LK PROPERTY FOR σ-IDEALS

SZYMON GŁA̧B

Abstract

An ideal \mathcal{J} of subsets of a Polish space X has (LK) property if for every sequence $\left(A_{n}\right)$ of analytic sets in X, if $\limsup _{n \in H} A_{n} \notin \mathcal{J}$ for each infinite H then $\bigcap_{n \in G} \notin$ \mathcal{J} for some infinite G. In this note we present a new class of σ-ideals with (LK) property.

1. Introduction

We use standard set theoretical notation (see [Ke] or [S]). Laczkovich in [L] proved that, for every sequence (A_{n}) of Borel subsets of a Polish space, if $\lim _{\sup _{n \in H}} A_{n}$ is uncountable for each $H \in[\mathbb{N}]^{\omega}$ then $\bigcap_{n \in G} A_{n}$ is uncountable for some $G \in[\mathbb{N}]^{\omega}$. This result was then generalized by Komjáth [Ko, Thm 1] to the case when the sets A_{n} are analytic. Komjáth also proved that the result of Laczkovich cannot be generalized within ZFC to the case of coanalytic sets. Namely, if $V=L$, there is a sequence $\left(A_{n}\right)$ of coanalytic sets such that $\left|\limsup \sup _{n \in H} A_{n}\right|>\omega$ and $\left|\bigcap_{n \in H} A_{n}\right| \leq \omega$ for all $H \in[\mathbb{N}]^{\omega}$; see [Ko, Thm. 4].

In connection with the above quoted theorem of Komjáth about analytic sets, Balcerzak and Gła̧b in [BG] introduce the Laczkovich-Komjáth property of ideal \mathcal{J} of subsets of Polish space X. The ideal \mathcal{J} is said to have property (LK) whenever for every sequence $\left(A_{n}\right)$ of analytic subsets of X, if $\lim _{\sup _{n \in H}} A_{n} \notin \mathcal{J}$ for each $H \in[\mathbb{N}]^{\omega}$ then $\bigcap_{n \in G} A_{n} \notin \mathcal{J}$ for some $G \in[\mathbb{N}]^{\omega}$. In particular, the Komjáth theorem states that the ideal $[X] \leq \omega$ has property (LK). Halmos $[\mathrm{H}]$ proved that the σ-ideal of null sets does not have (LK) property. We can reformulate the (LK) property in the following nice way. A σ-ideal \mathcal{I} has (LK) property if for any sequence $\left(A_{n}\right)$ of analytic sets either there is $H \in[\mathbb{N}]^{\omega}$ with $\lim _{\sup _{n \in H}} B_{n} \in \mathcal{I}$ or there is $H \in[\mathbb{N}]^{\omega}$ with $\liminf _{n \in H} B_{n} \notin \mathcal{I}$.

In paper [BG] it was proved that for any Polish space X and any F_{σ} relation $E \subset X \times X$ with uncountable many equivalence classes, if \mathcal{J} consist of all subsets of X that can be covered by countably many equivalence classes, then σ-ideal \mathcal{J} has (LK) property. Note that σ-ideal $[X]^{\leq \omega}$ is of this form (it is enough to define $x E y$ if and only if $x=y$, and

1991 Mathematics Subject Classification. 54H05, 03E15, 28A05.
Key words and phrases. Vietoris topology, (LK) property, analytic sets, σ-ideals.
observe that E is closed in $X \times X$). This note is devoted to show that there are other natural examples of σ-ideals with (LK) property. It seems (but we did not establish it) that these σ-ideals cannot be defined by F_{σ} equivalence relation.

The (LK) property was also studied by Zapletal [Z]. He proved several properties of this notion, and he gave some new examples of σ-ideals with (LK) property.

2. σ-IDEALS DEFINED BY (n, F)-SYSTEM

Let X be a Polish space. By $\mathcal{K}(X)$ we denote the hyperspace of all nonempty compact subsets of X, endowed with the Vietoris topology, i.e. the topology generated by sets $\{K \in$ $\mathcal{K}(X): K \cap U \neq \emptyset\}$ and $\{K \in \mathcal{K}(X): K \subset U\}$ for any open sets U in X. The Vietoris topology is equal to the topology generated by the Hausdorff metric

$$
\rho_{H}(K, L)=\max \left(\max _{x \in K} \rho(x, L), \max _{x \in L} \rho(x, K)\right)
$$

where $\rho(x, K)$ is the distance from a point x to a set K with respect to the metric ρ on X.
By $(X)^{n}$ denote the set $\left\{\left(x_{1}, \ldots, x_{n}\right) \in X^{n}: \forall i, j \leq n\left(i \neq j \Rightarrow x_{i} \neq x_{j}\right)\right\}$. Let S_{n} be the set of all permutations of the set $\{1, \ldots, n\}$. Let $Y \subset(X)^{n}$ be a Polish space. We say that Y is invariant under permutations of coefficients if for any permutation $\sigma \in S_{n}$ and any $\left(x_{1}, \ldots, x_{n}\right) \in(X)^{n}$

$$
\left(x_{1}, \ldots, x_{n}\right) \in Y \Longleftrightarrow\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right) \in Y
$$

From now on, we assume that Y is invariant under permutations of coefficients, and for any $x_{1} \in X$ there are $x_{2}, \ldots, x_{n} \in X$ with $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in Y$.

Let $F: Y \rightarrow \mathcal{K}(X)$ be a continuous mapping such that for any permutation $\sigma \in S_{n}$ and any $\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)$ from Y
(i) $F\left(x_{1}, \ldots, x_{n}\right)=F\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)$;
(ii) $\left\{x_{1}, \ldots, x_{n}\right\} \subset F\left(x_{1}, \ldots, x_{n}\right)$;
(iii) $\left\{y_{1}, \ldots, y_{n}\right\} \subset F\left(x_{1}, \ldots, x_{n}\right) \Rightarrow F\left(y_{1}, \ldots, y_{n}\right)=F\left(x_{1}, \ldots, x_{n}\right)$.

A family $\mathcal{S}=\left\{F\left(x_{1}, \ldots, x_{n}\right):\left(x_{1}, \ldots, x_{n}\right) \in Y\right\}$ is called (n, F)-system. We say that σ-ideal \mathcal{J} of subsets of X is generated by (n, F)-system \mathcal{S}, if \mathcal{J} consists of all subsets of X which can be covered by countably many sets from \mathcal{S}. If $x \in X$, then there are $x_{2}, \ldots, x_{n} \in X$ with $\left(x, x_{2}, \ldots, x_{n}\right) \in Y$ and by (ii) we obtain $\{x\} \subset\left\{x, x_{2}, \ldots, x_{n}\right\} \subset F\left(x, x_{2}, \ldots, x_{n}\right)$. Hence \mathcal{J} contains all singletons. If X cannot be covered by countably many elements from \mathcal{S}, then \mathcal{J} is a proper ideal, i.e. $X \notin \mathcal{J}$ - in this case we say that (n, F)-system \mathcal{S} is proper.

Example 1. Let $X=\mathbb{R}^{2}$. Let $Y \subset(X)^{3}$ be a set of all non-collinear triples. Then Y is a Polish subspace as an open subset of $(X)^{3}$:

$$
Y=\left\{(x, y, z) \in(X)^{3}:\left(y_{2}-x_{2}\right)\left(z_{1}-y_{1}\right) \neq\left(y_{1}-x_{1}\right)\left(z_{2}-y_{2}\right)\right\} .
$$

For a triple $(x, y, z) \in Y$ by $F(x, y, z)$ denote the unique circle which contains the points x, y and z. Then the σ-ideal \mathcal{J} generated by this $(3, F)$-system consists of all subsets of the real plane which can be covered by countably many circles.

Example 2. Let $X=[0,1]^{2}$ and $Y=(X)^{2}$. For any pair $(x, y) \in Y$ let $F(x, y)$ be a line containing x and y intersected with the unite square X. Then the ideal \mathcal{J} generated by this $(2, F)$-system consists of those subsets of the unite square X which can be covered by countably many lines. Here we restrict our attention to the unit square, since we want $F(x, y)$ to be compact.

Example 3. Let $X=[0,1] \times \mathbb{R}$ and let

$$
Y=\left\{\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right) \in(X)^{n}: \forall i \neq j\left(x_{i} \neq x_{j}\right)\right\}
$$

For $\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right) \in Y$ let $F\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right)$ be a graph of the unique polynomial f of degree not grater than $n-1$ with $f\left(x_{i}\right)=y_{i}, i=1, \ldots, n$. Then the σ-ideal \mathcal{J} generated by this (n, F)-system consists of all subsets of X which can be covered by countably many graphs of polynomials of degree not greater than $n-1$.

Example 4. Let X be a Polish space, $E \subset X \times X$ be a closed equivalence relation with compact equivalence classes. Put $Y=X$ and put $F(x)$ to be an equivalence class of x, i.e. $F(x)=\{y: x E y\}$. Then the σ-ideal \mathcal{J} generated by this $(1, F)$-system consists of all subsets of X which can be covered by countably many equivalence classes.

Conversely note that $(1, F)$-system defines an equivalence relation E_{F} by $x E_{F} y \Longleftrightarrow x \in$ $F(y)$. The relation E_{F} is closed. Indeed, let $\left(x_{n}, y_{n}\right) \in E_{F}$ be such that $\left(x_{n}, y_{n}\right) \rightarrow\left(x_{0}, y_{0}\right)$. By the continuity of F we obtain that $F\left(x_{n}\right) \rightarrow F\left(x_{0}\right)$ and $F\left(y_{n}\right) \rightarrow F\left(y_{0}\right)$ in $\mathcal{K}(X)$. Since $x_{n} \in F\left(y_{n}\right)$, then $F\left(x_{n}\right)=F\left(y_{n}\right)$. Hence $F\left(x_{n}\right)=F\left(y_{n}\right)$ and therefore $F\left(x_{0}\right)=F\left(y_{0}\right)$, which means that $x_{0} E_{F} y_{0}$.

It follows now, that being generated by a $(1, F)$-system is the same as being generated by a closed equivalence relation with compact equivalence classes. In $[\mathrm{BG}]$ it was shown that if an σ-ideal \mathcal{J} is generated by a F_{σ} equivalence relation is proper, then it has (LK) property. From this reason we will consider only (n, F)-systems for $n \geq 2$.

Let \mathcal{J} be a proper σ-ideal of subsets of X which contain all singletons. Fix a sequence $\left(A_{n}\right)$ of analytic subsets of X such that

$$
\forall H \in[\mathbb{N}]^{\omega} \quad \underset{n \in H}{\limsup } A_{n} \notin \mathcal{J}
$$

Fix $H \in[\mathbb{N}]^{\omega}$. We say that $Y \subset X$ is good with respect to H, if

$$
Y \cap \limsup _{n \in G} A_{n} \notin \mathcal{J}
$$

for any $G \in[H]^{\omega}$. Observe that if Y is good with respect to H and $Z \subset Y, Z \in \mathcal{J}$, then $Y \backslash Z$ is good with respect to H. In particular, if Y is closed and good with respect to H, then the perfect kernel of Y (cf. [S, 2.6.2]) is good with respect to H - we will use this fact several times.

Lemma 5. If a set $Y=\bigcup_{i \in \mathbb{N}} Y_{i}$ is good with respect to $H \in[\mathbb{N}]^{\omega}$, then there are $i \in \mathbb{N}$ and $H^{\prime} \in[H]^{\omega}$ such that Y_{i} is good with respect to H^{\prime}.

The proof is analogous to that given in [Ko, Lemma 1].
Lemma 6. Let $P, A \subset X$ be such that P are closed, and $P \cap A$ is good with respect to some $H \in[\mathbb{N}]^{\omega}$. Then there exist $x \in P$ and $H^{\prime} \in[H]^{\omega}$ such that for any neighborhood U of x the set $(P \backslash F) \cap A \cap U$ is good with respect to H^{\prime}.

The proof can be found in [BG].
Now, we assume that \mathcal{J} is a σ-ideal generated by (n, F)-system $\mathcal{S}, n \geq 2$. Let $\mathcal{S}=$ $\left\{F\left(x_{1}, \ldots, x_{n}\right):\left(x_{1}, \ldots, x_{n}\right) \in Y\right\}$.

Lemma 7. Let $R_{1}, \ldots, R_{n}, K_{1}, \ldots, K_{m}, A \subset X$ and $H \in[\mathbb{N}]^{\omega}$. Assume that R_{j}, K_{i} are pairwise disjoint, and $R_{j} \cap A, K_{i} \cap A$ are good with respect to $H, j=1, \ldots, n$ and $i=0, \ldots, m$. Then there are closed sets $R_{j}^{\prime} \subset R_{j}$ and $K_{i}^{\prime} \subset K_{i}$ with

$$
\forall\left(x_{1}, \ldots, x_{n}\right) \in R_{1}^{\prime} \times \cdots \times R_{n}^{\prime}\left(\operatorname{dist}\left(F\left(x_{1}, \ldots, x_{n}\right), \bigcup_{i=1}^{m} K_{i}^{\prime}\right)>0\right),
$$

and there is $H^{\prime} \in[H]^{\mathbb{N}}$ such that $R_{j}^{\prime} \cap A, K_{i}^{\prime} \cap A$ are good with respect to H^{\prime}, for $j=1, \ldots, n$ and $i=0, \ldots, m$.

Proof. If for every $j=1, \ldots, n$ and every $x_{j} \in R_{j}$

$$
\operatorname{dist}\left(F\left(x_{1}, \ldots, x_{n}\right), \bigcup_{i=1}^{m} K_{i}\right)>0
$$

then putting $R_{j}^{\prime}=R_{j}$ and $P_{i}^{\prime}=P_{i}$, we are done. If not, then by Lemma 6 (for $P=R_{1}$) there exist: a point $x_{1} \in R_{1}$ and a set $H_{1} \in[H]^{\omega}$ such that for any neighborhood U_{1} of x_{1} the set $R_{1} \cap A \cap U_{1}$ is good with respect to H_{1}. Using again Lemma 6 (this time for $P=R_{2}$) we find a point $x_{2} \in R_{1}$ and a set $H_{2} \in\left[H_{1}\right]^{\omega}$ such that for any neighborhood U_{2} of x_{2} the set $R_{2} \cap A \cap U_{2}$ is good with respect to H_{2}. In that way we find points $x_{1}, x_{2}, \ldots, x_{n}$ and $H_{n} \in[H]^{\mathbb{N}}$ such for any $j=1, \ldots, n$ and any neighborhood U_{j} of x_{j} the set $\left(R_{j} \backslash\left\{x_{1}, \ldots, x_{n}\right\}\right) \cap A \cap U_{j}$ is good with respect to H_{n}.

Now, for every $i=1, \ldots, m$ we will define a set H_{n+i} and a number k_{i} in the following way. If $F\left(x_{1}, \ldots, x_{n}\right) \cap K_{i}=\emptyset$, then put $K_{i}^{\prime}=K_{i}, H_{n+i}=H_{n+i-1}$ and $k_{i}=0$. Otherwise let

$$
Y_{k}=\left\{x \in K_{i}: \operatorname{dist}\left(x, F\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right) \geq \frac{1}{k+1}\right\}
$$

Then $\bigcup_{k \in \mathbb{N}} Y_{k}=K_{i} \backslash F\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Since K_{i} is good with respect to H_{n+i-1}, then by Lemma 5 we find a number k_{i} and a set $H_{n+i} \in\left[H_{n+i-1}\right]^{\omega}$ such that $Y_{k_{i}} \cap A$ is good with respect to H_{n+i}. Put $K_{i}^{\prime}=Y_{k_{i}}$. Define

$$
\varepsilon=\min \left\{\frac{1}{k_{i}+1}: i=1, \ldots, m\right\}
$$

By the continuity of F we will find neighborhoods V_{1}, \ldots, V_{n} of points x_{1}, \ldots, x_{n}, respectively, such that the diameter of $F\left(c l\left(V_{1}\right), \ldots, c l\left(V_{n}\right)\right)$ is less than $\varepsilon / 2$. Define $R_{j}^{\prime}=c l\left(V_{j}\right)$ and $H^{\prime}=H_{n+m}$.

Lemma 8. Let $m \in \mathbb{N}, P_{0}, \ldots, P_{m}, A \subset X$. Assume that for $i=0, \ldots, m$ the sets P_{i} are closed, pairwise disjoint and such that any set from \mathcal{S} does not intersect more than $n+1$ sets P_{i}. Let $H \in[\mathbb{N}]^{\omega}$ and $\varepsilon>0$. If $P_{i} \cap A$ is good with respect to H and $i=0, \ldots, m$, then there are pairwise disjoint closed sets $P_{m}^{\prime}, \ldots, P_{m+n-1}^{\prime} \subset P_{m}, P_{i}^{\prime} \subset P_{i}$ for $i<m$ and there is $H^{\prime} \in[H]^{\omega}$ such that each P_{i}^{\prime} has diameter less than ε, any set from \mathcal{S} does not intersect more than $n+1$ sets P_{i}^{\prime}, and sets $A \cap P_{i}^{\prime}$ are good with respect to H^{\prime}.

Proof. In the same way as in Lemma 7 we find a set $H_{-1} \in[H]^{\mathbb{N}}$ and points $x_{m}, x_{m+1}, \ldots, x_{m+n-1}$ in P_{m} such that any $i=0, \ldots, n-1$ and any neighborhood U_{m+i} of point x_{m+i} sets $U_{m+i} \cap P_{m} \cap A$ is good with respect to H_{-1}.

Inductively for $i=0,1, \ldots, m-1$ we define P_{i}^{\prime} and H_{i} in the following way. If distance between $F\left(x_{m}, x_{m+1}, \ldots, x_{m+n-1}\right)$ and P_{i} is greater than zero, then we put $P_{i}^{\prime}=P_{i}$. Otherwise let

$$
Y_{k}=\left\{x \in P_{i}: \operatorname{dist}\left(x, F\left(x_{m}, x_{m+1}, \ldots, x_{m+n-1}\right)\right) \geq \frac{1}{k+1}\right\} .
$$

Then $\bigcup_{k \in \mathbb{N}} Y_{k}=P_{i} \backslash F\left(x_{m}, x_{m+1}, \ldots, x_{m+n-1}\right)$. Since P_{i} is good with respect to H_{i-1}, then by Lemma 5 we find a number k and a set $H_{i} \in\left[H_{i-1}\right]^{\omega}$ such that $Y_{k} \cap A$ is good with respect to H_{i}. We may assume that $\operatorname{diam}\left(Y_{k}\right)<\varepsilon$. Put $P_{i}^{\prime}=Y_{k}$.

Now, let $\delta>0$ be such that for any $i \in\{0,1, \ldots, m-1\}$ the distance from P_{i}^{\prime} to the set $F\left(x_{m}, x_{m+1}, \ldots, x_{m+n-1}\right)$ is greater than δ. By continuity of F we find neighborhoods U_{m}, $U_{m+1}, \ldots, U_{m+n-1}$ of points $x_{m}, x_{m+1}, \ldots, x_{m+n-1}$, respectively, such that

$$
\operatorname{diam}\left(F\left(U_{m}, U_{m+1}, \ldots, U_{m+n-1}\right)\right)<\delta
$$

Put $P_{m}^{\prime}=c l\left(U_{m}\right), \ldots, P_{m+n-1}^{\prime}=\operatorname{cl}\left(U_{m+n-1}\right)$.
Now, any set from \mathcal{S} which intersect $P_{m}^{\prime}, \ldots, P_{m+n-1}^{\prime}$ does not intersect any of $P_{0}^{\prime}, \ldots, P_{m-1}^{\prime}$. But our choice guarantees that any set from \mathcal{S} does not intersect more than $n+1$ sets $P_{0}^{\prime}, \ldots, P_{m+n-1}^{\prime}$ only in the case if $n=2$. If $n>2$, we will shrink each P_{i}^{\prime} and H^{\prime} finitely many times in $n-2$ steps.

In the first step we use Lemma 7 for $H=H^{\prime}, R_{1}=P_{m}^{\prime}, \ldots, R_{n-1}=P_{m+n-2}^{\prime}, R_{n}=$ P_{m-1}^{\prime} and $K_{1}=P_{1}, \ldots, K_{m-1}=P_{m-1}, K_{m}=P_{m+n-1}^{\prime}$ to find $H^{\prime \prime} \in\left[H^{\prime}\right]^{\mathbb{N}}$ and closed sets $R_{1}^{\prime}, \ldots, R_{n-1}^{\prime}, R_{n}^{\prime}$ and $K_{1}^{\prime}, \ldots, K_{m-1}^{\prime}, K_{m}^{\prime}$ such that $R_{j}^{\prime} \subset R_{j}, K_{i}^{\prime} \subset K_{i}$,

$$
\forall\left(x_{1}, \ldots, x_{n}\right) \in R_{1}^{\prime} \times \cdots \times R_{n}^{\prime}\left(\operatorname{dist}\left(F\left(x_{1}, \ldots, x_{n}\right), \bigcup_{i=1}^{m} K_{i}^{\prime}\right)>0\right)
$$

and such that $R_{j}^{\prime} \cap A, K_{i}^{\prime} \cap A$ are good with respect to $H^{\prime \prime}$. Let $H^{\prime \prime}$ be our new choice for $H^{\prime}, R_{1}^{\prime}$ be a new choice for P_{m}^{\prime} etc. Now, we use Lemma 7 for H^{\prime} and each combination $R_{1}, \ldots, R_{n-1}, R_{n}$ such that R_{1}, \ldots, R_{n-1} is collection of $n-1$ sets from $P_{m}^{\prime}, \ldots, P_{m+n-1}^{\prime}$ and R_{n} is a set from $P_{0}^{\prime}, \ldots, P_{m-1}^{\prime}$, and K_{1}, \ldots, K_{m} the remaining sets from $P_{0}^{\prime}, \ldots, P_{m+n-1}^{\prime}$. After this we obtain that any set which intersect $n-1$ sets from $P_{m}^{\prime}, \ldots, P_{m+n-1}^{\prime}$ do intersect at least one set from $P_{0}^{\prime}, \ldots, P_{m-1}^{\prime}$.

In the second step we use Lemma 7 for H^{\prime} and each combination $R_{1}, \ldots, R_{n-1}, R_{n}$ such that R_{1}, \ldots, R_{n-2} is collection of $n-2$ sets from $P_{m}^{\prime}, \ldots, P_{m+n-1}^{\prime}$ and R_{n-1}, R_{n} are sets from $P_{0}^{\prime}, \ldots, P_{m-1}^{\prime}$, and K_{1}, \ldots, K_{m} the remaining sets from $P_{0}^{\prime}, \ldots, P_{m+n-1}^{\prime}$. After this we obtain that any set which intersect $n-2$ sets from $P_{m}^{\prime}, \ldots, P_{m+n-1}^{\prime}$ do intersect at least two sets from $P_{0}^{\prime}, \ldots, P_{m-1}^{\prime}$.

In the last $n-2$ th step we use Lemma 7 for H^{\prime} and each combination $R_{1}, \ldots, R_{n-1}, R_{n}$ such that R_{1}, R_{2} is collection of 2 sets from $P_{m}^{\prime}, \ldots, P_{m+n-1}^{\prime}$ and R_{3}, \ldots, R_{n} are sets from $P_{0}^{\prime}, \ldots, P_{m-1}^{\prime}$, and K_{1}, \ldots, K_{m} the remaining sets from $P_{0}^{\prime}, \ldots, P_{m+n-1}^{\prime}$. After this we obtain
that any set which intersect 2 sets from $P_{m}^{\prime}, \ldots, P_{m+n-1}^{\prime}$ do intersect at least $n-2$ sets from $P_{0}^{\prime}, \ldots, P_{m-1}^{\prime}$.

Suppose that there is $D \in S$ which intersects $n+1$ sets from $P_{1}^{\prime}, \ldots, P_{m+n-1}^{\prime}$. Then D cannot intersect more than one set from $P_{m}^{\prime}, \ldots, P_{m+n-1}^{\prime}$. Hence D intersects $n+1$ sets from P_{1}, \ldots, P_{m} which contradicts our assumptions.

The next theorem shows that σ-ideals genereted by (n, F)-systems have (LK) property. Its proof is quite similar to that in $[\mathrm{Ko}]$. The main difference lays in Lemma 8.

Theorem 9. Let \mathcal{J} be a σ-ideal generated by a proper (n, F)-system \mathcal{S}. Then for any sequence $\left(A^{j}\right)$ of analytic sets such that

$$
\forall H \in[\mathbb{N}]^{\omega} \quad \underset{j \in H}{\limsup } A^{j} \notin \mathcal{J}
$$

there exist: a set $G \in[\mathbb{N}]^{\omega}$ and a homeomorph P of the Cantor set 2^{ω} such that any $n+1$ distinct point of P are not the member of the same set from family \mathcal{S} and such that $P \subset$ $\bigcap_{j \in G} A^{j}$. In particular, a σ-ideal \mathcal{J} has (KL) property.

Proof. We may assume that X is a perfect set (if not, then removing countably many points from X we obtain a perfect set). Additionally we may assume that $\operatorname{diam}(X)<1$. Let A^{j} be a sequence of analytic sets with

$$
\forall H \in[\mathbb{N}]^{\omega} \quad \limsup _{j \in H} A^{j} \notin \mathcal{J}
$$

We may write A^{j} using a Suslin operation (cf. [Ke, 25.7]):

$$
A^{j}=\bigcup_{z \in \mathbb{N}^{\mathbb{N}}} \bigcap_{m \in \mathbb{N}} C_{z \mid m}^{j}
$$

where $C_{z \mid m}^{j}$ are closed with $\operatorname{diam}\left(C_{z \mid m}^{j}\right)<\frac{1}{m+1}$ and

$$
\forall k, m \in \mathbb{N}\left(k>m \Rightarrow C_{z \mid k}^{j} \subset C_{z \mid m}^{j}\right)
$$

For $s \in \mathbb{N}^{m}$ put $A_{s}^{j}=\bigcup_{z \in \mathbb{N}^{\mathbb{N}}, z \mid m=s} \bigcap_{k \in \mathbb{N}} C_{z \mid k}^{j}$.
Without loss of generality we may assume that $A^{0}=X$. Our construction will be inductive. In the m-th step we choose a number $j_{m} \in \mathbb{N}$, perfect sets $P_{s}\left(s \in\{1, \ldots, n\}^{m}\right)$, finite sequences $t(k, s) \in \mathbb{N}^{m}\left(k \leq m, s \in\{1, \ldots, n\}^{m}\right)$ and a set $H_{m} \in[\mathbb{N}]^{\omega}$ fulfilling the following conditions
(W1) $j_{m}>j_{m-1}, H_{m} \in\left[H_{m-1}\right]^{\omega}, j_{m} \in H_{m-1}$;
(W2) $P_{s^{\wedge} i} \subset P_{s}$ for $i \in\{1, \ldots, n\}, P_{s^{\wedge} i}$ are pairwise disjoint for $s \in\{1, \ldots, n\}^{m-1}$, and any set from \mathcal{S} does not intersect $n+1$ or more sets from $\left\{P_{s}: s \in\{1, \ldots, n\}^{m}\right\}$;
(W3) $\operatorname{diam}\left(P_{s}\right)<\frac{1}{m+1}$ for $s \in\{1, \ldots, n\}^{m}$;
(W4) $P_{s} \cap A_{t(0, s)}^{j_{0}} \cap \ldots \cap A_{t(m, s)}^{j_{m}}$ is good with respect to H_{m}, if $s \in\{1, \ldots, n\}^{m}$;
(W5) $P_{s} \subset C_{t(0, s)}^{j_{0}} \cap \ldots \cap C_{t(m, s)}^{j_{m}}$ for $s \in\{1, \ldots, n\}^{m}$;
(W6) $t(k, s) \subset t\left(k, s^{\wedge} i\right)$, for $i \in\{1, \ldots, n\}, s \in\{1, \ldots, n\}^{m-1}$ and $k \leq m-1$.
Conditions (2) and (3) guarantee that the set

$$
P=\bigcap_{m \in \mathbb{N} s \in\{1, \ldots, n\}^{m}} \bigcup_{s}
$$

is perfect and that any set from \mathcal{S} does not contain $n+1$ or more points from P. Hence $P \notin \mathcal{J}$. If $x \in P$, then from (2) it follows that for any $m \in \mathbb{N}$ there is an unique sequence s_{m} with $x \in P_{s_{m}}$. Moreover $s_{0} \subset s_{1} \subset s_{2} \subset \ldots$. Fix $i \in \mathbb{N}$. From (5) for $m \geq i$ we obtain that $x \in C_{t\left(i, s_{m}\right)}^{j_{i}}$, and by (6) we get $t\left(i, s_{i}\right) \subset t\left(i, s_{i+1}\right) \subset t\left(i, s_{i+2}\right) \subset \ldots$. Hence $x \in A_{t\left(i, s_{i}\right)}^{j_{i}} \subset A^{j_{i}}$. Finally $P \subset \bigcap_{i \in \mathbb{N}} A^{j_{i}}$, and putting $G=\left\{j_{0}, j_{1}, \ldots\right\}$ we obtain the assertion.

It suffices to define the fulfilling (1)-(6). We will construct them by induction on m. Put $j_{0}=0, P_{\emptyset}=X, H_{0}=\mathbb{N}$. Clearly, X is good with respect to \mathbb{N}. Putting $t(0, \emptyset)=\emptyset$, we define objects fulfilling (1)-(6) for the first step.

Assume that for $m \in \mathbb{N}$ we already choose $j_{k}($ for $k \leq m), P_{s}\left(\right.$ for $\left.s \in\{1, \ldots, n\}^{k}, k \leq m\right)$, $t(k, s)$ (for $k \leq l \leq m, s \in\{1, \ldots, n\}^{l}$) and H_{k} (for $k \leq m$).

At first we show that there exist a number $j \in H_{m}, j>j_{m}$, and a set $H_{m}^{\prime} \in\left[H_{m}\right]^{\omega}$ such that
(7) $\forall s \in\{1, \ldots, n\}^{m}\left(P_{s} \cap A_{t(0, s)}^{j_{0}} \cap \ldots \cap A_{t(m, s)}^{j_{m}} \cap A^{j}\right)$ is good with respect to $\left.H_{m}^{\prime}\right)$. Assume to the contrary that for any $j \in H_{m}, j>j_{m}$, and for any $H \in\left[H_{m}\right]^{\omega}$ we have

$$
\exists G \in[H]^{\omega} \exists s \in\{1, \ldots, n\}^{m}\left(P_{s} \cap A_{t(0, s)}^{j_{0}} \cap \ldots \cap A_{t(m, s)}^{j_{m}} \cap A^{j} \cap \limsup _{r \in G} A^{r} \in \mathcal{J}\right) .
$$

Proceeding inductively, we find numbers $k_{0}<k_{1}<\ldots$ and sets $H_{m}=G_{0} \supset G_{1} \supset \ldots$ such that $k_{r} \in G_{r} \in[\mathbb{N}]^{\omega}$ and

$$
\forall r \in \mathbb{N} \exists s_{r} \in\{1, \ldots, n\}^{m}\left(P_{s_{r}} \cap A_{t\left(0, s_{r}\right)}^{j_{0}} \cap \ldots \cap A_{t\left(m, s_{r}\right)}^{j_{m}} \cap A^{k_{r}} \cap \limsup _{p \in G_{r+1}} A^{p} \in \mathcal{J}\right) .
$$

Since there is only n^{m} possibilities of choosing s_{r}, there is a sequence $s \in\{1, \ldots, n\}^{m}$ such that a set $\Gamma=\left\{k_{r}: s_{r}=s\right\}$ is infinite. Then Γ is almost contained in G_{r}, for every $r \in \mathbb{N}$.

So we obtain

$$
P_{s} \cap A_{t(0, s)}^{j_{0}} \cap \ldots \cap A_{t(m, s)}^{j_{m}} \cap\left(\bigcup_{r \in \Gamma} A^{r}\right) \cap \underset{p \in \Gamma}{\limsup } A^{p} \in \mathcal{J}
$$

But this is impossible, since $\lim \sup _{p \in \Gamma} A^{p} \subset \bigcup_{r \in \Gamma} A^{r}$ and (4). Hence there is a number $j>j_{m}, j \in H_{m}$, fulfilling (7). It is our choice for j_{m+1}.

Using n^{m} many times (7) and Lemma 8 to the sets $\left\{P_{s}: s \in\{1, \ldots, n\}^{m}\right\}$, and considering perfect kernels of appropriate closed sets we will find pairwise disjoint perfect sets $\bar{P}_{s^{\wedge} i}$, for $i \in\{1, \ldots, n\}$ with $\operatorname{diam}\left(\bar{P}_{s^{\wedge} i}\right)<\frac{1}{m+1}$, and such that any set from \mathcal{S} have no common point with $n+1$ or more sets from $\left\{P_{s}: s \in\{1, \ldots, n\}^{m+1}\right\}$, and a set $H_{m}^{\prime \prime} \in\left[H_{m}^{\prime}\right]^{\omega}$ such that for any $s \in\{1, \ldots, n\}^{m}$ and $i=1, \ldots, n$ we have

$$
\bar{P}_{s^{\wedge} i} \cap A_{t(0, s)}^{j_{0}} \cap \ldots \cap A_{t(m, s)}^{j_{m}} \cap A^{j_{m+1}} \text { is good with respect to } H_{m}^{\prime \prime} .
$$

The set $A_{t(0, s)}^{j_{0}} \cap \ldots \cap A_{t(m, s)}^{j_{m}} \cap A^{j_{m+1}}$ is contained in the following union

$$
\bigcup_{z_{0} \in \mathbb{N}^{m+1}, z_{0} \supset t(0, s)} \ldots \bigcup_{z_{m} \in \mathbb{N}^{m+1}, z_{m} \supset t(m, s)} \bigcup_{z_{m+1} \in \mathbb{N}^{m+1}}\left(A_{z_{0}}^{j_{0}} \cap \ldots \cap A_{z_{m+1}}^{j_{m+1}}\right) .
$$

By Lemma 5 it follows that some element of this union is good with respect to $H_{m}^{\prime \prime}$. Using n^{m+1} times Lemma 5, we will find \bar{H}_{m} with that property for all $s \in\{1, \ldots, n\}^{m}$ and all $i=1, \ldots, n$. We define sequences $t\left(0, s^{\wedge} i\right), \ldots, t\left(m+1, s^{\wedge} i\right)$ as z_{0}, \ldots, z_{m+1} corresponding to $s^{\wedge} i$. We finally need only to "repair" sets $\bar{P}_{s^{\wedge} i}$ to fulfill (5). To do this put

$$
Q_{s^{\wedge} i}=\bar{P}_{s^{\wedge} i} \cap C_{t\left(0, s^{\wedge} i\right)}^{j_{0}} \cap \ldots \cap C_{t\left(m+1, s^{\wedge} i\right)}^{j_{m+1}} .
$$

Since for every s we have $A_{s}^{j} \subset C_{s}^{j}$, then the sets $Q_{s^{\wedge} i}$ and $\bar{P}_{s^{\wedge} i}$ have the same intersection with

$$
A_{t\left(0, s^{\wedge} i\right)}^{j_{0}} \cap \ldots \cap A_{t\left(m+1, s^{\wedge} i\right)}^{j_{m+1}} .
$$

Hence (4) valid. Removing from each closed set $Q_{s^{\wedge} i}$ at most countably many point we obtain its perfect kernel $P_{s^{\wedge} i}$. It is still good with respect to \bar{H}_{m}, which will be our choice for H_{m+1}. Therefore conditions (1)-(6) are fulfilled.

In [EKM] it was proved that if an analytic set on the real plane cannot be covered by coutably many lines then it contains a perfect set which also cannot be covered by countably many lines. We can generalized this in the following.

Corollary 10. Let A an analytic subset of the plane and let \mathcal{J} be a σ-ideal generated by a proper (n, F)-system \mathcal{S}. If $A \notin \mathcal{J}$, then there is $P \subset A$ a homeomorph of the Cantor set such that any $n+1$ points of P are not contained in the same set from family \mathcal{S}.

Proof. It is enough to put $A_{m}=A$ for any $m \in \mathbb{N}$.
Assume that $\mathcal{J} \subset \mathcal{P}([0,1] \times \mathbb{R})$ consist of those subsets of $[0,1] \times \mathbb{R}$ which can be covered by countably many graphs of polynomials. This σ-ideal is not of the form we considered in the previous section. But it is still very similar. This led us to the following definition. Let $\left\{\left(n_{i}, F_{i}\right)\right\}_{i \in \mathbb{N}}$ be a sequence of $\left(n_{i}, F_{i}\right)$ systems. Let $\mathcal{S}_{i}=\left\{F_{i}\left(x_{1}, \ldots, x_{n_{i}}\right): x_{1}, \ldots, x_{n_{i}} \in Y_{i}\right\}$. We say that \mathcal{J} is generated by $\left\{\left(n_{i}, F_{i}\right)\right\}_{i \in \mathbb{N}}$ if \mathcal{J} consists of those sets which can be covered by countably many sets from $\mathcal{S}=\bigcup_{i \in \mathbb{N}} \mathcal{S}_{i}$. Then the proof that \mathcal{J} has (LK) property goes in an analogous way as the proof of Theorem 9. In the proof we need only to change condition (W2) to
(W2') $P_{s^{\wedge} i} \subset P_{s}$ for $i \in\{1, \ldots, n\}, P_{s^{\wedge} i}$ are pairwise disjoint for $s \in\{1, \ldots, n\}^{m-1}$, and any set from $\mathcal{S}_{1}, \ldots, \mathcal{S}_{m}$ does not intersect more than n_{1}, \ldots, n_{m} sets from $\left\{P_{s}: s \in\right.$ $\left.\{1, \ldots, n\}^{m}\right\}$, respectively.

Proving the existence of such $P_{s^{\wedge} i}$ we use Lemma 8 for \mathcal{S}_{1}, then for \mathcal{S}_{2}, etc.
Using this one can get the following interesting colloraly. Let $A \subset \mathbb{R}^{2}$ be analytic. Suppose that A cannot be covered by countably many graphs of polynomials. Then there is a perfect set $P \subset A$ such that any n points of P cannot be covered by the graph of polymonial of degree less than n.

3. Parametric Laczkovich-Komjáth property

By the Mazurkiewicz-Sierpiński theorem [Ke, 29.19], if X, Z are Polish spaces then for each analytic set $A \subset X \times Z$, the set $\{x \in X:|A(x)|>\omega\}$ is also analytic. We say that an ideal $\mathcal{J} \subset \mathcal{P}(Z)$ has the Mazurkiewicz-Sierpiński property if for any Polish space X and analytic set $A \subset X \times Z$, the set $\{x \in X: A(x) \notin \mathcal{J}\}$ is analytic. This property holds true, besides the ideal of countable sets, the ideal of meager sets in Z and the ideal of Lebesgue null sets in \mathbb{R}. Ideal which has Mazurkiewicz-Sierpiński property is also called Π_{1}^{1}-on- Σ_{1}^{1}.

We say that an ideal \mathcal{J} of subsets of Z has parametric property (LK), whenever for every uncountable Polish space X and every sequence $\left(A_{n}\right)$ of analytic subsets of $X \times Z$, if $\limsup _{n \in H} A_{n}(x) \notin \mathcal{J}$ for all $x \in X$ and $H \in[\mathbb{N}]^{\omega}$ then there are a perfect set $P \subset X$ and
$G \in[\mathbb{N}]^{\omega}$ such that $\bigcap_{n \in G} A_{n}(x) \notin \mathcal{J}$ for each $x \in P$. In [G], it was proved that the ideal $[Z]^{\leq \omega}$ of all countable subsets of Y has parametric property (LK). In [BG], it was proved that the σ-ideal generated by F_{σ} equivalence relation has parametric property (LK). The proof in [BG] was based on the fact that σ-ideal generated by F_{σ} equivalence relation has Mazurkiewicz-Sierpiński property and following fact:

Proposition 11 ([BG]). Let Z be an uncountable Polish space and let $\mathcal{J} \subset \mathcal{P}(Z)$ be a σ ideal with property (LK) and with Mazurkiewicz-Sierpiński property. Then \mathcal{J} has parametric property (LK).

Now, we will prove that σ-ideals generated by (n, F)-systems have Mazurkiewicz-Sierpiński property. As a corollary we will obtain that σ-ideals generated by (n, F)-systems have parametric property (LK). We say that P is a perfect partial transversal (in short ppt) for (n, F)-system \mathcal{S} if P is perfect and $x_{n+1} \notin F\left(x_{1}, \ldots, x_{n}\right)$ for any $x_{1}, \ldots, x_{n}, x_{n+1} \in P$; it is the same as saying that no $n+1$ points of P are contained in the same member of family \mathcal{S}.

Lemma 12. Let X be an uncoutable Polish space and consider (n, F)-system defined on X. Then the family of all sets $L \in \mathcal{K}(X)$ containing a perfect partial transversal for (n, F) system is analytic.

Proof. Fix a contable base $\left(U_{n}\right)$ for X. For $L \in \mathcal{K}(X)$ we have the following equivalence L contains a ppt for (n, F)-system $\Longleftrightarrow \exists K \in \mathcal{K}(L) \forall m \in \mathbb{N} \forall i_{1}, \ldots, i_{n+1} \in \mathbb{N}$

$$
\begin{gathered}
\left(\forall k=1, \ldots, n+1 U_{i_{k}} \cap K \neq \emptyset \Rightarrow \exists j_{1}, \ldots, j_{n+1} \in \mathbb{N} \forall k=1, \ldots, n+1 c l U_{j_{k}} \subset U_{i_{k}},\right. \\
\operatorname{diam} U_{j_{k}}<\frac{1}{m+1}, U_{j_{k}} \cap K \neq \emptyset, F\left(U_{j_{1}}, \ldots, U_{j_{n}}\right) \cap U_{j_{n+1}}=\emptyset .
\end{gathered}
$$

Hence, in a standard way (cf. [Ke, 4.29], [S, 2.4.11]) we show that the family of all sets $L \in \mathcal{K}(Y)$ containing an (n, F)-ppt is analytic. Thus to finish the proof it suffices to show that the equivalence does hold.

If $L \in \mathcal{K}(Y)$ contains an (n, F)-ppt K, we easily conclude that K satisfies the right hand side of the equivalence. Conversely, if $K \in \mathcal{K}(L)$ satisfies the right hand side of the equivalence, we can define by recursion a family $\left\{V_{s}: s \in\{1, \ldots, n\}^{<\mathbb{N}}\right\} \subset\left\{U_{i}: i \in \mathbb{N}\right\}$ such that for each $s \in\{1, \ldots, n\}<\mathbb{N}$ the following conditions hold:
(i) $V_{s} \cap K \neq \emptyset$;
(ii) $c l V_{s^{\wedge} 1} \cup \ldots \cup c l V_{s^{\wedge} n} \subset V_{s}, c l V_{s^{\wedge} 1}, \ldots, c l V_{s^{\wedge} n}$ are pairwise disjoint;
(iii) $\operatorname{diam} V_{s}<1 /(|s|+1)$;
and additionally,
(iv) $F\left(V_{s_{1}}, \ldots, V_{s_{n}}\right) \cap V_{s_{n+1}}=\emptyset$ for all $m \in \mathbb{N}$ and distinct $s_{1}, \ldots, s_{n+1} \in\{1, \ldots, n\}^{m}$.

The construction is similar to that given in the proof of Theorem 9 (cf. conditions (W1)(W3)). Then $\bigcap_{m \in \mathbb{N}} \bigcup_{s \in\{1, \ldots, n\}^{m}}\left(K \cap c l V_{s}\right)$ is an (n, F)-ppt contained in L.

Theorem 13. Let X be an uncoutable Polish space and consider (n, F)-system \mathcal{S} defined on X. Then the σ-ideal \mathcal{J} generated by (n, F)-system \mathcal{S} has the Mazurkiewicz-Sierpiński property.

Proof. Set $\mathcal{N}=\mathbb{N}^{\mathbb{N}}$. For an analytic set $B \subset X$ pick a closed set $C \subset X \times \mathcal{N}$ such that $\operatorname{pr}_{X}(C)=B$ where pr_{X} stands for the projection from $X \times \mathcal{N}$ to X. Observe that

$$
B \notin \mathcal{J} \Longleftrightarrow(\exists K \in \mathcal{K}(X \times \mathcal{N}))\left(K \subset C \text { and } \operatorname{pr}_{X}(K) \text { contains a }(n, F) \text {-ppt }\right)
$$

Indeed, to show " \Rightarrow " assume that $B \notin \mathcal{J}$. By Corollary $10, B$ contains an $(n, F)-$ ppt P. Note that $P=\operatorname{pr}_{X}((P \times \mathcal{N}) \cap C)$. By $[\mathrm{Ke}, 29.20]$ there is a set $K \subset(P \times \mathcal{N}) \cap C$ such that the both K and $\operatorname{pr}_{X}(K)$ are homeomorphic with $\{0,1\}^{\mathbb{N}}$. Since $\operatorname{pr}_{X}(K) \subset P$ so $\operatorname{pr}_{X}(K)$ is an (n, F)-ppt with $K \subset C$. Implication " \Leftarrow " is obvious.

Now, let Z be a Polish space and let $A \subset X \times Z$ be an analytic set. Pick a closed set $C \subset X \times Z \times \mathcal{N}$ such that $\operatorname{pr}_{X \times Z}(C)=A$. Then $A(x)=\operatorname{pr}_{Y}(C(x))$ and $C(x) \subset Z \times \mathcal{N}$ is closed for each $x \in X$. For each $x \in X$ we have

$$
A(x) \notin \mathcal{J} \Longleftrightarrow(\exists K \in \mathcal{K}(Z \times \mathcal{N}))\left(K \subset C(x) \text { and } \mathrm{pr}_{Z}(K) \text { contains an }(n, F) \text {-ppt }\right)
$$

Observe that the set $\{(x, K) \in X \times \mathcal{K}(Z \times \mathcal{N}): K \subset C(x)\}$ is closed and note that the mapping $K \mapsto \operatorname{pr}_{Z}(K)$ from $\mathcal{K}(Z \times \mathcal{N})$ to $\mathcal{K}(Z)$ is continuous [Ke, 4.29(vi)]. Hence by Lemma 13 the assertion follows.

4. Closing remarks and open questions

We say that ideals \mathcal{J} and \mathcal{I} of subsets of a set X are orthogonal, if there are sets $A \in \mathcal{J}$ and $B \in \mathcal{I}$ with $A \cup B=X$.

Theorem 14. Let \mathcal{J} be a σ-ideal of subsets of an uncountable Polish space X, which is not orthogonal to the σ-ideal of meager subsets of X. If \mathcal{J} has $K L$ property, then there is a family of continuum many pairwise disjoint G_{δ} sets which do not belong to \mathcal{J}.

Proof. Observe that if X and Y are uncountable Polish spaces and a σ-ideal $\mathcal{J} \subset \mathcal{P}(X)$ has property (LK) then, for every Borel isomorphism $\varphi: X \rightarrow Y$, the σ-ideal $\{\varphi(A): A \in \mathcal{J}\} \subset$ $\mathcal{P}(Y)$ has property (LK). Note that between any two perfect Polish spaces there is a Borel isomorphism preserving the Baire category (see e.g. [CKW, 3.15]). Hence we may assume that $X=\{0,1\}^{\mathbb{N}}$.

Let $\alpha \in\{0,1\}^{\mathbb{N}}$. Put $A_{n}^{\alpha}=\left\{x \in\{0,1\}^{\mathbb{N}}: x(n)=\alpha(n)\right\}$. If $H \in[\mathbb{N}]^{\mathbb{N}}$, then $\lim \sup _{n \in H} A_{n}^{\alpha}$ is a dense G_{δ}. By the assumption

$$
\forall H \in[\mathbb{N}]^{\mathbb{N}} \quad \underset{n \in H}{\limsup } A_{n}^{\alpha} \notin \mathcal{J} .
$$

Let $\left\{G_{\beta}: \beta<2^{\aleph_{0}}\right\}$ be a family of almost disjoint sets from $[\mathbb{N}]^{\mathbb{N}}$. Then for any $\beta<2^{\aleph_{0}}$ and any $\alpha=\chi_{G_{\beta}}$ (where $\chi_{G_{\beta}}$ is a characteristic function of G_{β}, i.e. $\alpha(k)=1 \Longleftrightarrow k \in G_{\beta}$) we have

$$
\forall H \in\left[G_{\beta}\right]^{\mathbb{N}} \quad \underset{n \in H}{\limsup } A_{n}^{\alpha} \notin \mathcal{J}
$$

Since \mathcal{J} has a KL property, then there is $H_{\beta} \in\left[G_{\beta}\right]^{\mathbb{N}}$ with

$$
\bigcap_{n \in H_{\beta}} A_{n}^{\alpha} \notin \mathcal{J}
$$

Since for distinct β and β^{\prime}, the set H_{β} and $H_{\beta^{\prime}}$ are almost disjoint, the family

$$
\left\{\bigcap_{n \in H_{\beta}} A_{n}^{\alpha}: \beta<2^{\aleph_{0}}\right\}
$$

consist of pairwise-disjoint sets of type G_{δ} which do not belong to \mathcal{J}.
Corollary 15. Let (X, τ) be a Polish space. Assume that \mathcal{J} is a σ-ideal of subsets of X, which is not orthogonal to all σ-ideals of meager subsets of $\left(X, \tau^{\prime}\right)$, where τ^{\prime} is a Polish topology which gives the same Borel sets as (X, τ). If \mathcal{J} has $K L$ property, then there is a family of continuum many pairwise disjoint Borel sets which do not belong to \mathcal{J}.

The next example shows that the assumptions in Corollary 15 are not always fullfiled.

Theorem 16. (CH) Let (X, τ) be a Polish space. There exist non-trivial σ-ideal of subsets of X with a Borel base, which is orthogonal to every σ-ideals of meager subsets of $\left(X, \tau^{\prime}\right)$ for any Polish topology giving the same Borel sets as τ.

Proof. Note that any Polish topology $\left(X, \tau^{\prime}\right)$ which gives the same Borel σ-algebra is Borel isomorphic to (X, τ). Any Borel isomorphism f is uniquely determined by preimages of sets U_{n}, where $\left(U_{n}\right)$ is fixed base for (X, τ). Hence there are $|\mathcal{B}(X)|^{\omega}=\omega_{1}$ such Borel isomorphisms. Let $\left\{\tau_{\alpha}: \alpha<\omega_{1}\right\}$ be a family of all Polish topologies on X giving the same Borel sets as (X, τ).

Let B_{0} be a dense G_{δ} in $\left(X, \tau_{0}\right)$ such that $X \backslash B_{0}$ is uncountable. Suppose that we have already defined pairwise disjoint sets $\left\{B_{\beta}: \beta<\alpha\right\}$ for some $\alpha<\omega_{1}$. We will define B_{α}. If $\bigcup_{\beta<\alpha} B_{\beta}$ contain a dense G_{δ} in τ_{α}, then put $B_{\alpha}=\emptyset$. Otherwise we find a dense G_{δ} set A in τ_{α} such that $X \backslash\left(\bigcup_{\beta<\alpha} B_{\beta} \cup A\right)$ is uncountable. Put $B_{\alpha}=A \backslash \bigcup_{\beta<\alpha} B_{\beta}$.

Let \mathcal{J} be σ-ideal generated by all singletons and family $\left\{B_{\alpha}: \alpha<\omega_{1}\right\}$. Clearly \mathcal{J} is a proper σ-ideal with Borel base which is orthogonal to each σ-ideal of meager sets in topologies on X giving the same Borel σ-algebra.

We end the paper with some open questions:

1. For uncountable Polish spaces X, Y and for σ-ideals $\mathcal{I} \subset \mathcal{P}(X), \mathcal{J} \subset \mathcal{P}(Y)$, put

$$
\mathcal{I} \otimes \mathcal{J}=\{A \subset X \times Y:\{x \in X: A(x) \notin \mathcal{J}\} \in \mathcal{I}\} .
$$

Then $\mathcal{I} \otimes \mathcal{J}$ forms a σ-ideal. Suppose that \mathcal{I} and \mathcal{J} have (LK) property. Does it follow that $\mathcal{I} \otimes \mathcal{J}$ has (LK) property?
2. We will say that a σ-ideal \mathcal{J} of subsets of X has property (M) if there is a Borel function $f: X \rightarrow[0,1]$ such that $f^{-1}(x) \notin \mathcal{J}$ for every $x \in[0,1]$. Is it true that any σ-ideal \mathcal{J} with property (LK) has property (M)?
3. Let \mathcal{J} be a σ-ideal generated by a (n, F)-system or by an equivalence relation of type F_{σ}. Then \mathcal{J} has property (LK) and
(\star) there is a perfect set $P \notin \mathcal{J}$ such that $P^{\prime} \notin \mathcal{J}$ for any perfect subset $P^{\prime} \subset P$.
Is there any relation between property (LK) and property (\star) ?

References

[BG] M. Balcerzak, S. Gła̧b: On the Laczkovich-Komjath property of sigma-ideals, Topology Appl. 157 (2010), 319-326.
[CKW] J. Cichoń, A. B. Kharazishvili, B. Wȩglorz, Subsets of the Real Line, Łódź University Press, Łódź 1995.
[EKM] F. von Engelen, K. Kunen, A.W. Miller: Two remarks about analytic sets, Set theory and its applications (Toronto, ON, 1987), 68-72, Lecture Notes in Math., 1401, Springer, Berlin, 1989.
[G] S. Gła̧b, On parametric limit superior of a sequence of analytic sets, Real Anal. Exchange $31(2005 / 06)$, no.1, 285-289.
[H] P. R. Halmos, Large intersections of large sets, Amer. Math. Monthly 99 (1992), no. 4, 307-312.
[Ke] Kechris, A.S.: Classical Descriptive Set Theory. Springer, New York 1998.
[Ko] Komjáth, P.: On the limit superior of analytic sets, Anal. Math. 10 (1984), 283-293.
[L] M. Laczkovich, On the limit superior of sequence of sets, Anal. Math. 3 (1977), 199-206.
[S] Srivastava, S. M.: A course on Borel sets. Graduate Texts in Mathematics, 180. Springer-Verlag, New York, 1998.
[Z] Zapletal, J. The Laczkovich-Komjáth property of σ-ideals, preprint.

Institute of Mathematics, Technical University of Łódź, Wólczańska 215, 93-005 Łódź, Poland

E-mail address: szymon_glab@yahoo.com

