
DICHOTOMIES FOR Lp SPACES

SZYMON G LA̧B AND FILIP STROBIN

Abstract. Assume that (X,Σ, µ) is a measure space and p1, ..., pn, r > 0. We prove that

{(f1, ..., fn) ∈ Lp1 × ...×Lpn : f1 · ... · fn ∈ Lr} is either Lp1 × ...×Lpn or a σ-porous subset

of Lp1 × ...× Lpn . This dichotomy depends on properties of µ and the sign of the number

1
r
− 1

p1
− ...− 1

pn
.

1. introduction

Among linear topological spaces there are spaces X consisting of sequences or functions

such that a natural multiplication is defined on pairs (x1, x2) ∈ X2, however, its result

need not necessarily belong to X. It is an interesting question about the size of the set of

such ”bad” pairs in a various sense. Such a kind of studies was initiated in [BW] and [J].

Balcerzak and Wachowicz proved in [BW] that {(f, g) ∈ L1[0, 1]× L1[0, 1] : f · g ∈ L1[0, 1]}

is a meager subset of L1[0, 1]× L1[0, 1]. They also proved that{
(x, y) ∈ c0 × c0 :

(
n∑
i=1

x(i)y(i)

)∞
n=1

is bounded

}
is a meager subset of c0 × c0. These meagerness results were generalized by Jachymski in

the following extension of the classical Banach–Steinhaus theorem. Recall that a function

ϕ : X → R+ is L-subadditive for some L ≥ 1, if ϕ(x+ y) ≤ L(ϕ(x) +ϕ(y)) for any x, y ∈ X.

Theorem 1 (Jachymski [J]). Given k ∈ N, let X1, ..., Xk be Banach spaces, X = X1 if

k = 1, and X = X1 × ... × Xk if k > 1. Assume that L ≥ 1, Fn : X → R+ (n ∈ N)

are lower semicontinuous and such that all functions xi 7→ Fn(x1, ..., xk) (i = 1, ..., k) are

L-subadditive and even. Let E = {x ∈ X : (Fn(x))∞n=1 is bounded}. Then the following

statements are equivalent:

(i) E is meager;

(ii) E 6= X;
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(iii) sup{Fn(x) : n ∈ N, ||x|| ≤ 1} =∞.

At first, we were interested in a further generalization of this theorem changing meagerness

by σ-porosity. It turns out that this is not possible. To see it, consider the following set:

E =

{
x ∈ R :

(
n∑
k=1

| sin(k!πx)|
k

)∞
n=1

is bounded

}
.

Using Theorem 1 for Fn(x) =
∑n

k=1 | sin(k!πx)|/k (clearly, each Fn is subadditive) we obtain

that this set is meager (E 6= R since it is of measure zero) and is not σ-upper porous ([Z1],

p. 341). Hence we could not generalize Jachymski’s theorem in this manner.

Assume that (X,Σ, µ) is a measure space. In our paper we answer the question about a

size of the set (in the following we will write Lp instead of Lp(X,Σ, µ)):

{(f1, ..., fn) ∈ Lp1 × ...× Lpn : f1 · ... · fn ∈ Lr}.

We do not restrict our attention only to Banach Lp spaces for p ∈ [1,∞], but we consider all

linear metric Lp spaces for p ∈ (0,∞]. It appears that this set is either Lp1 × ...× Lpn or a

σ-c-lower porous (for some c > 0) subset of Lp1× ...×Lpn . So, it is either the whole space or

a very small set. We determine this dichotomy for every type of a measure space (X,Σ, µ).

Surprisingly it depends on the following parameters (in the sequel the symbol 1
∞ means 0):

• the sign of the number 1
r −

1
p1
− ...− 1

pn
;

• inf{µ(A) : µ(A) > 0} (it is important whether it is equal or greater than zero);

• sup{µ(A) : µ(A) <∞} (it is important whether it is finite or infinite).

The dichotomy is stated in Proposition 2 and Theorems 9, 10.

Let X be a metric space. B(x,R) stands for the ball with a radius R centered at a point

x. Let c ∈ (0, 1]. We say that M ⊂ X is c-lower porous [Z2], if

∀x ∈M lim inf
R→0+

γ(x,M,R)
R

≥ c

2
,

where

γ(x,M,R) = sup{r ≥ 0 : ∃z ∈ X B(z, r) ⊂ B(x,R)\M}.

Clearly, M is c-lower porous iff

∀x ∈M ∀β ∈ (0, c/2) ∃R0 > 0 ∀R ∈ (0, R0) ∃z ∈ X B(z, βR) ⊂ B(x,R)\M.

The set is σ-c-lower porous if it is a countable union of c-lower porous sets. Note that a

σ-c-lower porous set is meager, and the notion of σ-porosity is essentially stronger than that
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of meagerness.

Note that the sets investigated in this paper will be c-porous in some stronger sense, namely,

∀x ∈ X ∀β ∈ (0, c/2) ∀R > 0 ∃z ∈ X B(z, βR) ⊂ B(x,R)\M.

However, we do not want to define any new notion of porosity, so in the formulations of

theorems we will deal only with c-lower porosity.

2. Algebraic product of functions from Lp1 × ...× Lpn

Throughout the paper, (X,Σ, µ) is a measure space. If p ∈ (0, 1), then we consider Lp as

a metric linear space with the metric

d(f, g) =
∫
X
|f − g|pdµ.

Additionally we put

||f ||p = d(f, 0) =
∫
X
|f |pdµ.

If p ∈ [1,∞), then we consider Lp as a normed linear space with the norm

||f ||p =
(∫

X
|f |pdµ

)1/p

.

Finally, if p = ∞, then we consider Lp as a normed linear space with the norm ||f ||∞ =

supess|f |. Note that in all cases Lp is a complete space.

For every n ∈ N and any p1, ..., pn, r ∈ (0,∞], we define the set (we allow n to be 1):

E(p1,...,pn)
r = {(f1, ..., fn) ∈ Lp1 × ...× Lpn : f1 · ... · fn ∈ Lr}.

In this paper we consider Lp1 × ...×Lpn as a space with the metric defined as the maximum

of distances on all coordinates in Lp1 , ..., Lpn .

Using the general Hölder inequality ([G], p. 10) we obtain that:

Proposition 2. Let p1, ..., pn, r ∈ (0,∞] be such that

1
r

=
1
p1

+ ...+
1
pn
.

Then E
(p1,...,pn)
r = Lp1 × ...× Lpn.

Now we will give some helpful lemmas.

Lemma 3. Let h ≥ 0, h ∈ L1, ε > 0. Then



4 SZYMON G LA̧B AND FILIP STROBIN

(i) if inf{µ(A) : A ∈ Σ, µ(A) > 0} = 0, there is A ∈ Σ with 0 < µ(A) ≤ ε and∫
A h dµ ≤ ε;

(ii) if sup{µ(A) : A ∈ Σ, µ(A) < ∞} = ∞, there is A ∈ Σ with 1/ε ≤ µ(A) < ∞ and∫
A h dµ ≤ ε.

Proof. (i) follows immediately from the absolute continuity of the function B 7→
∫
B h dµ

(B ∈ Σ) with respect to µ.

(ii) Let, for any n ∈ N, An be such that n < µ(An) <∞. Set Fn =
⋃n
k=1Ak. Then (Fn)

is increasing, µ(Fn) <∞ and µ(Fn)→∞. Put F =
⋃∞
n=1 Fn. We have

lim
n→∞

∫
Fn

h dµ =
∫
F
h dµ <∞.

Then there is n0 ∈ N with ∫
Fn0

h dµ >

∫
F
h dµ− ε.

Hence ∫
F\Fn0

h dµ < ε.

On the other hand, limn→∞ µ(Fn\Fn0) =∞, so there is N ∈ N such that µ(FN \Fn0) > 1/ε.

Put A = FN \ Fn0 . �

Lemma 4. Let p1, ..., pn, r ∈ (0,∞), (f1, ..., fn) ∈ Lp1 × ...× Lpn and let A be a measurable

subset of X. Suppose that for some numbers a1, ..., an and for each i = 1, ..., n, the following

holds ∫
A
|fi − 1|pidµ ≤ ai.

Then for any numbers c1, ..., cn ∈ (0, 1), we have∫
A
|f1 · ... · fn|rdµ ≥ cr1 · ... · crn

(
µ(A)− a1

(1− c1)p1
− ...− an

(1− cn)pn

)
.

Proof. Observe that the above assumptions imply that µ(A) < ∞. Let Ai = {x ∈ A :

fi(x) < ci} for i = 1, ..., n. Then for any i, we have

ai ≥
∫
A
|fi − 1|pidµ ≥

∫
Ai

|fi − 1|pidµ ≥
∫
Ai

|1− ci|pidµ = (1− ci)piµ(Ai).

Hence ∫
A
|f1 · ... · fn|rdµ ≥

∫
A\
⋃n

i=1 Ai

|f1 · ... · fn|rdµ ≥
∫
A\
⋃n

i=1 Ai

cr1 · ... · crndµ ≥
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cr1 · ... · crn

(
µ(A)− µ(

n⋃
i=1

Ai)

)
≥ cr1 · ... · crn

(
µ(A)− a1

(1− c1)p1
− ...− an

(1− cn)pn

)
.

�

Lemma 5. Let A,A1, ..., An be measurable with Ai ⊂ A and µ(Ai) > (1 − 1
n)µ(A) for any

i = 1, ..., n. Then

µ

(
n⋂
i=1

Ai

)
> 0.

Proof. Using the induction principle, it is easy to show that

µ

(
k⋂
i=1

Ai

)
> (1− k/n)µ(A) for any k = 1, ..., n.

In particular, for k = n, we get that µ(
⋂n
i=1Ai) > 0. �

The next theorem is a main result of the paper. It is rather technical, but it shows when

E
(p1,...,pn)
r can be σ-porous and how good are porosity estimations in each of the considered

cases. For any n ∈ N and any p1, ..., pn, put c(p1, ..., pn) = 2/(1 +m) if there is at least one

finite pi, where m is the number of finite pi’s, and put c(p1, ..., pn) = 1 if pi = ∞ for every

i = 1, ..., n.

Theorem 6. Let n ∈ N and let p1, ..., pn, r ∈ (0,∞]. Assume that one of the following

conditions holds:

(i) 1
p1

+ ...+ 1
pn
> 1

r and inf{µ(A) : µ(A) > 0} = 0;

(ii) 1
p1

+ ...+ 1
pn
< 1

r and sup{µ(A) : µ(A) <∞} =∞.

Then for any u > 0, the set

Eu = {(f1, ..., fn) ∈ Lp1 × ...× Lpn : ||f1 · ... · fn||r ≤ u}

is c-lower porous, where c = c(p1, ..., pn). In particular, the set E(p1,...,pn)
r is σ-c-lower porous.

Proof. We will consider two cases.

Case 1. p1 = ... = pn =∞.

Then our assumptions imply that r <∞ and sup{µ(A) : µ(A) <∞} =∞. Let (f1, ..., fn) ∈

L∞ × ...× L∞, R > 0, α ∈
(
0, 1

2

)
(note that in this case c(p1, ..., pn) = 1). Fix a measurable

set A of finite measure such that

µ(A) >
ur((

1
2 − α

)
R
)rn .
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For any i = 1, ..., n, we define

f̃i(x) =

 fi(x) + 1
2R, fi(x) ≥ 0;

fi(x)− 1
2R, fi(x) < 0.

Clearly, for any i = 1, ..., n, ||f̃i − fi||∞ = R/2 and B((f̃1, ..., f̃n), αR) ⊂ B((f1, ..., fn), R).

Now if (h1, ..., hn) ∈ B((f̃1, ..., f̃n), αR), then for any i = 1, ..., n and for µ-almost every

x ∈ A, we have

|hi(x)| ≥
(

1
2
− α

)
R.

Hence ∫
A
|h1 · ... · hn|r ≥

((
1
2
− α

)
R

)rn
· µ(A) > ur,

and

||h1 · ... · hn||r > u.

This ends the proof in Case 1.

Case 2. For some i = 1, ..., n, pi <∞.

Without loss of generality, we assume that pi ∈ (0, 1) for i = 1, ...,m, 1 ≤ pi < ∞ for

i = m + 1, ...,m + k and pi = ∞ for i = m + k + 1, ...,m + k + j, where j is such that

m+ k + j = n (clearly, m, k or j can be equal to zero, but m+ k 6= 0). Additionally define

qi = pm+i for i = 1, ..., k. Then the product space Lp1 × ... × Lpn can be written in the

following way:

Lp1 × ...× Lpm × Lq1 × ...× Lqk × L∞ × ...× L∞.

Let (f1, ..., fm, g1, ..., gk, l1, ..., lj) be a member of that space, and let R > 0, δ ∈ (0, 1
m+k+1)

(note that in this case c(p1, ..., pn) = 2/(m + k + 1)). Then, clearly, 1 − δ > (m + k)δ and

hence we can take η ∈ ((m+k)δ, 1−δ). Since δ/η < 1/(m+k) and hence (δ/η)qi < 1/(m+k)

for i = 1, ..., k, there exist c ∈ (0, 1) and ε > 0 such that

(1)
δ

η
≤ (1− c)pi

m+ k + ε
for every i = 1, ...,m

and

(2)
(
δ

η

)qi
≤ (1− c)qi
m+ k + ε

for every i = 1, ..., k.

Now we will define a positive number β. To define β consider three cases.

If r <∞, 1
p1

+ ...+ 1
pm

+ 1
q1

+ ...+ 1
qk
> 1

r , then r
(

1
r −

1
p1
− ...− 1

pm
− 1

q1
− ...− 1

qk

)
< 0, so
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we can find β > 0 be such that for any β′ ∈ (0, β], we have

(3) ur
(

(R(1− 2δ))rj (ηR)kr+r
(

1
p1

+...+ 1
pm

)
· c(m+k)r ε

m+ k + ε

)−1

<

<
(
β′
)r( 1

r
− 1

p1
−...− 1

pm
− 1

q1
−...− 1

qk

)
<∞.

If r <∞, 1
p1

+ ...+ 1
pm

+ 1
q1

+ ...+ 1
qk
< 1

r , then r
(

1
r −

1
p1
− ...− 1

pm
− 1

q1
− ...− 1

qk

)
> 0, so

we can find β > 0 be such that for any β′ ∈ (0, β], we have

(4) ur
(

(R(1− 2δ))rj (ηR)kr+r
(

1
p1

+...+ 1
pm

)
· c(m+k)r ε

m+ k + ε

)−1

<

<

(
1
β′

)r( 1
r
− 1

p1
−...− 1

pm
− 1

q1
−...− 1

qk

)
<∞.

If r = ∞, then our assumptions imply 1
p1

+ ... + 1
pm

+ 1
q1

+ ... + 1
qk
> 0 = 1

r , so we can find

β > 0 such that for any β′ ∈ (0, β], we have

(5) u
(

(R(1− 2δ))jcm+k · (ηR)k+ 1
p1

+...+ 1
pm

)−1

<
(
β′
)−( 1

p1
+...+ 1

pm
+ 1

q1
+...+ 1

qk

)
<∞.

Using Lemma 3 with h = max{|f1|p1 , .., |fm|pm , |g1|q1 , ..., |gk|qk} (note that h ∈ L1) and

ε = min{β, (1− δ − η)R, ((1− δ − η)R)q1 , ..., ((1− δ − η)R)qk},

we infer that there is A ∈ Σ with 0 < µ(A) ≤ ε if inf{µ(A) : µ(A) > 0} = 0, or with

1/ε ≤ µ(A) <∞ if sup{µ(A) : µ(A) <∞} =∞, such that the following conditions hold:

(6)
∫
A
|fi|pidµ ≤ (1− δ − η)R for every i = 1, ...,m;

(7)
(∫

A
|gi|qidµ

)1/qi

≤ (1− δ − η)R for every i = 1, ..., k.

Next, let M1, ...,Mm, N1, ..., Nk be such that:

(8) Mpi
i µ(A) = ηR for every i = 1, ...,m;

(9) Ni(µ(A))1/qi = ηR for every i = 1, ..., k.

Now, let us define f̃1, ..., f̃m, g̃1, ..., g̃k, l̃1, ..., l̃j by formulas:

f̃i(x) =

 Mi, x ∈ A;

fi(x), x /∈ A,
g̃i(x) =

 Ni, x ∈ A;

gi(x), x /∈ A,
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l̃i(x) =

 li(x) + (1− δ)R, if li(x) ≥ 0;

li(x)− (1− δ)R, if li(x) < 0.

Using (6), (7), (8) and (9) we obtain:

d(f̃i, fi) =
∫
A
|Mi − fi|pidµ ≤

∫
A
Mpi
i dµ+

∫
A
|fi|pidµ ≤

≤ ηR+ (1− δ − η)R = R− δR,

||g̃i − gi||qi =
(∫

A
|Ni − gi|qidµ

)1/qi

≤
(∫

A
N qi
i dµ

)1/qi

+
(∫

A
|gi|qidµ

)1/qi

≤

≤ ηR+ (1− δ − η)R = R− δR,

and

||l̃i − li||∞ = (1− δ)R.

HenceB((f̃1, ..., f̃m, g̃1, ..., g̃k, l̃1, ..., l̃j), δR) ⊂ B((f1, ..., fm, g1, ..., gk, l1, ..., lj), R). It is enough

to show that B((f̃1, ..., f̃m, g̃1, ..., g̃k, l̃1, ..., l̃j), δR) ∩ Eu = ∅. Let

(h1, ..., hm, s1, ..., sk, w1, ..., wj) ∈ B((f̃1, ..., f̃m, g̃1, ..., g̃k, l̃1, ..., l̃j), δR).

Clearly, since ||l̃i||∞ ≥ (1− δ)R, for µ-almost every x ∈ A, we have

(10) |wi(x)| ≥ R(1− 2δ).

Assume now that r <∞. For any i = 1, ...,m, we have

δR ≥
∫
A
|hi − f̃i|pidµ =

∫
A
|hi −Mi|pidµ = Mpi

i

∫
A

∣∣∣∣ hiMi
− 1
∣∣∣∣pi

dµ.

Using (1) and (8) we obtain∫
A

∣∣∣∣ hiMi
− 1
∣∣∣∣pi

dµ ≤ δR

Mpi
i

=
δ

η
µ(A) ≤ 1

m+ k + ε
µ(A)(1− c)pi .

Similarly for any i = 1, ..., k,

(δR)qi ≥
∫
A
|si − g̃i|qidµ = N qi

i

∫
A

∣∣∣∣ siNi
− 1
∣∣∣∣qi dµ,

and using (2) and (9) we have∫
A

∣∣∣∣ siNi
− 1
∣∣∣∣qi dµ ≤ (δ RNi

)qi
=
(
δ

η

)qi
µ(A) ≤ 1

m+ k + ε
µ(A)(1− c)qi .

By (3),(4), (8), (9), (10) and Lemma 4 used for ci = c, we obtain the following∫
X
|h1 · ... · hm · s1 · ... · sk · w1 · ... · wj |rdµ ≥ (R(1− 2δ))rj

∫
A
|h1 · ... · hm · s1 · ... · sk|rdµ =

= (R(1− 2δ))rjM r
1 · ... ·M r

m ·N r
1 · ... ·N r

k

∫
A

∣∣∣∣ h1

M1
· ... · hm

Mm
· s1

N1
· ... · sk

Nk

∣∣∣∣r dµ ≥
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≥ (R(1− 2δ))rjM r
1 · ... ·M r

m ·N r
1 · ... ·N r

k · c(m+k)r

(
µ(A)− (m+ k)

1
m+ k + ε

µ(A)
)

=

= (R(1− 2δ))rjM r
1 · ... ·M r

m ·N r
1 · ... ·N r

k · c(m+k)r ε

m+ k + ε
µ(A) =

= (R(1− 2δ))rj [Mp1
1 µ(A)]

r
p1 · ... · [Mpm

m µ(A)]
r

pm ·
[
N1µ(A)

1
q1

]r
· ... ·

[
Nkµ(A)

1
qk

]r
· c(m+k)r·

· (µ(A))r
(

1
r
− 1

p1
−...− 1

pm
− 1

q1
−...− 1

qk

)
· ε

m+ k + ε
=

= (R(1− 2δ))rj (ηR)
r

p1 · ... · (ηR)
r

pm · (ηR)r · ... · (ηR)r · c(m+k)r·

· (µ(A))r
(

1
r
− 1

p1
−...− 1

pm
− 1

q1
−...− 1

qk

)
· ε

m+ k + ε
=

= (R(1−2δ))rj (ηR)kr+r
(

1
p1

+...+ 1
pm

)
·c(m+k)r·(µ(A))r

(
1
r
− 1

p1
−...− 1

pm
− 1

q1
−...− 1

qk

)
· ε

m+ k + ε
> ur.

For the last inequality, observe that if 1
p1

+ ...+ 1
pm

+ 1
q1

+ ...+ 1
qk
> 1

r , then by hypothesis, we

infer that µ(A) ≤ ε ≤ β, so we may use (3) with β′ = µ(A). If 1
p1

+ ...+ 1
pm

+ 1
q1

+ ...+ 1
qk
< 1

r ,

then 1
µ(A) ≤ ε ≤ β, and we may use (4) with β′ = 1

µ(A) . Hence

||h1 · ... · hm · s1 · ... · sk · w1 · ... · wj ||r > u.

Assume now that r =∞. As was mentioned, this case is possible only if

inf{µ(A) : µ(A) > 0} = 0. For any i = 1, ...,m, we define:

A1
i = {x ∈ A : hi(x) ≥ cMi}, A2

i = A \A1
i ,

and for any i = 1, ..., k, we define

B1
i = {x ∈ A : si(x) ≥ cNi} and B2

i = A \B1
i .

Then

δR >

∫
A
|hi −Mi|pidµ ≥

∫
A2

i

|hi −Mi|pidµ ≥Mpi
i (1− c)piµ(A2

i ).

Hence by (1) and (8), we have

µ(A2
i ) <

δR

Mpi
i (1− c)pi

=
δ

η

1
(1− c)pi

µ(A) ≤ 1
m+ k

µ(A).

Then µ(A1
i ) > (1 − 1

m+k )µ(A) for each i = 1, ...,m. The same estimations (by (2) and (9))

hold for si:

(δR)qi >
∫
A
|si −Ni|qidµ ≥

∫
B2

i

|si −Ni|qidµ ≥ N qi
i (1− c)qiµ(B2

i ).

Then

µ(B2
i ) <

(
δR

Ni(1− c)

)qi
≤
(

δ

η(1− c)

)qi
µ(A) ≤ 1

m+ k
µ(A).
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Hence µ(B1
i ) > (1 − 1

m+k )µ(A) for each i = 1, ..., k. Now by Lemma 5 we obtain that

µ(A1
1∩ ...∩A1

m∩B1
1 ∩ ...∩B1

k) > 0. Also, for µ-almost every x ∈ A1
1∩ ...∩A1

m∩B1
1 ∩ ...∩B1

k,

using (8),(9),(10) and (5) we have

|h1(x)·...·hm(x)·s1(x)·...·sk(x)·w1(x)·...·wj(x)| ≥ (R(1−2δ))jcm+kM1 ·...·Mm ·N1 ·...·Nk =

= (R(1− 2δ))jcm+k(ηR)
1

p1
+...+ 1

pm (ηR)k(µ(A))−
(

1
p1

+...+ 1
pm

+ 1
q1

+...+ 1
qk

)
> u,

and hence

||h1 · ... · hm · s1 · ... · sk · w1 · ... · wj ||r > u.

This ends the proof. �

Lemma 7. Assume that

inf{µ(A) : µ(A) > 0} > 0.

Then:

(i) for every r ∈ (1,∞), L1 ⊂ Lr;

(ii) for every p > 0, Lp ⊂ L∞.

The proof of Lemma 7 is known (see, e.g. [F, 224X(e)]).

Proposition 8. Let p1, ..., pn, r ∈ (0,∞]. If one of the following conditions holds:

(i) sup{µ(A) : µ(A) <∞} <∞ and 0 < 1
p1

+ ...+ 1
pn
< 1

r ;

(ii) inf{µ(A) : µ(A) > 0} > 0 and 1
p1

+ ...+ 1
pn
> 1

r ,

then E
(p1,...,pn)
r = Lp1 × ...× Lpn.

Proof. Assume (i). Then r is finite and at least one pi <∞.

Let M = sup{µ(A) : µ(A) < ∞}. For any k ∈ N, let Dk be a measurable set with

M − 1/k ≤ µ(Dk) ≤ M . Set D =
⋃∞
k=1Dk. Since µ(

⋃k
s=1Ds) ≤ M for any k, then

µ(D) = M and for a measurable F ⊂ X \ D we have µ(F ) = 0 or µ(F ) = ∞. Hence if

p <∞ and f ∈ Lp, then µ({x ∈ X \D : f(x) 6= 0}) = 0.

Assume that for some 1 ≤ m ≤ n, we have p1, ..., pm < ∞ and pm+1, ..., pn are equal

to ∞. Let M > 0 be such that |fi| ≤ M µ-a.e. on X for i = m + 1, ..., n, and set

h = max{|f1|p1 , ..., |fm|pm}. Then h ∈ L1. Since f1 ∈ Lp1 and p1 <∞, we have that

µ({x ∈ X \D : f1(x) · ... · fn(x) 6= 0}) = 0.
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Hence ∫
X
|f1 · ... · fn|rdµ =

∫
D
|f1 · ... · fn|rdµ ≤Mn−m

∫
D
|f1 · ... · fm|rdµ ≤

≤Mn−m
∫
D
h
r
(

1
p1

+...+ 1
pm

)
dµ.

We only have to observe that
∫
D h

r
(

1
p1

+...+ 1
pm

)
dµ < ∞, but this follows from the fact that

µ(D) <∞ and r
(

1
p1

+ ...+ 1
pm

)
< 1.

Now assume (ii). We have to consider two cases:

Case 1. r < ∞. Then at least one of p1, ..., pn is finite. Assume again, that for some

1 ≤ m ≤ n, we have p1, ..., pm <∞ and pm+1 = ... = pn =∞. Let (f1, ..., fn) ∈ Lp1×...×Lpn .

Set h = max{|f1|p1 , ..., |fm|pm}. Then h ∈ L1. Let M > 0 be such that |fi| ≤ M µ-a.e. on

X for all i = m+ 1, ..., n. Then by Lemma 7, we obtain∫
X
|f1 · ... · fn|r dµ ≤Mn−m

∫
X
h
r
(

1
p1

+...+ 1
pn

)
dµ <∞,

since r
(

1
p1

+ ...+ 1
pn

)
> 1.

Case 2. r =∞. By Case 1, we obtain that for r′ <∞ with

1
r′
<

1
p1

+ ...+
1
pn
,

if (f1, ..., fn) ∈ Lp1×...×Lpn , then f1·...·fn ∈ Lr
′
. Hence by Lemma 7, we have ||f1·...·fn||∞ <

∞. �

Note that Proposition 8 is not valid if each pi is infinite. Indeed, if we consider the

following measure

µ(A) = 0 if A = ∅ and µ(A) =∞ if A 6= ∅,

and we set f = g = 1, then (f, g) ∈ L∞ × L∞, but (f, g) /∈ E(∞,∞)
r .

Now we can summarize our results in the two following theorems. We write c instead of

c(p1, ..., pn), where c(p1, ..., pn) was defined before the statement of Theorem 6.

Theorem 9. Let (X,Σ, µ) be a measure space. The following conditions are equivalent:

(i) for any n ∈ N and p1, ..., pn, r > 0 such that 1
p1

+ ... + 1
pn

> 1
r , the set E(p1,...,pn)

r is

σ-c-lower porous;

(ii) for any n ∈ N and p1, ..., pn, r > 0 such that 1
p1

+ ... + 1
pn

> 1
r , the set E(p1,...,pn)

r is

not equal to Lp1 × ...× Lpn;
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(iii) there are n ∈ N and p1, ..., pn, r > 0 such that 1
p1

+ ...+ 1
pn
> 1

r and the set E(p1,...,pn)
r

is σ-c-lower porous;

(iv) there are n ∈ N and p1, ..., pn, r > 0 such that 1
p1

+ ...+ 1
pn
> 1

r and the set E(p1,...,pn)
r

is not equal to Lp1 × ...× Lpn;

(v) inf{µ(A) : µ(A) > 0} = 0.

Proof. The following implications are trivial: (i)⇒(ii), (i)⇒(iii), (ii)⇒(iv) and (iii)⇒(iv).

Implication (iv)⇒(v) follows from Proposition 8. Finally, (v)⇒(i) follows from Theorem

6. �

Theorem 10. Let (X,Σ, µ) be a measure space. The following conditions are equivalent:

(i) for any n ∈ N and p1, ..., pn, r > 0 such that 0 < 1
p1

+ ...+ 1
pn
< 1

r , the set E(p1,...,pn)
r

is σ-c-lower porous;

(ii) for any n ∈ N and p1, ..., pn, r > 0 such that 0 < 1
p1

+ ...+ 1
pn
< 1

r , the set E(p1,...,pn)
r

is not equal to Lp1 × ...× Lpn;

(iii) there are n ∈ N and p1, ..., pn, r > 0 such that 0 < 1
p1

+ ... + 1
pn

< 1
r and the set

E
(p1,...,pn)
r is σ-c-lower porous;

(iv) there are n ∈ N and p1, ..., pn, r > 0 such that 0 < 1
p1

+ ... + 1
pn

< 1
r and the set

E
(p1,...,pn)
r is not equal to Lp1 × ...× Lpn;

(v) sup{µ(A) : µ(A) <∞} =∞.

Proof. The following implications are trivial: (i)⇒(ii), (i)⇒(iii), (ii)⇒(iv) and (iii)⇒(iv).

Implication (iv)⇒(v) follows from Proposition 8. Finally, (v)⇒(i) follows from Theorem

6. �
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