A_{\infty}} a_m \right| < \frac{1}{j}$. Assume now that \mathcal{I} is not a P-ideal. Then by Lemma 1 there is a sequence

Assume now that \mathcal{I} is not a *P*-ideal. Then by Lemma 1 there is a sequence A_1, A_2, \ldots of pairwise disjoint infinite sets in \mathcal{I} such that for any $A \in \mathcal{I}$ there is *n* such that $A_n \setminus A$ is infinite. Let $\{k_1^n < k_2^n < \ldots\}$ be an increasing enumeration of A_n . Define $a_{k_i^n} = (-1)^i/2^n$ and $a_m = 0$ if $m \notin \bigcup_{n=1}^{\infty} A_n$.

Let $\varepsilon > 0$. There is n with $1/2^n < \varepsilon$. Take m < k and consider

$$t := \sum_{m=l,m \notin A_1 \cup \dots \cup A_n}^{\kappa} a_m$$

By the construction of series $\sum_{m=1}^{\infty} a_m$, we have

$$|t| < \frac{1}{2^{n+1}} + \frac{1}{2^{n+2}} + \dots = \frac{1}{2^n} < \varepsilon.$$

Hence $\sum_{m=1}^{\infty} a_m$ fulfills the \mathcal{I} -Cauchy condition. Let $A \in \mathcal{I}$. Let n_0 be such that $A_{n_0} \setminus A$ is infinite. Then the set $\{s_m : m \notin A\}$ contains infinitely many elements of the form $(-1)^i/2^{n_0}$. Therefore $\sum_{m \in \mathbb{N} \setminus A} a_m$ does not converge, and thus $\sum_{m \in \mathbb{N} \setminus A} a_m$ does not fulfill the Cauchy condition.

Hence $\sum_{m=1}^{\infty} a_m$ does not fulfill the (*)- \mathcal{I} -Cauchy condition.

4. When
$$\mathcal{I}$$
-lim_n $a_n = 0$ implies \mathcal{I} -convergence of $\sum_{n=1}^{\infty} a_n$

In this section we will prove two facts. The first fact states that for a large class of ideals, namely analytic *P*-ideals \mathcal{I} , there is an \mathcal{I} divergent series $\sum_{n=1}^{\infty} a_n$ such that \mathcal{I} - $\lim_{n \to \infty} a_n = 0$. The second fact states that there is a maximal *P*-ideal \mathcal{I} such that \mathcal{I} -lim_n $a_n = 0$ implies the \mathcal{I} -convergence of $\sum_{n=1}^{\infty} a_n$. But first let us note the following basic fact.

Proposition 9. Assume that $\sum_{n=1}^{\infty} a_n$ is *I*-convergent. Then (a_n) is *I*-convergent to zero.

Proof. Since $\sum_{n=1}^{\infty} a_n$ is \mathcal{I} -convergent, then

$$\forall \varepsilon > 0 \; \exists A_{\varepsilon} \in \mathcal{I} \; \exists n_{\varepsilon} \; \forall k > l > n_{\varepsilon} \; \Big| \sum_{m \in \{l, \dots, k\} \setminus A_{\varepsilon}} a_{m} \Big| < \varepsilon.$$

Thus $|a_m| \leq \varepsilon$ for every $m > n_{\varepsilon}$, $m \notin A_{\varepsilon}$. Hence (a_n) is \mathcal{I} -convergent to

Theorem 10. For any analytic P-ideal \mathcal{I} there exists an \mathcal{I} -divergent series $\sum_{n=1}^{\infty} a_n \text{ such that } (a_n)_{n=1}^{\infty} \text{ is } \mathcal{I}\text{-convergent to zero.}$

Proof. Let φ be a submeasure witnessing that \mathcal{I} is an analytic P-ideal. Let $M' = \lim_{n \to \infty} \varphi(\mathbb{N} \setminus n) > 0$. Since \mathcal{I} does not contain \mathbb{N} , then M' is a positive real number or $M' = \infty$. By M denote M'/2 if M' is finite or 1 if $M' = \infty$. Let $0 = n_0 < n_1 < n_2 < n_3 < \dots$ be such that $\varphi(n_{k+1} \setminus n_k) \ge M$. Let $A_k = \{n \in \mathbb{N} : n_{k-1} \le n < n_k\}$ and for every index n from A_k define $a_n = 1/k$. It can be easily seen that $\bigcup_{k=0}^{\infty} A_k = \mathbb{N}$ and the sequence $(a_n)_{n=1}^{\infty}$ is \mathcal{I} -convergent to zero. Let $A \subseteq \mathbb{N}$ such that $\mathbb{N} \setminus A \in \mathcal{I}$. Therefore $\lim_{n \to \infty} \varphi((\mathbb{N} \setminus A) \setminus n) = 0$. Now, we want to show that there exists $l \in \mathbb{N}$ such that for all n > l we have $A_n \cap A \neq \emptyset$. Suppose to the contrary that for any $l \in \mathbb{N}$ there exists k > l that $A_k \cap A = \emptyset$.

This means that $\lim_{n \to \infty} \varphi((\mathbb{N} \setminus A) \setminus n) \ge M$ which is a contradiction. Hence series $\sum_{n=1}^{\infty} a_n$ is \mathcal{I} -divergent since it contains a subseries of the form $\sum_{n=k}^{\infty} 1/n$. \Box

Now, we will prove that Theorem 10 is not true for all P-ideals. To do that we will need the following set-theoretic statement proved by Bartoszewicz, Głąb and Wachowicz in [2]. We refer the reader to [2] for the notation used in this section.

Theorem 11. Assume that $\mathfrak{p} = \mathfrak{c}$. Let $\tau < \mathfrak{p}$. Suppose that \mathcal{B}_1 , \mathcal{B}_2 are two properties of sequences $x \in \mathbb{R}^{\mathbb{N}}$ such that:

- (a) for all $x \in \mathbb{R}^{\mathbb{N}}$ and $K \in [\mathbb{N}]^{\mathbb{N}}$, if $x_{\uparrow K}$ has \mathcal{B}_1 , then there is $L \in [\mathbb{N}]^{\mathbb{N}}$, $L \subset K$, such that $x_{\uparrow L}$ has \mathcal{B}_2 ;
- (b) \mathcal{B}_1 is closed under taking subsequences, i.e. for all $x \in \mathbb{R}^{\mathbb{N}}$, $L, K \in [\mathbb{N}]^{\mathbb{N}}$, if $L \subset K$ and $x_{\upharpoonright K}$ has \mathcal{B}_1 , then $x_{\upharpoonright L}$ has \mathcal{B}_1 .

If a filter \mathcal{F} is τ -generated, then \mathcal{F} can be extended to a filter \mathcal{F}' such that for any $x \in \mathbb{R}^{\mathbb{N}}$ and $K \in \mathcal{F}'$, if $x_{\restriction K}$ has \mathcal{B}_1 , then there is $L \in \mathcal{F}'$, $L \subset K$, such that $x_{\restriction L}$ has \mathcal{B}_2 .

Theorem 12. Assume that $\mathfrak{p} = \mathfrak{c}$. There exists a *P*-ideal \mathcal{I} such that if $(a_n)_{n=1}^{\infty}$ is \mathcal{I} -convergent to zero then the series $\sum_{n=1}^{\infty} a_n$ is \mathcal{I} -convergent.

Proof. We say that a sequence (a_n) has the property \mathcal{B}_1 if (a_n) is bounded, and we say that a sequence (a_n) has the property \mathcal{B}_2 if (a_n) is convergent and $\sum_{n=1}^{\infty} (a_n - \lim_k a_k)$ is finite. Clearly conditions (a) and (b) of Theorem 11 are fulfilled. Let \mathcal{F} be a Frechet filter, i.e. a filter which consists of cofinite subsets of \mathbb{N} . Then by Theorem 11 there is a filter $\mathcal{F}' \supset \mathcal{F}$ such that if (a_n) is bounded on a set $K \in \mathcal{F}'$, then $\sum_{n=1}^{\infty} (a_n - \lim_k a_k)$ converges on a set $L \in \mathcal{F}'$. By \mathcal{I}' denote the dual ideal to \mathcal{F}' . In particular we obtain that $l^{\infty}(\mathcal{I}') = c^*(\mathcal{I}')$ and therefore by [14, Theorem 3.2] and [6, Proposition 3] \mathcal{I}' is a maximal *P*-ideal. Let (a_n) be \mathcal{I}' -convergent to zero. Since \mathcal{I}' is *P*-ideal there is $L \in \mathcal{F}'$ such that $\lim_{n \in L} a_n = 0$. By the \mathcal{I}' -boundedness of (a_n) there is $K \in \mathcal{F}'$ such that $\sum_{k \in K} a_n$ is finite, which means that $\sum_{n=1}^{\infty} a_n$ is \mathcal{I}' -convergent. \Box

The anonymous referee suggested that the notion of rapid filter is crucial for the property of ideals studied in this section. A filter \mathcal{F} on \mathbb{N} is called a rapid filter, if for any sequence (ε_n) such that $\varepsilon_n \to 0$, there exists $X \in \mathcal{F}$ such that $\sum_{n \in X} \varepsilon_n < \infty$. (There are several equivalent definitions of rapid filters, see e.g. [3, Lemma 4.6.2].)

Proposition 13. Let \mathcal{I} be an ideal on \mathbb{N} . The (*)- \mathcal{I} -convergence of (a_n) to zero implies the (*)- \mathcal{I} -convergence of series $\sum_{n=1}^{\infty} a_n$ for every sequence (a_n) of real numbers if and only if the filter \mathcal{F} dual to \mathcal{I} is a rapid filter.

Proof. Assume that \mathcal{F} is not a rapid filter. Then there is a sequence (ε_n) tending to zero such that $\sum_{n \in X} \varepsilon_n = \infty$ for every $X \in \mathcal{F}$. Note that (ε_n) is (*)- \mathcal{I} -convergent to zero while $\sum_{n=1}^{\infty} a_n$ is not (*)- \mathcal{I} -convergent.

Assume now that \mathcal{F} is a rapid filter. Let (a_n) be a sequence of real numbers which is (*)- \mathcal{I} -convergent. Thus there is a set $A \in \mathcal{F}$ such that $\lim_{n \in A} a_n = 0$. Put $a'_n = a_n$ if $n \in A$ and $a'_n = 0$ otherwise. Then (a'_n) tends to zero. Since \mathcal{F} is a rapid filter, there is $B \in \mathcal{F}$ such that $\sum_{n \in B} a'_n < \infty$. Note that $A \cap B \in \mathcal{F}$ and $\sum_{n \in B \cap A} a_n = \sum_{n \in B \cap A} a'_n < \infty$. Therefore $\sum_{n=1}^{\infty} a_n$ is (*)- \mathcal{I} -convergent. \Box

In the light of Proposition 13 what we proved in Theorem 12 is that under the assumption $\mathfrak{p} = \mathfrak{c}$ there is a rapid filter. However this is a known fact (see e.g. [11]). Theorem 10 can be read as follows – there are no analytic rapid *P*-ideals. On the other hand, by the result of Judah and Shelah [13], there is a model of ZFC in which there are no rapid filters. Therefore we have the following.

Corollary 14. It is independent of ZFC that there exists an ideal \mathcal{I} on \mathbb{N} such that the (*)- \mathcal{I} -convergence of (a_n) to zero implies the (*)- \mathcal{I} -convergence of $\sum_{n=1}^{\infty} a_n$ for every sequence (a_n) of real numbers. In particular, it is independent of ZFC that there exists a *P*-ideal on \mathbb{N} such that the \mathcal{I} -convergence of (a_n) to zero implies the \mathcal{I} -convergence of (a_n) to zero implies the \mathcal{I} -convergence of (a_n) to zero.

Acknowledgment: The authors are very grateful to the anonymous referee for her/his careful reading of the paper, several invaluable remarks and pointing out some mistakes in an earlier version of the paper.

References

- BALCERZAK, M.—DEMS, K.—KOMISARSKI, A. Statistical convergence and ideal convergence for sequences of functions. J. Math. Anal. Appl. 328 (2007), no. 1, 715– 729.
- [2] BARTOSZEWICZ, A.—GLAB, S.—WACHOWICZ, A. Remarks on ideal boundedness, convergence and variation of sequences. J. Math. Anal. Appl. 375 (2011) 431–435.
- BARTOSZYŃSKI, T.—JUDAH, H. Set theory. On the structure of the real line. A K Peters, Ltd., Wellesley, MA, 1995. xii+546 pp.
- [4] ČERVEŇANSKÝ, J.—ŠALÁT, T.—TOMA, V. Remarks on statistical and *I*convergence of series. Math. Bohem. 130 (2005), no. 2, 177–184.
- [5] DINDOŠ, M.—ŠALÁT, T.—TOMA, V. Statistical convergence of infinite series. Czechoslovak Math. J. 53 (128) (2003), no. 4, 989–1000.
- [6] FAISANT, A.—GREKOS, G.—TOMA, V. On the statistical variation of sequences. J. Math. Anal. Appl. 306 (2005), no. 2, 432–439.
- [7] FILIPÓW, R.—MROŻEK, N.—RECLAW, I.—SZUCA, P. Ideal convergence of bounded sequences. J. Symbolic Logic 72 (2007), no. 2, 501-512.
- [8] FILIPÓW, R.—MROŻEK, N.—SZUCA, P. Uniform density u and L_u-convergence on a big set. Math. Commun. 16 (2011), no. 1, 125-130
- [9] FILIPÓW, R.—SZUCA, P. On some questions of Drewnowski and Luczak concerning submeasures on N. J. Math. Anal. Appl. 371 (2010), no. 2, 655–660.
- [10] FILIPÓW, R.—SZUCA, P. Density versions of Schur's theorem for ideals generated by submeasures. J. Combin. Theory Ser. A 117 (2010), no. 7, 943–956.
- [11] HALBEISEN, L. J. Combinatorial Set Theory. With a Gentle Introduction to Forcing. Springer-Verlag, London, 2012. Springer Monographs in Mathematics.
- [12] JASIŃSKI, J.—RECLAW, I. On spaces with the ideal convergence property. Colloq. Math. 111 (2008), no. 1, 43–50
- [13] JUDAH, H.—SHELAH, S. Q-sets, Sierpiński sets, and rapid filters. Proc. Amer. Math. Soc. 111 (1991), no. 3, 821–832.
- [14] KOSTYRKO, P.—ŠALAT, T.—WILCZYŃSKI, W. *I-convergence*. Real Anal. Exchange **26** (2000/01), no. 2, 669–685.
- [15] MROŻEK, N. Ideal version of Egorov's theorem for analytic P-ideals. J. Math. Anal. Appl. 349 (2009), no. 2, 452–458.
- [16] POWELL, B.J.—ŠALÁT, T. Convergence of subseries of the harmonic series and asymptotic densities of sets of positive integers, in: Publications de l'Institut Mathematique, Nouvelle serie tome 50 (64), (1991), 60–70.
- [17] ŠALÁT, T. On subseries. Math. Z. 85 (1964) 209-225.
- [18] SOLECKI, S. Analytic ideals and their applications. Ann. Pure Appl. Logic 99 (13) (1999) 51–72.

INSTITUTE OF MATHEMATICS, ŁÓDŹ UNIVERSITY OF TECHNOLOGY, WÓLCZAŃSKA 215, 93-005 ŁÓDŹ, POLAND

INSTITUTE OF MATHEMATICS, ŁÓDŹ UNIVERSITY OF TECHNOLOGY, WÓLCZAŃSKA 215, 93-005 ŁÓDŹ, POLAND