DICHOTOMIES FOR LORENTZ SPACES

SZYMON GŁA̧B, FILIP STROBIN, AND CHAN WOO YANG

Abstract. Assume that $\mathbf{L}^{p, q}, \mathbf{L}^{p_{1}, q_{1}}, \ldots, \mathbf{L}^{p_{n}, q_{n}}$ are Lorentz spaces. This note is devoted to answering the question what is the size of the set

$$
E:=\left\{\left(f_{1}, \ldots, f_{n}\right) \in \mathbf{L}^{p_{1}, q_{1}} \times \ldots \times \mathbf{L}^{p_{n}, q_{n}}: f_{1} \cdots f_{n} \in L^{p, q}\right\}
$$

We prove the following dichotomy: either $E=\mathbf{L}^{p_{1}, q_{1}} \times \ldots \times \mathbf{L}^{p_{n}, q_{n}}$ or E is σ-porous in $\mathbf{L}^{p_{1}, q_{1}} \times \ldots \times$ $\mathbf{L}^{p_{n}, q_{n}}$, provided $\frac{1}{p} \neq \frac{1}{p_{1}}+\ldots+\frac{1}{p_{n}}$. In general case we obtain that either $E=\mathbf{L}^{p_{1}, q_{1}} \times \ldots \times \mathbf{L}^{p_{n}, q_{n}}$ or E is meager.

1. INTRODUCTION

This article is aimed at studying a size of the set of all tuples $\left(f_{1}, \ldots, f_{n}\right)$ from the product of n Lorentz spaces such that their product $f_{1} \cdots f_{n}$ is in another Lorentz space. This study is originated from the paper of Balcerzak and Wachowicz [BW] where it was proved that the set

$$
\left\{(f, g) \in \mathbf{L}^{1}[0,1] \times \mathbf{L}^{1}[0,1]: f g \in \mathbf{L}^{1}[0,1]\right\}
$$

is a meager subset of the product $\mathbf{L}^{1}[0,1] \times \mathbf{L}^{1}[0,1]$. It has been generalized by Jachymski [J] who proved the following condition are equivalent when $p \geq 1$ and (X, Σ, μ) is any σ-finite measure space:
(i) $\left\{(f, g) \in \mathbf{L}^{p}(X) \times \mathbf{L}^{p}(X): f g \in \mathbf{L}^{p}(X)\right\}$ is meager;
(ii) $\left\{(f, g) \in \mathbf{L}^{p}(X) \times \mathbf{L}^{p}(X): f g \in \mathbf{L}^{p}(X)\right\} \neq \mathbf{L}^{p}(X) \times \mathbf{L}^{p}(X)$;
(iii) $\inf \{\mu(A): \mu(A)>0\}=0$.

This result has been further generalized by Gła̧b and Strobin [GS]. Let (X, Σ, μ) be any measure space, $p_{1}, \ldots, p_{n}, p \in(0, \infty]$ and $\min \left\{p_{1}, \ldots, p_{n}\right\}<\infty$ (i.e., at least one of the p_{i} 's is finite). They proved that the following conditions are equivalent (we define $\frac{1}{\infty}:=0$):
(i) $\left\{\left(f_{1}, \ldots, f_{n}\right) \in \mathbf{L}^{p_{1}}(X) \times \ldots \times \mathbf{L}^{p_{n}}(X): f_{1} \cdots f_{n} \in \mathbf{L}^{p}(X)\right\}$ is σ - α-lower porous for some $\alpha>0$;
(ii) $\left\{\left(f_{1}, \ldots, f_{n}\right) \in \mathbf{L}^{p_{1}}(X) \times \ldots \times \mathbf{L}^{p_{n}}(X): f_{1} \cdots f_{n} \in \mathbf{L}^{p}(X)\right\} \neq \mathbf{L}^{p_{1}}(X) \times \ldots \times \mathbf{L}^{p_{n}}(X)$;
(iii) One of the following conditions holds:

$$
\begin{aligned}
& * \frac{1}{p_{1}}+\ldots+\frac{1}{p_{1}}>\frac{1}{p} \text { and } \inf \{\mu(A): \mu(A)>0\}=0 \\
& * \frac{1}{p_{1}}+\ldots+\frac{1}{p_{1}}<\frac{1}{p} \text { and } \sup \{\mu(A): \mu(A)<\infty\}=\infty
\end{aligned}
$$

In this paper we will strengthen the above result. The main idea is that if $p \in(0, \infty]$, then $\mathbf{L}^{p}(X)$ is a particular example of the so called Lorentz space. Hence it is interesting if the above result

[^0]Key words and phrases. Lorentz space, \mathbf{L}^{p}-space, porosity, Baire Category.
can be extended by considering Lorentz spaces instead of $\mathbf{L}^{p}(X)$ spaces. Our main reference will be Grafakos' monograph [G].

2. Notation and basic facts

Let X be a metric space. $B(x, R)$ stands for the ball with a radius R centered at a point x. Let $\alpha \in(0,1]$. We say that $M \subset X$ is α-lower porous [Z1], if

$$
\forall_{x \in M} \liminf _{R \rightarrow 0^{+}} \frac{\gamma(x, M, R)}{R} \geq \frac{\alpha}{2},
$$

where

$$
\gamma(x, M, R)=\sup \{r \geq 0: \exists z \in X B(z, r) \subset B(x, R) \backslash M\} .
$$

Clearly, M is α-lower porous iff

$$
\forall_{x \in M} \forall_{\beta \in\left(0, \frac{\alpha}{2}\right)} \exists_{R_{0}>0} \forall_{R \in\left(0, R_{0}\right)} \exists_{z \in X} B(z, \beta R) \subset B(x, R) \backslash M .
$$

The set is σ - α-lower porous if it is a countable union of α-lower porous sets. Note that a σ - α-lower porous set is meager, and the notion of σ-lower porosity is essentially stronger than that of meagerness. Note that the sets investigated in this paper will be α-porous in some stronger sense, namely,

$$
\forall_{x \in X} \forall_{\beta \in\left(0, \frac{\alpha}{2}\right)} \forall_{R>0} \exists_{z \in X} B(z, \beta R) \subset B(x, R) \backslash M .
$$

However, we do not want to define any new notion of porosity, so in the formulations of theorems we will deal only with α-lower porosity. For more information on porosity, we refer the reader to survey papers [Z1] and [Z2].
Assume that (X, Σ, μ) is a measure space, and let $p, q \in(0, \infty]$ be such that if $p=\infty$, then also $q=\infty$. A Lorentz space $\mathbf{L}^{p, q}(X, \Sigma, \mu)\left(\mathbf{L}^{p, q}\right.$ in short) is the space of all measurable functions (more formally, of all equivalence classes of measurable functions equal μ-a.e.) with a finite quasinorm given by

$$
\|f\|_{p, q}:= \begin{cases}\left(\int_{0}^{\infty} p \mu(\{x:|f(x)|>\lambda\})^{\frac{q}{p}} \lambda^{q-1} d \lambda\right)^{\frac{1}{q}}, & \text { if } q<\infty ; \\ \sup _{\lambda>0} \lambda \mu(\{x:|f(x)|>\lambda\})^{\frac{1}{p}}, & \text { if } p<\infty \text { and } q=\infty \\ \text { supess }|f|, & \text { if } p=q=\infty\end{cases}
$$

Note that the presented definition of quasinorm on $\mathbf{L}^{p, q}$ is equivalent to the original one (cf. [G]) and that $\mathbf{L}^{p, q}$ is linear space, but the quasinorm on $\mathbf{L}^{p, q}$ is not usually a norm since the triangle inequality does not hold for all quasinorms $\|\cdot\|_{p, q}$. However, it is always $c_{p, q}$-subadditive for some $c_{p, q}>0$. If $p \in(0, \infty]$, then $\|\cdot\|_{p}$ denotes the standard \mathbf{L}^{p}-norm:

$$
\|\cdot\|_{p}:= \begin{cases}\int_{X}|f|^{p} d \mu, & \text { if } p \in(0,1) \\ \left(\int_{X}|f|^{p} d \mu\right)^{\frac{1}{p}}, & \text { if } p \in[1, \infty) ; \\ \text { supess }|f|, & \text { if } p=\infty\end{cases}
$$

The following basic facts about Lorentz spaces are known and can be easily found in [G]. In the sequel we will use them, sometimes without emphasizing it. If (X, Σ, μ) is a measure space, then we define $\Sigma_{+}:=\{A \in \Sigma: 0<\mu(A)<\infty\}$, and if $A \in \Sigma$, then by χ_{A} we denote the characteristic function of the set A.

Proposition 2.1. Assume that (X, Σ, μ) is a measure space. The following conditions hold:
(i) For any $p \in(0, \infty]$,

$$
\|\cdot\|_{p, p}= \begin{cases}\|\cdot\|_{p}, & \text { if } p \in[1, \infty] ; \\ \left(\|\cdot\|_{p}\right)^{\frac{1}{p}}, & \text { if } p \in(0,1) .\end{cases}
$$

(ii) If $p \in(0, \infty)$ and $q \leq q^{\prime} \leq \infty$, then $\mathbf{L}^{p, q} \subset \mathbf{L}^{p, q^{\prime}}$. In particular, for every $f \in \mathbf{L}^{p, q}$ there exists $M>0$ such that $\mu(\{x:|f(x)|>\lambda\}) \leq M \lambda^{-p}$ for every $\lambda>0$;
(iii) If $p, r \in(0, \infty)$ and $q \in(0, \infty]$, then $\left\||f|^{r}\right\|_{p, q}=\left(\|f\|_{p r, q r}\right)^{r}$ for every $f \in \mathbf{L}^{p, q}$;
(iv) If $p \in(0, \infty)$ and $q \in(0, \infty]$, then there exists $D_{p, q}>0$ such that for every $A \in \Sigma_{+}$, $\left\|\chi_{A}\right\|_{p, q}=D_{p, q} \mu(A)^{\frac{1}{p}}$.
(v) If $\mathbf{L}^{p, q}$ is any Lorentz space, then for every $f \in \mathbf{L}^{p, q}$ and measurable function g, if for every $x \in X,|g(x)| \leq|f(x)|$, then $g \in \mathbf{L}^{p, q}$ and $\|g\|_{p, q} \leq\|f\|_{p, q} ;$
(vi) If $p<\infty$ and $\Sigma_{+}=\emptyset$, then for every $q \in(0, \infty], \mathbf{L}^{p, q}=\{0\}$;
(vii) If $\mathbf{L}^{p, q}$ is a Lorentz space, $f \in \mathbf{L}^{p, q}$ and α is any real, then $\|\alpha f\|_{p, q}=|\alpha|\|f\|_{p, q}$.

By (i), every \mathbf{L}^{p} space is a particular example of Lorentz space.
Assume now that $\Sigma_{+} \neq \emptyset$. It is well known, that every Lorentz space $L^{p, q}$ is metrizable by some metric $d_{p, q}$, which satisfies the following condition ($K_{p, q}, r_{p, q}>0$ are some constants which depend on p and q):

$$
\begin{equation*}
\left(\|f-g\|_{p, q}\right)^{r_{p, q}} \leq d_{p, q}(f, g) \leq K_{p, q}\left(\|f-g\|_{p, q}\right)^{r_{p, q}} \tag{1}
\end{equation*}
$$

Indeed, if $p=q$, then we set $d_{p, p}(f, g):=\|f-g\|_{p}$, and in the other cases we can make use of [G, Exercises 1.4.3 and 1.1.12].
Since each Lorentz space is quasi-Banach (i.e., every Cauchy sequence with respect to a quasinorm, is convergent), (1) implies that the metrics $d_{p, q}$ are complete. Hence we can consider $\mathbf{L}^{p_{1}, q_{1}} \times \ldots \times \mathbf{L}^{p_{n}, q_{n}}$ as a complete metric space with the supremum metric $d_{\text {max }}$:

$$
d_{\max }\left(\left(f_{1}, \ldots, f_{n}\right),\left(g_{1}, \ldots, g_{n}\right)\right):=\max \left\{d_{p_{1}, g_{1}}\left(f_{1}, g_{1}\right), \ldots, d_{p_{n}, g_{n}}\left(f_{n}, g_{n}\right)\right\}
$$

In particular, if $p_{i}=q_{i}, i=1, \ldots, n$, then we have:

$$
d_{\max }\left(\left(f_{1}, \ldots, f_{n}\right),\left(g_{1}, \ldots, g_{n}\right)\right):=\max \left\{\left\|f_{1}-g_{1}\right\|_{p_{1}}, \ldots,\left\|f_{n}-g_{n}\right\|_{p_{n}}\right\}
$$

3. Results

We will assume that we work with some fixed measure space (X, Σ, μ). Again, we denote $\Sigma_{+}:=$ $\{A \in \Sigma: 0<\mu(A)<\infty\}$.
If $n \in \mathbb{N}$ (we allow n to be 1) and $\mathbf{L}^{p, q}, \mathbf{L}^{p_{1}, q_{1}}, \ldots, \mathbf{L}^{p_{n}, q_{n}}$ are Lorentz spaces, then we define the set

$$
E_{p, q}^{\left(p_{1}, q_{1}, \ldots, p_{n}, q_{n}\right)}:=\left\{\left(f_{1}, \ldots, f_{n}\right) \in \mathbf{L}^{p_{1}, q_{1}} \times \ldots \times \mathbf{L}^{p_{n}, q_{n}}: f_{1} \cdots f_{n} \in \mathbf{L}^{p, q}\right\} .
$$

We also set

$$
E_{p}^{\left(p_{1}, \ldots, p_{n}\right)}:=E_{p, p}^{\left(p_{1}, p_{1}, \ldots, p_{n}, p_{n}\right)}
$$

We will first deal with the trivial case: when $\Sigma_{+}=\emptyset$ or $\min \left\{p_{1}, \ldots, p_{n}\right\}=\infty$.
Proposition 3.1. Let $n \in \mathbb{N}$ and $\mathbf{L}^{p, q}, \mathbf{L}^{p_{1}, q_{1}}, \ldots, \mathbf{L}^{p_{n}, q_{n}}$ be Lorentz spaces. If $\Sigma_{+}=\emptyset$ or $\min \left\{p_{1}, \ldots, p_{n}\right\}=$ ∞, then the following conditions are equivalent:
(i) $E_{p, q}^{\left(p_{1}, q_{1}, \ldots, p_{n}, q_{n}\right)}$ is 1 -lower porous subset of $\mathbf{L}^{p_{1}, q_{1}} \times \ldots \times \mathbf{L}^{p_{n}, q_{n}}$;
(ii) $E_{p, q}^{\left(p_{1}, q_{1}, \ldots, p_{n}, q_{n}\right)} \neq \mathbf{L}^{p_{1}, q_{1}} \times \ldots \times \mathbf{L}^{p_{n}, q_{n}}$;
(iii) $\mu(X)=\infty$ and $\min \left\{p_{1}, \ldots, p_{n}\right\}=\infty$ and $p<\infty$.

Proof. We first show the implication (i) \Rightarrow (ii). Let $f_{1}, \ldots, f_{n} \in \mathbf{L}^{\infty}, R>0$ and $\alpha \in\left(0, \frac{1}{2}\right)$. For any $i=1, \ldots, n$, set

$$
\tilde{f}_{i}(x):= \begin{cases}f_{i}(x)+\frac{1}{2} R, & \text { if } f_{i}(x) \geq 0 \\ f_{i}(x)-\frac{1}{2} R, & \text { if } f_{i}(x)<0\end{cases}
$$

Then $\left\|f-\tilde{f}_{i}\right\|_{\infty}=\frac{1}{2} R$ for each $i=1, \ldots, n$. Now let a_{1}, \ldots, a_{n} be such that $\left\|a_{i}-\tilde{f}_{i}\right\|_{\infty}<\alpha R$, $i=1, \ldots, n$. Then for every $i=1, \ldots, n$ and for μ-almost every $x \in X$, we have $\left|a_{i}(x)\right| \geq\left(\frac{1}{2}-\alpha\right) R$, so for μ-almost every $x \in X$,

$$
\left|a_{1}(x) \cdots a_{n}(x)\right| \geq\left(R\left(\frac{1}{2}-\alpha\right)\right)^{n}
$$

Hence $\left\|a_{1} \cdots a_{n}\right\|_{p, q}=\infty$.
The implication $($ ii $) \Rightarrow$ (iii) is trivial.
Assume now that $\mu(X)<\infty$ or $\min \left\{p_{1}, \ldots, p_{n}\right\}<\infty$ or $p<\infty$. Since $\Sigma_{+}=\emptyset$ or $\min \left\{p_{1}, \ldots, p_{n}\right\}=\infty$, one of the following conditions holds:
(a1) $\mu(X)=0$;
(a2) $0<\mu(X)<\infty$ and $\min \left\{p_{1}, \ldots, p_{n}\right\}=\infty$;
(a3) $\min \left\{p_{1}, \ldots, p_{n}\right\}<\infty$ and $\Sigma_{+}=\emptyset$;
(a4) $p=\infty$ and $\min \left\{p_{1}, \ldots, p_{n}\right\}=\infty$.
In each case, the equality $E_{\left.p, q^{(}, q_{1}, \ldots, p_{n}, q_{n}\right)}^{\left(p_{1}\right)}=\mathbf{L}^{p_{1}, q_{1}} \times \ldots \times \mathbf{L}^{p_{n}, q_{n}}$ is obvious. Hence we get (iii) \Rightarrow (i).
Now we will deal with more complicated cases.
In the first result we state the condition, under which $E_{p, q}^{\left(p_{1}, q_{1}, \ldots, p_{n}, q_{n}\right)}=\mathbf{L}^{p_{1}, q_{1}} \times \ldots \times \mathbf{L}^{p_{n}, q_{n}}$.

Proposition 3.2. Let $n \in \mathbb{N}$ and $\mathbf{L}^{p, q}, \mathbf{L}^{p_{1}, q_{1}}, \ldots, \mathbf{L}^{p_{n}, q_{n}}$ be Lorentz spaces, and assume that $\min \left\{p_{1}, \ldots, p_{n}\right\}<$ ∞ and $\Sigma_{+} \neq \emptyset$. If one of the following conditions holds:
(a) $\inf \left\{\mu(A): A \in \Sigma_{+}\right\}>0$ and $\frac{1}{p_{1}}+\ldots+\frac{1}{p_{n}}>\frac{1}{p}$;
(b) $\sup \left\{\mu(A): A \in \Sigma_{+}\right\}<\infty$ and $\frac{1}{p_{1}}+\ldots+\frac{1}{p_{n}}<\frac{1}{p}$.
then $E_{p, q}^{\left(p_{1}, q_{1}, \ldots, p_{n}, q_{n}\right)}=\mathbf{L}^{p_{1}, q_{1}} \times \ldots \times \mathbf{L}^{p_{n}, q_{n}}$.
Before we start the proof of Proposition 3.2, we need some lemmas. The first one is an easy consequence of [G, Exercise 1.1.15] and we skip its proof.

Lemma 3.3. Let $n \in \mathbb{N}$ and $p, p_{1}, \ldots, p_{n} \in(0, \infty]$ be with $\frac{1}{p_{1}}+\ldots+\frac{1}{p_{n}}=\frac{1}{p}$. Then $E_{p, \infty}^{\left(p_{1}, \infty, \ldots, p_{n}, \infty\right)}=$ $\mathbf{L}^{p_{1}, \infty} \times \ldots \times \mathbf{L}^{p_{n}, \infty}$.

Lemma 3.4. Assume that $\Sigma_{+} \neq \emptyset$. The following conditions hold:
(I) If $\inf \left\{\mu(A): A \in \Sigma_{+}\right\}>0$, then every element of any Lorentz space is μ-a.e. bounded;
(II) If $\sup \left\{\mu(A): A \in \Sigma_{+}\right\}<\infty$, then there exists $A \in \Sigma_{+}$such that for every $p \in(0, \infty)$ and $q \in(0, \infty]$, the projection $f \rightarrow f_{\mid A}$ is an isometry between Lorentz spaces $\mathbf{L}^{p, q}(X, \Sigma, \mu)$ and $\mathbf{L}^{p, q}\left(A, \Sigma_{\mid A}, \mu_{\mid A}\right)$.

Proof. We first show (I). Let $\mathbf{L}^{p, q}$ be a Lorentz space. If $p=q=\infty$, the thesis holds by the definition of $\|\cdot\|_{\infty}$. Hence assume that $p<\infty$ and let $f \in L^{p, q}$. By Proposition 2.1 (ii), there exists $M>0$ such that for every $\lambda>0$, we have

$$
\mu(\{x:|f(x)|>\lambda\}) \leq M \lambda^{-p}
$$

Hence $\lim _{\lambda \rightarrow \infty} \mu(\{x:|f(x)|>\lambda\})=0$, so for some $\lambda_{0}>0$, we get $\mu\left(\left\{x:|f(x)|>\lambda_{0}\right\}\right)=0$, which proves (I).
Now we show (II). Set $K:=\sup \left\{\mu(A): A \in \Sigma_{+}\right\}<\infty$. For every $n \in \mathbb{N}$, there is $A_{n} \in \Sigma_{+}$with $K \geq \mu\left(A_{n}\right) \geq K-\frac{1}{n}$. Set $A=\bigcup_{n \in \mathbb{N}} A_{n}$. Then $\mu(A)=K$ and for any measurable $D \subset X \backslash A$, we have that either $\mu(D)=0$ or $\mu(D)=\infty$. Hence if f is an element of any Lorentz space $\mathbf{L}^{p, q}(X, \Sigma, \mu)$, then $\mu(\{x \in X \backslash A:|f(x)|>0\})=0$. This easily gives (II).

The following lemma seems to be known, but we will give a proof.

Lemma 3.5. Assume that $\Sigma_{+} \neq \emptyset$ and $p, p^{\prime}, q \in(0, \infty]$. If one of the following conditions holds:
(i) $\inf \left\{\mu(A): A \in \Sigma_{+}\right\}>0$ and $\frac{1}{p}<\frac{1}{p^{\prime}}$;
(ii) $\sup \left\{\mu(A): A \in \Sigma_{+}\right\}<\infty$ and $0<\frac{1}{p^{\prime}}<\frac{1}{p}$,
then $\mathbf{L}^{p^{\prime}, \infty} \subset \mathbf{L}^{p, q}$.
Proof. Assume that (i) holds and let $f \in \mathbf{L}^{p^{\prime}, \infty}$. By Lemma 3.4 (I), there exists $S<\infty$ such that $|f(x)|<S$ for μ-almost $x \in X$. Hence if $\mathbf{L}^{p, q}=\mathbf{L}^{\infty}$, then obviously $f \in \mathbf{L}^{p, q}$. Thus assume that
$p<\infty$. By Proposition 2.1 (ii), we may also assume that $q<\infty$.
Since $f \in \mathbf{L}^{p^{\prime}, \infty}$, there exists $M>0$ such that for every $\lambda>0$,

$$
\mu(\{x:|f(x)|>\lambda\}) \leq M \lambda^{-p^{\prime}},
$$

and since $|f(x)|<S$ for μ-almost $x \in X$, for any $\lambda \geq S$ we have $\mu(\{x:|f(x)|>\lambda\})=0$. Hence

$$
\begin{gathered}
\int_{0}^{\infty} \mu(\{x:|f(x)|>\lambda\})^{\frac{q}{p}} \lambda^{q-1} d \lambda=\int_{0}^{S} \mu(\{x:|f(x)|>\lambda\})^{\frac{q}{p}} \lambda^{q-1} d \lambda \leq \\
\int_{0}^{S} M^{\frac{q}{p}} \lambda^{\frac{-p^{\prime} q}{p}} \lambda^{q-1} d \mu=\int_{0}^{S} M^{\frac{q}{p}} \lambda^{q\left(1-\frac{p^{\prime}}{p}\right)-1} d \mu<\infty,
\end{gathered}
$$

so $f \in \mathbf{L}^{p, q}$ and the result follows.
Assume now that condition (ii) holds. By Proposition 2.1 (ii), we may assume that $q<\infty$. By Lemma 3.4 (II), we may assume that $K:=\mu(X)<\infty$. Now let $f \in \mathbf{L}^{p^{\prime}, \infty}$. Then there exists $M>0$ such that for every $\lambda>0$,

$$
\mu(\{x:|f(x)|>\lambda\}) \leq M \lambda^{-p^{\prime}} .
$$

Hence we have

$$
\begin{gathered}
\int_{0}^{\infty} \mu(\{x:|f(x)|>\lambda\})^{\frac{q}{p}} \lambda^{q-1} d \lambda= \\
\int_{0}^{1} \mu(\{x:|f(x)|>\lambda\})^{\frac{q}{p}} \lambda^{q-1} d \lambda+\int_{1}^{\infty} \mu(\{x:|f(x)|>\lambda\})^{\frac{q}{p}} \lambda^{q-1} d \lambda \leq \\
\int_{0}^{1} K^{\frac{q}{p}} \lambda^{q-1} d \lambda+\int_{1}^{\infty} M^{\frac{q}{p}} \lambda^{\frac{-p^{\prime} q}{p}} \lambda^{q-1} d \mu= \\
\int_{0}^{1} K^{\frac{q}{p}} \lambda^{q-1} d \lambda+\int_{1}^{\infty} M^{\frac{q}{p}} \lambda^{q\left(1-\frac{p^{\prime}}{p}\right)-1} d \mu<\infty,
\end{gathered}
$$

so $f \in \mathbf{L}^{p, q}$.

We are ready to give a proof of Proposition 3.2
Proof. (of Proposition 3.2) Let $p^{\prime} \in(0, \infty)$ be such that $\frac{1}{p_{1}}+\ldots+\frac{1}{p_{n}}=\frac{1}{p^{\prime}}$, and let $\left(f_{1}, \ldots, f_{n}\right) \in$ $\mathbf{L}^{p_{1}, q_{1}} \times \ldots \times \mathbf{L}^{p_{n}, q_{n}}$. By Proposition 2.1 (ii), $\left(f_{1}, \ldots, f_{n}\right) \in \mathbf{L}^{p_{1}, \infty} \times \ldots \times \mathbf{L}^{p_{n}, \infty}$, and by Lemma 3.3, we get $f_{1} \cdots f_{n} \in \mathbf{L}^{p^{\prime}, \infty}$. Hence and by Lemma $3.5, f_{1} \cdots f_{n} \in \mathbf{L}^{p, q}$, so the result follows.

The next theorem deals with the case when $E_{p, q}^{\left(p_{1}, q_{1}, \ldots, p_{n}, q_{n}\right)}$ is small. Recall that we consider the product of Lorentz spaces as a metric space with a metric $d_{\text {max }}$ defined in the previous section, and in the case of $\mathbf{L}^{p_{1}} \times \ldots \times \mathbf{L}^{p_{n}}$, we have $d_{\max }\left(\left(f_{1}, \ldots, f_{n}\right),\left(g_{1}, \ldots, g_{n}\right)\right)=\max \left\{\left\|f_{1}-g_{1}\right\|_{p_{1}}, \ldots,\left\|f_{n}-g_{n}\right\|_{p_{n}}\right\}$

Theorem 3.6. Let $n \in \mathbb{N}$ and $\mathbf{L}^{p, q}, \mathbf{L}^{p_{1}, q_{1}}, \ldots, \mathbf{L}^{p_{n}, q_{n}}$ be Lorentz spaces. Assume that $\min \left\{p_{1}, \ldots, p_{n}\right\}<$ ∞ and $\Sigma_{+} \neq \emptyset$. If one of the following conditions holds
(i) $\frac{1}{p_{1}}+\ldots+\frac{1}{p_{n}}>\frac{1}{p}$ and $\inf \left\{\mu(A): A \in \Sigma_{+}\right\}=0$;
(ii) $\frac{1}{p_{1}}+\ldots+\frac{1}{p_{n}}<\frac{1}{p}$ and $\sup \left\{\mu(A): A \in \Sigma_{+}\right\}=\infty$,
then the set $E_{p, q}^{\left(p_{1}, q_{1}, \ldots, p_{n}, q_{n}\right)}$ is σ - α-lower porous in $\mathbf{L}^{p_{1}, q_{1}} \times \ldots \times \mathbf{L}^{p_{n}, q_{n}}$ for some $\alpha>0$.
If additionally $q=p$ and $q_{i}=p_{i}$ for $i=1, \ldots, n$, then we can take $\alpha=\frac{2}{m+1}$, where m is the number of i^{\prime} 's for which $p_{i}<\infty$.

Note that the last statement of the above result, together with part (i) of Proposition 3.1, give the thesis of the main result of [GS] ([GS, Theorem 6]). Before we prove the result, we will present some lemmas. Note that they are refinements of [GS, Lemmas 4 and 5].

Lemma 3.7. Let $n \in \mathbb{N}, A, A_{1}, \ldots, A_{n}$ be measurable sets and $s_{1}, \ldots, s_{n} \geq 0$ be such that $\sum_{i=1}^{n} s_{i} \leq 1$. If $A_{i} \subset A$ and $\mu\left(A_{i}\right)>\left(1-s_{i}\right) \mu(A)$ for any $i=1, \ldots, n$, then

$$
\mu\left(\bigcap_{i=1}^{n} A_{i}\right)>0
$$

Proof. Using the induction principle, it is easy to show that

$$
\mu\left(\bigcap_{i=1}^{k} A_{i}\right)>\left(1-\sum_{i=1}^{k} s_{i}\right) \mu(A) \text { for any } k=1, \ldots, n
$$

In particular, for $k=n$, we get that $\mu\left(\bigcap_{i=1}^{n} A_{i}\right)>0$.
Recall (cf. Proposition 2.1 (iv)) that if $q \in(0, \infty]$ and $p<\infty$, then for some $D_{p, q}>0,\left\|\chi_{A}\right\|_{p, q}=$ $D_{p, q} \mu(A)^{\frac{1}{p}}$ for every $A \in \Sigma_{+}$.

Lemma 3.8. Assume that $n \in \mathbb{N}, p_{1}, \ldots, p_{n} \in(0, \infty), q_{1}, \ldots, q_{n} \in(0, \infty]$ and let $A \in \Sigma_{+}$. If $f_{1}, \ldots, f_{n}, g_{1}, \ldots, g_{n}$ are such that $\left|g_{i}(x)\right| \geq 1$ for $x \in A$ and $i=1, \ldots, n$, and $\left\|\left(f_{i}-g_{i}\right) \chi_{A}\right\|_{p_{i}, q_{i}} \leq s_{i}$, $i=1, \ldots, n$ for some s_{1}, \ldots, s_{n}, then

$$
\left\|f_{1} \cdots f_{n} \chi_{A}\right\|_{p, q} \geq D_{p, q} C^{n}\left(\mu(A)-\sum_{i=1}^{n}\left(\frac{s_{i}}{D_{p_{i}, q_{i}}(1-C)}\right)^{p_{i}}\right)^{\frac{1}{q}}
$$

for any $C \in(0,1), p \in(0, \infty)$ and $q \in(0, \infty]$, provided that $\mu(A) \geq \sum_{i=1}^{n}\left(\frac{s_{i}}{D_{p_{i}, q_{i}}(1-C)}\right)^{p_{i}}$.
Proof. For simplicity, let D, D_{1}, \ldots, D_{n} stand for $D_{p, q}, D_{p_{1}, q_{1}}, \ldots, D_{p_{n}, q_{n}}$, respectively. For $i=1, \ldots, n$, we define the sets $A_{i}:=\left\{x \in A:\left|f_{i}(x)\right|<C\left|g_{i}(x)\right|\right\}$. Now let $i=1, \ldots n$. Then for every $x \in A_{i}$,

$$
\left|f_{i}(x)-g_{i}(x)\right| \geq\left|g_{i}(x)\right|-\left|f_{i}(x)\right| \geq(1-C)\left|g_{i}(x)\right| \geq 1-C
$$

Hence

$$
s_{i} \geq\left\|\left(f_{i}-g_{i}\right) \chi_{A}\right\|_{p_{i}, q_{i}} \geq\left\|(1-C) \chi_{A_{i}}\right\|_{p_{i}, q_{i}}=D_{i}(1-C) \mu\left(A_{i}\right)^{\frac{1}{p_{i}}}
$$

and therefore

$$
\mu\left(A_{i}\right) \leq\left(\frac{s_{i}}{D_{i}(1-C)}\right)^{p_{i}}
$$

By combining this with the fact that for any $x \in A \backslash A_{i},\left|f_{i}(x)\right| \geq C$, we obtain

$$
\left\|f_{1} \cdots f_{n} \chi_{A}\right\|_{p, q} \geq\left\|f_{1} \cdots f_{n} \chi_{A \backslash \bigcup_{1=1}^{n} A_{i}}\right\|_{p, q} \geq\left\|C^{n} \chi_{A \backslash \bigcup_{1=1}^{n} A_{i}}\right\|_{p, q} \geq
$$

$$
D C^{n}\left(\mu(A)-\sum_{i=1}^{n} \mu\left(A_{i}\right)\right)^{\frac{1}{p}} \geq D C^{n}\left(\mu(A)-\sum_{i=1}^{n}\left(\frac{s_{i}}{D_{i}(1-C)}\right)^{p_{i}}\right)^{\frac{1}{p}}
$$

The following lemma is crucial for the proof of Theorem 3.6. If $u>0$, then we set

$$
\begin{equation*}
E_{u}:=\left\{\left(f_{1}, \ldots, f_{n}\right) \in \mathbf{L}^{p_{1}, q_{1}} \times \ldots \times \mathbf{L}^{p_{n}, q_{n}}:\left\|f_{1} \cdots f_{n}\right\|_{p, q} \leq u\right\} \tag{2}
\end{equation*}
$$

If $f \in \mathbf{L}^{p, q}$ and $r>0$, then we denote $B_{p, q}(f, r):=\left\{g \in \mathbf{L}^{p, q}:\|f-g\|_{p, q}<r\right\}$.
Lemma 3.9. Let $n \in \mathbb{N}$ and $\mathbf{L}^{p, q}, \mathbf{L}^{p_{1}, q_{1}}, \ldots, \mathbf{L}^{p_{n}, q_{n}}$ be Lorentz spaces and let the assumptions of Theorem 3.6 be satisfied. Assume that for some $m \geq 1$ and $k \geq 0$ with $m+k=n$, we have $p_{1}, \ldots, p_{m}<\infty$ and $p_{m+1}=\ldots=p_{m+k}=\infty$. Let $r_{i} \in(0, \infty)$ and $\delta_{i} \in\left(0, \frac{1}{2}\right), i=1, \ldots, n$, be such that

$$
\sum_{i=1}^{m}\left(\frac{\delta_{i}}{1-\delta_{i}}\right)^{\frac{p_{i}}{r_{i}}}<1 \text { and } r_{m+1}=\ldots=r_{n}=1
$$

For every $u>0, R>0$ and $\left(f_{1}, \ldots, f_{n}\right) \in \mathbf{L}^{p_{1}, q_{1}} \times \ldots \times \mathbf{L}^{p_{n}, q_{n}}$, there exists $\left(\tilde{f}_{1}, \ldots, \tilde{f}_{n}\right) \in \mathbf{L}^{p_{1}, q_{1}} \times \ldots \times$ $\mathbf{L}^{p_{n}, q_{n}}$ such that

$$
\left(\left\|f_{i}-\tilde{f}_{i}\right\|_{p_{i}, q_{i}}\right)^{r_{i}}=\left(1-\delta_{i}\right) R \quad \text { for every } i=1, \ldots, n
$$

and

$$
B_{p_{1}, q_{1}}\left(\tilde{f}_{1},\left(\delta_{i} R\right)^{\frac{1}{r_{1}}}\right) \times \ldots \times B_{p_{n}, q_{n}}\left(\tilde{f}_{n},\left(\delta_{n} R\right)^{\frac{1}{r_{n}}}\right) \cap E_{u}=\emptyset
$$

Proof. For simplicity, we will write $\|\cdot\|_{i}$ and D_{i} instead of $\|\cdot\|_{p_{i}, q_{i}}$ and $D_{p_{i}, q_{i}}$ for $i=1, \ldots, n$, respectively, and $\|\cdot\|$ and D instead of $\|\cdot\|_{p, q}$ and $D_{p, q}$, respectively.
Let $u>0$. As we assumed, $p_{i}<\infty$ for $i=1, \ldots, m$ and $p_{i}=\infty$ for $i=m+1, \ldots, m+k$, for some $m \geq 1$ and $k \geq 0$ with $m+k=n$.
Let $\left(f_{1}, \ldots, f_{m}, g_{1}, \ldots, g_{k}\right) \in \mathbf{L}^{p_{1}, q_{1}} \times \ldots \times \mathbf{L}^{p_{n}, q_{n}}, R>0$. We can choose $C \in(0,1)$ such that

$$
\begin{equation*}
\sum_{i=1}^{m}\left(\left(\frac{\delta_{i}}{1-\delta_{i}}\right)^{\frac{1}{r_{i}}} \frac{1}{(1-C)}\right)^{p_{i}}<1 \tag{3}
\end{equation*}
$$

Now set:

$$
\begin{gather*}
G:=\frac{\prod_{i=1}^{m}\left(R\left(1-\delta_{i}\right)\right)^{\frac{1}{r_{i}}}}{\prod_{i=1}^{m} D_{i}} \tag{4}\\
H:=\left(1-\sum_{i=1}^{m}\left(\left(\frac{\delta_{i}}{1-\delta_{i}}\right)^{\frac{1}{r_{i}}} \frac{1}{(1-C)}\right)^{p_{i}}\right)^{\frac{1}{p}} \tag{5}
\end{gather*}
$$

By our assumptions ((i) or (ii)), there is a set $A \in \Sigma_{+}$such that
if $p<\infty$, then

$$
\begin{equation*}
\left(\prod_{i=m+1}^{n} R\left(1-2 \delta_{i}\right)\right) G D C^{m} H \mu(A)^{\left(\frac{1}{p}-\frac{1}{p_{1}}-\ldots-\frac{1}{p_{m}}\right)}>u \tag{6}
\end{equation*}
$$

and if $p=\infty$, then

$$
\begin{equation*}
\left(\prod_{i=m+1}^{n} R\left(1-2 \delta_{i}\right)\right) G C^{m} \mu(A)^{-\left(\frac{1}{p_{1}}+\ldots+\frac{1}{p_{m}}\right)}>u \tag{7}
\end{equation*}
$$

Note that in the case when $\frac{1}{p}-\frac{1}{p_{1}}-\ldots-\frac{1}{p_{m}}<0$, we take the set A with an appropriate small positive measure and in the case when $\frac{1}{p}-\frac{1}{p_{1}}-\ldots-\frac{1}{p_{m}}>0$, we take the set A with an appropriate large finite measure.
Next, let M_{1}, \ldots, M_{m} be such that for $i=1, \ldots, m$,

$$
\begin{equation*}
\left(\left\|M_{i} \chi_{A}\right\|_{i}\right)^{r_{i}}=\left(1-\delta_{i}\right) R \tag{8}
\end{equation*}
$$

Then for every $i=1, \ldots, m$,

$$
\begin{equation*}
\mu(A)=\left(\frac{\left(\left(1-\delta_{i}\right) R\right)^{\frac{1}{r_{i}}}}{M_{i} D_{i}}\right)^{p_{i}} \tag{9}
\end{equation*}
$$

Now, let us define $\tilde{f}_{1}, \ldots, \tilde{f}_{m}, \tilde{g}_{1}, \ldots, \tilde{g}_{k}$ as follows.
For $i=1, \ldots, m$, we set

$$
\tilde{f}_{i}(x):= \begin{cases}f_{i}(x)+M_{i}, & x \in A \text { and } f_{i}(x) \geq 0 \\ f_{i}(x)-M_{i}, & x \in A \text { and } f_{i}(x)<0 \\ f_{i}(x), & x \notin A\end{cases}
$$

and for $i=1, \ldots, k$, we set

$$
\tilde{g}_{i}(x):= \begin{cases}g_{i}(x)+\left(1-\delta_{m+i}\right) R, & \text { if } g_{i}(x) \geq 0 \\ g_{i}(x)-\left(1-\delta_{m+i}\right) R, & \text { if } g_{i}(x)<0\end{cases}
$$

Using (8), we obtain for every $i=1, \ldots, m$:

$$
\left(\left\|\tilde{f}_{i}-f_{i}\right\|_{i}\right)^{r_{i}}=\left(\left\|M_{i} \chi_{A}\right\|_{i}\right)^{r_{i}} \stackrel{(8)}{=}\left(1-\delta_{i}\right) R
$$

and similarly for every $i=1, \ldots, k$ (recall that $r_{i}=1$ for $i=m+1, \ldots, n$),

$$
\left\|\tilde{g}_{i}-g_{i}\right\|_{i}=\left(1-\delta_{m+i}\right) R .
$$

Now let

$$
\left(a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{k}\right) \in B_{p_{1}, q_{1}}\left(\tilde{f}_{1},\left(\delta_{1} R\right)^{\frac{1}{r_{1}}}\right) \times \ldots \times B_{p_{n}, q_{n}}\left(\tilde{g}_{k},\left(\delta_{n} R\right)^{\frac{1}{r_{n}}}\right) .
$$

Clearly, since for every $i=1, \ldots, k$ and $x \in X,\left|\tilde{g}_{i}(x)\right| \geq\left(1-\delta_{m+i}\right) R$, then for μ-almost every $x \in X$,

$$
\begin{equation*}
\left|b_{i}(x)\right| \geq\left(1-2 \delta_{m+i}\right) R \tag{10}
\end{equation*}
$$

Consider two cases:
Case 1. $p<\infty$. For any $i=1, \ldots, m$, we have

$$
\begin{equation*}
\left(\delta_{i} R\right)^{\frac{1}{r_{i}}} \geq\left\|a_{i}-\tilde{f}_{i}\right\|_{i} \geq\left\|\left(a_{i}-\tilde{f}_{i}\right) \chi_{A}\right\|_{i}=M_{i}\left\|\left(\frac{a_{i}}{M_{i}}-\frac{\tilde{f}_{i}}{M_{i}}\right) \chi_{A}\right\|_{i} \tag{11}
\end{equation*}
$$

and also, by (9),

$$
\begin{equation*}
\left(\frac{\left(R \delta_{i}\right)^{\frac{1}{r_{i}}}}{M_{i} D_{i}(1-C)}\right)^{p_{i}}=\mu(A)\left(\left(\frac{\delta_{i}}{1-\delta_{i}}\right)^{\frac{1}{r_{i}}} \frac{1}{(1-C)}\right)^{p_{i}} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{i} \mu(A)^{\frac{1}{p_{i}}} D_{i}=\left(\left(1-\delta_{i}\right) R\right)^{\frac{1}{r_{i}}} \tag{13}
\end{equation*}
$$

Hence, by $(4)-(6),(10)-(13)$ and Lemma 3.8 (used for $g_{i}:=\frac{\tilde{f}_{i}}{M_{i}}, f_{i}:=\frac{a_{i}}{M_{i}}$ and $s_{i}:=\frac{\left(\delta_{i} R\right)^{\frac{1}{r_{i}}}}{M_{i}}$), we obtain the following

$$
\begin{aligned}
& \left\|a_{1} \cdots a_{m} \cdot b_{1} \cdots b_{k}\right\| \geq\left\|a_{1} \cdots a_{m} \cdot b_{1} \cdots b_{k} \chi_{A}\right\| \stackrel{(10)}{\geq} \\
& \left(\prod_{i=m+1}^{n} R\left(1-2 \delta_{i}\right)\right)\left\|a_{1} \cdots a_{m} \chi_{A}\right\|= \\
& \left(\prod_{i=m+1}^{n} R\left(1-2 \delta_{i}\right)\right) M_{1} \cdots M_{m}\left\|\frac{a_{1}}{M_{1}} \cdots \frac{a_{m}}{M_{m}} \chi_{A}\right\| \stackrel{L 3.8,(11)}{\geq} \\
& \left(\prod_{i=m+1}^{n} R\left(1-2 \delta_{i}\right)\right) M_{1} \cdots M_{m} D C^{m}\left(\mu(A)-\sum_{i=1}^{m}\left(\frac{\left(\delta_{i} R\right)^{\frac{1}{r_{i}}}}{M_{i} D_{i}(1-C)}\right)^{p_{i}}\right)^{\frac{1}{p}} \stackrel{(12)}{=} \\
& \left(\prod_{i=m+1}^{n} R\left(1-2 \delta_{i}\right)\right) M_{1} \cdots M_{m} D C^{m}\left(\mu(A)-\sum_{i=1}^{m} \mu(A)\left(\left(\frac{\delta_{i}}{1-\delta_{i}}\right)^{\frac{1}{r_{i}}} \frac{1}{(1-C)}\right)^{p_{i}}\right)^{\frac{1}{p}} \stackrel{(5)}{=} \\
& \left(\prod_{i=m+1}^{n} R\left(1-2 \delta_{i}\right)\right) \frac{\prod_{i=1}^{m} M_{i} \mu(A)^{\frac{1}{p_{i}}} D_{i}}{\prod_{i=1}^{m} D_{i}} D C^{m} \mu(A)^{\left(\frac{1}{p}-\frac{1}{p_{1}}-\ldots-\frac{1}{p_{m}}\right)} H^{(4),(13)} \\
& \left(\prod_{i=m+1}^{n} R\left(1-2 \delta_{i}\right)\right) G D C^{m} \mu(A)^{\left(\frac{1}{p}-\frac{1}{p_{1}}-\ldots-\frac{1}{p_{m}}\right)} H \stackrel{(6)}{>} u .
\end{aligned}
$$

Hence $\left(a_{1}, \ldots, b_{k}\right) \notin E_{u}$.
Case 2. $p=\infty$. This case is possible only $\operatorname{if} \inf \left\{\mu(E): E \in \Sigma_{+}\right\}=0$. For any $i=1, \ldots, m$, we define:

$$
A_{i}^{1}:=\left\{x \in A:\left|a_{i}(x)\right| \geq C M_{i}\right\}, \quad A_{i}^{2}:=A \backslash A_{i}^{1}
$$

Then for every $i=1, \ldots, m$, we have

$$
\left(\delta_{i} R\right)^{\frac{1}{r_{i}}}>\left\|a_{i}-\tilde{f}_{i}\right\|_{i} \geq\left\|\left(a_{i}-\tilde{f}_{i}\right) \chi_{A_{i}^{2}}\right\|_{i} \geq\left\|\left(M_{i}(1-C)\right) \chi_{A_{i}^{2}}\right\|_{i}=D_{i} M_{i}(1-C) \mu\left(A_{i}^{2}\right)^{\frac{1}{p_{i}}}
$$

Hence by (12) (which works in this case), for every $i=1, \ldots, m$,

$$
\mu\left(A_{i}^{2}\right)<\left(\frac{\left(\delta_{i} R\right)^{\frac{1}{r_{i}}}}{D_{i} M_{i}(1-C)}\right)^{p_{i}} \stackrel{(12)}{=} \mu(A)\left(\left(\frac{\delta_{i}}{1-\delta_{i}}\right)^{\frac{1}{r_{i}}} \frac{1}{(1-C)}\right)^{p_{i}}
$$

Then for each $i=1, \ldots, m$,

$$
\mu\left(A_{i}^{1}\right)=\mu(A)-\mu\left(A_{i}^{2}\right)>\mu(A)\left(1-\left(\left(\frac{\delta_{i}}{1-\delta_{i}}\right)^{\frac{1}{r_{i}}} \frac{1}{(1-C)}\right)^{p_{i}}\right)
$$

By Lemma 3.7 and (3), we obtain that $\mu\left(A_{1}^{1} \cap \ldots \cap A_{m}^{1}\right)>0$. Also, for μ-almost every $x \in A_{1}^{1} \cap \ldots \cap A_{m}^{1}$, we make use of (4), (7), (10) and (13) (which, clearly, works in this case) to obtain

$$
\begin{gathered}
\left|a_{1}(x) \cdots a_{m}(x) \cdot b_{1}(x) \cdots b_{k}(x)\right| \stackrel{(10)}{\geq} C^{m} M_{1} \cdots M_{m}\left(\prod_{i=m+1}^{n} R\left(1-2 \delta_{i}\right)\right) \stackrel{(4),(13)}{=} \\
=\left(\prod_{i=m+1}^{n} R\left(1-2 \delta_{i}\right)\right) C^{m} G \mu(A)^{-\left(\frac{1}{p_{1}}+\ldots+\frac{1}{p_{m}}\right)} \stackrel{(7)}{>} u .
\end{gathered}
$$

Hence

$$
\left\|a_{1} \cdots a_{m} \cdot b_{1} \cdots b_{k}\right\|>u
$$

This ends the proof.
We are ready to give a proof of Theorem 3.6
Proof. (of Theorem 3.6) For simplicity, we will write $\|\cdot\|_{i}$ and $d_{i}, i=1, \ldots, n$ instead of $\|\cdot\|_{p_{i}, q_{i}}$ and $d_{p_{i}, q_{i}}, i=1, \ldots, n$, respectively.
By (1), for each $i=1, \ldots, n$, there exist $K_{i}, r_{i}>0$ such that for every $f, g \in \mathbf{L}^{p_{i}, q_{i}}$,

$$
\begin{equation*}
\left(\|f-g\|_{i}\right)^{r_{i}} \leq d_{i}(f, g) \leq K_{i}\left(\|f-g\|_{i}\right)^{r_{i}} \tag{14}
\end{equation*}
$$

and if $p_{i}=\infty$, then $K_{i}=r_{i}=1$.
Since $E_{p, q}^{\left(p_{1}, q_{1}, \ldots, p_{n}, q_{n}\right)}=\bigcup_{u \in \mathbb{N}} E_{u}$ (where each E_{u} is defined as in (2)), we have to show that there exists $\alpha>0$ such that for each $u>0$, the set E_{u} is α-lower porous.
Let $u>0$. Without loss of generality, we assume that $p_{i}<\infty$ for $i=1, \ldots, m$ and $p_{i}=\infty$ for $i=m+1, \ldots, m+k$, where $m+k=n, m \geq 1$ and $k \geq 0$.
Now let $K:=\max \left\{K_{1}, \ldots, K_{n}\right\}$ and $\lambda>0$ be such that

$$
\sum_{i=1}^{m}\left(\frac{\lambda}{1-\lambda}\right)^{\frac{p_{i}}{r_{i}}}=1
$$

It is easy to see that $\lambda \leq \frac{1}{2}$. Take $\delta \in(0, \lambda)$. Then

$$
\sum_{i=1}^{m}\left(\frac{\delta}{1-\delta}\right)^{\frac{p_{i}}{r_{i}}}<1
$$

Now take $\left(f_{1}, \ldots, f_{n}\right) \in \mathbf{L}^{p_{1}, q_{1}} \times \ldots \times \mathbf{L}^{p_{n}, q_{n}}$ and $R>0$. Let $\left(\tilde{f}_{1}, \ldots, \tilde{f}_{n}\right) \in \mathbf{L}^{p_{1}, q_{1}} \times \ldots \times \mathbf{L}^{p_{n}, q_{n}}$ be as in Lemma 3.9, chosen for $r_{1}, \ldots, r_{n}, u,\left(f_{1}, \ldots, f_{n}\right), R^{\prime}:=\frac{R}{K}$ and $\delta_{i}:=\delta, i=1, \ldots, n$.
By (14) and Lemma 3.9, for every $i=1, \ldots, n$, we have that

$$
d_{i}\left(f_{i}, \tilde{f}_{i}\right) \stackrel{(14)}{\leq} K\left(\left\|f_{i}-\tilde{f}_{i}\right\|_{i}\right)^{r_{i}} \stackrel{L 3.9}{=} K(1-\delta) R^{\prime}=(1-\delta) R,
$$

so

$$
\begin{equation*}
B_{d}\left(\left(\tilde{f}_{1}, \ldots, \tilde{f}_{n}\right), \frac{\delta R}{K}\right) \subset B_{d}\left(\left(\tilde{f}_{1}, \ldots, \tilde{f}_{n}\right), \delta R\right) \subset B_{d}\left(\left(f_{1}, \ldots, f_{n}\right), R\right) \tag{15}
\end{equation*}
$$

where $B_{d}((\cdot, \ldots, \cdot), \cdot)$ denotes an open ball in $\left(\mathbf{L}^{p_{1}, q_{1}} \times \ldots \times \mathbf{L}^{p_{n}, q_{n}}, d_{\max }\right)$.
On the other hand, by (14), for any $i=1, \ldots, n$ and any $a_{i} \in \mathbf{L}^{p_{i}, q_{i}}$, if $d_{i}\left(\tilde{f}_{i}, a_{i}\right)<\frac{\delta R}{K}$, then also $\left(\left\|\tilde{f}_{i}-a_{i}\right\|_{i}\right)^{r_{i}}<\frac{\delta R}{K}=\delta R^{\prime}$. Hence and by Lemma $3.9,\left(a_{1}, \ldots, a_{n}\right) \notin E_{u}$, which shows that

$$
\begin{equation*}
B_{d}\left(\left(\tilde{f}_{1}, \ldots, \tilde{f}_{n}\right), \frac{\delta R}{K}\right) \cap E_{u}=\emptyset \tag{16}
\end{equation*}
$$

By (15) and (16), E_{u} is $\frac{2 \lambda}{K}$-lower porous.
Now we will prove the last statement of the thesis. We may assume that $p_{1}, \ldots, p_{j}<1, p_{j+1}, \ldots, p_{m} \in$ $[1, \infty)$ and $p_{m+1}=\ldots=p_{n}=\infty$. For $i=1, \ldots, j$, set $r_{i}:=p_{i}$, and for $i=j+1, \ldots, n$, set $r_{i}:=1$. Now if $\lambda:=\frac{1}{m+1}$, then $\frac{\lambda}{1-\lambda}=\frac{1}{m}$, so

$$
\sum_{i=1}^{m}\left(\frac{\lambda}{1-\lambda}\right)^{\frac{p_{i}}{r_{i}}} \leq \sum_{i=1}^{m} \frac{1}{m}=1
$$

Proceeding similarly as above we get that each E_{u} is $\frac{2 \frac{1}{m}}{1}$-lower porous (note that here $K=1$).
Finally, Propositions 3.1, 3.2 and Theorem 3.6 imply the following partial dichotomy:
Corollary 3.10. Let $n \in \mathbb{N}$ and $\mathbf{L}^{p, q}, \mathbf{L}^{p_{1}, q_{1}}, \ldots, \mathbf{L}^{p_{n}, q_{n}}$ be Lorentz spaces such that if $p<\infty$, then $\frac{1}{p} \neq \frac{1}{p_{1}}+\ldots+\frac{1}{p_{n}}$. Then the following conditions are equivalent:
(a) the set $E_{p, q}^{\left(p_{1}, q_{1}, \ldots, p_{n}, q_{n}\right)}$ is σ - α-lower porous in $\mathbf{L}^{p_{1}, q_{1}} \times \ldots \times \mathbf{L}^{p_{n}, q_{n}}$ for some $\alpha>0$;
(b) $E_{p, q}^{\left(p_{1}, q_{1}, \ldots, p_{n}, q_{n}\right)} \neq \mathbf{L}^{p_{1}, q_{1}} \times \ldots \times \mathbf{L}^{p_{n}, q_{n}}$;
(c) one of the conditions holds:
(i) $\Sigma_{+} \neq \emptyset$ and $\inf \left\{\mu(A): A \in \Sigma_{+}\right\}=0$ and $\frac{1}{p_{1}}+\ldots+\frac{1}{p_{n}}>\frac{1}{p}$;
(ii) $\Sigma_{+} \neq \emptyset$ and $\sup \left\{\mu(A): A \in \Sigma_{+}\right\}=\infty$ and $\frac{1}{p_{1}}+\ldots+\frac{1}{p_{n}}<\frac{1}{p}$;
(iii) $\mu(X)=\infty$ and $\min \left\{p_{1}, \ldots, p_{n}\right\}=\infty$ and $p<\infty$.

Proof. Implication $(\mathrm{a}) \Rightarrow(\mathrm{b})$ is trivial. Implication $(\mathrm{c}) \Rightarrow(\mathrm{a})$ follows from Proposition 3.1 and Theorem 3.6. We will prove implication (b) $\Rightarrow(\mathrm{c})$. Assume that (i), (ii) and (iii) do not hold. Consider two cases:

Case 1. $\Sigma_{+}=\emptyset$ or $\min \left\{p_{1}, \ldots, p_{n}\right\}=\infty$.
Then the equality $E_{p, q}^{\left(p_{1}, q_{1}, \ldots, p_{n}, q_{n}\right)}=\mathbf{L}^{p_{1}, q_{1}} \times \ldots \times \mathbf{L}^{p_{n}, q_{n}}$ follows from negation of (iii) and Proposition 3.1.

Case 2. $\Sigma_{+} \neq \emptyset$ and $\min \left\{p_{1}, \ldots, p_{n}\right\}<\infty$.
Then the negation of (i) and (ii) easily imply the assumptions of Proposition 3.2.
The result follows.
Now we will deal with the case when $\frac{1}{p_{1}}+\ldots+\frac{1}{p_{n}}=\frac{1}{p}$ and $\min \left\{p_{1}, \ldots, p_{n}\right\}<\infty$.
Proposition 3.11. Assume that $\frac{1}{p_{1}}+\ldots+\frac{1}{p_{n}}=\frac{1}{p}$. Then the following conditions hold:
(i) for $q_{1}, \ldots, q_{n} \in(0, \infty], E_{p, \infty}^{\left(p_{1}, q_{1}, \ldots, p_{n}, q_{n}\right)}=\mathbf{L}^{p_{1}, q_{1}} \times \ldots \times \mathbf{L}^{p_{n}, q_{n}}$;
(ii) for every $q_{i} \in\left(0, p_{i}\right], i=1, \ldots, n$ and $q \in[p, \infty], E_{p, q}^{\left(p_{1}, q_{1}, \ldots, p_{n}, q_{n}\right)}=\mathbf{L}^{p_{1}, q_{1}} \times \ldots \times \mathbf{L}^{p_{n}, q_{n}}$.

Proof. Part (i) follows from Lemma 3.3 and Proposition 2.1 (ii).
Part (ii) follows from a general version of the Hölder inequality [G, Exercise 1.1.2] and Proposition 2.1 (ii).

Now we show that we can also have $E_{p, q}^{\left(p_{1}, q_{1}, \ldots, p_{n}, q_{n}\right)} \neq \mathbf{L}^{p_{1}, q_{1}} \times \ldots \times \mathbf{L}^{p_{n}, q_{n}}$.
Proposition 3.12. Let $X=\mathbb{R}^{k}$ and μ be the Lebesgue measure on $X, p^{\prime}<\infty, p=\frac{p^{\prime}}{n}, q^{\prime} \in(0, \infty]$ and $q<\frac{q^{\prime}}{n}$. Then $E_{p, q}^{\left(p^{\prime}, q^{\prime}, \ldots, p^{\prime}, q^{\prime}\right)} \neq \mathbf{L}^{p^{\prime}, q^{\prime}} \times \ldots \times \mathbf{L}^{p^{\prime}, q^{\prime}}$.

Proof. Let $t=\frac{q^{\prime}}{n}$. By [G, Exercise 1.4.8], there is $f \in \mathbf{L}^{p, t} \backslash \mathbf{L}^{p, q}$. Clearly, we may assume that $f \geq 0$. By Proposition 2.1, $f^{\frac{1}{n}} \in \mathbf{L}^{p n, t n}=\mathbf{L}^{p^{\prime}, q^{\prime}}$. Hence $\left(f^{\frac{1}{n}}, \ldots, f^{\frac{1}{n}}\right) \in \mathbf{L}^{p^{\prime}, q^{\prime}} \times \ldots \times \mathbf{L}^{p^{\prime}, q^{\prime}}$ and $f^{\frac{1}{n}} \cdots f^{\frac{1}{n}}=f \notin \mathbf{L}^{p, q}$.

Now we show that the following dichotomy holds:
Theorem 3.13. Let $n \in \mathbb{N}$ and $\mathbf{L}^{p, q}, \mathbf{L}^{p_{1}, q_{1}}, \ldots, \mathbf{L}^{p_{n}, q_{n}}$ be Lorentz spaces with $\frac{1}{p_{1}}+\ldots+\frac{1}{p_{n}}=\frac{1}{p}$. Then the following conditions are equivalent:
(i) $E_{p, q}^{\left(p_{1}, q_{1}, \ldots, p_{n}, q_{n}\right)} \neq \mathbf{L}^{p_{1}, q_{1}} \times \ldots \times \mathbf{L}^{p_{n}, q_{n}}$;
(ii) $E_{p, q}^{\left(p_{1}, q_{1}, \ldots, p_{n}, q_{n}\right)}$ is a meager subset of $\mathbf{L}^{p_{1}, q_{1}} \times \ldots \times \mathbf{L}^{p_{n}, q_{n}}$.

To prove the above fact, we need the following lemma. If $\mathbf{L}^{p, q}, \mathbf{L}^{p_{1}, q_{1}}, \ldots, \mathbf{L}^{p_{n}, q_{n}}$ are Lorentz spaces such that $p, q<\infty$, then for every reals $v, u>0$, we put

$$
\begin{equation*}
E_{u}^{v}:=\left\{\left(f_{1}, \ldots, f_{n}\right) \in \mathbf{L}^{p_{1}, q_{1}} \times \ldots \times \mathbf{L}^{p_{n}, q_{n}}: \int_{0}^{\infty} \mu\left(\left\{x:\left|f_{1}(x) \cdots f_{n}(x)\right|>v \lambda\right\}\right)^{\frac{q}{p}} \lambda^{q-1} d \lambda<u\right\} . \tag{17}
\end{equation*}
$$

Lemma 3.14. Let $n \in \mathbb{N}$ and $\mathbf{L}^{p, q}, \mathbf{L}^{p_{1}, q_{1}}, \ldots, \mathbf{L}^{p_{n}, q_{n}}$ be Lorents spaces such that $q, p, p_{1}, \ldots, p_{n} \in(0, \infty)$. If $\left(h_{1}, \ldots, h_{n}\right) \in \mathbf{L}^{p_{1}, q_{1}} \times \ldots \times \mathbf{L}^{p_{n}, q_{n}}$ is such that $h_{1} \cdots h_{n} \notin \mathbf{L}^{p, q}$, then for every $u, v>0$, there exists $r>0$ such that

$$
B_{p_{1}, q_{1}}\left(h_{1}, r\right) \times \ldots \times B_{p_{n}, q_{n}}\left(h_{n}, r\right) \cap E_{u}^{v}=\emptyset .
$$

Proof. Let $\left(h_{1}, \ldots, h_{n}\right) \in \mathbf{L}^{p_{1}, q_{1}} \times \ldots \times \mathbf{L}^{p_{n}, q_{n}}$ be such that $h_{1} \cdots h_{n} \notin \mathbf{L}^{p, q}$. In particular, $\frac{h_{1} \cdots h_{n}}{v 2^{n}} \notin \mathbf{L}^{p, q}$, so

$$
\begin{equation*}
\int_{0}^{\infty} \mu\left(\left\{x:\left|h_{1}(x) \cdots h_{n}(x)\right|>v 2^{n} \lambda\right\}\right)^{\frac{q}{p}} \lambda^{q-1} d \lambda=\infty . \tag{18}
\end{equation*}
$$

Now for every $k \in \mathbb{N}$, set

$$
A_{k}:=\left\{x \in X: k>\left|h_{i}(x)\right|>\frac{1}{k}, i=1, \ldots, n\right\} .
$$

Since for every $i=1, \ldots, n, p_{i}<\infty$, we have that $\mu\left(A_{k}\right)<\infty$ for every $k \in \mathbb{N}$. Now let $A:=\bigcup_{k \in \mathbb{N}} A_{k}$. Then $A=\left\{x \in X: \infty>\left|h_{1}(x) \cdots h_{n}(x)\right|>0\right\}$, so by (18) and a fact that for each $i=1, \ldots, n$, $\mu\left\{x \in X:\left|h_{i}(x)\right|=\infty\right\}=0$, we get

$$
\int_{0}^{\infty} \mu\left(\left\{x \in A:\left|h_{1}(x) \cdots h_{n}(x)\right|>v 2^{n} \lambda\right\}\right)^{\frac{q}{p}} \lambda^{q-1} d \lambda=\infty .
$$

Hence by the Lebesgue monotone convergence theorem, there exists $k>0$ such that

$$
\begin{equation*}
\int_{0}^{\infty} \mu\left(\left\{x \in A_{k}:\left|h_{1}(x) \cdots h_{n}(x)\right|>v 2^{n} \lambda\right\}\right)^{\frac{q}{p}} \lambda^{q-1} d \lambda>u . \tag{19}
\end{equation*}
$$

Define

$$
s_{0}:=\inf \left\{\lambda>0: \mu\left(\left\{x \in A_{k}:\left|h_{1}(x) \cdots h_{n}(x)\right|>v 2^{n} \lambda\right\}\right)=0\right\} .
$$

By (19), we get $s_{0}>0$, and since for $\lambda>\frac{k^{n}}{v 2^{n}}$ we have $\mu\left(\left\{x \in A_{k}:\left|h_{1}(x) \cdots h_{n}(x)\right|>v 2^{n} \lambda\right\}\right)=0$, we also have $s_{0}<\infty$. Moreover, again by (19), we obtain

$$
\int_{0}^{s_{0}} \mu\left(\left\{x \in A_{k}:\left|h_{1}(x) \cdots h_{n}(x)\right|>v 2^{n} \lambda\right\}\right)^{\frac{q}{p}} \lambda^{q-1} d \lambda>u,
$$

therefore for some $s \in\left(0, s_{0}\right)$,

$$
\int_{0}^{s} \mu\left(\left\{x \in A_{k}:\left|h_{1}(x) \cdots h_{n}(x)\right|>v 2^{n} \lambda\right\}\right)^{\frac{q}{p}} \lambda^{q-1} d \lambda>u .
$$

By the definition of s_{0}, we have $\mu\left(\left\{x \in A_{k}:\left|h_{1}(x) \cdots h_{n}(x)\right|>v 2^{n} s\right\}\right)>0$. Hence and by the Lebesgue monotone convergence theorem, there exists $m>0$ such that for every $\lambda \in(0, s], \mu(\{x \in$ $\left.\left.A_{k}:\left|h_{1}(x) \cdots h_{n}(x)\right|>v 2^{n} \lambda\right\}\right)>\frac{1}{m}$ and

$$
\begin{equation*}
\int_{0}^{s}\left(\mu\left(\left\{x \in A_{k}:\left|h_{1}(x) \cdots h_{n}(x)\right|>v 2^{n} \lambda\right\}\right)-\frac{1}{m}\right)^{\frac{q}{p}} \lambda^{q-1} d \lambda>u . \tag{20}
\end{equation*}
$$

Now set $r>0$ such that

$$
\begin{equation*}
\sum_{i=1}^{n}\left(\frac{2 r k}{D_{i}}\right)^{p_{i}}<\frac{1}{m} \tag{21}
\end{equation*}
$$

where $D_{i}:=D_{p_{i}, q_{i}}, i=1, \ldots, n$. Now let $\left(a_{1}, \ldots, a_{n}\right) \in \mathbf{L}^{p_{1}, q_{1}} \times \ldots \times \mathbf{L}^{p_{n}, q_{n}}$ be such that $\left\|h_{i}-a_{i}\right\|_{p_{i}, q_{i}}<r$ for every $i=1, \ldots, n$. For every $i=1, \ldots, n$, put

$$
\begin{equation*}
A^{i}:=\left\{x \in A_{k}:\left|a_{i}(x)\right| \leq \frac{1}{2}\left|h_{i}(x)\right|\right\} . \tag{22}
\end{equation*}
$$

Then for every $i=1, \ldots, n$, we have

$$
r>\left\|h_{i}-a_{i}\right\|_{p_{i}, q_{i}} \geq\left\|\frac{1}{2} h_{i} \chi_{A^{i}}\right\|_{p_{i}, q_{i}} \geq \frac{1}{2 k} D_{i} \mu\left(A^{i}\right)^{\frac{1}{p_{i}}}
$$

so for every $i=1, \ldots, n$, we have

$$
\begin{equation*}
\mu\left(A^{i}\right)<\left(\frac{2 r k}{D_{i}}\right)^{p_{i}} \tag{23}
\end{equation*}
$$

Hence, by (21) - (23), for every $\lambda \geq 0$, we get

$$
\begin{gathered}
\mu\left(\left\{x \in X:\left|a_{1}(x) \cdots a_{n}(x)\right|>v \lambda\right\}\right) \geq \mu\left(\left\{x \in A_{k} \backslash \bigcup_{i=1}^{n} A^{i}:\left|a_{1}(x) \cdots a_{n}(x)\right|>v \lambda\right\}\right) \stackrel{(22)}{\geq} \\
\mu\left(\left\{x \in A_{k} \backslash \bigcup_{i=1}^{n} A^{i}:\left|h_{1}(x) \cdots h_{n}(x)\right|>v 2^{n} \lambda\right\}\right) \stackrel{(21),(23)}{\geq} \mu\left(\left\{x \in A_{k}:\left|h_{1}(x) \cdots h_{n}(x)\right|>v 2^{n} \lambda\right\}\right)-\frac{1}{m} .
\end{gathered}
$$

Therefore by (20),

$$
\begin{gathered}
\int_{0}^{\infty} \mu\left(\left\{x \in X:\left|a_{1}(x) \cdots a_{n}(x)\right|>v \lambda\right\}\right)^{\frac{q}{p}} \lambda^{q-1} d \lambda \geq \\
\int_{0}^{s}\left(\mu\left(\left\{x \in A_{k}:\left|h_{1}(x) \cdots h_{n}(x)\right|>v 2^{n} \lambda\right\}\right)-\frac{1}{m}\right)^{\frac{q}{p}} \lambda^{q-1} d \lambda \stackrel{(20)}{>} u,
\end{gathered}
$$

so $\left(a_{1}, \ldots, a_{n}\right) \notin E_{u}^{v}$.
Proof. (Theorem 3.13) We only have to prove implication (i) \Rightarrow (ii). Hence assume (i). By Proposition 3.11 (i), we can assume that

$$
\min \left\{p_{1}, \ldots, p_{n}\right\}<\infty \text { and } p, q<\infty
$$

Moreover, without loss of generality, we can assume that $p_{1}, \ldots, p_{m}<\infty$ and $p_{m+1}=\ldots=p_{m+k}=\infty$ for some $m \geq 1$ and $k \geq 0$ with $m+k=n$.
Now take $\left(h_{1}, \ldots, h_{n}\right) \in \mathbf{L}^{p_{1}, q_{1}} \times \ldots \times \mathbf{L}^{p_{n}, q_{n}}$ with $h_{1} \cdots h_{n} \notin \mathbf{L}^{p, q}$. Since $h_{m+1}, \ldots, h_{n} \in \mathbf{L}^{\infty}$, we get $h_{1} \cdots h_{m} \notin \mathbf{L}^{p, q}$.
For any $v, u>0$, let E_{u}^{v} be defined as in (17). Clearly, we have $E_{p, q}^{\left(p_{1}, q_{1} \ldots, p_{n}, q_{n}\right)}=\bigcup_{u \in \mathbb{N}} E_{u}^{1}$, so we only have to show that for every $u>0$, the set E_{u}^{1} is nowhere dense.
Let $d_{i}, K_{i}, r_{i}, i=1, \ldots, n$ be as in (14). Set $u>0$ and let $\left(f_{1}, \ldots, f_{m}, g_{1}, \ldots, g_{k}\right) \in \mathbf{L}^{p_{1}, q_{1}} \times \ldots \times \mathbf{L}^{p_{m}, q_{m}} \times$ $\mathbf{L}^{\infty} \times \ldots \times \mathbf{L}^{\infty}$ and $R>0$. Now take $r_{0}>0$ such that for every $i=1, \ldots, m$,

$$
\begin{equation*}
K_{i} r_{0}^{r_{i}} \leq \frac{1}{2} R \tag{24}
\end{equation*}
$$

Define for every $i=1, \ldots, m$,

$$
\tilde{f}_{i}(x):= \begin{cases}f_{i}(x)+\frac{r_{0}}{\left\|h_{i}\right\|_{p_{i}, q_{i}}}\left|h_{i}(x)\right|, & f_{i}(x) \geq 0 \\ f_{i}(x)-\frac{r_{0}}{\left\|h_{i}\right\|_{p_{i}, q_{i}}}\left|h_{i}(x)\right|, & f_{i}(x)<0\end{cases}
$$

and for $i=1, \ldots, k$,

$$
\tilde{g}_{i}(x):= \begin{cases}g_{i}(x)+\frac{R}{2}, & g_{i}(x) \geq 0 \\ g_{i}(x)-\frac{R}{2}, & g_{i}(x)<0\end{cases}
$$

Then, clearly, for each $i=1, \ldots, m,\left\|\tilde{f}_{i}-f_{i}\right\|_{p_{i}, q_{i}}=r_{0}$, and for each $i=1, \ldots, k,\left\|\tilde{g}_{i}-g_{i}\right\|_{p_{i}, q_{i}}=\frac{R}{2}$. In particular, by (14) and (24), for every $i=1, \ldots, m, d_{i}\left(\tilde{f}_{i}, f_{i}\right) \leq \frac{1}{2} R$, and for each $i=1, \ldots, k$, $d_{m+i}\left(\tilde{g}_{i}, g_{i}\right) \leq \frac{1}{2} R$. Hence

$$
\begin{equation*}
B_{d}\left(\left(\tilde{f}_{1}, \ldots, \tilde{f}_{m}, \tilde{g}_{1}, \ldots, \tilde{g}_{k}\right), \frac{1}{2} R\right) \subset B_{d}\left(\left(f_{1}, \ldots, f_{m}, g_{1}, \ldots, g_{k}\right), R\right) \tag{25}
\end{equation*}
$$

Since for every $i=1, \ldots, m$ and every $x \in X,\left|\tilde{f}_{i}(x)\right| \geq \frac{r_{0}}{\left\|h_{i}\right\| p_{i}, q_{i}}\left|h_{i}(x)\right|$, we get that $\tilde{f}_{1} \cdots \tilde{f}_{m} \notin L^{p, q}$. Now let $l>0$ be as in the thesis of Lemma 3.14, chosen for $\left(\tilde{f}_{1}, \ldots, \tilde{f}_{m}\right), u$ and $v=\left(\frac{4}{R}\right)^{k}$. Clearly, we may assume that

$$
\begin{equation*}
K_{i} l^{r_{i}} \leq \frac{1}{2} R, i=1, \ldots, n \tag{26}
\end{equation*}
$$

Let

$$
\left(a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{k}\right) \in B_{p_{1}, q_{1}}\left(\tilde{f}_{1}, l\right) \times \ldots \times B_{p_{n}, q_{n}}\left(\tilde{g_{k}}, l\right)
$$

Then for μ-almost all $x \in X$,

$$
\left|b_{1}(x) \cdots b_{k}(x)\right| \geq\left(\frac{1}{2} R-l\right)^{k} \geq\left(\frac{R}{4}\right)^{k}
$$

Hence and by Lemma 3.14,

$$
\begin{gathered}
\int_{0}^{\infty} \mu\left(\left\{x:\left|a_{1}(x) \cdots a_{m}(x) b_{1}(x) \cdots b_{k}(x)\right|>\lambda\right\}\right)^{\frac{q}{p}} \lambda^{q-1} d \lambda \geq \\
\int_{0}^{\infty} \mu\left(\left\{x:\left|a_{1}(x) \cdots a_{m}(x)\right|>\left(\frac{4}{R}\right)^{k} \lambda\right\}\right)^{\frac{q}{p}} \lambda^{q-1} d \lambda \stackrel{L 3.14}{>} u
\end{gathered}
$$

so $\left(a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{k}\right) \notin E_{1}^{u}$. Hence

$$
\begin{equation*}
B_{p_{1}, q_{1}}\left(\tilde{f}_{1}, l\right) \times \ldots \times B_{p_{n}, q_{n}}\left(\tilde{g_{k}}, l\right) \cap E_{u}^{1}=\emptyset . \tag{27}
\end{equation*}
$$

Moreover, by (14) and (26), for every $i=1, \ldots, m, d_{i}\left(a_{i}, \tilde{f}_{i}\right)<\frac{1}{2} R$, and for every $i=1, \ldots, k$, $d_{i}\left(b_{i}, \tilde{g}_{i}\right)<\frac{1}{2} R$. Hence

$$
B\left(\tilde{f}_{1}, l\right) \times \ldots \times B\left(\tilde{f}_{m}, l\right) \times B\left(\tilde{g}_{1}, l\right) \times \ldots \times B\left(\tilde{g_{k}}, l\right) \subset B_{d}\left(\left(\tilde{f}_{1}, \ldots, \tilde{f}_{m}, \tilde{g}_{1}, \ldots, \tilde{g}_{k}\right), \frac{1}{2} R\right)
$$

Since each open "ball" with respect to quasinorm has a nonempty interior (this follows from (14)), the above together with (25) and (27), show that E_{u}^{1} is nowhere dense.

Problem 3.15. It would be interesting to find the necessary and sufficient condition, under which $E_{p, q}^{\left(p_{1}, q_{1}, \ldots, p_{n}, q_{n}\right)} \neq \mathbf{L}^{p_{1}, q_{1}} \times \ldots \times \mathbf{L}^{p_{n}, q_{n}}$ in the case when $\frac{1}{p_{1}}+\ldots+\frac{1}{p_{n}}=\frac{1}{p}$.

The first author has been supported by the Polish Ministry of Science and Higher Education Grant No. N N201 414939.

References

[BW] Balcerzak, M.; Wachowicz, A.: Some examples of meager sets in Banach spaces. Real Anal. Exchange 26 (2000/01), no. 2, 877-884.
[G] L. Grafakos, Classical Fourier analysis. Second edition, Graduate Texts in Mathematics, 249 Springer, New York, 2008.
[GS] Gła̧b, S.; Strobin, F.: Dichotomies for L^{p} spaces, J. Math. Anal. Appl., 368 (2010) 382-390.
[J] Jachymski, J.: A nonlinear Banach-Steinhaus theorem and some meager sets in Banach spaces. Studia Math. 170 (2005), no. 3, 303-320.
[Z1] Zajíček, L.: Porosity and σ-porosity, Real Anal. Exchange 13 (1987/1988), 314-350.
[Z2] Zajíček, L.: On σ-porous sets in abstract spaces, Abstr. Appl. Anal. 5 (2005), 509-534.
E-mail address: szymon_glab@yahoo.com
E-mail address: F.Strobin@impan.gov.pl
E-mail address: cw_yang@korea.ac.kr

Institute of Mathematics, Technical University of Łódź, Wólczańska 215, 93-005 Łódź, Poland

Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-956 Warszawa, Poland. Institute of Mathematics, Technical University of Łódź, Wólczańska 215, 93-005 Łódź, Poland

Department of Mathematics, Korea University, Seoul 136-701, Republic of Korea

[^0]: 1991 Mathematics Subject Classification. Primary: 46E30 Secondary: 46G99.

