DICHOTOMIES FOR LORENTZ SPACES

SZYMON GŁĄB, FILIP STROBIN, AND CHAN WOO YANG

ABSTRACT. Assume that $\mathbf{L}^{p,q}, \mathbf{L}^{p_1,q_1}, ..., \mathbf{L}^{p_n,q_n}$ are Lorentz spaces. This note is devoted to answering the question what is the size of the set

$$E := \{ (f_1, ..., f_n) \in \mathbf{L}^{p_1, q_1} \times ... \times \mathbf{L}^{p_n, q_n} : f_1 \cdots f_n \in L^{p, q} \}.$$

We prove the following dichotomy: either $E = \mathbf{L}^{p_1,q_1} \times \ldots \times \mathbf{L}^{p_n,q_n}$ or E is σ -porous in $\mathbf{L}^{p_1,q_1} \times \ldots \times \mathbf{L}^{p_n,q_n}$, provided $\frac{1}{p} \neq \frac{1}{p_1} + \ldots + \frac{1}{p_n}$. In general case we obtain that either $E = \mathbf{L}^{p_1,q_1} \times \ldots \times \mathbf{L}^{p_n,q_n}$ or E is meager.

1. INTRODUCTION

This article is aimed at studying a size of the set of all tuples $(f_1, ..., f_n)$ from the product of nLorentz spaces such that their product $f_1 \cdots f_n$ is in another Lorentz space. This study is originated from the paper of Balcerzak and Wachowicz [BW] where it was proved that the set

$$\{(f,g) \in \mathbf{L}^1[0,1] \times \mathbf{L}^1[0,1] : fg \in \mathbf{L}^1[0,1]\}$$

is a meager subset of the product $\mathbf{L}^{1}[0,1] \times \mathbf{L}^{1}[0,1]$. It has been generalized by Jachymski [J] who proved the following condition are equivalent when $p \geq 1$ and (X, Σ, μ) is any σ -finite measure space:

- (i) $\{(f,g) \in \mathbf{L}^p(X) \times \mathbf{L}^p(X) : fg \in \mathbf{L}^p(X)\}$ is meager;
- (ii) $\{(f,g) \in \mathbf{L}^p(X) \times \mathbf{L}^p(X) : fg \in \mathbf{L}^p(X)\} \neq \mathbf{L}^p(X) \times \mathbf{L}^p(X);$
- (iii) $\inf\{\mu(A) : \mu(A) > 0\} = 0.$

This result has been further generalized by Głąb and Strobin [GS]. Let (X, Σ, μ) be any measure space, $p_1, ..., p_n, p \in (0, \infty]$ and $\min\{p_1, ..., p_n\} < \infty$ (i.e., at least one of the p_i 's is finite). They proved that the following conditions are equivalent (we define $\frac{1}{\infty} := 0$):

(i) $\{(f_1, ..., f_n) \in \mathbf{L}^{p_1}(X) \times ... \times \mathbf{L}^{p_n}(X) : f_1 \cdots f_n \in \mathbf{L}^p(X)\}$ is σ -a-lower porous for some $\alpha > 0$;

- (ii) $\{(f_1, ..., f_n) \in \mathbf{L}^{p_1}(X) \times ... \times \mathbf{L}^{p_n}(X) : f_1 \cdots f_n \in \mathbf{L}^p(X)\} \neq \mathbf{L}^{p_1}(X) \times ... \times \mathbf{L}^{p_n}(X);$
- (iii) One of the following conditions holds:

*
$$\frac{1}{p_1} + \dots + \frac{1}{p_1} > \frac{1}{p}$$
 and $\inf\{\mu(A) : \mu(A) > 0\} = 0;$
* $\frac{1}{p_1} + \dots + \frac{1}{p_1} < \frac{1}{p}$ and $\sup\{\mu(A) : \mu(A) < \infty\} = \infty.$

In this paper we will strengthen the above result. The main idea is that if $p \in (0, \infty]$, then $\mathbf{L}^p(X)$ is a particular example of the so called Lorentz space. Hence it is interesting if the above result

¹⁹⁹¹ Mathematics Subject Classification. Primary: 46E30 Secondary: 46G99.

Key words and phrases. Lorentz space, \mathbf{L}^p -space, porosity, Baire Category.

can be extended by considering Lorentz spaces instead of $\mathbf{L}^{p}(X)$ spaces. Our main reference will be Grafakos' monograph [G].

2. NOTATION AND BASIC FACTS

Let X be a metric space. B(x, R) stands for the ball with a radius R centered at a point x. Let $\alpha \in (0, 1]$. We say that $M \subset X$ is α -lower porous [Z1], if

$$\forall_{x \in M} \ \liminf_{R \to 0^+} \frac{\gamma(x, M, R)}{R} \geq \frac{\alpha}{2},$$

where

$$\gamma(x, M, R) = \sup\{r \ge 0 : \exists z \in X \ B(z, r) \subset B(x, R) \backslash M\}.$$

Clearly, M is α -lower porous iff

$$\forall_{x \in M} \ \forall_{\beta \in \left(0, \frac{\alpha}{2}\right)} \ \exists_{R_0 > 0} \ \forall_{R \in \left(0, R_0\right)} \ \exists_{z \in X} \ B(z, \beta R) \subset B(x, R) \setminus M$$

The set is σ - α -lower porous if it is a countable union of α -lower porous sets. Note that a σ - α -lower porous set is meager, and the notion of σ -lower porosity is essentially stronger than that of meagerness. Note that the sets investigated in this paper will be α -porous in some stronger sense, namely,

$$\forall_{x \in X} \; \forall_{\beta \in \left(0, \frac{\alpha}{2}\right)} \; \forall_{R > 0} \; \exists_{z \in X} \; B(z, \beta R) \subset B(x, R) \backslash M.$$

However, we do not want to define any new notion of porosity, so in the formulations of theorems we will deal only with α -lower porosity. For more information on porosity, we refer the reader to survey papers [Z1] and [Z2].

Assume that (X, Σ, μ) is a measure space, and let $p, q \in (0, \infty]$ be such that if $p = \infty$, then also $q = \infty$. A Lorentz space $\mathbf{L}^{p,q}(X, \Sigma, \mu)$ ($\mathbf{L}^{p,q}$ in short) is the space of all measurable functions (more formally, of all equivalence classes of measurable functions equal μ -a.e.) with a finite quasinorm given by

$$\|f\|_{p,q} := \begin{cases} \left(\int_0^\infty p\mu(\{x:|f(x)|>\lambda\})^{\frac{q}{p}}\lambda^{q-1}d\lambda\right)^{\frac{1}{q}}, & \text{if } q<\infty;\\ \sup_{\lambda>0}\lambda\mu(\{x:|f(x)|>\lambda\})^{\frac{1}{p}}, & \text{if } p<\infty \text{ and } q=\infty;\\ \sup_{k>0}\sup_{k>0}|f|, & \text{if } p=q=\infty. \end{cases}$$

Note that the presented definition of quasinorm on $\mathbf{L}^{p,q}$ is equivalent to the original one (cf. [G]) and that $\mathbf{L}^{p,q}$ is linear space, but the quasinorm on $\mathbf{L}^{p,q}$ is not usually a norm since the triangle inequality does not hold for all quasinorms $\|\cdot\|_{p,q}$. However, it is always $c_{p,q}$ -subadditive for some $c_{p,q} > 0$. If $p \in (0, \infty]$, then $\|\cdot\|_p$ denotes the standard \mathbf{L}^p -norm:

$$\|\cdot\|_{p} := \begin{cases} \int_{X} |f|^{p} d\mu, & \text{if } p \in (0,1); \\ \left(\int_{X} |f|^{p} d\mu\right)^{\frac{1}{p}}, & \text{if } p \in [1,\infty); \\ \text{supess } |f|, & \text{if } p = \infty. \end{cases}$$

The following basic facts about Lorentz spaces are known and can be easily found in [G]. In the sequel we will use them, sometimes without emphasizing it. If (X, Σ, μ) is a measure space, then we define $\Sigma_+ := \{A \in \Sigma : 0 < \mu(A) < \infty\}$, and if $A \in \Sigma$, then by χ_A we denote the characteristic function of the set A.

Proposition 2.1. Assume that (X, Σ, μ) is a measure space. The following conditions hold:

(i) For any $p \in (0, \infty]$,

$$\|\cdot\|_{p,p} = \begin{cases} \|\cdot\|_{p}, & \text{if } p \in [1,\infty];\\ (\|\cdot\|_{p})^{\frac{1}{p}}, & \text{if } p \in (0,1). \end{cases}$$

- (ii) If $p \in (0,\infty)$ and $q \leq q' \leq \infty$, then $\mathbf{L}^{p,q} \subset \mathbf{L}^{p,q'}$. In particular, for every $f \in \mathbf{L}^{p,q}$ there exists M > 0 such that $\mu(\{x : |f(x)| > \lambda\}) \leq M\lambda^{-p}$ for every $\lambda > 0$;
- (iii) If $p, r \in (0, \infty)$ and $q \in (0, \infty]$, then $|| |f|^r ||_{p,q} = (|| f ||_{pr,qr})^r$ for every $f \in \mathbf{L}^{p,q}$;
- (iv) If $p \in (0,\infty)$ and $q \in (0,\infty]$, then there exists $D_{p,q} > 0$ such that for every $A \in \Sigma_+$, $\|\chi_A\|_{p,q} = D_{p,q}\mu(A)^{\frac{1}{p}}$.
- (v) If $\mathbf{L}^{p,q}$ is any Lorentz space, then for every $f \in \mathbf{L}^{p,q}$ and measurable function g, if for every $x \in X$, $|g(x)| \leq |f(x)|$, then $g \in \mathbf{L}^{p,q}$ and $||g||_{p,q} \leq ||f||_{p,q}$;
- (vi) If $p < \infty$ and $\Sigma_+ = \emptyset$, then for every $q \in (0, \infty]$, $\mathbf{L}^{p,q} = \{0\}$;
- (vii) If $\mathbf{L}^{p,q}$ is a Lorentz space, $f \in \mathbf{L}^{p,q}$ and α is any real, then $\| \alpha f \|_{p,q} = |\alpha| \| f \|_{p,q}$.

By (i), every \mathbf{L}^p space is a particular example of Lorentz space.

Assume now that $\Sigma_+ \neq \emptyset$. It is well known, that every Lorentz space $L^{p,q}$ is metrizable by some metric $d_{p,q}$, which satisfies the following condition $(K_{p,q}, r_{p,q} > 0$ are some constants which depend on p and q):

(1)
$$(\| f - g \|_{p,q})^{r_{p,q}} \le d_{p,q}(f,g) \le K_{p,q} (\| f - g \|_{p,q})^{r_{p,q}}.$$

Indeed, if p = q, then we set $d_{p,p}(f,g) := || f - g ||_p$, and in the other cases we can make use of [G, Exercises 1.4.3 and 1.1.12].

Since each Lorentz space is quasi-Banach (i.e., every Cauchy sequence with respect to a quasinorm, is convergent), (1) implies that the metrics $d_{p,q}$ are complete. Hence we can consider $\mathbf{L}^{p_1,q_1} \times \ldots \times \mathbf{L}^{p_n,q_n}$ as a complete metric space with the supremum metric d_{\max} :

$$d_{\max}((f_1, ..., f_n), (g_1, ..., g_n)) := \max\{d_{p_1, g_1}(f_1, g_1), ..., d_{p_n, g_n}(f_n, g_n)\}.$$

In particular, if $p_i = q_i$, i = 1, ..., n, then we have:

$$d_{\max}((f_1, ..., f_n), (g_1, ..., g_n)) := \max\{ \| f_1 - g_1 \|_{p_1}, ..., \| f_n - g_n \|_{p_n} \}.$$

3. Results

We will assume that we work with some fixed measure space (X, Σ, μ) . Again, we denote $\Sigma_+ :=$ $\{A \in \Sigma : 0 < \mu(A) < \infty\}.$

If $n \in \mathbb{N}$ (we allow n to be 1) and $\mathbf{L}^{p,q}, \mathbf{L}^{p_1,q_1}, ..., \mathbf{L}^{p_n,q_n}$ are Lorentz spaces, then we define the set

$$E_{p,q}^{(p_1,q_1,...,p_n,q_n)} := \{ (f_1,...,f_n) \in \mathbf{L}^{p_1,q_1} \times ... \times \mathbf{L}^{p_n,q_n} : f_1 \cdots f_n \in \mathbf{L}^{p,q} \}.$$

We also set

$$E_p^{(p_1,\dots,p_n)} := E_{p,p}^{(p_1,p_1,\dots,p_n,p_n)}$$

We will first deal with the trivial case: when $\Sigma_{+} = \emptyset$ or $\min\{p_1, ..., p_n\} = \infty$.

Proposition 3.1. Let $n \in \mathbb{N}$ and $\mathbf{L}^{p,q}, \mathbf{L}^{p_1,q_1}, ..., \mathbf{L}^{p_n,q_n}$ be Lorentz spaces. If $\Sigma_+ = \emptyset$ or $\min\{p_1, ..., p_n\} = \emptyset$ ∞ , then the following conditions are equivalent:

- (i) $E_{p,q}^{(p_1,q_1,\ldots,p_n,q_n)}$ is 1-lower porous subset of $\mathbf{L}^{p_1,q_1} \times \ldots \times \mathbf{L}^{p_n,q_n}$; (ii) $E_{p,q}^{(p_1,q_1,\ldots,p_n,q_n)} \neq \mathbf{L}^{p_1,q_1} \times \ldots \times \mathbf{L}^{p_n,q_n}$;
- (iii) $\mu(X) = \infty$ and $\min\{p_1, ..., p_n\} = \infty$ and $p < \infty$.

Proof. We first show the implication (i) \Rightarrow (ii). Let $f_1, ..., f_n \in \mathbf{L}^{\infty}$, R > 0 and $\alpha \in (0, \frac{1}{2})$. For any i = 1, ..., n, set

$$\tilde{f}_i(x) := \begin{cases} f_i(x) + \frac{1}{2}R, & \text{if } f_i(x) \ge 0; \\ f_i(x) - \frac{1}{2}R, & \text{if } f_i(x) < 0. \end{cases}$$

Then $\| f - \tilde{f}_i \|_{\infty} = \frac{1}{2}R$ for each i = 1, ..., n. Now let $a_1, ..., a_n$ be such that $\| a_i - \tilde{f}_i \|_{\infty} < \alpha R$, i = 1, ..., n. Then for every i = 1, ..., n and for μ -almost every $x \in X$, we have $|a_i(x)| \ge \left(\frac{1}{2} - \alpha\right) R$, so for μ -almost every $x \in X$,

$$|a_1(x)\cdots a_n(x)| \ge \left(R\left(\frac{1}{2}-\alpha\right)\right)^n.$$

Hence $|| a_1 \cdots a_n ||_{p,q} = \infty$.

The implication $(ii) \Rightarrow (iii)$ is trivial.

Assume now that $\mu(X) < \infty$ or $\min\{p_1, ..., p_n\} < \infty$ or $p < \infty$. Since $\Sigma_+ = \emptyset$ or $\min\{p_1, ..., p_n\} = \infty$, one of the following conditions holds:

- (a1) $\mu(X) = 0;$
- (a2) $0 < \mu(X) < \infty$ and $\min\{p_1, ..., p_n\} = \infty;$
- (a3) $\min\{p_1, ..., p_n\} < \infty$ and $\Sigma_+ = \emptyset$;
- (a4) $p = \infty$ and $\min\{p_1, ..., p_n\} = \infty$.

In each case, the equality $E_{p,q}^{(p_1,q_1,\ldots,p_n,q_n)} = \mathbf{L}^{p_1,q_1} \times \ldots \times \mathbf{L}^{p_n,q_n}$ is obvious. Hence we get (iii) \Rightarrow (i). \Box

Now we will deal with more complicated cases.

In the first result we state the condition, under which $E_{p,q}^{(p_1,q_1,\ldots,p_n,q_n)} = \mathbf{L}^{p_1,q_1} \times \ldots \times \mathbf{L}^{p_n,q_n}$.

Proposition 3.2. Let $n \in \mathbb{N}$ and $\mathbf{L}^{p,q}, \mathbf{L}^{p_1,q_1}, ..., \mathbf{L}^{p_n,q_n}$ be Lorentz spaces, and assume that $\min\{p_1, ..., p_n\} < \infty$ and $\Sigma_+ \neq \emptyset$. If one of the following conditions holds:

- (a) $\inf\{\mu(A): A \in \Sigma_+\} > 0 \text{ and } \frac{1}{p_1} + \ldots + \frac{1}{p_n} > \frac{1}{p};$
- (b) $\sup\{\mu(A): A \in \Sigma_+\} < \infty \text{ and } \frac{1}{p_1} + \dots + \frac{1}{p_n} < \frac{1}{p}.$

then $E_{p,q}^{(p_1,q_1,\ldots,p_n,q_n)} = \mathbf{L}^{p_1,q_1} \times \ldots \times \mathbf{L}^{p_n,q_n}$.

Before we start the proof of Proposition 3.2, we need some lemmas. The first one is an easy consequence of [G, Exercise 1.1.15] and we skip its proof.

Lemma 3.3. Let $n \in \mathbb{N}$ and $p, p_1, ..., p_n \in (0, \infty]$ be with $\frac{1}{p_1} + ... + \frac{1}{p_n} = \frac{1}{p}$. Then $E_{p,\infty}^{(p_1,\infty,...,p_n,\infty)} = \mathbf{L}^{p_1,\infty} \times ... \times \mathbf{L}^{p_n,\infty}$.

Lemma 3.4. Assume that $\Sigma_+ \neq \emptyset$. The following conditions hold: (I) If $\inf{\{\mu(A) : A \in \Sigma_+\}} > 0$, then every element of any Lorentz space is μ -a.e. bounded;

(II) If $\sup\{\mu(A) : A \in \Sigma_+\} < \infty$, then there exists $A \in \Sigma_+$ such that for every $p \in (0,\infty)$ and $q \in (0,\infty]$, the projection $f \to f_{|A}$ is an isometry between Lorentz spaces $\mathbf{L}^{p,q}(X,\Sigma,\mu)$ and $\mathbf{L}^{p,q}(A,\Sigma_{|A},\mu_{|A})$.

Proof. We first show (I). Let $\mathbf{L}^{p,q}$ be a Lorentz space. If $p = q = \infty$, the thesis holds by the definition of $\|\cdot\|_{\infty}$. Hence assume that $p < \infty$ and let $f \in L^{p,q}$. By Proposition 2.1 (ii), there exists M > 0 such that for every $\lambda > 0$, we have

$$\mu(\{x : |f(x)| > \lambda\}) \le M\lambda^{-p}.$$

Hence $\lim_{\lambda\to\infty} \mu(\{x: |f(x)| > \lambda\}) = 0$, so for some $\lambda_0 > 0$, we get $\mu(\{x: |f(x)| > \lambda_0\}) = 0$, which proves (I).

Now we show (II). Set $K := \sup\{\mu(A) : A \in \Sigma_+\} < \infty$. For every $n \in \mathbb{N}$, there is $A_n \in \Sigma_+$ with $K \ge \mu(A_n) \ge K - \frac{1}{n}$. Set $A = \bigcup_{n \in \mathbb{N}} A_n$. Then $\mu(A) = K$ and for any measurable $D \subset X \setminus A$, we have that either $\mu(D) = 0$ or $\mu(D) = \infty$. Hence if f is an element of any Lorentz space $\mathbf{L}^{p,q}(X, \Sigma, \mu)$, then $\mu(\{x \in X \setminus A : |f(x)| > 0\}) = 0$. This easily gives (II). \Box

The following lemma seems to be known, but we will give a proof.

Lemma 3.5. Assume that $\Sigma_+ \neq \emptyset$ and $p, p', q \in (0, \infty]$. If one of the following conditions holds:

(i) $\inf\{\mu(A) : A \in \Sigma_+\} > 0 \text{ and } \frac{1}{p} < \frac{1}{p'};$ (ii) $\sup\{\mu(A) : A \in \Sigma_+\} < \infty \text{ and } 0 < \frac{1}{p'} < \frac{1}{p},$

then $\mathbf{L}^{p',\infty} \subset \mathbf{L}^{p,q}$.

Proof. Assume that (i) holds and let $f \in \mathbf{L}^{p',\infty}$. By Lemma 3.4 (I), there exists $S < \infty$ such that |f(x)| < S for μ -almost $x \in X$. Hence if $\mathbf{L}^{p,q} = \mathbf{L}^{\infty}$, then obviously $f \in \mathbf{L}^{p,q}$. Thus assume that

 $p < \infty$. By Proposition 2.1 (ii), we may also assume that $q < \infty$. Since $f \in \mathbf{L}^{p',\infty}$, there exists M > 0 such that for every $\lambda > 0$,

$$\mu(\{x: |f(x)| > \lambda\}) \le M\lambda^{-p'}$$

and since |f(x)| < S for μ -almost $x \in X$, for any $\lambda \ge S$ we have $\mu(\{x : |f(x)| > \lambda\}) = 0$. Hence

$$\int_0^\infty \mu\left(\{x:|f(x)|>\lambda\}\right)^{\frac{q}{p}}\lambda^{q-1}d\lambda = \int_0^S \mu\left(\{x:|f(x)|>\lambda\}\right)^{\frac{q}{p}}\lambda^{q-1}d\lambda$$
$$\int_0^S M^{\frac{q}{p}}\lambda^{\frac{-p'q}{p}}\lambda^{q-1}d\mu = \int_0^S M^{\frac{q}{p}}\lambda^{q\left(1-\frac{p'}{p}\right)-1}d\mu < \infty,$$

so $f \in \mathbf{L}^{p,q}$ and the result follows.

Assume now that condition (ii) holds. By Proposition 2.1 (ii), we may assume that $q < \infty$. By Lemma 3.4 (II), we may assume that $K := \mu(X) < \infty$. Now let $f \in \mathbf{L}^{p',\infty}$. Then there exists M > 0 such that for every $\lambda > 0$,

$$\mu(\{x: |f(x)| > \lambda\}) \le M\lambda^{-p'}.$$

Hence we have

$$\int_0^\infty \mu\left(\{x:|f(x)|>\lambda\}\right)^{\frac{q}{p}}\lambda^{q-1}d\lambda =$$

$$\int_0^1 \mu\left(\{x:|f(x)|>\lambda\}\right)^{\frac{q}{p}}\lambda^{q-1}d\lambda + \int_1^\infty \mu\left(\{x:|f(x)|>\lambda\}\right)^{\frac{q}{p}}\lambda^{q-1}d\lambda \leq$$

$$\int_0^1 K^{\frac{q}{p}}\lambda^{q-1}d\lambda + \int_1^\infty M^{\frac{q}{p}}\lambda^{\frac{-p'q}{p}}\lambda^{q-1}d\mu =$$

$$\int_0^1 K^{\frac{q}{p}}\lambda^{q-1}d\lambda + \int_1^\infty M^{\frac{q}{p}}\lambda^{q\left(1-\frac{p'}{p}\right)-1}d\mu < \infty,$$

so $f \in \mathbf{L}^{p,q}$.

г		1	

 \leq

We are ready to give a proof of Proposition 3.2

Proof. (of Proposition 3.2) Let $p' \in (0, \infty)$ be such that $\frac{1}{p_1} + \ldots + \frac{1}{p_n} = \frac{1}{p'}$, and let $(f_1, \ldots, f_n) \in \mathbf{L}^{p_1,q_1} \times \ldots \times \mathbf{L}^{p_n,q_n}$. By Proposition 2.1 (ii), $(f_1, \ldots, f_n) \in \mathbf{L}^{p_1,\infty} \times \ldots \times \mathbf{L}^{p_n,\infty}$, and by Lemma 3.3, we get $f_1 \cdots f_n \in \mathbf{L}^{p',\infty}$. Hence and by Lemma 3.5, $f_1 \cdots f_n \in \mathbf{L}^{p,q}$, so the result follows.

The next theorem deals with the case when $E_{p,q}^{(p_1,q_1,\ldots,p_n,q_n)}$ is small. Recall that we consider the product of Lorentz spaces as a metric space with a metric d_{\max} defined in the previous section, and in the case of $\mathbf{L}^{p_1} \times \ldots \times \mathbf{L}^{p_n}$, we have $d_{\max}((f_1,\ldots,f_n),(g_1,\ldots,g_n)) = \max\{\|f_1-g_1\|_{p_1},\ldots,\|f_n-g_n\|_{p_n}\}$

Theorem 3.6. Let $n \in \mathbb{N}$ and $\mathbf{L}^{p,q}, \mathbf{L}^{p_1,q_1}, ..., \mathbf{L}^{p_n,q_n}$ be Lorentz spaces. Assume that $\min\{p_1, ..., p_n\} < \infty$ and $\Sigma_+ \neq \emptyset$. If one of the following conditions holds

(i) $\frac{1}{p_1} + \ldots + \frac{1}{p_n} > \frac{1}{p}$ and $\inf\{\mu(A) : A \in \Sigma_+\} = 0;$ (ii) $\frac{1}{p_1} + \ldots + \frac{1}{p_n} < \frac{1}{p}$ and $\sup\{\mu(A) : A \in \Sigma_+\} = \infty,$ then the set $E_{p,q}^{(p_1,q_1,\ldots,p_n,q_n)}$ is σ - α -lower porous in $\mathbf{L}^{p_1,q_1} \times \ldots \times \mathbf{L}^{p_n,q_n}$ for some $\alpha > 0$. If additionally q = p and $q_i = p_i$ for $i = 1, \ldots, n$, then we can take $\alpha = \frac{2}{m+1}$, where m is the number of i's for which $p_i < \infty$.

Note that the last statement of the above result, together with part (i) of Proposition 3.1, give the thesis of the main result of [GS] ([GS, Theorem 6]). Before we prove the result, we will present some lemmas. Note that they are refinements of [GS, Lemmas 4 and 5].

Lemma 3.7. Let $n \in \mathbb{N}$, $A, A_1, ..., A_n$ be measurable sets and $s_1, ..., s_n \ge 0$ be such that $\sum_{i=1}^n s_i \le 1$. If $A_i \subset A$ and $\mu(A_i) > (1 - s_i)\mu(A)$ for any i = 1, ..., n, then

$$\mu\left(\bigcap_{i=1}^{n} A_i\right) > 0.$$

Proof. Using the induction principle, it is easy to show that

$$\mu\left(\bigcap_{i=1}^{k} A_i\right) > \left(1 - \sum_{i=1}^{k} s_i\right) \mu(A) \quad \text{for any } k = 1, \dots, n.$$

In particular, for k = n, we get that $\mu(\bigcap_{i=1}^{n} A_i) > 0$.

Recall (cf. Proposition 2.1 (iv)) that if $q \in (0, \infty]$ and $p < \infty$, then for some $D_{p,q} > 0$, $\|\chi_A\|_{p,q} = D_{p,q}\mu(A)^{\frac{1}{p}}$ for every $A \in \Sigma_+$.

Lemma 3.8. Assume that $n \in \mathbb{N}$, $p_1, ..., p_n \in (0, \infty)$, $q_1, ..., q_n \in (0, \infty]$ and let $A \in \Sigma_+$. If $f_1, ..., f_n, g_1, ..., g_n$ are such that $|g_i(x)| \ge 1$ for $x \in A$ and i = 1, ..., n, and $|| (f_i - g_i)\chi_A ||_{p_i, q_i} \le s_i$, i = 1, ..., n for some $s_1, ..., s_n$, then

$$\| f_1 \cdots f_n \chi_A \|_{p,q} \ge D_{p,q} C^n \left(\mu(A) - \sum_{i=1}^n \left(\frac{s_i}{D_{p_i,q_i}(1-C)} \right)^{p_i} \right)^{\frac{1}{q}}$$

for any $C \in (0,1)$, $p \in (0,\infty)$ and $q \in (0,\infty]$, provided that $\mu(A) \ge \sum_{i=1}^{n} \left(\frac{s_i}{D_{p_i,q_i}(1-C)}\right)^{p_i}$.

Proof. For simplicity, let $D, D_1, ..., D_n$ stand for $D_{p,q}, D_{p_1,q_1}, ..., D_{p_n,q_n}$, respectively. For i = 1, ..., n, we define the sets $A_i := \{x \in A : |f_i(x)| < C|g_i(x)|\}$. Now let i = 1, ..., n. Then for every $x \in A_i$,

$$|f_i(x) - g_i(x)| \ge |g_i(x)| - |f_i(x)| \ge (1 - C)|g_i(x)| \ge 1 - C.$$

Hence

$$s_i \ge || (f_i - g_i) \chi_A ||_{p_i, q_i} \ge || (1 - C) \chi_{A_i} ||_{p_i, q_i} = D_i (1 - C) \mu(A_i)^{\frac{1}{p_i}},$$

and therefore

$$\mu(A_i) \le \left(\frac{s_i}{D_i(1-C)}\right)^{p_i}.$$

By combining this with the fact that for any $x \in A \setminus A_i$, $|f_i(x)| \ge C$, we obtain

$$|| f_1 \cdots f_n \chi_A ||_{p,q} \ge || f_1 \cdots f_n \chi_A \setminus \bigcup_{i=1}^n A_i ||_{p,q} \ge || C^n \chi_A \setminus \bigcup_{i=1}^n A_i ||_{p,q} \ge$$

$$DC^{n}\left(\mu(A) - \sum_{i=1}^{n} \mu(A_{i})\right)^{\frac{1}{p}} \ge DC^{n}\left(\mu(A) - \sum_{i=1}^{n} \left(\frac{s_{i}}{D_{i}(1-C)}\right)^{p_{i}}\right)^{\frac{1}{p}}.$$

The following lemma is crucial for the proof of Theorem 3.6. If u > 0, then we set

(2)
$$E_u := \{ (f_1, ..., f_n) \in \mathbf{L}^{p_1, q_1} \times ... \times \mathbf{L}^{p_n, q_n} : || f_1 \cdots f_n ||_{p,q} \le u \}.$$

If $f \in \mathbf{L}^{p,q}$ and r > 0, then we denote $B_{p,q}(f,r) := \{g \in \mathbf{L}^{p,q} : || f - g ||_{p,q} < r\}.$

Lemma 3.9. Let $n \in \mathbb{N}$ and $\mathbf{L}^{p,q}, \mathbf{L}^{p_1,q_1}, ..., \mathbf{L}^{p_n,q_n}$ be Lorentz spaces and let the assumptions of Theorem 3.6 be satisfied. Assume that for some $m \geq 1$ and $k \geq 0$ with m + k = n, we have $p_1, ..., p_m < \infty$ and $p_{m+1} = ... = p_{m+k} = \infty$. Let $r_i \in (0, \infty)$ and $\delta_i \in (0, \frac{1}{2})$, i = 1, ..., n, be such that

$$\sum_{i=1}^{m} \left(\frac{\delta_i}{1-\delta_i} \right)^{\frac{p_i}{r_i}} < 1 \quad and \quad r_{m+1} = \dots = r_n = 1.$$

For every u > 0, R > 0 and $(f_1, ..., f_n) \in \mathbf{L}^{p_1, q_1} \times ... \times \mathbf{L}^{p_n, q_n}$, there exists $(\tilde{f}_1, ..., \tilde{f}_n) \in \mathbf{L}^{p_1, q_1} \times ... \times \mathbf{L}^{p_n, q_n}$ such that

$$\left(\parallel f_i - \tilde{f}_i \parallel_{p_i, q_i} \right)^{r_i} = (1 - \delta_i) R \quad \text{for every } i = 1, ..., n,$$

and

$$B_{p_1,q_1}\left(\tilde{f}_1, \left(\delta_i R\right)^{\frac{1}{r_1}}\right) \times \ldots \times B_{p_n,q_n}\left(\tilde{f}_n, \left(\delta_n R\right)^{\frac{1}{r_n}}\right) \cap E_u = \emptyset.$$

Proof. For simplicity, we will write $\|\cdot\|_i$ and D_i instead of $\|\cdot\|_{p_i,q_i}$ and D_{p_i,q_i} for i = 1, ..., n, respectively, and $\|\cdot\|$ and D instead of $\|\cdot\|_{p,q}$ and $D_{p,q}$, respectively.

Let u > 0. As we assumed, $p_i < \infty$ for i = 1, ..., m and $p_i = \infty$ for i = m + 1, ..., m + k, for some $m \ge 1$ and $k \ge 0$ with m + k = n.

Let $(f_1, ..., f_m, g_1, ..., g_k) \in \mathbf{L}^{p_1, q_1} \times ... \times \mathbf{L}^{p_n, q_n}, R > 0$. We can choose $C \in (0, 1)$ such that

(3)
$$\sum_{i=1}^{m} \left(\left(\frac{\delta_i}{1-\delta_i} \right)^{\frac{1}{r_i}} \frac{1}{(1-C)} \right)^{p_i} < 1$$

Now set:

(4)
$$G := \frac{\prod_{i=1}^{m} (R(1-\delta_i))^{\frac{1}{r_i}}}{\prod_{i=1}^{m} D_i},$$

(5)
$$H := \left(1 - \sum_{i=1}^{m} \left(\left(\frac{\delta_i}{1 - \delta_i}\right)^{\frac{1}{r_i}} \frac{1}{(1 - C)}\right)^{p_i}\right)^{\frac{1}{p}}.$$

By our assumptions ((i) or (ii)), there is a set $A \in \Sigma_+$ such that if $p < \infty$, then

(6)
$$\left(\prod_{i=m+1}^{n} R\left(1-2\delta_{i}\right)\right) GDC^{m} H\mu(A)^{\left(\frac{1}{p}-\frac{1}{p_{1}}-\ldots-\frac{1}{p_{m}}\right)} > u$$

and if $p = \infty$, then

(7)
$$\left(\prod_{i=m+1}^{n} R\left(1-2\delta_{i}\right)\right) GC^{m} \mu(A)^{-\left(\frac{1}{p_{1}}+\ldots+\frac{1}{p_{m}}\right)} > u.$$

Note that in the case when $\frac{1}{p} - \frac{1}{p_1} - \dots - \frac{1}{p_m} < 0$, we take the set A with an appropriate small positive measure and in the case when $\frac{1}{p} - \frac{1}{p_1} - \dots - \frac{1}{p_m} > 0$, we take the set A with an appropriate large finite measure.

Next, let $M_1, ..., M_m$ be such that for i = 1, ..., m,

(8)
$$(|| M_i \chi_A ||_i)^{r_i} = (1 - \delta_i) R.$$

Then for every i = 1, ..., m,

(9)
$$\mu(A) = \left(\frac{\left((1-\delta_i)R\right)^{\frac{1}{r_i}}}{M_i D_i}\right)^{p_i}$$

Now, let us define $\tilde{f}_1, ..., \tilde{f}_m, \tilde{g}_1, ..., \tilde{g}_k$ as follows. For i = 1, ..., m, we set

$$\tilde{f}_{i}(x) := \begin{cases} f_{i}(x) + M_{i}, & x \in A \text{ and } f_{i}(x) \ge 0; \\ f_{i}(x) - M_{i}, & x \in A \text{ and } f_{i}(x) < 0; \\ f_{i}(x), & x \notin A, \end{cases}$$

and for i = 1, ..., k, we set

$$\tilde{g}_i(x) := \begin{cases} g_i(x) + (1 - \delta_{m+i})R, & \text{if } g_i(x) \ge 0; \\ g_i(x) - (1 - \delta_{m+i})R, & \text{if } g_i(x) < 0. \end{cases}$$

Using (8), we obtain for every i = 1, ..., m:

$$\left(\parallel \tilde{f}_{i} - f_{i} \parallel_{i} \right)^{r_{i}} = \left(\parallel M_{i} \chi_{A} \parallel_{i} \right)^{r_{i}} \stackrel{(8)}{=} (1 - \delta_{i}) R$$

and similarly for every i = 1, ..., k (recall that $r_i = 1$ for i = m + 1, ..., n),

$$||\tilde{g}_i - g_i||_i = (1 - \delta_{m+i})R.$$

Now let

$$(a_1, ..., a_m, b_1, ..., b_k) \in B_{p_1, q_1}\left(\tilde{f}_1, (\delta_1 R)^{\frac{1}{r_1}}\right) \times ... \times B_{p_n, q_n}\left(\tilde{g}_k, (\delta_n R)^{\frac{1}{r_n}}\right).$$

Clearly, since for every i = 1, ..., k and $x \in X$, $|\tilde{g}_i(x)| \ge (1 - \delta_{m+i})R$, then for μ -almost every $x \in X$,

(10)
$$|b_i(x)| \ge (1 - 2\delta_{m+i})R.$$

Consider two cases:

Case 1. $p < \infty$. For any i = 1, ..., m, we have

(11)
$$(\delta_i R)^{\frac{1}{r_i}} \ge \|a_i - \tilde{f}_i\|_i \ge \left\| \left(a_i - \tilde{f}_i \right) \chi_A \right\|_i = M_i \left\| \left(\frac{a_i}{M_i} - \frac{\tilde{f}_i}{M_i} \right) \chi_A \right\|_i$$

and also, by (9),

(12)
$$\left(\frac{(R\delta_i)^{\frac{1}{r_i}}}{M_i D_i (1-C)}\right)^{p_i} = \mu(A) \left(\left(\frac{\delta_i}{1-\delta_i}\right)^{\frac{1}{r_i}} \frac{1}{(1-C)}\right)^{p_i}$$

 and

(13)
$$M_i \mu(A)^{\frac{1}{p_i}} D_i = ((1 - \delta_i)R)^{\frac{1}{r_i}},$$

Hence, by (4) – (6), (10) – (13) and Lemma 3.8 (used for $g_i := \frac{\tilde{f}_i}{M_i}$, $f_i := \frac{a_i}{M_i}$ and $s_i := \frac{(\delta_i R)^{\frac{1}{r_i}}}{M_i}$), we obtain the following (10)

$$\| a_{1} \cdots a_{m} \cdot b_{1} \cdots b_{k} \| \geq \| a_{1} \cdots a_{m} \cdot b_{1} \cdots b_{k} \chi_{A} \| \stackrel{\text{(15)}}{\geq} \\ \left(\prod_{i=m+1}^{n} R\left(1-2\delta_{i}\right) \right) \| a_{1} \cdots a_{m} \chi_{A} \| = \\ \left(\prod_{i=m+1}^{n} R\left(1-2\delta_{i}\right) \right) M_{1} \cdots M_{m} \left\| \left| \frac{a_{1}}{M_{1}} \cdots \frac{a_{m}}{M_{m}} \chi_{A} \right| \right\| \stackrel{L 3.8,(11)}{\geq} \\ \left(\prod_{i=m+1}^{n} R\left(1-2\delta_{i}\right) \right) M_{1} \cdots M_{m} DC^{m} \left(\mu(A) - \sum_{i=1}^{m} \left(\frac{(\delta_{i}R)^{\frac{1}{r_{i}}}}{M_{i}D_{i}(1-C)} \right)^{p_{i}} \right)^{\frac{1}{p}} \stackrel{\text{(12)}}{\equiv} \\ \left(\prod_{i=m+1}^{n} R\left(1-2\delta_{i}\right) \right) M_{1} \cdots M_{m} DC^{m} \left(\mu(A) - \sum_{i=1}^{m} \mu(A) \left(\left(\frac{\delta_{i}}{1-\delta_{i}} \right)^{\frac{1}{r_{i}}} \frac{1}{(1-C)} \right)^{p_{i}} \right)^{\frac{1}{p}} \stackrel{\text{(5)}}{\equiv} \\ \left(\prod_{i=m+1}^{n} R\left(1-2\delta_{i}\right) \right) \underbrace{\prod_{i=1}^{m} M_{i} \mu(A)^{\frac{1}{p_{i}}} D_{i}}_{\prod_{i=1}^{m} D_{i}} DC^{m} \mu(A)^{\left(\frac{1}{p}-\frac{1}{p_{1}}-\dots-\frac{1}{p_{m}}\right)} H^{(4),(13)} \\ \left(\prod_{i=m+1}^{n} R\left(1-2\delta_{i}\right) \right) GDC^{m} \mu(A)^{\left(\frac{1}{p}-\frac{1}{p_{1}}-\dots-\frac{1}{p_{m}}\right)} H^{(6)} u.$$

Hence $(a_1, ..., b_k) \notin E_u$.

Case 2. $p = \infty$. This case is possible only if $\inf\{\mu(E) : E \in \Sigma_+\} = 0$. For any i = 1, ..., m, we define:

$$A_i^1 := \{ x \in A : |a_i(x)| \ge CM_i \}, \quad A_i^2 := A \setminus A_i^1.$$

Then for every i = 1, ..., m, we have

$$(\delta_i R)^{\frac{1}{r_i}} > \parallel a_i - \tilde{f}_i \parallel_i \geq \left| \left| \left(a_i - \tilde{f}_i \right) \chi_{A_i^2} \right| \right|_i \geq \parallel (M_i (1 - C)) \chi_{A_i^2} \parallel_i = D_i M_i (1 - C) \mu(A_i^2)^{\frac{1}{p_i}}.$$

Hence by (12) (which works in this case), for every i = 1, ..., m,

$$\mu(A_i^2) < \left(\frac{(\delta_i R)^{\frac{1}{r_i}}}{D_i M_i (1-C)}\right)^{p_i} \stackrel{(12)}{=} \mu(A) \left(\left(\frac{\delta_i}{1-\delta_i}\right)^{\frac{1}{r_i}} \frac{1}{(1-C)}\right)^{p_i}.$$

Then for each i = 1, ..., m,

$$\mu(A_i^1) = \mu(A) - \mu(A_i^2) > \mu(A) \left(1 - \left(\left(\frac{\delta_i}{1 - \delta_i} \right)^{\frac{1}{r_i}} \frac{1}{(1 - C)} \right)^{p_i} \right).$$

By Lemma 3.7 and (3), we obtain that $\mu(A_1^1 \cap ... \cap A_m^1) > 0$. Also, for μ -almost every $x \in A_1^1 \cap ... \cap A_m^1$, we make use of (4), (7), (10) and (13) (which, clearly, works in this case) to obtain

$$|a_{1}(x)\cdots a_{m}(x)\cdot b_{1}(x)\cdots b_{k}(x)| \stackrel{(10)}{\geq} C^{m}M_{1}\cdots M_{m}\left(\prod_{i=m+1}^{n}R\left(1-2\delta_{i}\right)\right) \stackrel{(4),(13)}{=}$$
$$=\left(\prod_{i=m+1}^{n}R\left(1-2\delta_{i}\right)\right)C^{m}G\mu(A)^{-\left(\frac{1}{p_{1}}+\ldots+\frac{1}{p_{m}}\right)} \stackrel{(7)}{>} u.$$

Hence

$$||a_1\cdots a_m\cdot b_1\cdots b_k|| > u.$$

This ends the proof.

We are ready to give a proof of Theorem 3.6

Proof. (of Theorem 3.6) For simplicity, we will write $\|\cdot\|_i$ and d_i , i = 1, ..., n instead of $\|\cdot\|_{p_i,q_i}$ and d_{p_i,q_i} , i = 1, ..., n, respectively.

By (1), for each i = 1, ..., n, there exist $K_i, r_i > 0$ such that for every $f, g \in \mathbf{L}^{p_i, q_i}$,

(14)
$$(\| f - g \|_i)^{r_i} \le d_i(f, g) \le K_i (\| f - g \|_i)^{r_i},$$

and if $p_i = \infty$, then $K_i = r_i = 1$.

Since $E_{p,q}^{(p_1,q_1,\ldots,p_n,q_n)} = \bigcup_{u \in \mathbb{N}} E_u$ (where each E_u is defined as in (2)), we have to show that there exists $\alpha > 0$ such that for each u > 0, the set E_u is α -lower porous.

Let u > 0. Without loss of generality, we assume that $p_i < \infty$ for i = 1, ..., m and $p_i = \infty$ for i = m + 1, ..., m + k, where $m + k = n, m \ge 1$ and $k \ge 0$.

Now let $K := \max\{K_1, ..., K_n\}$ and $\lambda > 0$ be such that

$$\sum_{i=1}^{m} \left(\frac{\lambda}{1-\lambda}\right)^{\frac{p_i}{r_i}} = 1.$$

It is easy to see that $\lambda \leq \frac{1}{2}$. Take $\delta \in (0, \lambda)$. Then

$$\sum_{i=1}^m \left(\frac{\delta}{1-\delta}\right)^{\frac{p_i}{r_i}} < 1.$$

Now take $(f_1, ..., f_n) \in \mathbf{L}^{p_1, q_1} \times ... \times \mathbf{L}^{p_n, q_n}$ and R > 0. Let $(\tilde{f}_1, ..., \tilde{f}_n) \in \mathbf{L}^{p_1, q_1} \times ... \times \mathbf{L}^{p_n, q_n}$ be as in Lemma 3.9, chosen for $r_1, ..., r_n, u, (f_1, ..., f_n), R' := \frac{R}{K}$ and $\delta_i := \delta, i = 1, ..., n$.

By (14) and Lemma 3.9, for every i = 1, ..., n, we have that

$$d_i \left(f_i, \tilde{f}_i \right) \stackrel{(14)}{\leq} K \left(\| f_i - \tilde{f}_i \|_i \right)^{r_i} \stackrel{L 3.9}{=} K(1 - \delta) R' = (1 - \delta) R,$$

 \mathbf{SO}

(15)
$$B_d\left(\left(\tilde{f}_1,...,\tilde{f}_n\right),\frac{\delta R}{K}\right) \subset B_d\left(\left(\tilde{f}_1,...,\tilde{f}_n\right),\delta R\right) \subset B_d\left((f_1,...,f_n),R\right),$$

where $B_d((\cdot, ..., \cdot), \cdot)$ denotes an open ball in $(\mathbf{L}^{p_1, q_1} \times ... \times \mathbf{L}^{p_n, q_n}, d_{\max})$. On the other hand, by (14), for any i = 1, ..., n and any $a_i \in \mathbf{L}^{p_i, q_i}$, if $d_i\left(\tilde{f}_i, a_i\right) < \frac{\delta R}{K}$, then also $\left(\parallel \tilde{f}_i - a_i \parallel_i \right)^{r_i} < \frac{\delta R}{K} = \delta R'$. Hence and by Lemma 3.9, $(a_1, ..., a_n) \notin E_u$, which shows that

(16)
$$B_d\left(\left(\tilde{f}_1,...,\tilde{f}_n\right),\frac{\delta R}{K}\right) \cap E_u = \emptyset.$$

By (15) and (16), E_u is $\frac{2\lambda}{K}$ -lower porous.

Now we will prove the last statement of the thesis. We may assume that $p_1, ..., p_j < 1, p_{j+1}, ..., p_m \in$ $[1,\infty)$ and $p_{m+1} = ... = p_n = \infty$. For i = 1, ..., j, set $r_i := p_i$, and for i = j + 1, ..., n, set $r_i := 1$. Now if $\lambda := \frac{1}{m+1}$, then $\frac{\lambda}{1-\lambda} = \frac{1}{m}$, so

$$\sum_{i=1}^{m} \left(\frac{\lambda}{1-\lambda}\right)^{\frac{p_i}{r_i}} \le \sum_{i=1}^{m} \frac{1}{m} = 1.$$

Proceeding similarly as above we get that each E_u is $\frac{2\frac{1}{m}}{1}$ -lower porous (note that here K = 1).

Finally, Propositions 3.1, 3.2 and Theorem 3.6 imply the following partial dichotomy:

Corollary 3.10. Let $n \in \mathbb{N}$ and $\mathbf{L}^{p,q}, \mathbf{L}^{p_1,q_1}, ..., \mathbf{L}^{p_n,q_n}$ be Lorentz spaces such that if $p < \infty$, then $\frac{1}{p} \neq \frac{1}{p_1} + \ldots + \frac{1}{p_n}$. Then the following conditions are equivalent:

- (a) the set $E_{p,q}^{(p_1,q_1,\ldots,p_n,q_n)}$ is σ - α -lower porous in $\mathbf{L}^{p_1,q_1} \times \ldots \times \mathbf{L}^{p_n,q_n}$ for some $\alpha > 0$;
- (b) $E_{p,q}^{(p_1,q_1,...,p_n,q_n)} \neq \mathbf{L}^{p_1,q_1} \times ... \times \mathbf{L}^{p_n,q_n};$
- (c) one of the conditions holds:

(i)
$$\Sigma_{+} \neq \emptyset$$
 and $\inf\{\mu(A) : A \in \Sigma_{+}\} = 0$ and $\frac{1}{2} + ... + \frac{1}{2} > \frac{1}{2}$:

- (i) $\Sigma_+ \neq \emptyset$ and $\inf\{\mu(A) : A \in \Sigma_+\} = 0$ and $\frac{1}{p_1} + \ldots + \frac{1}{p_n} > \frac{1}{p};$ (ii) $\Sigma_+ \neq \emptyset$ and $\sup\{\mu(A) : A \in \Sigma_+\} = \infty$ and $\frac{1}{p_1} + \ldots + \frac{1}{p_n} < \frac{1}{p};$
- (iii) $\mu(X) = \infty$ and $\min\{p_1, ..., p_n\} = \infty$ and $p < \infty$.

Proof. Implication (a) \Rightarrow (b) is trivial. Implication (c) \Rightarrow (a) follows from Proposition 3.1 and Theorem 3.6. We will prove implication (b) \Rightarrow (c). Assume that (i), (ii) and (iii) do not hold. Consider two cases:

Case 1. $\Sigma_+ = \emptyset$ or $\min\{p_1, ..., p_n\} = \infty$. Then the equality $E_{p,q}^{(p_1,q_1,\ldots,p_n,q_n)} = \mathbf{L}^{p_1,q_1} \times \ldots \times \mathbf{L}^{p_n,q_n}$ follows from negation of (iii) and Proposition 3.1.

Case 2. $\Sigma_+ \neq \emptyset$ and $\min\{p_1, ..., p_n\} < \infty$.

Then the negation of (i) and (ii) easily imply the assumptions of Proposition 3.2. The result follows.

Now we will deal with the case when $\frac{1}{p_1} + \ldots + \frac{1}{p_n} = \frac{1}{p}$ and $\min\{p_1, \ldots, p_n\} < \infty$.

Proposition 3.11. Assume that $\frac{1}{p_1} + ... + \frac{1}{p_n} = \frac{1}{p}$. Then the following conditions hold: (i) for $q_1, ..., q_n \in (0, \infty]$, $E_{p,\infty}^{(p_1, q_1, ..., p_n, q_n)} = \mathbf{L}^{p_1, q_1} \times ... \times \mathbf{L}^{p_n, q_n}$;

(ii) for every $q_i \in (0, p_i], i = 1, ..., n \text{ and } q \in [p, \infty], E_{p,q}^{(p_1, q_1, ..., p_n, q_n)} = \mathbf{L}^{p_1, q_1} \times ... \times \mathbf{L}^{p_n, q_n}$

Proof. Part (i) follows from Lemma 3.3 and Proposition 2.1 (ii).

Part (ii) follows from a general version of the Hölder inequality [G, Exercise 1.1.2] and Proposition 2.1 (ii). \Box

Now we show that we can also have $E_{p,q}^{(p_1,q_1,\ldots,p_n,q_n)} \neq \mathbf{L}^{p_1,q_1} \times \ldots \times \mathbf{L}^{p_n,q_n}$.

Proposition 3.12. Let $X = \mathbb{R}^k$ and μ be the Lebesgue measure on X, $p' < \infty$, $p = \frac{p'}{n}$, $q' \in (0, \infty]$ and $q < \frac{q'}{n}$. Then $E_{p,q}^{(p',q',\ldots,p',q')} \neq \mathbf{L}^{p',q'} \times \ldots \times \mathbf{L}^{p',q'}$.

Proof. Let $t = \frac{q'}{n}$. By [G, Exercise 1.4.8], there is $f \in \mathbf{L}^{p,t} \setminus \mathbf{L}^{p,q}$. Clearly, we may assume that $f \geq 0$. By Proposition 2.1, $f^{\frac{1}{n}} \in \mathbf{L}^{pn,tn} = \mathbf{L}^{p',q'}$. Hence $(f^{\frac{1}{n}}, ..., f^{\frac{1}{n}}) \in \mathbf{L}^{p',q'} \times ... \times \mathbf{L}^{p',q'}$ and $f^{\frac{1}{n}} \cdots f^{\frac{1}{n}} = f \notin \mathbf{L}^{p,q}$.

Now we show that the following dichotomy holds:

Theorem 3.13. Let $n \in \mathbb{N}$ and $\mathbf{L}^{p,q}, \mathbf{L}^{p_1,q_1}, ..., \mathbf{L}^{p_n,q_n}$ be Lorentz spaces with $\frac{1}{p_1} + ... + \frac{1}{p_n} = \frac{1}{p}$. Then the following conditions are equivalent:

(i) E^(p₁,q₁,...,p_n,q_n) ≠ L^{p₁,q₁} × ... × L^{p_n,q_n};
 (ii) E^(p₁,q₁,...,p_n,q_n)_{p,q} is a meager subset of L^{p₁,q₁} × ... × L^{p_n,q_n}.

To prove the above fact, we need the following lemma. If $\mathbf{L}^{p,q}, \mathbf{L}^{p_1,q_1}, ..., \mathbf{L}^{p_n,q_n}$ are Lorentz spaces such that $p, q < \infty$, then for every reals v, u > 0, we put

(17)
$$E_u^v := \left\{ (f_1, ..., f_n) \in \mathbf{L}^{p_1, q_1} \times ... \times \mathbf{L}^{p_n, q_n} : \int_0^\infty \mu(\{x : |f_1(x) \cdots f_n(x)| > v\lambda\})^{\frac{q}{p}} \lambda^{q-1} d\lambda < u \right\}.$$

Lemma 3.14. Let $n \in \mathbb{N}$ and $\mathbf{L}^{p,q}, \mathbf{L}^{p_1,q_1}, ..., \mathbf{L}^{p_n,q_n}$ be Lorentz spaces such that $q, p, p_1, ..., p_n \in (0, \infty)$. If $(h_1, ..., h_n) \in \mathbf{L}^{p_1,q_1} \times ... \times \mathbf{L}^{p_n,q_n}$ is such that $h_1 \cdots h_n \notin \mathbf{L}^{p,q}$, then for every u, v > 0, there exists r > 0 such that

$$B_{p_1,q_1}(h_1,r) \times \ldots \times B_{p_n,q_n}(h_n,r) \cap E_u^v = \emptyset.$$

Proof. Let $(h_1, ..., h_n) \in \mathbf{L}^{p_1, q_1} \times ... \times \mathbf{L}^{p_n, q_n}$ be such that $h_1 \cdots h_n \notin \mathbf{L}^{p, q}$. In particular, $\frac{h_1 \cdots h_n}{v 2^n} \notin \mathbf{L}^{p, q}$, so

(18)
$$\int_0^\infty \mu(\{x: |h_1(x)\cdots h_n(x)| > v2^n\lambda\})^{\frac{q}{p}}\lambda^{q-1}d\lambda = \infty.$$

Now for every $k \in \mathbb{N}$, set

$$A_k := \left\{ x \in X : k > |h_i(x)| > \frac{1}{k}, \ i = 1, ..., n \right\}.$$

Since for every i = 1, ..., n, $p_i < \infty$, we have that $\mu(A_k) < \infty$ for every $k \in \mathbb{N}$. Now let $A := \bigcup_{k \in \mathbb{N}} A_k$. Then $A = \{x \in X : \infty > |h_1(x) \cdots h_n(x)| > 0\}$, so by (18) and a fact that for each i = 1, ..., n, $\mu\{x \in X : |h_i(x)| = \infty\} = 0$, we get

$$\int_0^\infty \mu(\{x \in A : |h_1(x) \cdots h_n(x)| > v2^n\lambda\})^{\frac{q}{p}}\lambda^{q-1} d\lambda = \infty$$

Hence by the Lebesgue monotone convergence theorem, there exists k > 0 such that

(19)
$$\int_0^\infty \mu(\{x \in A_k : |h_1(x) \cdots h_n(x)| > v2^n\lambda\})^{\frac{q}{p}}\lambda^{q-1} d\lambda > u.$$

Define

$$s_0 := \inf\{\lambda > 0 : \mu(\{x \in A_k : |h_1(x) \cdots h_n(x)| > v2^n\lambda\}) = 0\}.$$

By (19), we get $s_0 > 0$, and since for $\lambda > \frac{k^n}{v2^n}$ we have $\mu(\{x \in A_k : |h_1(x) \cdots h_n(x)| > v2^n\lambda\}) = 0$, we also have $s_0 < \infty$. Moreover, again by (19), we obtain

$$\int_0^{s_0} \mu(\{x \in A_k : |h_1(x) \cdots h_n(x)| > v2^n\lambda\})^{\frac{q}{p}} \lambda^{q-1} d\lambda > u,$$

therefore for some $s \in (0, s_0)$,

$$\int_0^s \mu(\{x \in A_k : |h_1(x) \cdots h_n(x)| > v2^n\lambda\})^{\frac{q}{p}}\lambda^{q-1}d\lambda > u.$$

By the definition of s_0 , we have $\mu(\{x \in A_k : |h_1(x) \cdots h_n(x)| > v2^ns\}) > 0$. Hence and by the Lebesgue monotone convergence theorem, there exists m > 0 such that for every $\lambda \in (0, s]$, $\mu(\{x \in A_k : |h_1(x) \cdots h_n(x)| > v2^n\lambda\}) > \frac{1}{m}$ and

(20)
$$\int_0^s \left(\mu(\{x \in A_k : |h_1(x) \cdots h_n(x)| > v2^n\lambda\}) - \frac{1}{m} \right)^{\frac{q}{p}} \lambda^{q-1} d\lambda > u.$$

Now set r > 0 such that

(21)
$$\sum_{i=1}^{n} \left(\frac{2rk}{D_i}\right)^{p_i} < \frac{1}{m},$$

where $D_i := D_{p_i,q_i}, i = 1, ..., n$. Now let $(a_1, ..., a_n) \in \mathbf{L}^{p_1,q_1} \times ... \times \mathbf{L}^{p_n,q_n}$ be such that $|| h_i - a_i ||_{p_i,q_i} < r$ for every i = 1, ..., n. For every i = 1, ..., n, put

(22)
$$A^{i} := \left\{ x \in A_{k} : |a_{i}(x)| \leq \frac{1}{2} |h_{i}(x)| \right\}.$$

Then for every i = 1, ..., n, we have

$$r > \| h_i - a_i \|_{p_i, q_i} \ge \left\| \left| \frac{1}{2} h_i \chi_{A^i} \right| \right\|_{p_i, q_i} \ge \frac{1}{2k} D_i \mu(A^i)^{\frac{1}{p_i}},$$

so for every i = 1, ..., n, we have

(23)
$$\mu(A^i) < \left(\frac{2rk}{D_i}\right)^{p_i}.$$

Hence, by (21) - (23), for every $\lambda \ge 0$, we get

$$\mu(\{x \in X : |a_1(x) \cdots a_n(x)| > v\lambda\}) \ge \mu\left(\left\{x \in A_k \setminus \bigcup_{i=1}^n A^i : |a_1(x) \cdots a_n(x)| > v\lambda\right\}\right) \stackrel{(22)}{\ge} \\ \mu\left(\left\{x \in A_k \setminus \bigcup_{i=1}^n A^i : |h_1(x) \cdots h_n(x)| > v2^n\lambda\right\}\right) \stackrel{(21),(23)}{\ge} \mu(\{x \in A_k : |h_1(x) \cdots h_n(x)| > v2^n\lambda\}) - \frac{1}{m}.$$

Therefore by (20),

 \mathbf{SO}

$$\int_0^\infty \mu(\{x \in X : |a_1(x) \cdots a_n(x)| > v\lambda\})^{\frac{q}{p}} \lambda^{q-1} d\lambda \ge$$
$$\int_0^s \left(\mu(\{x \in A_k : |h_1(x) \cdots h_n(x)| > v2^n\lambda\}) - \frac{1}{m}\right)^{\frac{q}{p}} \lambda^{q-1} d\lambda \stackrel{(20)}{>} u,$$
$$(a_1, \dots, a_n) \notin E_u^v.$$

Proof. (Theorem 3.13) We only have to prove implication (i) \Rightarrow (ii). Hence assume (i). By Proposition 3.11 (i), we can assume that

$$\min\{p_1, \dots, p_n\} < \infty \text{ and } p, q < \infty.$$

Moreover, without loss of generality, we can assume that $p_1, ..., p_m < \infty$ and $p_{m+1} = ... = p_{m+k} = \infty$ for some $m \ge 1$ and $k \ge 0$ with m + k = n.

Now take $(h_1, ..., h_n) \in \mathbf{L}^{p_1, q_1} \times ... \times \mathbf{L}^{p_n, q_n}$ with $h_1 \cdots h_n \notin \mathbf{L}^{p, q}$. Since $h_{m+1}, ..., h_n \in \mathbf{L}^{\infty}$, we get $h_1 \cdots h_m \notin \mathbf{L}^{p,q}.$

For any v, u > 0, let E_u^v be defined as in (17). Clearly, we have $E_{p,q}^{(p_1,q_1,\ldots,p_n,q_n)} = \bigcup_{u \in \mathbb{N}} E_u^1$, so we only have to show that for every u > 0, the set E_u^1 is nowhere dense.

Let $d_i, K_i, r_i, i = 1, ..., n$ be as in (14). Set u > 0 and let $(f_1, ..., f_m, g_1, ..., g_k) \in \mathbf{L}^{p_1, q_1} \times ... \times \mathbf{L}^{p_m, q_m} \times ... \times \mathbf{L}^{p_m, q_m}$ $\mathbf{L}^{\infty} \times ... \times \mathbf{L}^{\infty}$ and R > 0. Now take $r_0 > 0$ such that for every i = 1, ..., m,

$$K_i r_0^{r_i} \le \frac{1}{2}R.$$

Define for every i = 1, ..., m,

$$\tilde{f}_i(x) := \begin{cases} f_i(x) + \frac{r_0}{\|h_i\|_{p_i,q_i}} |h_i(x)|, & f_i(x) \ge 0; \\ f_i(x) - \frac{r_0}{\|h_i\|_{p_i,q_i}} |h_i(x)|, & f_i(x) < 0, \end{cases}$$

and for i = 1, ..., k,

$$\tilde{g}_i(x) := \begin{cases} g_i(x) + \frac{R}{2}, & g_i(x) \ge 0; \\ g_i(x) - \frac{R}{2}, & g_i(x) < 0. \end{cases}$$

Then, clearly, for each i = 1, ..., m, $\| \tilde{f}_i - f_i \|_{p_i, q_i} = r_0$, and for each i = 1, ..., k, $\| \tilde{g}_i - g_i \|_{p_i, q_i} = \frac{R}{2}$ In particular, by (14) and (24), for every $i = 1, ..., m, d_i\left(\tilde{f}_i, f_i\right) \leq \frac{1}{2}R$, and for each i = 1, ..., k, $d_{m+i}(\tilde{g}_i, g_i) \leq \frac{1}{2}R$. Hence

(25)
$$B_d\left(\left(\tilde{f}_1, ..., \tilde{f}_m, \tilde{g}_1, ..., \tilde{g}_k\right), \frac{1}{2}R\right) \subset B_d\left(\left(f_1, ..., f_m, g_1, ..., g_k\right), R\right)$$

Since for every i = 1, ..., m and every $x \in X$, $|\tilde{f}_i(x)| \ge \frac{r_0}{\|h_i\|_{p_i,q_i}} |h_i(x)|$, we get that $\tilde{f}_1 \cdots \tilde{f}_m \notin L^{p,q}$. Now let l > 0 be as in the thesis of Lemma 3.14, chosen for $(\tilde{f}_1, ..., \tilde{f}_m)$, u and $v = (\frac{4}{R})^k$. Clearly, we may assume that

(26)
$$K_i l^{r_i} \le \frac{1}{2} R, \ i = 1, ..., n$$

Let

$$(a_1, ..., a_m, b_1, ..., b_k) \in B_{p_1, q_1}\left(\tilde{f}_1, l\right) \times ... \times B_{p_n, q_n}(\tilde{g}_k, l)$$

Then for μ -almost all $x \in X$,

$$|b_1(x)\cdots b_k(x)| \ge \left(\frac{1}{2}R-l\right)^k \ge \left(\frac{R}{4}\right)^k.$$

Hence and by Lemma 3.14,

$$\int_0^\infty \mu(\{x: |a_1(x)\cdots a_m(x)b_1(x)\cdots b_k(x)| > \lambda\})^{\frac{q}{p}}\lambda^{q-1} d\lambda \ge$$
$$\int_0^\infty \mu\left(\left\{x: |a_1(x)\cdots a_m(x)| > \left(\frac{4}{R}\right)^k \lambda\right\}\right)^{\frac{q}{p}}\lambda^{q-1} d\lambda \overset{L 3.14}{>} u,$$

so $(a_1, ..., a_m, b_1, ..., b_k) \notin E_1^u$. Hence

(27)
$$B_{p_1,q_1}\left(\tilde{f}_1,l\right) \times \ldots \times B_{p_n,q_n}(\tilde{g}_k,l) \cap E_u^1 = \emptyset.$$

Moreover, by (14) and (26), for every i = 1, ..., m, $d_i\left(a_i, \tilde{f}_i\right) < \frac{1}{2}R$, and for every i = 1, ..., k, $d_i\left(b_i, \tilde{g}_i\right) < \frac{1}{2}R$. Hence

$$B\left(\tilde{f}_{1},l\right) \times \ldots \times B\left(\tilde{f}_{m},l\right) \times B(\tilde{g}_{1},l) \times \ldots \times B(\tilde{g}_{k},l) \subset B_{d}\left(\left(\tilde{f}_{1},...,\tilde{f}_{m},\tilde{g}_{1},...,\tilde{g}_{k}\right),\frac{1}{2}R\right)$$

Since each open "ball" with respect to quasinorm has a nonempty interior (this follows from (14)), the above together with (25) and (27), show that E_u^1 is nowhere dense.

Problem 3.15. It would be interesting to find the necessary and sufficient condition, under which $E_{p,q}^{(p_1,q_1,\ldots,p_n,q_n)} \neq \mathbf{L}^{p_1,q_1} \times \ldots \times \mathbf{L}^{p_n,q_n}$ in the case when $\frac{1}{p_1} + \ldots + \frac{1}{p_n} = \frac{1}{p}$.

The first author has been supported by the Polish Ministry of Science and Higher Education Grant No. N N201 414939.

References

- [BW] Balcerzak, M.; Wachowicz, A.: Some examples of meager sets in Banach spaces. Real Anal. Exchange 26 (2000/01), no. 2, 877-884.
- [G] L. Grafakos, Classical Fourier analysis. Second edition, Graduate Texts in Mathematics, 249 Springer, New York, 2008.
- [GS] Głąb, S.; Strobin, F.: Dichotomies for L^p spaces, J. Math. Anal. Appl., 368 (2010) 382-390.
- [J] Jachymski, J.: A nonlinear Banach-Steinhaus theorem and some meager sets in Banach spaces. Studia Math. 170 (2005), no. 3, 303-320.

DICHOTOMIES FOR LORENTZ SPACES

[Z1] Zajíček, L.: Porosity and σ-porosity, Real Anal. Exchange 13 (1987/1988), 314–350.

[Z2] Zajíček, L.: On σ-porous sets in abstract spaces, Abstr. Appl. Anal. 5 (2005), 509-534.

E-mail address: szymon_glab@yahoo.com E-mail address: F.Strobin@impan.gov.pl E-mail address: cw_yang@korea.ac.kr

Institute of Mathematics, Technical University of Łódź, Wólczańska 215, 93-005 Łódź, Poland

Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-956 Warszawa, Poland. Institute of Mathematics, Technical University of Łódź, Wólczańska 215, 93-005 Łódź, Poland

DEPARTMENT OF MATHEMATICS, KOREA UNIVERSITY, SEOUL 136-701, REPUBLIC OF KOREA