CONVERGENCE OF SERIES ON LARGE SET OF INDICES

SYMON GLĄB AND MICHAL OLCZYK

Abstract. We prove that if ∞ ∑_{n=1} a_n = ∞ and (a_n) is non-decreasing, then ∑_{n ∈ A} a_n = ∞ for any set A ⊂ N of positive lower density. We introduce a Cauchy-like definition of I-convergence of series. We prove that the I-convergence of series coincides with the convergence on large set of indexes if and only if I is a P-ideal. It turns out that I-convergence of series ∑_{n=1}^N a_n implies I-convergence of (a_n) to zero. The converse implication does not hold for analytic P-ideals and it is independent of ZFC that there is I ideal of naturals for which I-convergence of (a_n) to zero implies I-convergence of series ∑_{n=1}^∞ a_n = ∞ for every sequence (a_n).

1. Introduction

The convergence of sequence x_n with respect to an ideal I is a natural generalization of the usual convergence and the statistical convergence. The paper by Kostyrko, Šalát, and Wilczyński [14] is a well-written introduction to this topic. Recently the large progress was done in applications of I-convergence in analysis (see [1], [7], [9], [10], [15] and [12]).

In this note we are interested in the I-convergence of a series ∑_{n=1}^∞ a_n. There are two approaches to that concept. The first is to consider the I-convergence of sequence of partial sums ∑_{n=1}^k a_n which was considered by Dindoš, Šalát and Toma in [5]. The problem with this definition of I-convergence of a series ∑_{n=1}^∞ a_n is that it coincides with the usual convergence if the terms a_n are nonnegative. The second approach is the following. We say that ∑_{n=1}^∞ a_n is I-convergent if it is
convergent on a large set of indexes, namely $\sum_{n \in A} a_n$ is convergent for some A with $\mathbb{N} \setminus A \in \mathcal{I}$. The problem with this definition is that an \mathcal{I}-limit of $\sum_{n=1}^{\infty} a_n$ is not well defined. Indeed, since we assume that \mathcal{I} contains all singletons, then if $\sum_{n \in A} a_n$ is convergent and $\mathbb{N} \setminus A \in \mathcal{I}$, then also $\sum_{n \in A \setminus F} a_n$ is convergent and $\mathbb{N} \setminus (A \setminus F) \in \mathcal{I}$ for any finite F. Moreover, in general, the \mathcal{I}-convergence of a sequence does not imply the convergence on a large set of indexes. Kostyrko, Šalát, and Wilczyński in [14] proved that such an implication holds if and only if \mathcal{I} is a P-ideal. We will focus on the second approach and we will show how to omit the mentioned problems and define an \mathcal{I}-convergence of series (see Definition 5).

Each of whose definitions of \mathcal{I}-convergence of series generalizes the usual notion of convergence. Therefore the most interesting question is under which conditions a divergent series is \mathcal{I}-convergent. First, we deal with this problem in a special case of \mathcal{I}-convergence, namely the statistical convergence. It was proved in [16] that if $A \subseteq \mathbb{N}$ is not of natural density zero, then

$$\sum_{n \in A} \frac{1}{n} = \infty.$$

It is a simple observation that if we change $(\frac{1}{n})$ to any sequence (a_n) with $\sum_{n=1}^{\infty} a_n = \infty$ then $\sum_{n \in A} a_n = \infty$ need not hold even for $A \subseteq \mathbb{N}$ of density one. Indeed, take any infinite set $B \subseteq \mathbb{N}$ of density zero and define (a_n) as a characteristic function of B. One can produce a similar example with $a_n \to 0$.

Here we consider the following question. Can we prove a similar statement assuming that (a_n) is non-increasing? In Section 1 we show that

$$\sum_{n \in A} a_n = \infty$$

provided $\sum_{n=1}^{\infty} a_n = \infty$ and $A \subseteq \mathbb{N}$ has a positive lower density. Additionally, we give an example of a non-increasing (a_n) with $\sum_{n=1}^{\infty} a_n = \infty$, $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 1$ such that $\sum_{n \in A} a_n < \infty$ for some $A \subseteq \mathbb{N}$ with a positive upper density.

In Section 2 we introduce the notion of ideal convergence of series. Roughly speaking $\sum_{n=1}^{\infty} a_n$ is \mathcal{I}-convergent if $\sum_{n \in A} a_n < \infty$ with $\mathbb{N} \setminus A \in \mathcal{I}$. We give some equivalent condition for \mathcal{I}-convergence of $\sum_{n=1}^{\infty} a_n$.

At the end we prove that it is independent of ZFC that there is a P-ideal I such that $\sum_{n=1}^{\infty} a_n$ is I-convergent if and only if $a_n \to 0$ with respect to I for every sequence (a_n). On the other hand, for any analytic P-ideal I, there is an I-divergent series $\sum_{n=1}^{\infty} a_n$ such that $a_n \to 0$.

Now, recall some basic definitions. A family I of subsets of \mathbb{N} is called an ideal if it fulfills the following conditions:

1. if $A \in I$ and $B \subseteq A$, then $B \in I$;
2. if $A, B \in I$, then $A \cup B \in I$.

We say that I is admissible if $\{n\} \in I$ for $n \in \mathbb{N}$, and I is proper if $\mathbb{N} \notin I$. A proper ideal I is called P-ideal, if for each sequence $(A_n)_{n=1}^{\infty}$ of sets from I there exists $A_{\infty} \in I$ such that $A_n \setminus A_{\infty}$ is finite for all $n \in \mathbb{N}$. A proper ideal I has (AP) property if for any pairwise disjoint sequence $(A_n)_{n=1}^{\infty}$ of sets from I there exists a sequence $(B_n)_{n=1}^{\infty}$ such that $A_j \setminus B_j$ is finite set for all $n \in \mathbb{N}$ and $\bigcup_{n \in \mathbb{N}} B_n \in I$. It turns out that notions of P-ideals and ideals with (AP) property coincides, see e.g. [1]. In the sequel we will need a necessary condition for non-P-ideals.

Lemma 1. Let I be an admissible ideal which is not a P-ideal. Then there is a sequence (A_n) of pairwise disjoint infinite sets from I such that for any $A \in I$ there is n such that the set $A_n \setminus A$ is infinite.

Proof. Since I is not P-ideal, there is a sequence (B_n) such that $B_n \in I$ and for every $A \in I$ there is n such that $B_n \setminus A$ is infinite. Let $A_1 = B_1$ and $A_n = B_n \setminus \bigcup_{k=1}^{n-1} B_k$. Note that among A_1, A_2, \ldots there are infinitely many infinite sets. Suppose to the contrary that all but finitely many sets from A_1, A_2, \ldots are finite. Let A be the union of all A_i which are infinite. Thus A is in I and $B_n \setminus A$ is finite for each n which yields a contradiction.

Let $K = \{ j : A_j \text{ is infinite} \}$. For $i_0 = \min K$ let $A'_0 = \bigcup_{i=0}^{i_0} A_i$. For any $i \in K \setminus \{i_0\}$ we define A'_i in the following way. If A_{i+1} is infinite then put $A'_i = A_i$, otherwise let $k = \max\{ j > i : A_{i+1}, A_{i+2}, \ldots, A_j \text{ are finite} \}$ and put $A'_i = A_i \cup \ldots \cup A_k$. Then $\{A'_i : i \in K\}$ is a family of pairwise disjoint infinite sets with $B_i = \bigcup\{A'_k : k \leq i, k \in K\}$.

Suppose that there is $C \in I$ such that the set $A'_i \setminus C$ is finite for each $i \in K$. Then the set $B_i \setminus C = \bigcup\{A'_k : k \leq i, k \in K\} \setminus C = \bigcup\{A'_k \setminus C : k \leq i, k \in K\}$ is finite for $i \in K$. If $i \notin K$ then either B_i is finite or there is $j \in K$ with $j < i$ and $B_i \setminus B_j$ is finite and in the both cases $B_i \setminus C$ is finite. This yields a contradiction. \qed
A function $\varphi : \mathcal{P}(\mathbb{N}) \to [0, \infty]$ is called a submeasure if $\varphi(A) \leq \varphi(A \cup B) \leq \varphi(A) + \varphi(B)$ for any $A, B \in \mathcal{P}(\mathbb{N})$. A submeasure φ is called lower semicontinuous if $\lim_{n \to \infty} \varphi(A \cap n) = \varphi(A)$. By $\text{Exh}(\varphi)$ denote the set of all $A \subset \mathbb{N}$ with $\lim_{n \to \infty} \varphi(A \setminus n) = 0$. The celebrated Solecki’s characterization states that an ideal \mathcal{I} is an analytic \mathcal{P}-ideal if and only if it is of the form $\text{Exh}(\varphi)$ for some lower semicontinuous submeasure φ on \mathbb{N}.

Let $A \subseteq \mathbb{N}$. By $\bar{d}(A) = \limsup_{n \to \infty} \frac{|A \cap \{1, \ldots, n\}|}{n}$, we denote the upper density of A where $|A|$ stands for the cardinality of A. In a similar way we define the lower density $\underline{d}(A)$ of A. If $\bar{d}(A) = \underline{d}(A)$, then this common value we denote by $d(A)$ and we call it the density of A. It is well known that the family \mathcal{I}_d of all subsets A of \mathbb{N} with $d(A) = 0$ is an analytic \mathcal{P}-ideal.

Let $(a_n)_{n=1}^{\infty}$ be a sequence of positive numbers. Let $\mathcal{I}_{(a_n)} = \left\{ A \subseteq \mathbb{N} : \sum_{n \in A} a_n < \infty \right\}$. Then $\mathcal{I}_{(a_n)}$ is called a summable ideal. If $\sum_{n=1}^{\infty} a_n = \infty$, then $\mathcal{I}_{(a_n)}$ is a proper \mathcal{P}-ideal.

2. Divergent monotone series diverges on large sets of indexes

Theorem 2. Let $(a_n)_{n=1}^{\infty}$ be a non-increasing sequence of positive numbers such that $\lim_{n \to \infty} a_n = 0$ and $\sum_{n=1}^{\infty} a_n = \infty$. Assume that $A \subseteq \mathbb{N}$ has a positive lower density. Then $\sum_{n \in A} a_n = \infty$.

Proof. Since A has a positive lower density, there exists $m \in \mathbb{N}$ such that $d(A) > \frac{1}{m}$. By the definition of lower density there is n_0 such that

$$\frac{|A \cap \{1, \ldots, n\}|}{n} > \frac{1}{m}$$

for every $n \geq n_0$. In particular, for $n = mn_0 \geq n_0$, the set $A \cap \{1, 2, \ldots, mn_0\}$ contains at least n_0 elements. Moreover, for $n = 2mn_0$, the set $A \cap \{1, 2, \ldots, 2mn_0\}$ contains at least $2n_0$ elements. Thus the following inequalities hold

$$\sum_{k \in A \cap \{1, \ldots, mn_0\}} a_k \geq \sum_{k=(m-1)n_0+1}^{mn_0} a_k$$

and

$$\sum_{k \in A \cap \{1, \ldots, 2mn_0\}} a_k \geq \sum_{k=(m-1)n_0+1}^{mn_0} a_k + \sum_{k=(2m-1)n_0+1}^{2mn_0} a_k.$$
Now let $i \geq 2$. By the same argument as above we obtain that
\[
\sum_{k \in A \cap \{1, \ldots, imn_0\}} a_k \geq \sum_{k = (im-1)n_0+1}^{mn_0} a_k + \sum_{k = (im-1)n_0+1}^{imn_0} a_k.
\] (2)

Let $B_p = \sum_{i=1}^{\infty} \left(\sum_{k = (im-p+1)n_0+1}^{imn_0} a_k\right)$ for $p = 1, \ldots, m$. By (2) we have $\sum_{k \in A} a_k \geq B_1$. Since (a_k) is non-increasing, then $B_1 \leq B_2 \leq \ldots \leq B_m$ and $B_p < \infty$ iff $B_p < \infty$. Suppose that B_1 is finite. Then each B_p is also finite, and therefore every B_p is finite. But this means that $B_1 + B_2 + \ldots + B_m = \sum_{k=1}^{\infty} a_k$ is finite and we reach a contradiction. Thus B_1 is infinite which implies that $\sum_{k \in A} a_k$ is infinite.

We cannot strengthen Theorem 2 assuming only that the set A has positive upper density. Even if the assumption that $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 1$ is added.

Proposition 3. There exists a non-increasing sequence $(a_n)_{n=1}^{\infty}$ of positive reals such that $\lim_{n \to \infty} a_n = 0$, $\sum_{n=1}^{\infty} a_n = \infty$, $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 1$, and there is $A \subseteq \mathbb{N}$ with $\overline{d}(A) = 1, \underline{d}(A) = 0$ and $\sum_{n \in A} a_n < \infty$.

Proof. Consider a sequence (a_n) of the form
\[
\frac{1}{n_1^2}, \frac{1}{n_2^2}, \frac{1}{n_3^2}, \ldots, \frac{1}{n_j^2}, \frac{1}{(n_1+1)^2}, \frac{1}{(n_1+2)^2}, \ldots, \frac{1}{n_j^2}, \frac{1}{n_1^2 + 1}, \frac{1}{n_2^2 + 1}, \ldots, \frac{1}{n_j^2 + 1}, \ldots
\]

The sequence (a_n) is a mixture of elements of the harmonic series $\sum_{n=1}^{\infty} 1/n$ and the 2-series $\sum_{n=1}^{\infty} 1/n^2$. Clearly (a_n) is decreasing and $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 1$ for any choice $n_1 < n_2 < \ldots$. Let A consist of those indexes where elements of the 2-series are used in the definition of (a_n). We can choose integers n_k such that
\[
\frac{1}{n_{2j}^2 + 1} + \frac{1}{n_{2j}^2 + 2} + \cdots + \frac{1}{n_{2j+1}^2} > 1
\]
for every \(j \), and such that \(d(A) = 1 \). Clearly \(\sum_{k \in A} a_k < \infty \) and \(\sum_{n=1}^{\infty} a_n = \infty \). By Theorem 2 the set \(A \) does not contain a subset of positive density, and therefore \(d(A) = 0 \). □

Corollary 4. Let \(\alpha \in (0, 1] \). Then \(\sum_{n \in A} \frac{1}{n^\alpha} = \infty \) for \(A \notin \mathcal{I}_{\alpha} \). In particular if \(d(A) > 0 \) then \(\sum_{n \in A} \frac{1}{n^\alpha} = \infty \).

It is well known that \(\mathcal{I}_{\alpha} \subseteq \mathcal{I}_d \). It is not true in general that \(\mathcal{I}_{(a_n)} \subseteq \mathcal{I}_d \) even if one assumes that \((a_n)_{n=1}^{\infty} \) is non-decreasing. This follows from Proposition 3.

Remark. An anonymous referee pointed out that Theorem 2 was actually proved by Šalát in [17] using a substantially different method.

3. \(\mathcal{I} \)-convergence of series

Dindoš, Šalát and Toma introduced in [5] the statistical convergence of series in the following way. A series \(\sum_{n=1}^{\infty} a_n \) is statistically convergent to some \(L \) provided the sequence \(s_n = \sum_{k=1}^{n} a_k \) of partial sums converges statistically to \(L \). In a similar way, one can define a convergence of a series with respect to \(\mathcal{I} \), namely as the \(\mathcal{I} \)-convergence of partial sums. Our approach is different. Since we cannot define an \(\mathcal{I} \)-sum of a series, we define \(\mathcal{I} \)-convergence of series by the Cauchy condition. Let us mention that Červeňanský, Šalát and Toma proved in [4] that in general these two definitions of \(\mathcal{I} \)-convergence of a series do not coincide and any of them do not imply the other.

Definition 5. Let \(\mathcal{I} \) be an admissible ideal. We say that a series \(\sum_{n=1}^{\infty} a_n \) is \(\mathcal{I} \)-convergent if it satisfies the \(\mathcal{I} \)-Cauchy condition, that is if for every \(\varepsilon > 0 \) there are \(n_\varepsilon \in \mathbb{N} \) and \(A_\varepsilon \in \mathcal{I} \) such that

\[
\left| \sum_{m \in \{l, \ldots, k\} \setminus A_\varepsilon} a_m \right| < \varepsilon
\]

for any \(k > l > n_\varepsilon \).

Definition 6. Let \(\mathcal{I} \) be an admissible ideal. We say that a series \(\sum_{n=1}^{\infty} a_n \) satisfies the (*)-\(\mathcal{I} \)-Cauchy condition if there exists set \(A \in \mathcal{I} \) such that \(\sum_{n \in \mathbb{N} \setminus A} a_n \) satisfies the Cauchy condition. We say that a series \(\sum_{n=1}^{\infty} a_n \) is (*)-\(\mathcal{I} \)-convergent if there
is $A \in \mathcal{I}$ such that $\sum_{n \in \mathbb{N} \setminus A} a_n$ converges. Clearly the series $\sum_{n=1}^{\infty} a_n$ satisfies the (*-\mathcal{I}-Cauchy condition if and only if $\sum_{n \in \mathbb{N} \setminus A} a_n$ is (*-\mathcal{I}-convergent.

Now, we will show how these two definitions of Cauchy conditions are related to each other. The following is a counterpart of [1, Proposition 3].

Lemma 7. Let \mathcal{I} be an admissible ideal. If $\sum_{n=1}^{\infty} a_n$ satisfies the (*)-\mathcal{I}-Cauchy condition, then it satisfies the \mathcal{I}-Cauchy condition.

Proof. Since $\sum_{n=1}^{\infty} a_n$ satisfies the (*)-\mathcal{I}-Cauchy condition, there is $A \in \mathcal{I}$ such that $\sum_{n \in \mathbb{N} \setminus A} a_n$ satisfies the Cauchy condition. Let $\varepsilon > 0$ and choose $n_\varepsilon \in \mathbb{N} \setminus A$ such that $\left| \sum_{m \in \{l,...,k\} \setminus A} a_m \right| < \varepsilon$ for any $k > l > n_\varepsilon$. Put $A_\varepsilon = A \cup \{1,...,n_\varepsilon\}$. Then $A_\varepsilon \in \mathcal{I}$ and $\left| \sum_{m \in \{l,...,k\} \setminus A_\varepsilon} a_m \right| < \varepsilon$ for any $k > l > n_\varepsilon$. □

It turns out that the reverse implication is true if and only if \mathcal{I} is a P-ideal. This is a counterpart of [14, Theorem 3.2].

Theorem 8. Let \mathcal{I} be an admissible ideal. Then the following are equivalent:

1. \mathcal{I} is a P-ideal,
2. $\sum_{n=1}^{\infty} a_n$ satisfies the \mathcal{I}-Cauchy condition if and only if satisfies the (*)-\mathcal{I}-Cauchy condition.

Proof. Let \mathcal{I} be a P-ideal and assume that $\sum_{n=1}^{\infty} a_n$ satisfies the \mathcal{I}-Cauchy condition. Then for every $j \in \mathbb{N}$ there exist $A_j \in \mathcal{I}$ and q such that for any $k > l > q$ we have $\left| \sum_{m \in \{l,...,k\} \setminus A_j} a_m \right| < \frac{1}{j}$. Since \mathcal{I} is a P-ideal, there exists $A_\infty \in \mathcal{I}$ such that $A_j \setminus A_\infty$ is finite for all $j \in \mathbb{N}$. Fix $j \in \mathbb{N}$ and let $p \in \mathbb{N}$ be such that $A_j \setminus A_\infty \subset \{1,...,p\}$. Thus for any $k > l > p$ if $k,l \notin A_j$, then $k,l \notin A_\infty$ and therefore $\left| \sum_{m \in \{l,...,k\} \setminus A_\infty} a_m \right| < \frac{1}{j}$.

Assume now that \mathcal{I} is not a P-ideal. Then by Lemma 1 there is a sequence A_1, A_2, \ldots of pairwise disjoint infinite sets in \mathcal{I} such that for any $A \in \mathcal{I}$ there is n such that $A_n \setminus A$ is infinite. Let $\{k_1^1 < k_2^1 < \ldots\}$ be an increasing enumeration of A_n. Define $a_n = (-1)^{k_n^1}/2^n$ and $a_m = 0$ if $m \notin \bigcup_{n=1}^{\infty} A_n$.

Let $\varepsilon > 0$. There is n with $1/2^n < \varepsilon$. Take $m < k$ and consider

$$t := \sum_{m=1, m \notin A_1 \cup \cdots \cup A_n}^k a_m.$$

By the construction of series $\sum_{m=1}^\infty a_m$, we have

$$|t| < \frac{1}{2^{n+1}} + \frac{1}{2^{n+2}} + \cdots = \frac{1}{2^n} < \varepsilon.$$

Hence $\sum_{m=1}^\infty a_m$ fulfills the I-Cauchy condition.

Let $A \in I$. Let n_0 be such that $A_{n_0} \setminus A$ is infinite. Then the set $\{s_m : m \notin A\}$ contains infinitely many elements of the form $(-1)^i/2^{n_0}$. Therefore $\sum_{m \notin \mathbb{N} \setminus A} a_m$ does not converge, and thus $\sum_{m \notin \mathbb{N} \setminus A} a_m$ does not fulfill the Cauchy condition.

Hence $\sum_{m=1}^\infty a_m$ does not fulfill the (\ast)-I-Cauchy condition. \hfill \Box

4. When I-$\lim_{n \to \infty} a_n = 0$ implies I-convergence of $\sum_{n=1}^\infty a_n$

In this section we will prove two facts. The first fact states that for a large class of ideals, namely analytic P-ideals I, there is an I divergent series $\sum_{n=1}^\infty a_n$ such that I-$\lim_{n \to \infty} a_n = 0$. The second fact states that there is a maximal P-ideal I such that I-$\lim_{n \to \infty} a_n = 0$ implies the I-convergence of $\sum_{n=1}^\infty a_n$. But first let us note the following basic fact.

Proposition 9. Assume that $\sum_{n=1}^\infty a_n$ is I-convergent. Then (a_n) is I-convergent to zero.

Proof. Since $\sum_{n=1}^\infty a_n$ is I-convergent, then

$$\forall \varepsilon > 0 \ \exists A_\varepsilon \in I \exists n_\varepsilon \ \forall k > n_\varepsilon \left| \sum_{m \in \{1, \ldots, k \} \setminus A_\varepsilon} a_m \right| < \varepsilon.$$

Thus $|a_m| \leq \varepsilon$ for every $m > n_\varepsilon$, $m \notin A_\varepsilon$. Hence (a_n) is I-convergent to zero. \hfill \Box

Theorem 10. For any analytic P-ideal I there exists an I-divergent series $\sum_{n=1}^\infty a_n$ such that $(a_n)_{n=1}^\infty$ is I-convergent to zero.
Let φ be a submeasure witnessing that \mathcal{I} is an analytic P-ideal. Let $M' = \lim_{n \to \infty} \varphi(\mathbb{N} \setminus n) > 0$. Since \mathcal{I} does not contain \mathbb{N}, then M' is a positive real number or $M' = \infty$. By M denote $M'/2$ if M' is finite or 1 if $M' = \infty$.

Let $0 = n_0 < n_1 < n_2 < ...$ be such that $\varphi(n_{k+1} \setminus n_k) \geq M$. Let $A_k = \{n \in \mathbb{N} : n_{k-1} \leq n < n_k\}$ and for every index n from A_k define $a_n = 1/k$. It can be easily seen that $\bigcup_{k=0}^{\infty} A_k = \mathbb{N}$ and the sequence $(a_n)_{n=1}^{\infty}$ is \mathcal{I}-convergent to zero.

Let $A \subseteq \mathbb{N}$ such that $\mathbb{N} \setminus A \in \mathcal{I}$. Therefore $\lim_{n \to \infty} \varphi((\mathbb{N} \setminus A) \setminus n) = 0$. Now, we want to show that there exists $l \in \mathbb{N}$ such that for all $n > l$ we have $A_n \cap A \neq \emptyset$.

Suppose to the contrary that for any $l \in \mathbb{N}$ there exists $k > l$ that $A_k \cap A = \emptyset$.

This means that $\lim_{n \to \infty} \varphi((\mathbb{N} \setminus A) \setminus n) \geq M$ which is a contradiction. Hence series $\sum_{n=1}^{\infty} a_n$ is \mathcal{I}-divergent since it contains a subseries of the form $\sum_{n=k}^{\infty} 1/n$.

Now, we will prove that Theorem 10 is not true for all P-ideals. To do that we will need the following set-theoretic statement proved by Bartoszewicz, Głąb and Wachowicz in [2]. We refer the reader to [2] for the notation used in this section.

Theorem 11. Assume that $p = c$. Let $\tau < p$. Suppose that $\mathcal{B}_1, \mathcal{B}_2$ are two properties of sequences $x \in \mathbb{R}^\mathbb{N}$ such that:

- (a) for all $x \in \mathbb{R}^\mathbb{N}$ and $K \in [\mathbb{N}]^\mathbb{N}$, if $x_{\upharpoonright K}$ has \mathcal{B}_1, then there is $L \in [\mathbb{N}]^\mathbb{N}$, $L \subseteq K$, such that $x_{\upharpoonright L}$ has \mathcal{B}_2;
- (b) \mathcal{B}_1 is closed under taking subsequences, i.e. for all $x \in \mathbb{R}^\mathbb{N}$, $L, K \in [\mathbb{N}]^\mathbb{N}$, if $L \cap K$ and $x_{\upharpoonright K}$ has \mathcal{B}_1, then $x_{\upharpoonright L}$ has \mathcal{B}_1.

If a filter \mathcal{F} is τ-generated, then \mathcal{F} can be extended to a filter \mathcal{F}' such that for any $x \in \mathbb{R}^\mathbb{N}$ and $K \in \mathcal{F}'$, if $x_{\upharpoonright K}$ has \mathcal{B}_1, then there is $L \in \mathcal{F}'$, $L \subseteq K$, such that $x_{\upharpoonright L}$ has \mathcal{B}_2.

Theorem 12. Assume that $p = c$. There exists a P-ideal \mathcal{I} such that if $(a_n)_{n=1}^{\infty}$ is \mathcal{I}-convergent to zero then the series $\sum_{n=1}^{\infty} a_n$ is \mathcal{I}-convergent.

Proof. We say that a sequence (a_n) has the property \mathcal{B}_1 if (a_n) is bounded, and we say that a sequence (a_n) has the property \mathcal{B}_2 if (a_n) is convergent and $\sum_{n=1}^{\infty} (a_n - \lim_k a_k)$ is finite. Clearly conditions (a) and (b) of Theorem 11 are fulfilled. Let \mathcal{F} be a Frechet filter, i.e. a filter which consists of cofinite subsets of \mathbb{N}. Then by Theorem 11 there is a filter $\mathcal{F}' \supseteq \mathcal{F}$ such that if (a_n) is bounded on a set $K \in \mathcal{F}'$, then $\sum_{n=1}^{\infty} (a_n - \lim_k a_k)$ converges on a set $L \in \mathcal{F}'$. By \mathcal{T}' denote the dual ideal to \mathcal{F}'. In particular we obtain that $l^{\infty}(\mathcal{T}') = c^*(\mathcal{T}')$ and therefore by [14, Theorem 3.2] and [6, Proposition 3] \mathcal{T}' is a maximal P-ideal.
Let \((a_n)\) be \(I'\)-convergent to zero. Since \(I'\) is \(P\)-ideal there is \(L \in \mathcal{F}'\) such that \(\lim_{n \in L} a_n = 0\). By the \(I'\)-boundedness of \((a_n)\) there is \(K \in \mathcal{F}'\) such that \(\sum_{k \in K} a_n\) is finite, which means that \(\sum_{n=1}^{\infty} a_n\) is \(I'\)-convergent. □

The anonymous referee suggested that the notion of rapid filter is crucial for the property of ideals studied in this section. A filter \(\mathcal{F}\) on \(\mathbb{N}\) is called a rapid filter, if for any sequence \((\varepsilon_n)\) such that \(\varepsilon_n \to 0\), there exists \(X \in \mathcal{F}\) such that \(\sum_{n \in X} \varepsilon_n < \infty\). (There are several equivalent definitions of rapid filters, see e.g. [3, Lemma 4.6.2].)

Proposition 13. Let \(\mathcal{I}\) be an ideal on \(\mathbb{N}\). The \((*)-I\)-convergence of \((a_n)\) to zero implies the \((*)-I\)-convergence of series \(\sum_{n=1}^{\infty} a_n\) for every sequence \((a_n)\) of real numbers if and only if the filter \(\mathcal{F}\) dual to \(I\) is a rapid filter.

Proof. Assume that \(\mathcal{F}\) is not a rapid filter. Then there is a sequence \((\varepsilon_n)\) tending to zero such that \(\sum_{n \in X} \varepsilon_n = \infty\) for every \(X \in \mathcal{F}\). Note that \((\varepsilon_n)\) is \((*)-I\)-convergent to zero while \(\sum_{n=1}^{\infty} a_n\) is not \((*)-I\)-convergent.

Assume now that \(\mathcal{F}\) is a rapid filter. Let \((a_n)\) be a sequence of real numbers which is \((*)-I\)-convergent. Thus there is a set \(A \in \mathcal{F}\) such that \(\lim_{n \in A} a_n = 0\). Put \(a'_n = a_n\) if \(n \in A\) and \(a'_n = 0\) otherwise. Then \((a'_n)\) tends to zero. Since \(\mathcal{F}\) is a rapid filter, there is \(B \in \mathcal{F}\) such that \(\sum_{n \in B} a'_n < \infty\). Note that \(A \cap B \in \mathcal{F}\) and

\[
\sum_{n \in B \cap A} a_n = \sum_{n \in B \cap A} a'_n < \infty.
\]

Therefore \(\sum_{n=1}^{\infty} a_n\) is \((*)-I\)-convergent. □

In the light of Proposition 13 what we proved in Theorem 12 is that under the assumption \(p = c\) there is a rapid filter. However this is a known fact (see e.g. [11]). Theorem 10 can be read as follows – there are no analytic rapid \(P\)-ideals. On the other hand, by the result of Judah and Shelah [13], there is a model of \(\text{ZFC}\) in which there are no rapid filters. Therefore we have the following.

Corollary 14. It is independent of \(\text{ZFC}\) that there exists an ideal \(\mathcal{I}\) on \(\mathbb{N}\) such that the \((*)-I\)-convergence of \((a_n)\) to zero implies the \((*)-I\)-convergence of \(\sum_{n=1}^{\infty} a_n\) for every sequence \((a_n)\) of real numbers. In particular, it is independent of \(\text{ZFC}\) that there exists a \(P\)-ideal on \(\mathbb{N}\) such that the \(I\)-convergence of \((a_n)\) to zero implies the \(I\)-convergence of \(\sum_{n=1}^{\infty} a_n\) for every sequence \((a_n)\) of real numbers.
Acknowledgment: The authors are very grateful to the anonymous referee for her/his careful reading of the paper, several invaluable remarks and pointing out some mistakes in an earlier version of the paper.

REFERENCES

Institute of Mathematics, Lódź University of Technology, Wólczańska 215, 93-005 Łódź, Poland

Institute of Mathematics, Lódź University of Technology, Wólczańska 215, 93-005 Łódź, Poland