
LK PROPERTY FOR σ-IDEALS

SZYMON G LA̧B

Abstract. An ideal J of subsets of a Polish space X has (LK) property if for every

sequence (An) of analytic sets in X, if lim supn∈H An /∈ J for each infinite H then
⋂
n∈G /∈

J for some infinite G. In this note we present a new class of σ-ideals with (LK) property.

1. Introduction

We use standard set theoretical notation (see [Ke] or [S]). Laczkovich in [L] proved that,

for every sequence (An) of Borel subsets of a Polish space, if lim supn∈H An is uncountable

for each H ∈ [N]ω then
⋂
n∈GAn is uncountable for some G ∈ [N]ω. This result was then

generalized by Komjáth [Ko, Thm 1] to the case when the sets An are analytic. Komjáth

also proved that the result of Laczkovich cannot be generalized within ZFC to the case of

coanalytic sets. Namely, if V = L, there is a sequence (An) of coanalytic sets such that

| lim supn∈H An| > ω and |
⋂
n∈H An| ≤ ω for all H ∈ [N]ω; see [Ko, Thm. 4].

In connection with the above quoted theorem of Komjáth about analytic sets, Balcerzak

and G la̧b in [BG] introduce the Laczkovich-Komjáth property of ideal J of subsets of Polish

space X. The ideal J is said to have property (LK) whenever for every sequence (An) of

analytic subsets of X, if lim supn∈H An /∈ J for each H ∈ [N]ω then
⋂
n∈GAn /∈ J for some

G ∈ [N]ω. In particular, the Komjáth theorem states that the ideal [X]≤ω has property

(LK). Halmos [H] proved that the σ-ideal of null sets does not have (LK) property. We can

reformulate the (LK) property in the following nice way. A σ-ideal I has (LK) property if

for any sequence (An) of analytic sets either there is H ∈ [N]ω with lim supn∈H Bn ∈ I or

there is H ∈ [N]ω with lim infn∈H Bn /∈ I.

In paper [BG] it was proved that for any Polish space X and any Fσ relation E ⊂ X ×X

with uncountable many equivalence classes, if J consist of all subsets of X that can be

covered by countably many equivalence classes, then σ-ideal J has (LK) property. Note

that σ-ideal [X]≤ω is of this form (it is enough to define xEy if and only if x = y, and
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observe that E is closed in X × X). This note is devoted to show that there are other

natural examples of σ-ideals with (LK) property. It seems (but we did not establish it) that

these σ-ideals cannot be defined by Fσ equivalence relation.

The (LK) property was also studied by Zapletal [Z]. He proved several properties of this

notion, and he gave some new examples of σ-ideals with (LK) property.

2. σ-ideals defined by (n, F )-system

Let X be a Polish space. By K(X) we denote the hyperspace of all nonempty compact

subsets of X, endowed with the Vietoris topology, i.e. the topology generated by sets {K ∈

K(X) : K ∩ U 6= ∅} and {K ∈ K(X) : K ⊂ U} for any open sets U in X. The Vietoris

topology is equal to the topology generated by the Hausdorff metric

ρH(K,L) = max(max
x∈K

ρ(x, L),max
x∈L

ρ(x,K))

where ρ(x,K) is the distance from a point x to a set K with respect to the metric ρ on X.

By (X)n denote the set {(x1, ..., xn) ∈ Xn : ∀i, j ≤ n(i 6= j ⇒ xi 6= xj)}. Let Sn be

the set of all permutations of the set {1, ..., n}. Let Y ⊂ (X)n be a Polish space. We say

that Y is invariant under permutations of coefficients if for any permutation σ ∈ Sn and any

(x1, ..., xn) ∈ (X)n

(x1, ..., xn) ∈ Y ⇐⇒ (xσ(1), ..., xσ(n)) ∈ Y.

From now on, we assume that Y is invariant under permutations of coefficients, and for any

x1 ∈ X there are x2, ..., xn ∈ X with (x1, x2, ..., xn) ∈ Y .

Let F : Y → K(X) be a continuous mapping such that for any permutation σ ∈ Sn and

any (x1, ..., xn), (y1, ..., yn) from Y

(i) F (x1, ..., xn) = F (xσ(1), ..., xσ(n));

(ii) {x1, ..., xn} ⊂ F (x1, ..., xn);

(iii) {y1, ..., yn} ⊂ F (x1, ..., xn)⇒ F (y1, ..., yn) = F (x1, ..., xn).

A family S = {F (x1, ..., xn) : (x1, ..., xn) ∈ Y } is called (n, F )–system. We say that σ–ideal

J of subsets of X is generated by (n, F )–system S, if J consists of all subsets of X which

can be covered by countably many sets from S. If x ∈ X, then there are x2, ..., xn ∈ X with

(x, x2, ..., xn) ∈ Y and by (ii) we obtain {x} ⊂ {x, x2, ..., xn} ⊂ F (x, x2, ..., xn). Hence J

contains all singletons. If X cannot be covered by countably many elements from S, then J

is a proper ideal, i.e. X /∈ J – in this case we say that (n, F )–system S is proper.



LK PROPERTY FOR σ-IDEALS 3

Example 1. Let X = R2. Let Y ⊂ (X)3 be a set of all non-collinear triples. Then Y is a

Polish subspace as an open subset of (X)3:

Y = {(x, y, z) ∈ (X)3 : (y2 − x2)(z1 − y1) 6= (y1 − x1)(z2 − y2)}.

For a triple (x, y, z) ∈ Y by F (x, y, z) denote the unique circle which contains the points x, y

and z. Then the σ–ideal J generated by this (3, F )–system consists of all subsets of the real

plane which can be covered by countably many circles.

Example 2. Let X = [0, 1]2 and Y = (X)2. For any pair (x, y) ∈ Y let F (x, y) be a

line containing x and y intersected with the unite square X. Then the ideal J generated

by this (2, F )–system consists of those subsets of the unite square X which can be covered

by countably many lines. Here we restrict our attention to the unit square, since we want

F (x, y) to be compact.

Example 3. Let X = [0, 1]× R and let

Y = {((x1, y1), (x2, y2), ..., (xn, yn)) ∈ (X)n : ∀i 6= j(xi 6= xj)}.

For
(
(x1, y1), (x2, y2), ..., (xn, yn)

)
∈ Y let F

(
(x1, y1), (x2, y2), ..., (xn, yn)

)
be a graph of the

unique polynomial f of degree not grater than n− 1 with f(xi) = yi, i = 1, ..., n. Then the

σ–ideal J generated by this (n, F )–system consists of all subsets of X which can be covered

by countably many graphs of polynomials of degree not greater than n− 1.

Example 4. Let X be a Polish space, E ⊂ X × X be a closed equivalence relation with

compact equivalence classes. Put Y = X and put F (x) to be an equivalence class of x,

i.e. F (x) = {y : xEy}. Then the σ–ideal J generated by this (1, F )–system consists of all

subsets of X which can be covered by countably many equivalence classes.

Conversely note that (1, F )-system defines an equivalence relation EF by xEF y ⇐⇒ x ∈

F (y). The relation EF is closed. Indeed, let (xn, yn) ∈ EF be such that (xn, yn)→ (x0, y0).

By the continuity of F we obtain that F (xn) → F (x0) and F (yn) → F (y0) in K(X). Since

xn ∈ F (yn), then F (xn) = F (yn). Hence F (xn) = F (yn) and therefore F (x0) = F (y0),

which means that x0EF y0.

It follows now, that being generated by a (1, F )-system is the same as being generated by

a closed equivalence relation with compact equivalence classes. In [BG] it was shown that if

an σ-ideal J is generated by a Fσ equivalence relation is proper, then it has (LK) property.

From this reason we will consider only (n, F )-systems for n ≥ 2.



4 SZYMON G LA̧B

Let J be a proper σ-ideal of subsets of X which contain all singletons. Fix a sequence

(An) of analytic subsets of X such that

∀H ∈ [N]ω lim sup
n∈H

An /∈ J .

Fix H ∈ [N]ω. We say that Y ⊂ X is good with respect to H, if

Y ∩ lim sup
n∈G

An /∈ J

for any G ∈ [H]ω. Observe that if Y is good with respect to H and Z ⊂ Y , Z ∈ J , then

Y \ Z is good with respect to H. In particular, if Y is closed and good with respect to H,

then the perfect kernel of Y (cf. [S, 2.6.2]) is good with respect to H – we will use this fact

several times.

Lemma 5. If a set Y =
⋃
i∈N Yi is good with respect to H ∈ [N]ω, then there are i ∈ N and

H ′ ∈ [H]ω such that Yi is good with respect to H ′.

The proof is analogous to that given in [Ko, Lemma 1].

Lemma 6. Let P,A ⊂ X be such that P are closed, and P ∩A is good with respect to some

H ∈ [N]ω. Then there exist x ∈ P and H ′ ∈ [H]ω such that for any neighborhood U of x the

set (P \ F ) ∩A ∩ U is good with respect to H ′.

The proof can be found in [BG].

Now, we assume that J is a σ-ideal generated by (n, F )–system S, n ≥ 2. Let S =

{F (x1, ..., xn) : (x1, ..., xn) ∈ Y }.

Lemma 7. Let R1, ..., Rn,K1, ...,Km, A ⊂ X and H ∈ [N]ω. Assume that Rj ,Ki are pair-

wise disjoint, and Rj ∩ A, Ki ∩ A are good with respect to H, j = 1, ..., n and i = 0, ...,m.

Then there are closed sets R′j ⊂ Rj and K ′i ⊂ Ki with

∀(x1, ..., xn) ∈ R′1 × · · · ×R′n

(
dist

(
F (x1, ..., xn),

m⋃
i=1

K ′i

)
> 0

)
,

and there is H ′ ∈ [H]N such that R′j ∩A, K ′i ∩A are good with respect to H ′, for j = 1, ..., n

and i = 0, ...,m.

Proof. If for every j = 1, ..., n and every xj ∈ Rj

dist

(
F (x1, ..., xn),

m⋃
i=1

Ki

)
> 0,
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then putting R′j = Rj and P ′i = Pi, we are done. If not, then by Lemma 6 (for P = R1) there

exist: a point x1 ∈ R1 and a set H1 ∈ [H]ω such that for any neighborhood U1 of x1 the set

R1 ∩ A ∩ U1 is good with respect to H1. Using again Lemma 6 (this time for P = R2) we

find a point x2 ∈ R1 and a set H2 ∈ [H1]ω such that for any neighborhood U2 of x2 the set

R2∩A∩U2 is good with respect to H2. In that way we find points x1, x2, ..., xn and Hn ∈ [H]N

such for any j = 1, ..., n and any neighborhood Uj of xj the set (Rj \ {x1, ..., xn}) ∩ A ∩ Uj
is good with respect to Hn.

Now, for every i = 1, ...,m we will define a set Hn+i and a number ki in the following way.

If F (x1, ..., xn) ∩Ki = ∅, then put K ′i = Ki, Hn+i = Hn+i−1 and ki = 0. Otherwise let

Yk = {x ∈ Ki : dist(x, F (x1, x2, ..., xn)) ≥ 1
k + 1

}.

Then
⋃
k∈N Yk = Ki \ F (x1, x2, ..., xn). Since Ki is good with respect to Hn+i−1, then by

Lemma 5 we find a number ki and a set Hn+i ∈ [Hn+i−1]ω such that Yki ∩ A is good with

respect to Hn+i. Put K ′i = Yki . Define

ε = min
{

1
ki + 1

: i = 1, ...,m
}
.

By the continuity of F we will find neighborhoods V1, ..., Vn of points x1, ..., xn, respectively,

such that the diameter of F
(
cl(V1), ..., cl(Vn)

)
is less than ε/2. Define R′j = cl(Vj) and

H ′ = Hn+m. �

Lemma 8. Let m ∈ N, P0, ..., Pm, A ⊂ X. Assume that for i = 0, ...,m the sets Pi are

closed, pairwise disjoint and such that any set from S does not intersect more than n + 1

sets Pi. Let H ∈ [N]ω and ε > 0. If Pi ∩ A is good with respect to H and i = 0, ...,m, then

there are pairwise disjoint closed sets P ′m, ..., P
′
m+n−1 ⊂ Pm, P ′i ⊂ Pi for i < m and there

is H ′ ∈ [H]ω such that each P ′i has diameter less than ε, any set from S does not intersect

more than n+ 1 sets P ′i , and sets A ∩ P ′i are good with respect to H ′.

Proof. In the same way as in Lemma 7 we find a setH−1 ∈ [H]N and points xm, xm+1, ..., xm+n−1

in Pm such that any i = 0, ..., n − 1 and any neighborhood Um+i of point xm+i sets

Um+i ∩ Pm ∩A is good with respect to H−1.

Inductively for i = 0, 1, ...,m− 1 we define P ′i and Hi in the following way. If distance be-

tween F (xm, xm+1, ..., xm+n−1) and Pi is greater than zero, then we put P ′i = Pi. Otherwise

let

Yk = {x ∈ Pi : dist(x, F (xm, xm+1, ..., xm+n−1)) ≥ 1
k + 1

}.
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Then
⋃
k∈N Yk = Pi \ F (xm, xm+1, ..., xm+n−1). Since Pi is good with respect to Hi−1, then

by Lemma 5 we find a number k and a set Hi ∈ [Hi−1]ω such that Yk ∩ A is good with

respect to Hi. We may assume that diam(Yk) < ε. Put P ′i = Yk.

Now, let δ > 0 be such that for any i ∈ {0, 1, ...,m − 1} the distance from P ′i to the set

F (xm, xm+1, ..., xm+n−1) is greater than δ. By continuity of F we find neighborhoods Um,

Um+1,..., Um+n−1 of points xm, xm+1,..., xm+n−1, respectively, such that

diam(F (Um, Um+1, ..., Um+n−1)) < δ.

Put P ′m = cl(Um),..., P ′m+n−1 = cl(Um+n−1).

Now, any set from S which intersect P ′m, ..., P
′
m+n−1 does not intersect any of P ′0, ..., P

′
m−1.

But our choice guarantees that any set from S does not intersect more than n + 1 sets

P ′0, ..., P
′
m+n−1 only in the case if n = 2. If n > 2, we will shrink each P ′i and H ′ finitely

many times in n− 2 steps.

In the first step we use Lemma 7 for H = H ′, R1 = P ′m, ..., Rn−1 = P ′m+n−2, Rn =

P ′m−1 and K1 = P1, ...,Km−1 = Pm−1,Km = P ′m+n−1 to find H ′′ ∈ [H ′]N and closed sets

R′1, ..., R
′
n−1, R

′
n and K ′1, ...,K

′
m−1,K

′
m such that R′j ⊂ Rj , K ′i ⊂ Ki,

∀(x1, ..., xn) ∈ R′1 × · · · ×R′n

(
dist

(
F (x1, ..., xn),

m⋃
i=1

K ′i

)
> 0

)
,

and such that R′j ∩ A, K ′i ∩ A are good with respect to H ′′. Let H ′′ be our new choice for

H ′, R′1 be a new choice for P ′m etc. Now, we use Lemma 7 for H ′ and each combination

R1, ..., Rn−1, Rn such that R1, ..., Rn−1 is collection of n − 1 sets from P ′m, ..., P
′
m+n−1 and

Rn is a set from P ′0, ..., P
′
m−1, and K1, ...,Km the remaining sets from P ′0, ..., P

′
m+n−1. After

this we obtain that any set which intersect n − 1 sets from P ′m, ..., P
′
m+n−1 do intersect at

least one set from P ′0, ..., P
′
m−1.

In the second step we use Lemma 7 for H ′ and each combination R1, ..., Rn−1, Rn such

that R1, ..., Rn−2 is collection of n− 2 sets from P ′m, ..., P
′
m+n−1 and Rn−1, Rn are sets from

P ′0, ..., P
′
m−1, and K1, ...,Km the remaining sets from P ′0, ..., P

′
m+n−1. After this we obtain

that any set which intersect n − 2 sets from P ′m, ..., P
′
m+n−1 do intersect at least two sets

from P ′0, ..., P
′
m−1.

In the last n − 2th step we use Lemma 7 for H ′ and each combination R1, ..., Rn−1, Rn

such that R1, R2 is collection of 2 sets from P ′m, ..., P
′
m+n−1 and R3, ..., Rn are sets from

P ′0, ..., P
′
m−1, and K1, ...,Km the remaining sets from P ′0, ..., P

′
m+n−1. After this we obtain
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that any set which intersect 2 sets from P ′m, ..., P
′
m+n−1 do intersect at least n− 2 sets from

P ′0, ..., P
′
m−1.

Suppose that there is D ∈ S which intersects n + 1 sets from P ′1, ..., P
′
m+n−1. Then D

cannot intersect more than one set from P ′m, ..., P
′
m+n−1. Hence D intersects n+ 1 sets from

P1, ..., Pm which contradicts our assumptions. �

The next theorem shows that σ-ideals genereted by (n, F )-systems have (LK) property.

Its proof is quite similar to that in [Ko]. The main difference lays in Lemma 8.

Theorem 9. Let J be a σ–ideal generated by a proper (n, F )–system S. Then for any

sequence (Aj) of analytic sets such that

∀H ∈ [N]ω lim sup
j∈H

Aj /∈ J

there exist: a set G ∈ [N]ω and a homeomorph P of the Cantor set 2ω such that any n + 1

distinct point of P are not the member of the same set from family S and such that P ⊂⋂
j∈GA

j. In particular, a σ–ideal J has (KL) property.

Proof. We may assume that X is a perfect set (if not, then removing countably many points

from X we obtain a perfect set). Additionally we may assume that diam(X) < 1. Let Aj

be a sequence of analytic sets with

∀H ∈ [N]ω lim sup
j∈H

Aj /∈ J .

We may write Aj using a Suslin operation (cf. [Ke, 25.7]):

Aj =
⋃
z∈NN

⋂
m∈N

Cjz|m,

where Cjz|m are closed with diam(Cjz|m) < 1
m+1 and

∀k,m ∈ N(k > m⇒ Cjz|k ⊂ C
j
z|m).

For s ∈ Nm put Ajs =
⋃
z∈NN,z|m=s

⋂
k∈NC

j
z|k.

Without loss of generality we may assume that A0 = X. Our construction will be induc-

tive. In the m-th step we choose a number jm ∈ N, perfect sets Ps (s ∈ {1, ..., n}m), finite

sequences t(k, s) ∈ Nm (k ≤ m, s ∈ {1, ..., n}m) and a set Hm ∈ [N]ω fulfilling the following

conditions

(W1) jm > jm−1, Hm ∈ [Hm−1]ω, jm ∈ Hm−1;
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(W2) Psˆi ⊂ Ps for i ∈ {1, ..., n}, Psˆi are pairwise disjoint for s ∈ {1, ..., n}m−1, and any

set from S does not intersect n+ 1 or more sets from {Ps : s ∈ {1, ..., n}m};

(W3) diam(Ps) < 1
m+1 for s ∈ {1, ..., n}m;

(W4) Ps ∩Aj0t(0,s) ∩ ... ∩A
jm
t(m,s) is good with respect to Hm, if s ∈ {1, ..., n}m;

(W5) Ps ⊂ Cj0t(0,s) ∩ ... ∩ C
jm
t(m,s) for s ∈ {1, ..., n}m;

(W6) t(k, s) ⊂ t(k, ŝ i), for i ∈ {1, ..., n}, s ∈ {1, ..., n}m−1 and k ≤ m− 1.

Conditions (2) and (3) guarantee that the set

P =
⋂
m∈N

⋃
s∈{1,...,n}m

Ps

is perfect and that any set from S does not contain n + 1 or more points from P . Hence

P /∈ J . If x ∈ P , then from (2) it follows that for any m ∈ N there is an unique sequence sm

with x ∈ Psm . Moreover s0 ⊂ s1 ⊂ s2 ⊂ .... Fix i ∈ N. From (5) for m ≥ i we obtain that

x ∈ Cjit(i,sm), and by (6) we get t(i, si) ⊂ t(i, si+1) ⊂ t(i, si+2) ⊂ .... Hence x ∈ Ajit(i,si) ⊂ A
ji .

Finally P ⊂
⋂
i∈NA

ji , and putting G = {j0, j1, ...} we obtain the assertion.

It suffices to define the fulfilling (1)–(6). We will construct them by induction on m. Put

j0 = 0, P∅ = X, H0 = N. Clearly, X is good with respect to N. Putting t(0, ∅) = ∅, we

define objects fulfilling (1)–(6) for the first step.

Assume that for m ∈ N we already choose jk (for k ≤ m), Ps (for s ∈ {1, ..., n}k, k ≤ m),

t(k, s) (for k ≤ l ≤ m, s ∈ {1, ..., n}l) and Hk (for k ≤ m).

At first we show that there exist a number j ∈ Hm, j > jm, and a set H ′m ∈ [Hm]ω such

that

(7) ∀s ∈ {1, ..., n}m(Ps ∩Aj0t(0,s) ∩ ... ∩A
jm
t(m,s) ∩A

j) is good with respect to H ′m).

Assume to the contrary that for any j ∈ Hm, j > jm, and for any H ∈ [Hm]ω we have

∃G ∈ [H]ω ∃s ∈ {1, ..., n}m (Ps ∩Aj0t(0,s) ∩ ... ∩A
jm
t(m,s) ∩A

j ∩ lim sup
r∈G

Ar ∈ J ).

Proceeding inductively, we find numbers k0 < k1 < ... and sets Hm = G0 ⊃ G1 ⊃ ... such

that kr ∈ Gr ∈ [N]ω and

∀r ∈ N ∃sr ∈ {1, ..., n}m (Psr ∩A
j0
t(0,sr)

∩ ... ∩Ajmt(m,sr) ∩A
kr ∩ lim sup

p∈Gr+1

Ap ∈ J ).

Since there is only nm possibilities of choosing sr, there is a sequence s ∈ {1, ..., n}m such

that a set Γ = {kr : sr = s} is infinite. Then Γ is almost contained in Gr, for every r ∈ N.
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So we obtain

Ps ∩Aj0t(0,s) ∩ ... ∩A
jm
t(m,s) ∩ (

⋃
r∈Γ

Ar) ∩ lim sup
p∈Γ

Ap ∈ J .

But this is impossible, since lim supp∈ΓA
p ⊂

⋃
r∈ΓA

r and (4). Hence there is a number

j > jm, j ∈ Hm, fulfilling (7). It is our choice for jm+1.

Using nm many times (7) and Lemma 8 to the sets {Ps : s ∈ {1, ..., n}m}, and considering

perfect kernels of appropriate closed sets we will find pairwise disjoint perfect sets P sˆi, for

i ∈ {1, ..., n} with diam(P sˆi) < 1
m+1 , and such that any set from S have no common point

with n + 1 or more sets from {Ps : s ∈ {1, ..., n}m+1}, and a set H ′′m ∈ [H ′m]ω such that for

any s ∈ {1, ..., n}m and i = 1, ..., n we have

P sˆi ∩Aj0t(0,s) ∩ ... ∩A
jm
t(m,s) ∩A

jm+1 is good with respect to H ′′m.

The set Aj0t(0,s) ∩ ... ∩A
jm
t(m,s) ∩A

jm+1 is contained in the following union

⋃
z0∈Nm+1,z0⊃t(0,s)

...
⋃

zm∈Nm+1,zm⊃t(m,s)

⋃
zm+1∈Nm+1

(Aj0z0 ∩ ... ∩A
jm+1
zm+1

).

By Lemma 5 it follows that some element of this union is good with respect to H ′′m. Using

nm+1 times Lemma 5, we will find Hm with that property for all s ∈ {1, ..., n}m and all

i = 1, ..., n. We define sequences t(0, ŝ i),..., t(m+ 1, ŝ i) as z0,...,zm+1 corresponding to ŝ i.

We finally need only to ”repair” sets P sˆi to fulfill (5). To do this put

Qsˆi = P sˆi ∩ Cj0t(0,sˆi) ∩ ... ∩ C
jm+1

t(m+1,sˆi).

Since for every s we have Ajs ⊂ Cjs , then the sets Qsˆi and P sˆi have the same intersection

with

Aj0t(0,sˆi) ∩ ... ∩A
jm+1

t(m+1,sˆi).

Hence (4) valid. Removing from each closed set Qsˆi at most countably many point we

obtain its perfect kernel Psˆi. It is still good with respect to Hm, which will be our choice

for Hm+1. Therefore conditions (1)–(6) are fulfilled. �

In [EKM] it was proved that if an analytic set on the real plane cannot be covered by

coutably many lines then it contains a perfect set which also cannot be covered by countably

many lines. We can generalized this in the following.
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Corollary 10. Let A an analytic subset of the plane and let J be a σ-ideal generated by a

proper (n, F )-system S. If A /∈ J , then there is P ⊂ A a homeomorph of the Cantor set

such that any n+ 1 points of P are not contained in the same set from family S.

Proof. It is enough to put Am = A for any m ∈ N. �

Assume that J ⊂ P([0, 1]×R) consist of those subsets of [0, 1]×R which can be covered

by countably many graphs of polynomials. This σ-ideal is not of the form we considered in

the previous section. But it is still very similar. This led us to the following definition. Let

{(ni, Fi)}i∈N be a sequence of (ni, Fi) systems. Let Si = {Fi(x1, ..., xni) : x1, ..., xni ∈ Yi}.

We say that J is generated by {(ni, Fi)}i∈N if J consists of those sets which can be covered

by countably many sets from S =
⋃
i∈N Si. Then the proof that J has (LK) property goes in

an analogous way as the proof of Theorem 9. In the proof we need only to change condition

(W2) to

(W2’) Psˆi ⊂ Ps for i ∈ {1, ..., n}, Psˆi are pairwise disjoint for s ∈ {1, ..., n}m−1, and

any set from S1, ...,Sm does not intersect more than n1, ..., nm sets from {Ps : s ∈

{1, ..., n}m}, respectively.

Proving the existence of such Psˆi we use Lemma 8 for S1, then for S2, etc.

Using this one can get the following interesting colloraly. Let A ⊂ R2 be analytic. Suppose

that A cannot be covered by countably many graphs of polynomials. Then there is a perfect

set P ⊂ A such that any n points of P cannot be covered by the graph of polymonial of

degree less than n.

3. Parametric Laczkovich-Komjáth property

By the Mazurkiewicz-Sierpiński theorem [Ke, 29.19], if X,Z are Polish spaces then for

each analytic set A ⊂ X × Z, the set {x ∈ X : |A(x)| > ω} is also analytic. We say that

an ideal J ⊂ P(Z) has the Mazurkiewicz-Sierpiński property if for any Polish space X and

analytic set A ⊂ X × Z, the set {x ∈ X : A(x) /∈ J } is analytic. This property holds true,

besides the ideal of countable sets, the ideal of meager sets in Z and the ideal of Lebesgue

null sets in R. Ideal which has Mazurkiewicz-Sierpiński property is also called Π1
1-on-Σ1

1.

We say that an ideal J of subsets of Z has parametric property (LK), whenever for

every uncountable Polish space X and every sequence (An) of analytic subsets of X × Z, if

lim supn∈H An(x) /∈ J for all x ∈ X and H ∈ [N]ω then there are a perfect set P ⊂ X and
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G ∈ [N]ω such that
⋂
n∈GAn(x) /∈ J for each x ∈ P . In [G], it was proved that the ideal

[Z]≤ω of all countable subsets of Y has parametric property (LK). In [BG], it was proved

that the σ-ideal generated by Fσ equivalence relation has parametric property (LK). The

proof in [BG] was based on the fact that σ-ideal generated by Fσ equivalence relation has

Mazurkiewicz-Sierpiński property and following fact:

Proposition 11 ([BG]). Let Z be an uncountable Polish space and let J ⊂ P(Z) be a σ-

ideal with property (LK) and with Mazurkiewicz-Sierpiński property. Then J has parametric

property (LK).

Now, we will prove that σ-ideals generated by (n, F )-systems have Mazurkiewicz-Sierpiński

property. As a corollary we will obtain that σ-ideals generated by (n, F )-systems have

parametric property (LK). We say that P is a perfect partial transversal (in short ppt) for

(n, F )-system S if P is perfect and xn+1 /∈ F (x1, ..., xn) for any x1, ..., xn, xn+1 ∈ P ; it is the

same as saying that no n+ 1 points of P are contained in the same member of family S.

Lemma 12. Let X be an uncoutable Polish space and consider (n, F )-system defined on

X. Then the family of all sets L ∈ K(X) containing a perfect partial transversal for (n, F )-

system is analytic.

Proof. Fix a contable base (Un) for X. For L ∈ K(X) we have the following equivalence

L contains a ppt for (n, F )-system ⇐⇒ ∃K ∈ K(L)∀m ∈ N∀i1, ..., in+1 ∈ N

(∀k = 1, ..., n+ 1 Uik ∩K 6= ∅ ⇒ ∃j1, ..., jn+1 ∈ N∀k = 1, ..., n+ 1 clUjk ⊂ Uik ,

diamUjk <
1

m+ 1
, Ujk ∩K 6= ∅, F (Uj1 , ..., Ujn) ∩ Ujn+1 = ∅.

Hence, in a standard way (cf. [Ke, 4.29], [S, 2.4.11]) we show that the family of all sets

L ∈ K(Y ) containing an (n, F )-ppt is analytic. Thus to finish the proof it suffices to show

that the equivalence does hold.

If L ∈ K(Y ) contains an (n, F )-ppt K, we easily conclude that K satisfies the right

hand side of the equivalence. Conversely, if K ∈ K(L) satisfies the right hand side of the

equivalence, we can define by recursion a family {Vs : s ∈ {1, ..., n}<N} ⊂ {Ui : i ∈ N} such

that for each s ∈ {1, ..., n}<N the following conditions hold:

(i) Vs ∩K 6= ∅;

(ii) clVsˆ1 ∪ ... ∪ clVsˆn ⊂ Vs, clVsˆ1, ..., clVsˆn are pairwise disjoint;
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(iii) diamVs < 1/(|s|+ 1);

and additionally,

(iv) F (Vs1 , ..., Vsn) ∩ Vsn+1 = ∅ for all m ∈ N and distinct s1, ..., sn+1 ∈ {1, ..., n}m.

The construction is similar to that given in the proof of Theorem 9 (cf. conditions (W1)–

(W3)). Then
⋂
m∈N

⋃
s∈{1,...,n}m(K ∩ clVs) is an (n, F )-ppt contained in L.

�

Theorem 13. Let X be an uncoutable Polish space and consider (n, F )-system S defined

on X. Then the σ-ideal J generated by (n, F )-system S has the Mazurkiewicz-Sierpiński

property.

Proof. Set N = NN. For an analytic set B ⊂ X pick a closed set C ⊂ X × N such that

prX(C) = B where prX stands for the projection from X ×N to X. Observe that

B /∈ J ⇐⇒ (∃K ∈ K(X ×N ))(K ⊂ C and prX(K) contains a (n, F )-ppt).

Indeed, to show “⇒” assume that B /∈ J . By Corollary 10, B contains an (n, F )-ppt P .

Note that P = prX((P ×N )∩C). By [Ke, 29.20] there is a set K ⊂ (P ×N )∩C such that

the both K and prX(K) are homeomorphic with {0, 1}N. Since prX(K) ⊂ P so prX(K) is

an (n, F )-ppt with K ⊂ C. Implication“⇐” is obvious.

Now, let Z be a Polish space and let A ⊂ X × Z be an analytic set. Pick a closed set

C ⊂ X × Z ×N such that prX×Z(C) = A. Then A(x) = prY (C(x)) and C(x) ⊂ Z ×N is

closed for each x ∈ X. For each x ∈ X we have

A(x) /∈ J ⇐⇒ (∃K ∈ K(Z ×N ))(K ⊂ C(x) and prZ(K) contains an (n, F )-ppt).

Observe that the set {(x,K) ∈ X × K(Z × N ) : K ⊂ C(x)} is closed and note that the

mapping K 7→ prZ(K) from K(Z × N ) to K(Z) is continuous [Ke, 4.29(vi)]. Hence by

Lemma 13 the assertion follows. �

4. Closing remarks and open questions

We say that ideals J and I of subsets of a set X are orthogonal, if there are sets A ∈ J

and B ∈ I with A ∪B = X.

Theorem 14. Let J be a σ-ideal of subsets of an uncountable Polish space X, which is

not orthogonal to the σ-ideal of meager subsets of X. If J has KL property, then there is a

family of continuum many pairwise disjoint Gδ sets which do not belong to J .
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Proof. Observe that if X and Y are uncountable Polish spaces and a σ-ideal J ⊂ P(X) has

property (LK) then, for every Borel isomorphism ϕ : X → Y , the σ-ideal {ϕ(A) : A ∈ J } ⊂

P(Y ) has property (LK). Note that between any two perfect Polish spaces there is a Borel

isomorphism preserving the Baire category (see e.g. [CKW, 3.15]). Hence we may assume

that X = {0, 1}N.

Let α ∈ {0, 1}N. Put Aαn = {x ∈ {0, 1}N : x(n) = α(n)}. If H ∈ [N]N, then lim supn∈H Aαn

is a dense Gδ. By the assumption

∀H ∈ [N]N lim sup
n∈H

Aαn /∈ J .

Let {Gβ : β < 2ℵ0} be a family of almost disjoint sets from [N]N. Then for any β < 2ℵ0 and

any α = χGβ (where χGβ is a characteristic function of Gβ, i.e. α(k) = 1 ⇐⇒ k ∈ Gβ) we

have

∀H ∈ [Gβ]N lim sup
n∈H

Aαn /∈ J .

Since J has a KL property, then there is Hβ ∈ [Gβ]N with

⋂
n∈Hβ

Aαn /∈ J .

Since for distinct β and β′, the set Hβ and Hβ′ are almost disjoint, the family ⋂
n∈Hβ

Aαn : β < 2ℵ0


consist of pairwise-disjoint sets of type Gδ which do not belong to J . �

Corollary 15. Let (X, τ) be a Polish space. Assume that J is a σ-ideal of subsets of X,

which is not orthogonal to all σ-ideals of meager subsets of (X, τ ′), where τ ′ is a Polish

topology which gives the same Borel sets as (X, τ). If J has KL property, then there is a

family of continuum many pairwise disjoint Borel sets which do not belong to J .

The next example shows that the assumptions in Corollary 15 are not always fullfiled.

Theorem 16. (CH) Let (X, τ) be a Polish space. There exist non-trivial σ-ideal of subsets

of X with a Borel base, which is orthogonal to every σ-ideals of meager subsets of (X, τ ′) for

any Polish topology giving the same Borel sets as τ .
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Proof. Note that any Polish topology (X, τ ′) which gives the same Borel σ-algebra is Borel

isomorphic to (X, τ). Any Borel isomorphism f is uniquely determined by preimages of

sets Un, where (Un) is fixed base for (X, τ). Hence there are |B(X)|ω = ω1 such Borel

isomorphisms. Let {τα : α < ω1} be a family of all Polish topologies on X giving the same

Borel sets as (X, τ).

Let B0 be a dense Gδ in (X, τ0) such that X \ B0 is uncountable. Suppose that we have

already defined pairwise disjoint sets {Bβ : β < α} for some α < ω1. We will define Bα. If⋃
β<αBβ contain a dense Gδ in τα, then put Bα = ∅. Otherwise we find a dense Gδ set A in

τα such that X \ (
⋃
β<αBβ ∪A) is uncountable. Put Bα = A \

⋃
β<αBβ.

Let J be σ-ideal generated by all singletons and family {Bα : α < ω1}. Clearly J is a

proper σ-ideal with Borel base which is orthogonal to each σ-ideal of meager sets in topologies

on X giving the same Borel σ-algebra. �

We end the paper with some open questions:

1. For uncountable Polish spaces X,Y and for σ-ideals I ⊂ P(X), J ⊂ P(Y ), put

I ⊗ J = {A ⊂ X × Y : {x ∈ X : A(x) /∈ J } ∈ I}.

Then I ⊗J forms a σ-ideal. Suppose that I and J have (LK) property. Does it follow that

I ⊗ J has (LK) property?

2. We will say that a σ-ideal J of subsets of X has property (M) if there is a Borel function

f : X → [0, 1] such that f−1(x) /∈ J for every x ∈ [0, 1]. Is it true that any σ-ideal J with

property (LK) has property (M)?

3. Let J be a σ-ideal generated by a (n, F )-system or by an equivalence relation of type Fσ.

Then J has property (LK) and

(?) there is a perfect set P /∈ J such that P ′ /∈ J for any perfect subset P ′ ⊂ P .

Is there any relation between property (LK) and property (?)?
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