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Abstract. We prove that density preserving homeomorphisms form a ΠΠΠ1
1–complete subset

in a Polish space H of all increasing autohomeomorphisms of unit interval.

In descriptive set theory the following phenomenon is known – sets with a simple de-

scription can have extremely high complexity, for example they can be ΠΠΠ1
1–complete. Many

classical examples of such sets can be found in the Kechris monograph [K]. They appear

naturally in topology, in the Banach spaces theory, the theory of real functions, and in other

branches of mathematics.

We consider the set of all density preserving homeomorphisms of the unit interval. Density

preserving homeomorphisms play an important role in real analysis. First time they appear

in Bruckner’s paper [B] where the author studied questions related to changes of variable

with respect to approximately continuous functions. Some structural properties of density

preserving homeomorphisms were proved in [N]; in this paper Niewiarowski considered also

density preserving homeomorphisms on the real plane. Ostaszewski in [O] investigated con-

nections between homeomorphisms preserving density point and D-continuous functions, i.e.

continuous mappings with the domain and range furnished with the density topology. The

Baire category analogs of density preserving homeomorphisms, namely I-density preserving

homeomorphisms, were considered in [CLO].

In this note we prove that the set of all density preserving homeomorphisms of the unit

interval is ΠΠΠ1
1–complete. Descriptive properties of other classes of homeomorphisms of the

unit interval were investigated in [G].

The paper is organized as follows. In Section 1 we give basic definitions and facts. In

Section 2 we present the main theorem which specifies descriptive set theoretical complexity

of density preserving homeomorphisms.
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1. background information

We use standard set–theoretic notation. For the descriptive set–theoretical background

we refer the reader to [K]. By H ⊂ C[0, 1] we denote the set of all increasing autohomeo-

morphisms of [0, 1]. It is easy to see that H is a Gδ subset of C[0, 1] and hence it is a Polish

space.

Let µ be Lebesgue measure on R. For a measurable set E ⊂ R and a point x ∈ R, by

d+(x,E) we denote the right-hand Lebesgue density of the set E at x, i.e. the number

d+(x,E) = limh→0+
µ([x,x+h]∩E)

h , provided this limit exists. Analogously we define d−(x,E).

Finally by d(x,E) we denote the density of E at x, i.e. the limit

d(x,E) = lim
h→0+

µ([x− h, x+ h] ∩ E)
2h

.

If d(x,E) = 1, then we say that x is a density point of E. If d±(x,E) = 1, then we say that

x is a one-sided density point of E.

A homeomorphism h ∈ H preserves density at x ∈ [0, 1], provided, for every measurable

set S, h(x) is a density point of the set h(S) whenever x is a density point of S. If h ∈ H

preserves density at every point of [0, 1], then we say that h preserves density points. The

set of all density preserving homeomorphisms in H is denoted by DPH.

To characterize density preserving homeomorphisms we need the notion of an interval set.

A set S is called an interval set at a point x if there exist sequences (xn) and (yn) such

that xn → x and y1 < x1 < y2 < x2 < ... < x or x1 > y1 > x2 > y2 > ... > x such that

S =
⋃
n∈N[yn, xn].

It can be easily seen that if S =
⋃
n∈N[yn, xn] and x1 > y1 > x2 > y2 > ... > x, then

d+(x, S) = 1 if and only if
Σ∞k=n+1(xk − yk)

yn − x
→ 1

and if S =
⋃
n∈N[yn, xn] and y1 < x1 < y2 < x2 < ... < x, then

d−(x, S) = 1 if and only if
Σ∞k=n+1(xk − yk)

x− xn
→ 1.

In the sequel we will need the following facts dealing with density preserving homeomor-

phisms which are taken from the paper [B].

Theorem 1. If h is a homeomorphism of [0, 1] onto itself which preserves density points,

then h is absolutely continuous.
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Theorem 2. Let h be an absolutely continuous homeomorphism of [0, 1] onto itself. A

necessary and sufficient condition for h to preserve density points is that h preserves one-

sided density points of every interval set.

Theorem 3. If h is a continuously differentiable homeomorphism of [0, 1] onto itself and

the derivative h′ never vanishes, then h preserves density points.

Let X be a Polish space. A subset A of X is called analytic if it is the projection of a

Borel subset B of X × X. A subset C of X is called coanalytic if X \ C is analytic. The

pointclasses of analytic and coanalytic sets are denoted by ΣΣΣ1
1 and ΠΠΠ1

1, respectively. A set

C ⊂ X is called ΠΠΠ1
1–hard if C for every zero–dimensional Polish space Y and every coanalytic

set B ⊂ Y there is a continuous function f : Y → X such that f−1(C) = B. A set is called

ΠΠΠ1
1–complete if it is ΠΠΠ1

1–hard and coanalytic.

Let A be any set and let N stand for the set of all nonnegative integers. By A<N we denote

the set of all finite sequences of elements from A. For a sequence s = (s(0), s(1), ..., s(k−1)) ∈

A<N and m ∈ A let |s| = k be the length of s, and let ŝ m = (s(0), s(1), ..., s(k−1),m) denote

the concatenation of a s and m; in the similar way we define the concatenation of two finite

sequences. For a sequence α ∈ AN and n ∈ N, let α|n = (α(0), α(1), ..., α(n − 1)) ∈ A<N.

Similarly for s ∈ A<N and n ≤ |s|, let s|n = (s(0), s(1), ..., s(n − 1)) (additionally s|0 = ∅,

where ∅ is the empty sequence). A set T ⊂ A<N is called a tree if for every s ∈ T and every

n ≤ |s| we have s|n ∈ T , in particular each tree contains the empty sequence ∅. We will use

∅ to denote the empty set and the empty sequence, but it will never lead to confusion. By

PTr2 we denote the set of all pruned trees on {0, 1} (a tree T on A is pruned if for every s ∈ T

there is m ∈ A with ŝ m ∈ T ). Let WF ∗2 = {T ∈ PTr2 : [T ] ∩N = ∅}, IF ∗2 = PTr2 \WF ∗2 ,

where N = {α ∈ {0, 1}N : ∃∞n α(n) = 1} ( ∃∞n is a shortcut for ”infinitely many n” and ∀∞n
is a shortcut for ”for all but finitely many n”). It is well known (cf. [K]) that WF ∗2 is ΠΠΠ1

1–

complete.

Let A be subset of a Polish space X and let C,D be disjoint subsets of a Polish space Y .

Let A ≤W (C,D) assert that there is a continuous map f : X → Y with f−1(C) = A and

f−1(D) = X\A. Clearly, if A is ΠΠΠ1
1–complete and A ≤W (C,D), then C is ΠΠΠ1

1–hard.

2. density preserving homeomorphisms

Fix two decreasing sequences (αn) and (βn) of positive real numbers tending to 0 with

α1 < 1/4 and βn/αn → 0.
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Figure 1. Graph of fT1 .

We define Cantor schemes of closed intervals {Is : s ∈ {0, 1}<N}, {ILs : s ∈ {0, 1}<N\{∅}},

{IRs : s ∈ {0, 1}<N \ {∅}} by recursion with respect to length n = |s| of s as follows:

(i) I∅ = [0, 1];

(ii) Let Is = [as, bs]. Then Isˆ0 and Isˆ1 have the length 1
2αn+1|Is| and they have the

common centers with the left and the right halves of Is, respectively;

(iii) Let Is = [as, bs]. Then ILs = [cs, as] and IRs = [bs, ds] are such that |ILs| = |IRs| =

αn|Is|.

Note that
⋃
γ∈{0,1}N

⋂
n∈N Iγ|n =

⋂∞
n=1

⋃
|s|=n Is is a perfect Lebesgue null subset of [0, 1].

Now, for every T ∈ PTr2 we will define a sequence of continuous functions (fTn ). For this

purpose fix T ∈ PTr2. Let fT1 be a continuous function with

fT1 (0) = fT1 (c(0)) = fT1 (d(0)) = fT1 (c(1)) = fT1 (d(1)) = fT1 (1) = 1,

fT1 (x) = β1 for x ∈ I(0) ∪ I(1),

and fT1 is a piece-wise linear elsewhere on [0, 1]. Suppose that we have already defined

fT1 ,..., f
T
n . To obtain fTn+1 we modify fTn on each interval Is with s ∈ T , |s| = n and
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s(n− 1) = 1. On Is = [as, bs] we define a continuous function fTn+1 with

fTn+1(as) = fTn+1(csˆ0) = fTn+1(dsˆ0) = fTn+1(csˆ1) = fTn+1(dsˆ1) = fTn+1(bs) = fTn (bs),

fTn+1(x) = βn+1f
T
n (bs) for x ∈ Isˆ0 ∪ Isˆ1,

and fTn+1 is piece-wise linear elsewhere on Is. On the rest of [0, 1], a function fTn+1 remains un-

changed, i.e. fTn+1(x) = fTn (x) for every point x ∈ [0, 1] \
⋃
{Is : s ∈ T, |s| = n, s(n− 1) = 1}.

Since for every x ∈ [0, 1], the sequence (fTn (x)) is nonincreasing, the sequence (fTn ) is point-

wise and monotonically convergent to some function fT .

Now if f : [0, 1] → R is Lebesgue integrable, then ||f ||L1 stands for
∫ 1

0 |f(t)|dt. Recall that

N = {γ ∈ {0, 1}N : γ has infinitely many 1′s}.

Lemma 4. The following statements hold

(i) ∀x
(
fT (x) = 0 if and only if x ∈

⋃
γ∈[T ]∩N

⋂
Iγ|n

)
;

(ii) fT is Lebesgue integrable;

(iii) limn→∞ ||fTn − fT ||L1 = 0 uniformly on PTr2;

(iv) The mapping T → ||fT ||L1 is continuous,

Proof. The parts (i) and (ii) follow directly from the construction.

Ad(iii). If T ∈ PTr2 and n ∈ N, then fT and fTn can differ only on the set
⋃
|s|=n Is. Since

limn→∞
∑
|s|=n |Is| = 0, the result follows.

Ad(iv). If S, T ∈ PTr2 are such that {s ∈ S : |s| < n} = {s ∈ T : |s| < n}, then fT and fS

can differ only on the set
⋃
|s|=n Is. Thus we get (iv). �

Now, for every T ∈ PTr2 and x ∈ [0, 1], we put

gT (x) =
1

||fT ||L1

∫ x

0
fT (t)dt.

By Lemma 4(ii), gT is absolutely continuous. Moreover, by Lemma 4(i), gT is strictly

increasing, and hence gT ∈ H.

Lemma 5. The mapping T → gT is continuous;

Proof. For every S ∈ PTr2, n ∈ N and x ∈ [0, 1], we define

gTn (x) =
1

||fT ||L1

∫ x

0
fTn (t)dt.
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Fix any ε > 0 and T ∈ PTr2. By Lemma 4(iii) and since there exists A > 0 such that

||fS ||L1 ≥ A for every S ∈ PTr2, we have that there exists n0 ∈ N such that for every

n ≥ n0 and every S ∈ PTr2,

||gS − gSn ||sup < ε/3

(|| · ||sup stands for supremum norm). Moreover, by Lemma 4(iv), the mapping T → 1
||fT ||L1

is continuous and hence there exists n1 ∈ N such that for every S ∈ PTr2 and n ≥ n1, if

T ∩ {s : |s| < n} = S ∩ {s : |s| < n}, then∣∣∣∣ 1
||fT ||L1

− 1
||fS ||L1

∣∣∣∣ < ε

3
.

Set n′ = max{n0, n1}+1. Then for every S ∈ PTr2 with T ∩{s : |s| < n′} = S∩{s : |s| < n′}

we have that fTn′ = fSn′ , and therefore

||gT − gS ||sup ≤ ||gT − gTn′ ||sup + ||gTn′ − gSn′ ||sup + ||gSn′ − gS ||sup

≤ ε

3
+ ||fTn′ ||L1

∣∣∣∣ 1
||fT ||L1

− 1
||fS ||L1

∣∣∣∣+
ε

3
< ε.

�

Theorem 6. WF ∗2 ≤W (DPH,H\DPH) and hence DPH is ΠΠΠ1
1–hard.

Proof. It is enough to prove that for every T ∈ PTr2,

T ∈WF ∗2 if and only if gT ∈ DPH.

Let T ∈ PTr2 and x ∈ [0, 1]. If x /∈
⋃
γ∈{0,1}N

⋂
n∈N Iγ|n or x ∈

⋃
γ∈{0,1}N\[T ]

⋂
n∈N Iγ|n,

the construction of the sequence (fTn ) stops at a some neighborhood U of x. Hence gT is

continuously differentiable in U and (gT )′(y) = fT (y)
||fT ||L1

= fTn (y)
||fT ||L1

> 0 for every y ∈ U and

some n ∈ N. By Theorem 3, gT|U preserves density points. Since x ∈ U and U is open, gT

preserves density at x.

Now, assume that x ∈
⋃
γ∈([T ]\N)

⋂
n∈N Iγ|n. We will show that gT preserves density at x

for every interval set. Let γ ∈ ([T ]\N) be such that x ∈
⋂
n∈N Iγ|n and let n0 ∈ N be such

that γ(n−1) = 0 for every n ≥ n0. It is easy to see that there exists β > 0 such that fT ≡ β

on the set

Iγ|n0
\
⋃
n≥n0

(
IL(γ|n)ˆ1ˆ0 ∪ I(γ|n)ˆ1ˆ0 ∪ IR(γ|n)ˆ1ˆ0 ∪ IL(γ|n)ˆ1ˆ1 ∪ I(γ|n)ˆ1ˆ1 ∪ IR(γ|n)ˆ1ˆ1

)
.

Now let M =
⋃
n∈N[yn, xn] be any interval set at x. Consider two cases:

Case 1. y1 < x1 < x2 < y2 < ... < x and d−(x,M) = 1. Then fT is constant on [aγ|n0
, x),
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which easily implies d−(gT (x), gT (M)) = 1.

Case 2. x1 > y1 > x2 > y2 > ... > x and d+(x,M) = 1. Since gT is increasing, we only have

to prove that

lim
n→∞

∑
k≥n+1(gT (xk)− gT (yk))

gT (yn)− gT (x)
= 1.

For every n ∈ N, let kn be such that yn ∈ Iγ|kn\Iγ|(kn+1). Then there exists n1 ∈ N such

that kn ≥ n0 for every n ≥ n1. Fix n ≥ n1. Then fT equals β on the set

Iγ|kn\
⋃
i=0,1

⋃
j=0,1

(
IL(γ|kn)ˆiˆj ∪ I(γ|kn)ˆiˆj ∪ IR(γ|kn)ˆiˆj

)
.

Hence
∞∑

k=n+1

(gT (xk)− gT (yk)) ≥ β

( ∞∑
k=n+1

(xk − yk)− 4|I(γ|kn)ˆ0ˆ0| − 8|IL(γ|kn)ˆ0ˆ0|

)
≥

≥ β

( ∞∑
k=n+1

(xk − yk)− 12|I(γ|kn)ˆ0ˆ0|

)
≥ β

( ∞∑
k=n+1

(xk − yk)− 6αkn+2|I(γ|kn)ˆ0|

)
and

gT (yn)− gT (x) ≤ β (yn − x) .

We also have that

yn − x ≥
(
bγ|(kn+1) − bγ|(kn+2)

)
≥ 1

2
|Iγ|(kn+1)|

Therefore we obtain∑∞
k=n+1(gT (xk)− gT (yk))

gT (yn)− gT (x)
≥
∑∞

k=n+1(xk − yk)− 6αkn+2|I(γ|kn)ˆ0|
yn − x

=

=
∑∞

k=n+1(xk − yk)
(yn − x)

− 6
αkn+2|I(γ|kn)ˆ0|

(yn − x)
≥

≥
∑

k≥n+1(xk − yk)
(yn − x)

− 6
αkn+2|I(γ|kn)ˆ0|

1
2(|I(γ|kn)ˆ0|)

.

Since kn →∞, if n→∞, then

lim
n→∞

∑
k≥n+1(gT (xk)− gT (yk))

gT (yn)− gT (x)
= 1.

This shows that if T ∈ WF ∗2 , then gT preserves density points for interval sets, hence and

by Theorem 2, gT preserves density points.

Now, let T ∈ IF ∗2 and let γ ∈ [T ] be a sequence with infinitely many 1’s. Define sequences

(xk) and (yk) in the following way: xk = bγ|k i yk = dγ|(k+1) for k = 1, 2, ..., and let x be the

unique element of
⋂
n∈N Iγ|n. Clearly, x1 > y1 > x2 > y2 > ...x and xn → x. It is enough to

show that
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(i) x is a right-sided density point of
⋃
k∈N[yk, xk];

(ii) gT (x) is not a right-sided density point of
⋃
k∈N[gT (yk), gT (xk)].

To prove (i) it is enough to show that

xk − yk
yk−1 − x

→ 1.

Let k ≥ 2. If γ(k) = 1, then

xk − yk = bγ|k − d(γ|k)ˆ1 =
1
4
(
|Iγ|k| − 2|Iγ|(k+1)| − 4|ILγ|(k+1)|

)
=

=
1
4

(
|Iγ|k| − 2

1
2
αk+1|Iγ|k| − 4

1
2
α2
k+1|Iγ|k|

)
=

1
4
|Iγ|k|

(
1− αk+1 − 2α2

k+1

)
and

yk−1 − x ≤ yk−1 − a(γ|k)ˆ1 = dγ|k − a(γ|k)ˆ1 =

= dγ|k − bγ|k + bγ|k − d(γ|k)ˆ1 + d(γ|k)ˆ1 − b(γ|k)ˆ1 + b(γ|k)ˆ1 − a(γ|k)ˆ1 =

= αk|Iγ|k|+
1
4
|Iγ|k|

(
1− αk+1 − 2α2

k+1

)
+

1
2
α2
k+1|Iγ|k|+

1
2
αk+1|Iγ|k| =

= |Iγ|k|
(
αk +

1
4
αk+1 +

1
4

)
.

Hence
xk − yk
yk−1 − x

≥
|Iγ|k|

(
1
4 −

1
4αk+1 − 1

2α
2
k+1

)
|Iγ|k|

(
1
4 + 1

4αk+1 + αk
) =

1− αk+1 − 2α2
k+1

1 + αk+1 + 4αk
.

If γ(k) = 0, then

xk − yk = bγ|k − d(γ|k)ˆ0 = bγ|k −
aγ|k + bγ|k

2
+
aγ|k + bγ|k

2
− d(γ|k)ˆ0 =

=
1
2
|Iγ|k|+

1
4
|Iγ|k|

(
1− αk+1 − 2α2

k+1

)
=

1
4
|Iγ|k|

(
3− αk+1 − 2α2

k+1

)
and

yk−1 − x ≤ dγ|k − a(γ|k)ˆ0 =

= dγ|k−a(γ|k)ˆ1 +a(γ|k)ˆ1− c(γ|k)ˆ1 + c(γ|k)ˆ1−d(γ|k)ˆ0 +d(γ|k)ˆ0− b(γ|k)ˆ0 + b(γ|k)ˆ0−a(γ|k)ˆ0 =

=
1
4
|Iγ|k| (1 + αk+1 + 4αk)+

1
2
|Iγ|k|α2

k+1+2
1
4
|Iγ|k|

(
1− αk+1 − 2α2

k+1

)
+

1
2
|Iγ|k|α2

k+1+
1
2
|Iγ|k|αk+1 =

1
4
|Iγ|k| (3 + αk+1 + 4αk) .

Hence
xk − yk
yk−1 − x

≥
3− αk+1 − 2α2

k+1

3 + αk+1 + 4αk
.

Since αn → 0, then xk−yk
yk−1−x → 1.
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To prove (ii) fix an increasing sequence (nk) of natural numbers with γ(nk−1) = 1, k ∈ N,

and let hk = gT (ynk)− gT (x), k = 1, 2, ... Then

µ(
⋃
n∈N[yn, xn] ∩ [gT (x), gT (x) + hk])

hk
=

∑
l≥nk+1

(
gT (xl)− gT (yl)

)
gT (ynk)− gT (x)

.

Moreover, ∑
l≥nk+1

(
gT (xl)− gT (yl)

)
gT (ynk)− gT (x)

+
gT (ynk)− gT (xnk+1)
gT (ynk)− gT (x)

≤ 1,

so it suffices to show that

lim
k→∞

gT (ynk)− gT (xnk+1)
gT (ynk)− gT (x)

→ 1.

Let k ∈ N. We have

gT (ynk)− gT (xnk+1)
gT (ynk)− gT (x)

=
∫ ynk

0 fT (t)dt−
∫ xnk+1

0 fT (t)dt∫ ynk
0 fT (t)dt−

∫ x
0 f

T (t)dt
=

∫ ynk
xnk+1

fT (t)dt∫ ynk
x fT (t)dt

≥

∫ ynk
xnk+1

fT (t)dt∫ ynk
aγ|(nk+1)

fT (t)dt
.

Note that [xnk+1, ynk ] = IRγ|(nk+1) and fT on IRγ|(nk+1) is linear with fT (xnk+1) =

βnk+1f
T (ynk). Note also that [aγ|(nk+1), xnk+1] = Iγ|(nk+1) and fT on Iγ|(nk+1) is less or

equal to fT (xnk+1). Using this we obtain:∫ ynk

aγ|(nk+1)

fT (t)dt =
∫ xnk+1

aγ|(nk+1)

fT (t)dt+
∫ ynk

xnk+1

fT (t)dt ≤

≤ fT (xnk+1)|Iγ|(nk+1)|+
1
2
(
fT (xnk+1) + fT (ynk)

)
|IRγ|(nk+1)| =

= βnk+1f
T (ynk)|Iγ|(nk+1)|+

1
2
(
βnk+1f

T (ynk) + fT (ynk)
)
αnk+1|Iγ|(nk+1)|

and ∫ ynk

xnk+1

fT (t)dt ≥ 1
2
fT (ynk)|IRγ|(nk+1)| =

1
2
fT (ynk)αnk+1|Iγ|(nk+1)|.

Hence for any k ∈ N

gT (ynk)− gT (xnk+1)
gT (ynk)− gT (x)

≥ αnk+1

αnk+1(1 + βnk+1) + 2βnk+1
=

1

1 + βnk+1 + 2 βnk+1

αnk+1

.

Since βnk+1

αnk+1
→ 0, we get

gT (ynk)− gT (xnk+1)
gT (ynk)− gT (x)

→ 1.

�

Corollary 7. DPH is ΠΠΠ1
1–complete.
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Proof. By Theorem 6 it is enough to prove that DPH is coanalytic. As usual c0 is the

Banach space of all sequences tending to 0 with supremum norm. By c+
0 denote the set of

all strictly decreasing sequences from c0, and by c−0 denote the set of all strictly increasing

sequences from c0. Then c+
0 and c−0 , as Gδ subsets of c0, are Polish spaces. By Theorem 1

and Theorem 2 it follows that f ∈ DPH if and only if

∀(an) ∈ c+
0 ∀x ∈ [0, 1)

{
d+

(
x,
⋃
n∈N

[x+ a2n, x+ a2n−1]

)
= 1⇒

⇒ d+

(
f(x), f

(⋃
n∈N

[x+ a2n, x+ a2n−1]

)
= 1

)}
,

∀(an) ∈ c−0 ∀x ∈ (0, 1]

{
d−

(
x,
⋃
n∈N

[x+ a2n−1, x+ a2n]

)
= 1⇒

⇒ d−

(
f(x), f

(⋃
n∈N

[x+ a2n−1, x+ a2n]

)
= 1

)}
,

and f is absolutely continuous.

Note that

d+
(

0,
⋃

[a2n, a2n−1]
)

= 1 ⇐⇒ lim
h→0

λ(
⋃

[a2n, a2n−1] ∩ [0, h])
h

= 1 ⇐⇒

lim
n→∞

∞∑
k=n

a2k+1 − a2k+2

a2n
= 1 ⇐⇒ ∀t ∈ N∃n0∀n ≥ n0

∞∑
k=n

a2k+1 − a2k+2

a2n
> 1− 1

t

⇐⇒ ∀t ∈ N∃n0∀n ≥ n0∀p ∈ N∃m0∀m ≥ m0

m∑
k=n

a2k+1 − a2k+2

a2n
> 1− 1

t
− 1
p
.

From this we obtain that the set {(an) ∈ c+
0 : d+(

⋃
n∈N[a2n, a2n+1], 0) = 1} is Borel. Note

that if f ∈ H then

d+

(
f(x), f

(⋃
n∈N

[x+ a2n, x+ a2n−1]

))
= 1 ⇐⇒

∀t ∈ N∃n0∀n ≥ n0∀p ∈ N∃m0∀m ≥ m0

m∑
k=n

f(x+ a2k+1)− f(x+ a2k+2)
f(x+ a2n)− f(x)

> 1− 1
t
− 1
p
.

This shows that the set{
(f, (an), x) ∈ H× c+

0 × [0, 1) : d+

(
f(x),

⋃
n∈N

[f(x+ a2n), f(x+ a2n+1)]

)
= 1

}
is Borel. Since {f ∈ H : f is absolutely continuous} is Borel subset of H (this is an easy

observation), then we obtain that DPH is coanalytic subset of H. The result follows. �
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It would be interesting to verify whether the same fact holds for I-density preserving

homeomorphisms in H.
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