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Abstract. We prove that if
∞∑

n=1
an =∞ and (an) is non-decreasing, then∑

n∈A
an = ∞ for any set A ⊂ N of positive lower density. We introduce a

Cauchy - like definition of I-convergence of series. We prove that the I-

convergence of series coincides with the convergence on large set of indexes

if and only if I is a P -ideal. It turns out that I-convergence of series
∞∑

n=1
an

implies I-convergence of (an) to zero. The converse implication does not
hold for analytic P -ideals and it is independent of ZFC that there is I ideal

of naturals for which I-convergence of (an) to zero implies I-convergence

of series
∞∑

n=1
an =∞ for every sequence (an).

1. Introduction

The convergence of sequence xn with respect to an ideal I is a natural gen-
eralization of the usual convergence and the statistical convergence. The paper
by Kostyrko, Šalát, and Wilczyński [14] is a well-written introduction to this
topic. Recently the large progress was done in applications of I-convergence in
analysis (see [1], [7], [9], [10], [15] and [12]).

In this note we are interested in the I-convergence of a series
∞∑

n=1
an. There

are two approaches to that concept. The first is to consider the I-convergence

of sequence of partial sums
k∑

n=1
an which was considered by Dindoš, Šalát and

Toma in [5]. The problem with this definition of I-convergence of a series
∞∑

n=1
an

is that it coincides with the usual convergence if the terms an are nonnegative.

The second approach is the following. We say that
∞∑

n=1
an is I-convergent if it is
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convergent on a large set of indexes, namely
∑
n∈A

an is convergent for some A with

N\A ∈ I. The problem with this definition is that an I-limit of
∞∑

n=1
an is not well

defined. Indeed, since we assume that I contains all singletons, then if
∑
n∈A

an is

convergent and N \A ∈ I, then also
∑

n∈A\F
an is convergent and N \ (A \F ) ∈ I

for any finite F . Moreover, in general, the I-convergence of a sequence does not
imply the convergence on a large set of indexes. Kostyrko, Šalát, and Wilczyński
in [14] proved that such an implication holds if and only if I is a P -ideal. We
will focus on the second approach and we will show how to omit the mentioned
problems and define an I-convergence of series (see Definition 5).

Each of whose definitions of I-convergence of series generalizes the usual
notion of convergence. Therefore the most interesting question is under which
conditions a divergent series is I-convergent. First, we deal with this problem
in a special case of I-convergence, namely the statistical convergence. It was
proved in [16] that if A ⊆ N is not of natural density zero, then∑

n∈A

1

n
=∞.

It is a simple observation that if we change
(

1
n

)
to any sequence (an) with

∞∑
n=1

an = ∞ then
∑
n∈A

an = ∞ need not hold even for A ⊆ N of density one.

Indeed, take any infinite set B ⊆ N of density zero and define (an) as a charac-
teristic function of B. One can produce a similar example with an → 0.

Here we consider the following question. Can we prove a similar statement
assuming that (an) is non-increasing? In Section 1 we show that∑

n∈A
an =∞

provided
∞∑

n=1
an = ∞ and A ⊆ N has a positive lower density. Additionally, we

give an example of a non-increasing (an) with
∞∑

n=1
an = ∞, lim an+1

an
= 1 such

that
∑
n∈A

an <∞ for some A ⊆ N with a positive upper density.

In Section 2 we introduce the notion of ideal convergence of series. Roughly

speaking
∞∑

n=1
an is I-convergent if

∑
n∈A

an < ∞ with N\A ∈ I. We give some

equivalent condition for I-convergence of
∞∑

n=1
an.
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At the end we prove that it is independent of ZFC that there is a P -ideal

I such that
∞∑

n=1
an is I-convergent if and only if an → 0 with respect to I for

every sequence (an). On the other hand, for any analytic P -ideal I, there is an

I-divergent series
∞∑

n=1
an such that an → 0.

Now, recall some basic definitions. A family I of subsets of N is called an
ideal if it fulfills the following conditions:

(1) if A ∈ I and B ⊆ A, then B ∈ I;
(2) if A,B ∈ I, then A ∪B ∈ I.

We say that I is admissible if {n} ∈ I for n ∈ N, and I is proper if N /∈ I.
A proper ideal I is called P -ideal, if for each sequence (An)

∞
n=1 of sets from I

there exists A∞ ∈ I such that An \ A∞ is finite for all n ∈ N. A proper ideal
I has (AP) property if for any pairwise disjoint sequence (An)

∞
n=1 of sets from

I there exists a sequence (Bn)
∞
n=1 such that Aj\Bj is finite set for all n ∈ N

and
⋃

n∈N
Bn ∈ I. It turns out that notions of P -ideals and ideals with (AP)

property coincides, see e.g. [1]. In the sequel we will need a necessary condition
for non-P -ideals.

Lemma 1. Let I be an admissible ideal which is not a P -ideal. Then there is a
sequence (An) of pairwise disjoint infinite sets from I such that for any A ∈ I
there is n such that the set An \A is infinite.

Proof. Since I is not P -ideal, there is a sequence (Bn) such that Bn ∈ I and
for every A ∈ I there is n such that Bn \ A is infinite. Let A1 = B1 and

An = Bn\
n−1⋃
k=1

Bk. Note that among A1, A2, . . . there are infinitely many infinite

sets. Suppose to the contrary that all but finitely many sets from A1, A2, ... are
finite. Let A be the union of all Ai which are infinite. Thus A is in I and Bn \A
is finite for each n which yields a contradiction.

Let K = {j : Aj is infinite}. For i0 = minK let A′i0 =
i0⋃
i=0

Ai. For any

i ∈ K \ {i0} we define A′i in the following way. If Ai+1 is infinite then put
A′i = Ai, otherwise let k = max{j > i : Ai+1, Ai+2, ..., Aj are finite} and put
A′i = Ai ∪ · · · ∪ Ak. Then {A′i : i ∈ K} is a family of pairwise disjoint infinite
sets with Bi =

⋃
{A′k : k ≤ i, k ∈ K}.

Suppose that there is C ∈ I such that the set A′i \C is finite for each i ∈ K.
Then the set Bi \ C =

⋃
{A′k : k ≤ i, k ∈ K} \ C =

⋃
{A′k \ C : k ≤ i, k ∈ K}

is finite for i ∈ K. If i /∈ K then either Bi is finite or there is j ∈ K with
j < i and Bi \ Bj is finite and in the both cases Bi \ C is finite. This yields a
contradiction. �
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A function ϕ : P(N) → [0,∞] is called a submeasure if ϕ(A) ≤ ϕ(A ∪ B) ≤
ϕ(A) + ϕ(B) for any A,B ∈ P(N). A submeasure ϕ is called lower semicon-
tinuous if lim

n→∞
ϕ(A ∩ n) = ϕ(A). By Exh(ϕ) denote the set of all A ⊂ N with

lim
n→∞

ϕ(A \n) = 0. The celebrated Solecki’s characterization states that an ideal

I is an analytic P -ideal if and only if it is of the form Exh(ϕ) for some lower
semicontinuous submeasure ϕ on N.

Let A ⊆ N. By

d̄ (A) = lim sup
n→∞

|A ∩ {1, ..., n}|
n

,

we denote the upper density of A where |A| stands for the cardinality of A. In
a similar way we define the lower density d

¯
(A) of A. If d̄ (A) = d

¯
(A) , then this

common value we denote by d (A) and we call it the density of A. It is well
known that the family Id of all subsets A of N with d (A) = 0 is an analytic
P -ideal.

Let (an)
∞
n=1 be a sequence of positive numbers. Let I(an)=

{
A ⊆ N :

∑
n∈A

an <∞
}
.

Then I(an) is called a summable ideal. If
∞∑

n=1
an = ∞, then I(an) is a proper

P -ideal.

2. Divergent monotone series diverges on large sets of indexes

Theorem 2. Let (an)
∞
n=1 be a non-increasing sequence of positive numbers such

that lim
n→∞

an = 0 and
∞∑

n=1
an = ∞. Assume that A ⊆ N has a positive lower

density. Then
∑
n∈A

an =∞.

Proof. Since A has a positive lower density, there exists m ∈ N such that d
¯

(A) >
1
m . By the definition of lower density there is n0 such that

|A ∩ {1, ..., n}|
n

>
1

m
(1)

for every n ≥ n0. In particular, for n = mn0 ≥ n0, the set A ∩ {1, 2, . . . ,mn0}
contains at least n0 elements. Moreover, for n = 2mn0, the setA∩{1, 2, . . . , 2mn0}
contains at least 2n0 elements. Thus the following inequalities hold∑

k∈A∩{1,...,mn0}

ak ≥
mn0∑

k=(m−1)n0+1

ak

and ∑
k∈A∩{1,...,2mn0}

ak ≥
mn0∑

k=(m−1)n0+1

ak +

2mn0∑
k=(2m−1)n0+1

ak.
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Now let i ≥ 2. By the same argument as above we obtain that

∑
k∈A∩{1,...,imn0}

ak ≥
mn0∑

k=(m−1)n0+1

ak + ...+

imn0∑
k=(im−1)n0+1

ak. (2)

Let Bp =
∞∑
i=1

(im−p+1)n0∑
k=(im−p)n0+1

ak for p = 1, ...,m. By (2) we have
∑
k∈A

ak ≥ B1. Since

(ak) is non-increasing, then B1 ≤ B2 ≤ ... ≤ Bm. If B
′

p =
∞∑
i=2

(im−p+1)n0∑
k=(im−p)n0+1

ak,

then B
′

2 ≤ B
′

3 ≤ ... ≤ B
′

m ≤ B1 and B
′

p < ∞ iff Bp < ∞. Suppose that B1

is finite. Then each B
′

p is also finite, and therefore every Bp is finite. But this

means that B1 + B2 + ...+ Bm =
∞∑
k=1

ak is finite and we reach a contradiction.

Thus B1 is infinite which implies that
∑
k∈A

ak is infinite. �

We cannot strengthen Theorem 2 assuming only that the set A has positive
upper density. Even if the assumption that lim

n→∞
an+1

an
= 1 is added.

Proposition 3. There exists a non-increasing sequence (an)
∞
n=1 of positive reals

such that lim
n→∞

an = 0,
∞∑

n=1
an = ∞, lim

n→∞
an+1

an
= 1, and there is A ⊆ N with

d (A) = 1, d (A) = 0 and
∑
n∈A

an <∞.

Proof. Consider a sequence (an) of the form

1,
1

2
,

1

3
, . . . ,

1

n2
1︸ ︷︷ ︸,

1

(n1 + 1)2
,

1

(n1 + 2)2
, . . . ,

1

n2
2︸ ︷︷ ︸,

1

n2
2 + 1

,
1

n2
2 + 2

, . . . ,
1

n2
3︸ ︷︷ ︸,

1

(n3 + 1)2
,

1

(n3 + 2)2
, . . . ,

1

n2
4︸ ︷︷ ︸, . . .

The sequence (an) is a mixture of elements of the harmonic series
∞∑

n=1
1/n and

the 2-series
∞∑

n=1
1/n2. Clearly (an) is decreasing and lim

n→∞
an+1

an
= 1 for any choice

n1 < n2 < . . . . Let A consist of those indexes where elements of the 2-series are
used in the definition of (an). We can choose integers nk such that

1

n2
2j + 1

+
1

n2
2j + 2

+ · · ·+ 1

n2
2j+1

> 1
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for every j, and such that d(A) = 1. Clearly
∑
k∈A

ak < ∞ and
∞∑

n=1
an = ∞. By

Theorem 2 the set A does not contain a subset of positive density, and therefore
d(A) = 0. �

Corollary 4. Let α ∈ (0, 1] . Then
∑
n∈A

1
nα = ∞ for A /∈ I( 1

n ). In particular if

d̄ (A) > 0 then
∑
n∈A

1
nα =∞.

It is well known that I( 1
n ) ⊆ Id. It is not true in general that I(an) ⊆ Id even

if one assumes that (an)
∞
n=1 is non-decreasing. This follows from Proposition 3.

Remark. An anonymous referee pointed out that Theorem 2 was actually
proved by Šalát in [17] using a substantially different method.

3. I-convergence of series

Dindoš, Šalát and Toma introduced in [5] the statistical convergence of series

in the following way. A series
∞∑

n=1
an is statistically convergent to some L pro-

vided the sequence sn =
n∑

k=1

ak of partial sums converges statistically to L. In a

similar way, one can define a convergence of a series with respect to I, namely as
the I-convergence of partial sums. Our approach is different. Since we cannot
define an I-sum of a series, we define I-convergence of series by the Cauchy
condition. Let us mention that Červeňanský, Šalát and Toma proved in [4] that
in general these two definitions of I-convergence of a series do not coincide and
any of them do not imply the other.

Definition 5. Let I be an admissible ideal. We say that a series
∞∑

n=1
an is I-

convergent if it satisfies the I–Cauchy condition, that is if for every ε > 0 there
are nε ∈ N and Aε ∈ I such that∣∣∣∣∣∣

∑
m∈{l,...,k}\Aε

am

∣∣∣∣∣∣ < ε

for any k > l > nε.

Definition 6. Let I be an admissible ideal. We say that a series
∞∑

n=1
an satisfies

the (*)-I-Cauchy condition if there exists set A ∈ I such that
∑

n∈N\A
an satisfies

the Cauchy condition. We say that a series
∞∑

n=1
an is (*)-I-convergent if there
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is A ∈ I such that
∑

n∈N\A
an converges. Clearly the series

∞∑
n=1

an satisfies the

(*)-I-Cauchy condition if and only if
∑

n∈N\A
an is (*)-I-convergent.

Now, we will show how these two definitions of Cauchy conditions are related
each to other. The following is a counterpart of [1, Proposition 3].

Lemma 7. Let I be an admissible ideal. If
∞∑

n=1
an satisfies the (*)-I-Cauchy

condition, then it satisfies the I-Cauchy condition.

Proof. Since
∞∑

n=1
an satisfies the (*)–I–Cauchy condition, there is A ∈ I such

that
∑

n∈N\A
an satisfies the Cauchy condition. Let ε > 0 and choose nε ∈ N\A

such that

∣∣∣∣∣ ∑
m∈{l,...,k}\A

am

∣∣∣∣∣ < ε for any k > l > nε. Put Aε = A ∪ {1, ..., nε}.

Then Aε ∈ I and

∣∣∣∣∣ ∑
m∈{l,...,k}\Aε

am

∣∣∣∣∣ < ε for any k > l > nε. �

It turns out that the reverse implication is true if and only if I is a P -ideal.
This is a counterpart of [14, Theorem 3.2].

Theorem 8. Let I be an admissible ideal. Then the following are equivalent:

(1) I is a P -ideal,

(2)
∞∑

n=1
an satisfies the I-Cauchy condition if and only if satisfies the (*)-I-

Cauchy condition.

Proof. Let I be a P -ideal and assume that
∞∑

n=1
an satisfies the I–Cauchy condi-

tion. Then for every j ∈ N there exist Aj ∈ I and q such that for any k > l > q

we have

∣∣∣∣∣ ∑
m∈{l,...,k}\Aj

am

∣∣∣∣∣ < 1
j . Since I is a P -ideal, there exists A∞ ∈ I such

that Aj\A∞ is finite for all j ∈ N. Fix j ∈ N and let p ∈ N be such that
Aj\A∞ ⊂ {1, ..., p} . Thus for any k > l > p if k, l /∈ Aj , then k, l /∈ A∞ and

therefore

∣∣∣∣∣ ∑
m∈{l,...k}\A∞

am

∣∣∣∣∣ < 1
j .

Assume now that I is not a P -ideal. Then by Lemma 1 there is a sequence
A1, A2, ... of pairwise disjoint infinite sets in I such that for any A ∈ I there is n
such that An \A is infinite. Let {kn1 < kn2 < . . . } be an increasing enumeration
of An. Define akni = (−1)i/2n and am = 0 if m /∈

⋃∞
n=1An.
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Let ε > 0. There is n with 1/2n < ε. Take m < k and consider

t :=

k∑
m=l,m/∈A1∪···∪An

am.

By the construction of series
∞∑

m=1
am, we have

|t| < 1

2n+1
+

1

2n+2
+ · · · = 1

2n
< ε.

Hence
∞∑

m=1
am fulfills the I–Cauchy condition.

Let A ∈ I. Let n0 be such that An0
\A is infinite. Then the set {sm : m /∈ A}

contains infinitely many elements of the form (−1)i/2n0 . Therefore
∑

m∈N\A
am

does not converge, and thus
∑

m∈N\A
am does not fulfill the Cauchy condition.

Hence
∞∑

m=1
am does not fulfill the (*)–I–Cauchy condition. �

4. When I-limn an = 0 implies I-convergence of
∞∑

n=1
an

In this section we will prove two facts. The first fact states that for a large

class of ideals, namely analytic P -ideals I, there is an I divergent series
∞∑

n=1
an

such that I- lim
n→∞

an = 0. The second fact states that there is a maximal P -ideal

I such that I-limn an = 0 implies the I-convergence of
∞∑

n=1
an. But first let us

note the following basic fact.

Proposition 9. Assume that
∞∑

n=1
an is I-convergent. Then (an) is I-convergent

to zero.

Proof. Since
∞∑

n=1
an is I-convergent, then

∀ε > 0 ∃Aε ∈ I ∃nε ∀k > l > nε

∣∣∣ ∑
m∈{l,...,k}\Aε

am

∣∣∣ < ε.

Thus |am| ≤ ε for every m > nε, m /∈ Aε. Hence (an) is I-convergent to
zero. �

Theorem 10. For any analytic P -ideal I there exists an I-divergent series
∞∑

n=1
an such that (an)

∞
n=1 is I-convergent to zero.
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Proof. Let ϕ be a submeasure witnessing that I is an analytic P -ideal. Let
M ′ = lim

n→∞
ϕ (N\n) > 0. Since I does not contain N, then M ′ is a positive

real number or M ′ = ∞. By M denote M ′/2 if M ′ is finite or 1 if M ′ = ∞.
Let 0 = n0 < n1 < n2 < n3 < ... be such that ϕ (nk+1\nk) ≥ M. Let Ak =
{n ∈ N : nk−1 ≤ n < nk} and for every index n from Ak define an = 1/k. It can

be easily seen that
∞⋃
k=0

Ak = N and the sequence (an)
∞
n=1 is I-convergent to zero.

Let A ⊆ N such that N \ A ∈ I. Therefore lim
n→∞

ϕ((N\A) \ n) = 0. Now, we

want to show that there exists l ∈ N such that for all n > l we have An ∩A 6= ∅.
Suppose to the contrary that for any l ∈ N there exists k > l that Ak ∩ A = ∅.
This means that lim

n→∞
ϕ((N\A) \ n) ≥M which is a contradiction. Hence series

∞∑
n=1

an is I-divergent since it contains a subseries of the form
∞∑

n=k

1/n. �

Now, we will prove that Theorem 10 is not true for all P -ideals. To do that
we will need the following set-theoretic statement proved by Bartoszewicz, G la̧b
and Wachowicz in [2]. We refer the reader to [2] for the notation used in this
section.

Theorem 11. Assume that p = c. Let τ < p. Suppose that B1, B2 are two
properties of sequences x ∈ RN such that:

(a) for all x ∈ RN and K ∈ [N]N, if x�K has B1, then there is L ∈ [N]N,
L ⊂ K, such that x�L has B2;

(b) B1 is closed under taking subsequences, i.e. for all x ∈ RN, L,K ∈ [N]N,
if L ⊂ K and x�K has B1, then x�L has B1.

If a filter F is τ -generated, then F can be extended to a filter F ′ such that for
any x ∈ RN and K ∈ F ′, if x�K has B1, then there is L ∈ F ′, L ⊂ K, such that
x�L has B2 .

Theorem 12. Assume that p = c. There exists a P -ideal I such that if (an)
∞
n=1

is I-convergent to zero then the series
∞∑

n=1
an is I-convergent.

Proof. We say that a sequence (an) has the property B1 if (an) is bounded,
and we say that a sequence (an) has the property B2 if (an) is convergent and
∞∑

n=1
(an − limk ak) is finite. Clearly conditions (a) and (b) of Theorem 11 are

fulfilled. Let F be a Frechet filter, i.e. a filter which consists of cofinite subsets
of N. Then by Theorem 11 there is a filter F ′ ⊃ F such that if (an) is bounded

on a set K ∈ F ′, then
∞∑

n=1
(an− limk ak) converges on a set L ∈ F ′. By I ′ denote

the dual ideal to F ′. In particular we obtain that l∞(I ′) = c∗(I ′) and therefore
by [14, Theorem 3.2] and [6, Proposition 3] I ′ is a maximal P -ideal.
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Let (an) be I ′-convergent to zero. Since I ′ is P -ideal there is L ∈ F ′ such
that limn∈L an = 0. By the I ′-boundedness of (an) there is K ∈ F ′ such that∑
k∈K

an is finite, which means that
∞∑

n=1
an is I ′-convergent. �

The anonymous referee suggested that the notion of rapid filter is crucial for
the property of ideals studied in this section. A filter F on N is called a rapid
filter, if for any sequence (εn) such that εn → 0, there exists X ∈ F such that∑
n∈X

εn < ∞. (There are several equivalent definitions of rapid filters, see e.g.

[3, Lemma 4.6.2].)

Proposition 13. Let I be an ideal on N. The (*)-I-convergence of (an) to

zero implies the (*)-I-convergence of series
∞∑

n=1
an for every sequence (an) of

real numbers if and only if the filter F dual to I is a rapid filter.

Proof. Assume that F is not a rapid filter. Then there is a sequence (εn) tending
to zero such that

∑
n∈X

εn = ∞ for every X ∈ F . Note that (εn) is (*)-I-

convergent to zero while
∞∑

n=1
an is not (*)-I-convergent.

Assume now that F is a rapid filter. Let (an) be a sequence of real numbers
which is (*)-I-convergent. Thus there is a set A ∈ F such that lim

n∈A
an = 0. Put

a′n = an if n ∈ A and a′n = 0 otherwise. Then (a′n) tends to zero. Since F is a
rapid filter, there is B ∈ F such that

∑
n∈B

a′n < ∞. Note that A ∩ B ∈ F and∑
n∈B∩A

an =
∑

n∈B∩A
a′n <∞. Therefore

∞∑
n=1

an is (*)-I-convergent. �

In the light of Proposition 13 what we proved in Theorem 12 is that under the
assumption p = c there is a rapid filter. However this is a known fact (see e.g.
[11]). Theorem 10 can be read as follows – there are no analytic rapid P -ideals.
On the other hand, by the result of Judah and Shelah [13], there is a model of
ZFC in which there are no rapid filters. Therefore we have the following.

Corollary 14. It is independent of ZFC that there exists an ideal I on N such

that the (*)-I-convergence of (an) to zero implies the (*)-I-convergence of
∞∑

n=1
an

for every sequence (an) of real numbers. In particular, it is independent of ZFC
that there exists a P -ideal on N such that the I-convergence of (an) to zero

implies the I-convergence of
∞∑

n=1
an for every sequence (an) of real numbers.
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[17] ŠALÁT, T. On subseries. Math. Z. 85 (1964) 209–225.
[18] SOLECKI, S. Analytic ideals and their applications. Ann. Pure Appl. Logic 99 (13)

(1999) 51–72.
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