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Abstract. Let
∑∞
n=1 xn be a conditionally convergent series in a Banach space and let τ be a permutation

of natural numbers. We study the set LIM(
∑∞
n=1 xτ(n)) of all limit points of a sequence (

∑p
n=1 xτ(n))

∞
p=1 of

partial sums of a rearranged series
∑∞
n=1 xτ(n). We give full characterization of limit sets in finite dimensional

spaces. Namely, a limit set in Rm is either compact and connected or it is closed and all its connected

components are unbounded. On the other hand each set of one of these types is a limit set of some rearranged

conditionally convergent series. Moreover, this characterization does not hold in infinite dimensional spaces.

We show that if
∑∞
n=1 xn has the Rearrangement Property and A is a closed subset of the closure of

the
∑∞
n=1 xn sum range and it is ε-chainable for every ε > 0, then there is a permutation τ such that

A = LIM(
∑∞
n=1 xτ(n)). As a byproduct of this observation we obtain that series having the Rearrangement

Property have closed sum ranges.

1. Introduction

Let
∑∞
n=1 xn be a conditionally convergent series on the real line R. For any a < b one can find a permutation

σ ∈ S∞ of natural numbers such that the sequence
(∑k

n=1 xσ(n)

)∞
k=1

of partial sums of the rearrangement∑∞
n=1 xσ(n) oscillates between a and b. Consequently, a and b are limit points of a sequence of rearranged

partial sums
(∑k

n=1 xσ(n)

)∞
k=1

. Since |xσ(n)| tends to zero, the whole interval [a, b] consists of limit points of(∑k
n=1 xσ(n)

)∞
k=1

. This simple observation shows that the set of all limit points of a sequence of rearranged

partial sums
(∑k

n=1 xσ(n)

)∞
k=1

is closed and connected, and for any close connected subset I of real line and

any conditionally convergent series
∑∞
n=1 xn one can find a rearrangement

∑∞
n=1 xσ(n) such that the set of all

limit points of its partial sums equals I. If the rearranged series
∑∞
n=1 xσ(n) converges to ∞ or to −∞, then

the set of all its limit points is empty.

The situation becomes more complicated if limit sets of rearrangements of conditionally convergent series are

considered in multidimensional Euclidean spaces. One could expect that such limit sets would be connected or

even arcwise connected. It turns out that this is not the case. However, some result concerning connectedness

can be proved for multidimensional spaces, see Theorem 3.5.

Now, let
∑∞
n=1 xn be a conditionally convergent series in the Euclidean space Rn. By Steinitz Theorem

the sum range SR(
∑∞
n=1 xn) = {

∑∞
n=1 xσ(n) : σ ∈ S∞} of

∑∞
n=1 xn, where S∞ is a symmetric group of all

permutation of natural numbers, is an affine subspace of Rn. Denote by LIM(
∑∞
n=1 xσ(n)) the set of all limit

points of a sequence of rearranged partial sums
(∑k

n=1 xσ(n)

)∞
k=1

. Such limit sets were studied by Victor Klee

in [3], where the author claimed that if A is a limit set LIM(
∑∞
n=1 xσ(n)), then for every ε > 0 an ε-shell

A(ε) = {x : ‖x− y‖ < ε for some y ∈ A} of A is connected. Our Example 2.2 shows that this claim is not true.

Note that connectedness of A(ε) means that any two points a, b ∈ A can be joined by a path x0, x1, . . . , xk ∈ A
such that x0 = a, xk = b and ‖xi − xi−1‖ < ε, and if A has this property, then we say that A is ε-chainable.

Klee also proved that if A ⊆ SR(
∑∞
n=1 xn) is closed and ε-chainable for every ε > 0, then there is σ ∈ S∞ such

that A = LIM(
∑∞
n=1 xσ(n)).
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In this article we complete the Klee’s result by giving the full characterization of limit sets LIM(
∑∞
n=1 xσ(n))

in Euclidean spaces. Namely we prove the following dichotomy (Theorem 3.5): the limit set is either compact

and connected or any its component is unbounded; moreover, the closure of the limit set in the one-point

compactification of Rm is connected. The proof uses the fact that underlying space has a finite dimension.

Moreover, this dichotomy does not hold for all Banach spaces. More precisely, we construct an example of a

conditionally convergent series in c0 such that the limit set of some of its rearrangement consists of two points.

Theorem 3.5 cannot be reversed in the sense that there is an unbounded, closed set in the one-dimensional

Euclidean space R whose every component is unbounded but it cannot be a limit set. Namely, consider the

union X := (−∞,−1] ∪ [1,∞) of two unbounded connected sets. As we have mentioned in the beginning, any

limit set on the real line must be connected, and therefore X is not a limit set. However, Theorem 3.5 can be

reversed in higher dimensions. This means that any compact connected set (or even any closed ε-chainable set

for every ε > 0) in Rm, m ≥ 1, and any closed set in Rm, m ≥ 2, whose every component is unbounded are

limit sets of some rearrangement of a conditionally convergent series.

In the last Section we show that if
∑∞
n=1 xn has the Rearrangement Property and A ⊆ SR(

∑∞
n=1 xn) is

closed and ε-chainable for every ε > 0, then there is τ ∈ S∞ such that A = LIM(
∑∞
n=1 xτ(n)). As a byproduct

of this observation we obtain that series having the Rearrangement Property have closed sum ranges.

2. Counterexample for Klee’s claim

As we have mentioned in the Introduction, Victor Klee in [3] claimed that if A = LIM(
∑∞
n=1 xσ(n)), then

its ε-shell A(ε) = {x : ‖x− y‖ < ε for some y ∈ A} is connected for every ε > 0. It is equivalent to saying that

A is ε-chainable for every ε > 0. The author used quite a different notation than the one used by us, but the

gap in his argument can be translated into our language as follows. Klee argued that LIM(
∑∞
n=1 xσ(n)) cannot

intersect two sets X and Y having disjoint ε-shells X(ε) and Y (ε); it is supposed to be ”evident”. However,

the following example shows that this is simply not true.

For natural numbers n < m by [n,m] we denote discrete interval {n, n + 1, n + 2, . . . ,m} and by [n,∞)

we denote the set {n, n + 1, . . . }. Let
∑∞
n=1 yn be a conditionally convergent series and let

∑∞
n=1 xn be its

rearrangement, that is there is σ ∈ S∞ with xn = yσ(n). A partial sums sequence (sn), sn =
∑n
k=1 xk, will be

called a walk. Note that a ∈ LIM(
∑∞
n=1 xn) if for every ε > 0 the walk (sn) hits the ball B(a, ε). If (sn)∞n=1 is

a sequence in Rm, then we call it a walk, if some rearrangement of a series
∑∞
n=1(sn+1 − sn) is convergent.

A sequence (sn) of elements of set X is called an X-walk if

(i) the set {sn : n ∈ N} is dense in X;

(ii) there are positive integers n1, n2, . . . such that sn1+i = sn1−i for i ∈ [1, n1 − 1] and

s∑k
j=1 2nj−1+nk+1−i = s∑k

j=1 2nj−1+nk+1+i

for k > 0 and i ∈ [1, nk+1];

(iii) ‖sn+1 − sn‖ → 0.

Proposition 2.1. Suppose that (sn) is an X-walk. Then there is a conditionally convergent series
∑∞
n=1 xn

and a permutation σ ∈ S∞ such that sn =
∑n
k=1 xσ(k). Moreover, LIM(

∑∞
k=1 xσ(k)) = X.

Proof. Note that s∑k
j=1 2nj−1 = s1 for every k. That means that the X-walk (sn) gets from s1 to sn1

and back,

using the same points, to s2n1−1 = s1, then it walks to s2n1−1+n2 and back to s2n1+2n2−1 = s1, and so on. We

define yn = sn+1− sn. Let p =
∑k
j=1 2nj − 1 +nk+1− i and m =

∑k
j=1 2nj − 1 +nk+1 + i. Then yp = −ym−1.

Thus the series
∑∞
n=1 yn can be rearranged into an alternating series

∑∞
n=1 xn, which by (iii) is convergent.

Since each element of (sn) is in a closed set X, then LIM(
∑∞
k=1 xσ(k)) ⊆ X. The opposite inclusion follows

from (i). �
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Example 2.2. At first we define elements yn of a conditionally convergent series
∑∞
n=1 yn ⊆ R2. The sequence

(yn) will be alternating, that is y2n = −y2n−1 for n ≥ 1. Therefore we will define only the terms yn with an

odd index n.

Step 1. First two odd y′ns are ( 1
2 , 0), ( 1

2 , 0).

Step 2. We define next 1 · 4 + 4 + 1 · 4 odd elements: (0, 1
4 ), . . . , (0, 1

4 ),( 1
4 , 0), . . . , ( 1

4 , 0),(0,− 1
4 ), . . . , (0,− 1

4 ).

Step k+1. In this step we define k · 2k+1 + 2k+1 + k · 2k+1 elements

(0,
1

2k+1
), . . . , (0,

1

2k+1
)︸ ︷︷ ︸

k·2k+1

, (
1

2k+1
, 0), . . . , (

1

2k+1
, 0)︸ ︷︷ ︸

2k+1

, (0,− 1

2k+1
), . . . , (0,− 1

2k+1
)︸ ︷︷ ︸

k·2k+1

.

Since (yn) is alternating and limn→∞ ‖yn‖ = 0, the series
∑∞
n=1 yn is convergent. Now we define our walk,

that is a rearrangement of
∑∞
n=1 yn, as follows. First two x1 and x2 are the elements of (yn) defined in Step 1

with odd indexes, x3, x4 are corresponding elements of (yn) with even indexes. Next 1 · 4 + 4 + 1 · 4 of x′ns are

elements of (yn) defined in Step 2 with odd indexes (in the same order we have defined them above) and the

next 1 · 4 + 4 + 1 · 4 of x′ns are corresponding elements of (yn) with even indexes taken with reversed order, and

so on. On Figure 1 we present a sequence of partial sums given for xn’s defined in the first three steps of the

construction. Note that LIM(
∑∞
n=1 xn) = {0, 1} × [0,∞). Thus the set of limit points of the series

∑∞
n=1 xn

has no connected ε-shell for ε < 1
2 .

Example 2.3. Now we describe a construction in which the limit points of the series are the closure of set

of infinitely many pairwise disjoint half-lines {an : n ∈ N} × [0,∞) where (an) is a sequence of distinct real

numbers. This example is similar to Example 2.2, so we prescribe only the walk (sn). Since in each step of the

construction the walk goes from one point to another and then back through the same path, the steps of the

walk can be rearranged to an alternating series. Since the lengths of the walk’s steps tend to zero, the obtained

series is convergent. We describe the first three steps of the construction:

Step 1. We start the walk at (a1, 0). Then we move to (a2, 0) along the line y = 0 using steps of length not

greater than 1. Then we go back to (a1, 0) via the same path.

Step 2. We go upward to (a1, 1), then along the line y = 1 to (a2, 1), next downward to (a2, 0) and back

upward to (a2, 1), then again along y = 1 to (a3, 1) and downward to (a3, 0) in each part using steps of length

not greater than 1
2 . Finally we go back to (a1, 0) using the same path.

Step 3. In this step first four points (a1, 0), . . . , (a4, 0) are involved, steps are not greater than 1
4 and to move

between vertical lines x = ai we use a horizontal line y = 2, etc.

Clearly LIM(
∑∞
n=1 xn) ⊇ {an : n ∈ N}×[0,∞). Since LIM(

∑∞
n=1 xn) is closed, we obtain LIM(

∑∞
n=1 xn) ⊇

{an : n ∈ N} × [0,∞) = {an : n ∈ N}× [0,∞). To show the inverse inclusion let (u, v) /∈ {an : n ∈ N}× [0,∞).

If v < 0 then (u, v) /∈ LIM(
∑∞
n=1 xn), because our walk is in R2 and has a non-negative second coordinate. If

v ≥ 0 and u /∈ {an : n ∈ N} then infn∈N |u − an| = δ > 0. Fix a natural number m > v + δ. Then the ball

B((u, v), δ) does not contain elements of our walk defined in k-th step of construction for any k ≥ m. Hence

(u, v) /∈ LIM(
∑∞
n=1 xn). Finally LIM(

∑∞
n=1 xn) = {an : n ∈ N} × [0,∞).

Using Example 2.3 we can show that the limit set of a rearrangement of a conditionally convergent series

can have uncountably many unbounded components. Let E = {a1, a2, . . .} be a countable dense subset of

the ternary Cantor set C. By Example 2.3 one can find a conditionally convergent series
∑∞
n=1 xn and a

rearrangement σ such that LIM(
∑∞
n=1 xσ(n)) = {an}∞n=1 × [0,∞) = C × [0,∞). Since the ternary Cantor

set C is totally disconnected, i.e. each its component is a singleton, half-lines {x} × [0,∞), x ∈ C, are the

components of C × [0,∞).
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Figure 1. The first three steps of the construction of the walk (
∑m
n=1 xn)∞m=1 from Example 2.2.

3. Characterization of limit sets LIM(
∑∞
n=1 xσ(n)) in the Euclidean spaces

Let B(0, R) = {v ∈ Rm : ‖v‖ ≤ R} and let S(0, R) = {v ∈ Rm : ‖v‖ = R}. For a topological space X by

K(X) we denote the set of all non-empty compact subsets of X equipped with the Vietoris topology, for details

see for example [4, p. 66]. It is well-known that the compactness (metrizability, separability) of X implies the

compactness (metrizability, separability) of the hyperspace K(X) and that the family of all nonempty compact

connected subsets of X forms a closed subset of K(X).

Lemma 3.1. Let X ⊆ Rm be a closed set and let R > 0. Then

Z :=
⋃
{C : C is a component of X ∩B(0, R) such that C ∩ S(0, R) 6= ∅}

is a compact subset of Rm.

Proof. Let (vn) ⊆ Z. Find components Cn of X ∩ B(0, R) such that Cn ∩ S(0, R) 6= ∅ and vn ∈ Cn. Pick

xn ∈ Cn ∩ S(0, R). Since K(X ∩ B(0, R)) is compact, we may assume that Cn tends to some C, vn → v and

xn → x. Then v, x ∈ C and C is connected. Therefore v and x are in the same component of X ∩ B(0, R)

which has a non-empty intersection with the sphere S(0, R). Thus v ∈ Z, and consequently Z is compact. �



ON THE SET OF LIMIT POINTS 5

Let X ⊆ Rm be a closed set. We define an equivalence relation E on X as follows

xEy ⇐⇒ x and y belong to the same component of X.

By X/E we denote the set of all equivalence classes of E and by q we denote the mapping from X to X/E

assigning to a point x ∈ X the equivalence class [x]E ∈ X/E. On X/E we consider the so-called quotient

topology consisting of those U ⊆ X/E such that q−1(U) is open in X. The set X/E equipped with this

topology is called the quotient space, and q : X → X/E is called the natural quotient mapping. The following

result important for us can be found in [1].

Theorem 3.2. For every compact space X, the quotient space X/E is compact and zero-dimensional.

For X ⊆ Rm and ε > 0 put X(ε) := {y ∈ Rm : ‖x− y‖ ≤ ε for some x ∈ X}. We will called it an ε-shell or

an ε-neighborhood of X.

Lemma 3.3. Let
∑∞
n=1 xn be a conditionally convergent series in Rm and let σ ∈ S∞. Assume that Y is

a nonempty bounded subset of X := LIM(
∑∞
n=1 xσ(n)). If Y (ε) is disjoint with X \ Y for some ε > 0, then

X = Y .

Proof. Note that the closure Z of Y (ε) \ Y (ε/2) is a compact set disjoint with X. Suppose that X \ Y 6=
∅. Consider a set A := {

∑k
n=1 xσ(n) : k ∈ N} ∩ Z of those partial sums of

∑∞
n=1 xσ(n) which meet Z.

Since all elements of the nonempty sets Y and X \ Y are limit points of a rearranged partial sums sequence

{
∑k
n=1 xσ(n)}∞k=1, then the elements of that sequence walk from Y to X \ Y and back infinitely many times.

Since the lengths of steps ‖xσ(n)‖ taken during this walk tend to zero, the set A is infinite. By compactness

of Z we obtain that A has a limit point, which in turn is in Z, but this contradicts the fact that Z ∩X = ∅.
Thus X \ Y = ∅ and consequently X = Y . �

By a(Rm) denote the one-point compactification of Rm, that is to the underlying set Rm we add a point ∞.

Neighborhood base at each x ∈ Rm consists of open ball centered in x and neighborhood base at ∞ consists

of all sets of the form (Rm \ C) ∪ {∞} where C is compact in Rm. For A ⊂ a(Rm) by A
∞

denote the closure

of A in a(Rm).

Lemma 3.4. Let {Ci : i ∈ I} be a family of connected and unbounded subsets of Rm and let C :=
⋃
i∈I Ci.

Then

(1) C
∞

= C ∪ {∞};
(2) C

∞
is connected.

Proof. (1) The set C ∪ {∞} is closed in a(Rm), since (Rm ∪ {∞}) \ (C ∪ {∞}) = Rm \C is open in Rm. Thus

C
∞ ⊆ C ∪ {∞}. Since C is unbounded, then ∞ ∈ C∞, and consequently C ∪ {∞} ⊆ C∞.

(2) Note that C ∪ {∞}
∞

= C ∪ {∞} – it follows from (1) and inclusions C ⊆ C ∪ {∞} ⊆ C ∪ {∞}. It

is enough to show that A := C ∪ {∞} is connected. Suppose to the contrary that there are two nonempty

disjoint open sets U and V with A = (A ∩ U) ∪ (A ∩ V ) and ∞ ∈ U . Put U ′ := U \ {∞}. Then U ′ is open in

Rm. There is a compact set D ⊆ Rm such that (X \D) ∪ {∞} = U . Then X \D = U ′ and V ⊆ D. Since V

is nonempty, there is i ∈ I with V ∩ Ci 6= ∅. But then Ci = (V ∩ Ci) ∪ (U ∩ Ci) and by the connectedness of

Ci we obtain Ci ⊆ V ⊆ D which contradicts the unboundedness of Ci. �

Theorem 3.5. Let
∑∞
n=1 xn be a conditionally convergent series in Rm and let σ ∈ S∞ be a permutation

of indexes. Then the set X = LIM(
∑∞
n=1 xσ(n)) is either compact connected or it is a union (finite, infinite

countable or uncountable) of unbounded closed connected sets; in particular X
∞

is compact and connected.
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Proof. Since X is closed in Rm, X
∞

= X if X is bounded and X
∞

= X ∪ {∞} if X is unbounded. On X
∞

define an equivalence relation E given by the decomposition of X
∞

into components.

Assume that C is a bounded component of X. There is R > 0 such that C ⊆ B(0, R) and C ∩ S(0, R) = ∅.
Suppose that the set Z :=

⋃
{C ′ : C ′ is component of X ∩ B(0, R) such that C ′ ∩ S(0, R) 6= ∅} is nonempty.

Then, by Lemma 3.1, Z is compact in Rm. Put U := (X
∞ ∩ B(0, R)) \ Z. Then U is open in X

∞
and

U = q−1(q(U)); therefore q(U) is open in X
∞
/E. Since C ∈ q(U) and X

∞
/E is zero-dimensional, there is

a clopen set V ⊆ X
∞
/E with C ∈ V ⊆ q(U). Since Z and Y := q−1(V ) are compact, there is ε > 0 with

Y (ε) ∩ Z = ∅ and (Y (ε) \ Y ) ∩ X∞ = ∅; consequently Y (ε) ∩ X \ Y = ∅. By Lemma 3.3 we obtain that

Z ⊆ X \ Y = ∅ which gives a contradiction. Thus Z = ∅. Therefore there are no components of X having

nonempty intersection with S(0, R). Thus X∩B(0, R) = q−1
(
q(X∩B(0, R))

)
and consequently q(X∩B(0, R))

is open in X
∞
/E. Since X

∞
/E is zero dimensional, there is a clopen V with C ∈ V ⊆ q(X ∩B(0, R)). Thus

Y := q−1(V ) is clopen and it contains C. There is ε > 0 such that Y (ε) ⊆ B(0, R) which means that Y (ε) is

disjoint with X \ Y . By Lemma 3.3 we obtain that X is bounded.

We have already proved that if C is a bounded component of X, then X is bounded itself. That means

that if X has an unbounded component, then each its component is unbounded and, by Lemma 3.4, X
∞

is

connected – equivalently q(X
∞

) = [∞]E . Thus X
∞

is connected in a(Rm) if X is unbounded. To finish the

proof we need to show that if X is bounded, then it is connected. If not, there would be two disjoint nonempty

clopen subsets Y and X \ Y of X. But then there would be ε > 0 with Y (ε) ∩ (X \ Y ) = ∅ which by Lemma

3.3 leads to a contradiction. �

4. Theorem 3.5 does not hold in infinitely dimensional spaces

Now we will define: a conditionally convergent series
∑∞
n=1 yn in c0 such that

∑∞
n=1 yn = θ := (0, 0, . . .) and

its rearrangement σ such that LIM(
∑∞
n=1 yσ(n)) consists of two points.

Example 4.1. As in Example 2.2 and Example 2.3 the constructed series
∑∞
n=1 yn will be alternating, so

we will define only elements with odd indexes. Let {ei : i ∈ N} be a standard basis in c0. We define (yn)

inductively:

Step 1. At first we define three odd elements; the first equals e2, the second equals e1, and the third equals

−e2;

Step k+1. In this step we define 3 · 2k elements of the series with odd indexes: the first 2k of them are equal

to 1
2k
ek+2, next 2k of y′ns equal 1

2k
e1 and the last 2k of them are equal to − 1

2k
ek+2.

We define a rearrangement
∑∞
n=1 xn of

∑∞
n=1 yn in the similar way as in Example 2.2. Namely, x1, x2, x3 are

consecutive elements of (yn) defined in Step 1 with odd indexes, that is x1 = y1, x2 = y3, x3 = y5. Next three

of x′ns are the elements of (yn) with even indexes corresponding to the odd indexes defined in Step 1 with

reversed order, that is x4 = y6, x5 = y4, x6 = y2. In Step k + 1 the first 3 · 2k xn’s are consecutive elements of

(yn) defined in Step k + 1 with odd indexes, and next 3 · 2k xn’s are consecutive elements of (yn) with even

indexes with reversed order. The sequence of partial sums sm =
∑m
n=1 xn is the following

e2, e2 + e1, e1, e2 + e1, e2, θ,

1

2
e3, e3, e3 +

1

2
e1, e3 + e1,

1

2
e3 + e1, e1,

1

2
e3 + e1, e3 + e1, e3 +

1

2
e1, e3,

1

2
e3, θ, . . .

1

2k
ek+2,

2

2k
ek+2, . . . , ek+2, ek+2 +

1

2k
e1, . . . , ek+2 + e1,

2k − 1

2k
ek+2 + e1, . . . , e1,

e1 +
1

2k
ek+2, . . . , e1 + ek+2, ek+2 +

2k − 1

2k
e1, . . . , ek+2,

2k − 1

2k
ek+2, . . . , θ, . . .
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The walk (sm) has the following properties:

(i) θ and e1 appear infinitely many times in a partial sums sequence (sm);

(ii) for every natural number j ≥ 2 there exists p ∈ N such that sm(j) = 0 for every natural m ≥ p;
(iii) the distance between the point z = (z(1), z(2), . . .) with z(1) /∈ [0, 1] and the set {sm : m ∈ N} is positive;

(iv) if sm(1) /∈ {0, 1} then there exists a natural k ≥ 2 such that sm(k) = 1.

We claim that LIM(
∑∞
n=1 xn) = {θ, e1}. By (i) we get θ, e1 ∈ LIM(

∑∞
n=1 xn). Conditions (ii) and (iii) give

us the inclusion LIM(
∑∞
n=1 xn) ⊆ {(a, 0, 0, . . .) : a ∈ [0, 1]}. Indeed, since z = (z(1), z(2), . . .) ∈ LIM(

∑∞
n=1 xn)

then by (ii) we get z(i) = 0 for every i ≥ 2. Moreover, if z(1) > 1 or z(1) < 0 then by (iii) we have

z /∈ LIM(
∑∞
n=1 xn). Now, let a ∈ (0, 1). We will show that (a, 0, 0, . . .) /∈ LIM(

∑∞
n=1 xn). One can find ε > 0

such that (a−ε, a+ε)∩{0, 1} = ∅. We consider the ball B((a, 0, 0, . . .), ε) in c0. If z ∈ B((a, 0, 0, . . .), ε)∩{sm :

m ∈ N} then z(1) ∈ (a − ε, a + ε), hence the first coordinate of z is neither 0 nor 1. Then by (iv) there

exists a natural number k ≥ 2 such that z(k) = 1 which contradicts the fact that z ∈ B((a, 0, 0, . . .), ε). Hence

B((a, 0, 0, . . .), ε) ∩ {sm : m ∈ N} = ∅, so (a, 0, 0, . . .) /∈ {sm : m ∈ N}. Since LIM(
∑∞
n=1 xn) is contained in

{sm : m ∈ N}, we have (a, 0, 0, . . .) /∈ LIM(
∑∞
n=1 xn). Finally LIM(

∑∞
n=1 xn) = {θ, e1}.

Remark. Roman Witu la reminded us that he had found a very similar example of series with two-point

limit set, see [5].

5. On the reverse of Theorem 3.5

In this Section we will prove that Theorem 3.5 can be reversed. It means that for any compact and connected

subset X of a Euclidean space Rm there is a conditionally convergent series
∑∞
n=1 xn and a permutation σ ∈ S∞

with X = LIM(
∑∞
n=1 xσ(n)), and for any closed subset Y of Rm whose each component is unbounded there is

a conditionally convergent series
∑∞
n=1 yn and permutation τ ∈ S∞ with Y = LIM(

∑∞
n=1 yτ(n)). This shows

that Theorem 3.5 gives a full characterization of limit sets in finitely dimensional Banach spaces.

Theorem 5.1. Let m ∈ N. Assume that X ⊆ Rm is closed and ε-chainable for every ε > 0. Then there

is a conditionally convergent series
∑∞
n=1 xn in Rm such that X = LIM(

∑∞
n=1 xσ(n)) for some σ ∈ S∞. In

particular, the assertion holds if X is compact and connected.

Proof. Let (dn) be dense in X. We will construct an X-walk. In the first step we find a 1-chain inside X

between points d1 and d2 and denote it a1 = d1, a2, . . . , ap = d2. We define si = ai for every i ∈ {1, . . . , p}.
Then we go back to d1 using the same way, which means that si = a2p−i for i ∈ {p + 1, . . . , 2p − 1}. In the

second step let a2p−1 = d1, a2p, . . . , a2p−1+r = d3 be a 2−1-chain between d1 and d3. We define yn’s in the

same way, that means they are the following elements of the next chain, si = ai for i ∈ {2p− 1, . . . , 2p− 1 + r}
and then we go back to d1 via the same elements. In the third step we consider a 2−2-chain between d1 and d4

and define the next sn’s as before, and so on. By Proposition 2.1, we obtain the assertion. Finally, note that

connected sets are ε-chainable for every ε > 0. �

Theorem 5.2. Let m ≥ 2. Assume that X ⊆ Rm is closed and any component of X is unbounded. Then there

is a conditionally convergent series
∑∞
n=1 xn in Rm such that X = LIM(

∑∞
n=1 xσ(n)) for some σ ∈ S∞.

Proof. Let X =
⋃
t∈T At, where for every t ∈ T the set At is an unbounded component of X. Clearly each At

is closed and ε-chainable for every ε > 0. Let (dn) be dense in X. If di ∈ As, dj ∈ At, At ∩ As = ∅, then,

by the connectedness and the unboundedness of As and At, there is a sphere S(0, R) which has non-empty

intersections with As and At. Let as ∈ As ∩ S(0, R) and at ∈ At ∩ S(0, R). By an ε-chain via S(0, R) from

di to dj we mean a concatenation of three ε-chains: from di to as using elements of As, from as to at using

elements of SR and from dj to at using elements of At. If At = As, then by an ε-chain via S(0, R) from di to dj
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we mean just an ε-chain from di to dj using elements of As. Let Rn be a sequence of radii tending to ∞ such

that S(0, Rn) has a nonempty intersection with each component containing d1, . . . , dn+1. Now let us describe a

walk (sn), which, in general, does not need to be an X-walk: The first elements of the walk (sn) is a 1/2-chain

via S(0, R1) from d1 to d2, and then back via the same elements. In the k-th step of the construction the next

elements of (sn) are elements of a concatenation of 2−k-chains via S(0, Rk) from di to di+1, i = 1, . . . , k, and

then back from dk+1 to d1 via the same elements.

Using the same argument as in Proposition 2.1 we can find an alternating series
∑∞
n=1 xn and σ ∈ S∞

such that sn =
∑n
i=1 xσ(i). Clearly X ⊆ LIM(

∑∞
n=1 xσ(n)) ⊆ X ∪

⋃∞
k=1 S(0, Rk). Since Rk → ∞ and

the sequence (sn) contains at most finitely many elements of S(0, Rk) \ X, we obtain the reverse inclusion

X ⊇ LIM(
∑∞
n=1 xσ(n)). �

As we have mentioned in Introduction, the assertion of Theorem 5.2 is not true if m = 1.

6. When a limit set is a singleton

By definition, if
∑∞
n=1 xn = x0, then LIM(

∑∞
n=1 xn) = {x0}, since every subsequence of the sequence of

partial sums is convergent to x0. In general the inverse implication does not need to be true which is illustrated,

in c0, by Proposition 6.2. However, in finitely dimensional spaces the above implication can be reversed.

Theorem 6.1. Let
∑∞
n=1 xn be a series in Rm with xn → 0. If LIM(

∑∞
n=1 xn) is a singleton, then

∑∞
n=1 xn

is convergent and {
∑∞
n=1 xn} = LIM(

∑∞
n=1 xn).

Proof. Let LIM(
∑∞
n=1 xn) = {x0}. Suppose that

∑∞
n=1 xn does not converge to x0, so there exists ε > 0 such

that for every k0 ∈ N one can find l ≥ k0 such that ‖
∑l
n=1 xn − x0‖ > ε. That means that there are infinitely

many indexes p such that
∑p
n=1 xn /∈ B(x0, ε). On the other hand, since x0 is a limit point of the series∑∞

n=1 xn, there exist infinitely many r ∈ N such that
∑r
n=1 xn ∈ B(x0, ε/2). Hence there are infinitely many

elements of a walk (sn) of partial sums inside the ball B(x0, ε/2) and infinitely many outside the closed ball

B(x0, ε). Since xn → 0, there are infinitely many sn’s in B = B(x0, ε) \B(x0, ε/2). By the compactness of B,

it contains a limit point of (sn) which contradicts that LIM(
∑∞
n=1 xn) is a singleton. �

Note that the assumption xn → 0 cannot be omitted. To see this consider the series 2−1 + 21 − 21 + 2−2 +

22 − 22 + 2−3 + 23 − 23 + . . . . Clearly 1 is its only limit point, but the series is not convergent.

Proposition 6.2. There is a conditionally convergent series
∑∞
n=1 xn in c0 and σ ∈ S∞ such that LIM(

∑∞
n=1 xσ(n)) =

{θ} but
∑∞
n=1 xσ(n) diverges.

Proof. To define an alternating series
∑∞
n=1 xn it suffices to prescribe only the elements with odd indexes:

Step 1. Firstly we define x1 = e1.

Step k. The next 2k−1 elements with odd indexes are equal to 1
2k−1 ek.

The series
∑∞
n=1 xn is the following

e1 − e1 +
1

2
e2 −

1

2
e2 +

1

2
e2 −

1

2
e2 +

1

4
e3 −

1

4
e3 +

1

4
e3 −

1

4
e3 +

1

4
e3 −

1

4
e3 +

1

4
e3 −

1

4
e3 + . . .

Now we define a rearrangement
∑∞
n=1 xσ(n). Firstly we use elements with odd indexes defined in Step 1, and

then the corresponding elements with even indexes; secondly we use elements with odd indexes defined in Step

2, and then the corresponding elements with even indexes, and so on. The rearranged series
∑∞
n=1 xσ(n) has

the following form

e1 − e1 +
1

2
e2 +

1

2
e2 −

1

2
e2 −

1

2
e2 +

1

4
e3 +

1

4
e3 +

1

4
e3 +

1

4
e3 −

1

4
e3 −

1

4
e3 −

1

4
e3 −

1

4
e3 + . . .

Thus the walk sn =
∑n
k=1 xσ(k) has the following properties:
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(1) s2k+1−2 = θ for every k ∈ N;

(2) for every natural number j exists p ∈ N such that sm(j) = 0 for every m ≥ p;
(3) s2k+2k−1−2 = ek for every k ∈ N.

From (1) we have the inclusion {θ} ⊆ LIM(
∑∞
n=1 xσ(n)) and from (2) we get the inverse inclusion. Hence

LIM(
∑∞
n=1 xσ(n)) = {θ}. From (1) and (3) we get ‖s2k+2k−1−2(k) − s2k+1−2(k)‖ = ‖ek‖ = 1 for every

k ∈ N. That means that the sequence of partial sums of the rearranged series is not a Cauchy sequence, and

consequently it diverges. �

7. Rearrangement property

Klee proved that if A ⊆ SR(
∑∞
n=1 xn) is closed and ε-chainable for every ε > 0, then there is τ ∈ S∞ such

that A = LIM(
∑∞
n=1 xτ(n)). This is a strengthening of Theorem 5.1 – to see it take any conditionally convergent

series
∑∞
n=1 xn with SR(

∑∞
n=1 xn) = Rm. We show that this fact holds true in every Banach space provided∑∞

n=1 xn has the so-called Rearrangement Property. In fact we prove that if A ⊆ SR(
∑∞
n=1 xn) is closed and

ε-chainable for every ε > 0, then there is τ ∈ S∞ such that A = LIM(
∑∞
n=1 xτ(n)). As a byproduct of this

observation we obtain that if
∑∞
n=1 xn has the Rearrangement Property, then its sum range SR(

∑∞
n=1 xn) is

closed.

Lemma 7.1. Let
∑∞
n=1 xn be a conditionally convergent series in a Banach space X. Then SR(

∑∞
n=1 xn) =

SR(
∑∞
n=k+1 xn) +

∑k
n=1 xn for every k ∈ N.

Proof. ”⊇” Let k ∈ N and x ∈ SR(
∑∞
n=k+1 xn) +

∑k
n=1 xn. Then there exists a permutation σ : [k+ 1,∞)→

[k+ 1,∞) such that x =
∑∞
n=k+1 xσ(n) +

∑k
n=1 xn. Define π(n) = n for n ≤ k and π(n) = σ(n) for n ≥ k+ 1.

Hence x =
∑∞
n=1 xπ(n), so x ∈ SR(

∑∞
n=1 xn).

”⊆” Let x ∈ SR(
∑∞
n=1 xn) and k ∈ N. Then there exists a permutation π : N → N such that x =∑∞

n=1 xπ(n). Let M = π−1({1, . . . , k}). Then for every ε > 0 there exists m0 ≥ maxM such that for

every m > m0 the following inequality is true: ‖x −
∑m
n=1 xπ(n)‖ < ε. It means that ‖x −

∑k
n=1 xn −∑

n∈{1,...,m}\M xπ(n)‖ < ε for every m > m0. Define a permutation σ : [k + 1,∞) → [k + 1,∞) as follows

σ(k + l) = π(n) where n is the l-th number in the set N \M . Then x =
∑∞
n=k+1 xσ(n) +

∑k
n=1 xn. Hence

x ∈ SR(
∑∞
n=k+1 xn) +

∑k
n=1 xn. �

We say that a conditionally convergent series
∑∞
k=1 xk has the Rearrangement Property, or (RP), if for

every ε > 0 there are: a natural number N(ε) and a positive real number δ(ε) such that the implication

‖
n∑
i=1

yi‖ < δ(ε)⇒
(

max
j≤n
‖

j∑
i=1

yσ(i)‖ < ε for some permutation σ ∈ Sn
)

holds for every finite sequence (yi)
n
i=1 ⊆ (xi)

∞
i=N(ε). Note that if ε > ε′ > 0, then we can find numbers

δ(ε), N(ε) and δ(ε′), N(ε′) from the definition of (RP) used for ε and ε′, respectively, such that δ(ε) ≥ δ(ε′)

and N(ε) ≤ N(ε′). Similarly, having a decreasing sequence (εn) of positive real numbers, we find δ(εn), N(εn)

from the definition of (RP) such that δ(εn) ≥ δ(εn+1) and N(εn) ≤ N(εn+1) for every n ∈ N.

Lemma 7.2. Assume that
∑∞
n=1 xn is a conditionally convergent series with (RP) in a Banach space X. Let

ε ≥ ε′ > 0 and let δ( ε2 ), N( ε2 ) and δ( ε
′

2 ), N( ε
′

2 ) be numbers from the definition of (RP) used for ε
2 and ε′

2 ,

respectively. Let k ∈ N, a, b ∈ SR(
∑∞
n=1 xn) with ‖a − b‖ < min{ ε12 ,

1
3 · δ(

ε
2 )}, and τ : [1, k] → N be a partial

permutation such that ‖
∑k
n=1 xτ(n) − a‖ ≤ min{ ε12 ,

1
3 · δ(

ε
2 )} and rng τ ⊇ [1, N( ε2 )]. Then there exist k′ > k

and a partial permutation τ ′ : [1, k′]→ N such that the following conditions hold:

(1) τ ′|[1,k] = τ and [1,max rng τ ] ⊆ rng τ ′;

(2) ‖
∑p
n=1 xτ ′(n) − a‖ ≤ ε for p ∈ [k + 1, k′];
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(3) ‖
∑k′

n=1 xτ ′(n) − b‖ ≤ min{ ε
′

12 ,
1
3 · δ(

ε′

2 )};
(4) rng(τ ′) ⊇ [1, N( ε

′

2 )].

Proof. Let k0 = max{N( ε
′

2 ), N( ε2 ),max rng τ}. Define y =
∑k
n=1 xτ(n) and z =

∑
n∈{1,...,k0}\{τ(1),...,τ(k)} xn.

Hence y + z =
∑k0
n=1 xn. From the assumption that b ∈ SR(

∑∞
n=1 xn) by Lemma 7.1 we obtain b− (y + z) ∈

SR(
∑∞
n=k0+1 xn). Thus we can find k0 < n1 < n2 < . . . < nl such that y + z + w ∈ B

(
b,min{ ε

′

12 ,
1
3 · δ(

ε′

2 ), 1
3 ·

δ( ε2 )}
)
, where w = xn1 + . . .+ xnl .

Enumerate the set ([1, k0] \ {τ(1), . . . , τ(k)})∪{n1, . . . , nl} as {m1 < m2 < . . . < mk′−k}, where k′ = k0 + l.

Hence, ∥∥∥ k′−k∑
i=1

xmi

∥∥∥ = ‖z + w‖ ≤ ‖y − a‖+ ‖a− b‖+ ‖b− (y + z + w)‖.

Consequently,∥∥∥ k′−k∑
i=1

xmi

∥∥∥ ≤ min
{ ε

12
,

1

3
· δ
(ε

2

)}
+ min

{ ε

12
,

1

3
· δ
(ε

2

)}
+ min

{ ε′
12
,

1

3
· δ
(ε′

2

)
,

1

3
· δ
(ε

2

)}
≤ δ
(ε

2

)
.

Since mi ≥ N( ε2 ) for i ∈ [1, k′ − k] and ‖
∑k′−k
i=1 xmi‖ ≤ δ( ε2 ), by (RP) there is a permutation σ ∈ Sk′−k such

that ‖
∑j
i=1 xmσ(i)‖ ≤

ε
2 for every j ∈ [1, k′ − k]. Let us define τ ′(n) = τ(n) for n ≤ k and τ ′(n) = mσ(n−k) for

n ∈ [k + 1, k′]. Then for every p ∈ [k + 1, k′] we have the following:∥∥∥ p∑
n=1

xτ ′(n) − a
∥∥∥ =

∥∥∥ k∑
n=1

xτ(n) +

p∑
n=k+1

xτ ′(n) − a
∥∥∥ ≤ ‖y − a‖+

∥∥∥ p∑
n=k+1

xτ ′(n)

∥∥∥ ≤ min
{ ε

12
,

1

3
· δ
(ε

2

)}
+
ε

2
< ε

which gives us (2).

Now we check (1), (3) and (4). Note that the numbers 1, . . . , k0 are among τ ′(1), . . . , τ ′(k′) and k0 ≥
max rng τ . Therefore we have (1). Since

∑k′

n=1 xτ ′(n) = y + z + w and ‖y + z + w − b‖ ≤ min{ ε
′

12 ,
1
3δ(

ε′

2 )}, we

obtain (3). Condition (4) follows from the fact that if n /∈ rng(τ ′), then n > k0 ≥ N( ε
′

2 ). �

Lemma 7.3. Let A be a subset of a Banach space such that A is separable and ε-chainable for every ε > 0.

Let (ηi) be a sequence of positive numbers. Then there is a sequence (dn) dense in A with the property that

there is an increasing sequence (li) such that {dli , dli+1, . . . , dli+1
} is an ηi-chain for every i.

Proof. Since A is separable, there are v1, v2, . . . such that A = {vn : n ∈ N}. Then one can find an ηi-chain:

dli , dli+1, . . . , dli+1 of elements of A with dli = vi and dli+1 = vi+1 for any i ∈ N. Clearly the sequence {dn}∞n=1

fulfills the desired condition. �

Lemma 7.4. Let A bea separable and ε-chainable for every ε > 0 subset of a Banach space. Assume that

{di : i ∈ N} is a dense subset of A and (εi) is a sequence of positive numbers tending to zero. If (xi) is such

that ‖xi − di‖ < εi for every i ∈ N, then LIM(xi) = A where LIM(xi) denotes the set of all limit points of the

sequence (xi).

Proof. If A is a singleton, then di = a, A = {a} and xi → a. Then LIM(xi) = {a} = A. Assume that A has at

least two elements. Clearly A is dense-in-itself. Fix i ∈ N. There is a sequence (djk)∞k=1 such that j1 < j2 < . . .

and ‖djk − di‖ < εjk . Then xjk → di and consequently di ∈ LIM(xi). Since the set LIM(xi) is closed, we have

A ⊆ LIM(xi).

Note that for every k almost every element of (xi) is in εk-shell of A. Thus A ⊇ LIM(xi). �

Theorem 7.5. Let
∑∞
n=1 xn be a conditionally convergent series with (RP) in a Banach space X. Then for

every A ⊆ SR(
∑∞
n=1 xn) which is closed and ε-chainable for every ε > 0, there exists a permutation τ ∈ S∞

such that A = LIM(
∑∞
n=1 xτ(n)).
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Proof. Let εi = 1
2i . We fix numbers δ( εi2 ), N( εi2 ) from the definition of (RP) such that δ( εi2 ) ≥ δ( εi+1

2 ) and

N( εi2 ) ≤ N( εi+1

2 ) for every i ∈ N. Since A is separable and ε-chainable for every ε > 0, using Lemma

7.3, let A = {dn : n ∈ N}, where for every i ∈ N the elements dli , dli+1, . . . , dli+1
form a ηi-chain for some

1 = l1 < l2 < . . ., where ηi = min{ εi48 ,
1
12 · δ(

εi
2 )}. Note that (ηi) is a non-increasing sequence of positive real

numbers.

Inductively we define natural numbers 1 = k1 < k2 < . . . , one-to-one functions τi : [1, ki+1] → N and

d′1, d
′
2, . . . fulfilling the following conditions

(i) τi ⊆ τi+1;

(ii) [1,max rng τi] ⊆ rng(τi+1);

(iii) ‖
∑p
n=1 xτi(n) − d′i−1‖ < εj for p ∈ [ki + 1, ki+1] and i ∈ [lj + 1, lj+1];

(iv) d′i ∈ SR(
∑∞
n=1 xn), ‖d′i − di‖ < ηj where i ∈ [lj , lj+1 − 1];

(v) ‖
∑ki+1

n=1 xτi(n) − d′i‖ < 4ηj where i ∈ [lj , lj+1 − 1];

(vi) rng τi ⊇ [1, N(
εj
2 )] where i ∈ [lj , lj+1 − 1].

Define x =
∑N(ε1/2)
n=1 xn. Let d′1 ∈ SR(

∑∞
n=1 xn) be such that ‖d1 − d′1‖ < η1. Hence from Lemma 7.1

we get d′1 − x ∈ SR(
∑∞
N(

ε1
2 )+1 xn). Let π : [N( ε12 ) + 1,∞) → [N( ε12 ) + 1,∞) be a bijection such that

d′1 − x =
∑∞
n=N(ε1/2)+1 xπ(n). One can find a natural number k2 > N( ε12 ), which satisfies the inequality

‖d′1 − x−
∑k2
n=N(ε1/2)+1 xπ(n)‖ ≤ η1. Define τ1(k) = k for k ≤ N( ε12 ) and τ1(k) = π(k) for k ∈ [N( ε12 ) + 1, k2].

Conditions (i)–(vi) are fulfilled for τ1, d
′
1, k1, k2. We do not need to check (i) and (ii), condition (iii) needs to

be checked for i ≥ l1 + 1 = 2 and conditions (iv)–(vi) are fulfilled since l1 = 1.

Assume now, that we have already defined τ1, . . . , τi, k1 < · · · < ki+1 and d′1, . . . , d
′
i fulfilling (i)–(vi). Find

d′i+1 such that (iv) holds. We use Lemma 7.2 for a = d′i, b = d′i+1, τ = τi, ε = εj where lj ≤ i ≤ lj+1−1, ε′ = εq

where lq − 1 ≤ i ≤ lq+1 − 2, and k = ki+1; note that j = q if lj ≤ i < lj+1 − 1, that is if i /∈ {ls − 1 : s ≥ 1},
otherwise i = lj+1− 1 implies that q = j+ 1. Let us check the assumptions of Lemma 7.2. By (iv) and (vi) we

obtain a, b ∈ SR(
∑∞
n=1 xn) and rng τ ⊇ [1, N( ε2 )]. Since dlj , dlj+1, . . . , dlj+1 form a ηj-chain, by (iv) we obtain

‖a− b‖ ≤ ‖di − d′i‖+ ‖di − di+1‖+ ‖di+1 − d′i+1‖ ≤ ηj + ηj + ηj < 4ηj = min
{ ε

12
,

1

3
· δ
(ε

2

)}
.

By (v) we obtain ‖
∑k
n=1 xτ(n) − a‖ ≤ 4ηj = min{ ε12 ,

1
3 · δ(

ε
2 )}. Now, using Lemma 7.2 we find ki+2 > ki+1

and function τi+1 : [1, ki+2]→ N such that

(1) τi+1|[1,ki+1] = τi and [1,max rng τi] ⊆ rng τi+1;

(2) ‖
∑p
n=1 xτi+1(n) − d′i‖ ≤ εj where p ∈ [ki+1 + 1, ki+2] and i ∈ [lj , lj+1 − 1];

(3) ‖
∑ki+2

n=1 xτi+1(n) − d′i+1‖ ≤ 4ηq where i ∈ [lq − 1, lq+1 − 2];

(4) rng(τi+1) ⊇ [1, N(
εq
2 )] where i ∈ [lq − 1, lq+1 − 2].

Note that τ1, . . . , τi+1, k1 < · · · < ki+2 and d′1, . . . , d
′
i+1 fulfill (i)–(vi): By (1) we obtain conditions (i) and (ii).

Since the condition i+ 1 ∈ [lj + 1, lj+1] is equivalent to i ∈ [lj , lj+1 − 1], we obtain (iii). The element d′i+1 has

already been chosen to fulfill (iv). Conditions (3) and (4) are exactly (v) and (vi) for i+ 1.

Let τ =
⋃
i≥1 τi : N→ N. Then (i) implies that τ is one-to-one. Condition (ii) implies that τ is onto N, and

consequently τ ∈ S∞. By (iii) and (iv) we obtain that the distance between A and
∑p
n=1 xτ(n) is less than 1/2j

for almost every p ∈ N. Thus LIM(
∑∞
n=1 xτ(n)) ⊆ A. By (iv) and (v) we obtain that ‖

∑ki+1

n=1 xτ(n)−di‖ < 5ηj <

εj where i ∈ [lj , lj+1 − 1]. Thus by Lemma 7.4 we get A = LIM((
∑ki+1

n=1 xτ(n))
∞
i=1) ⊆ LIM(

∑∞
n=1 xτ(n)). �

It is well-known that every conditionally convergent series of elements in a finite dimensional Banach space

has the (RP), for detail see [2]. Thus, the Klee’s result which we have mentioned at the beginning of this

Section is a particular case of Theorem 7.5. Combining methods used in proofs of Theorem 7.5 and Theorem

5.2 one can prove the following strengthening of Theorem 5.2.
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Corollary 7.6. Let m ≥ 2. Assume that SR(
∑∞
n=1 xn) = Rm, X ⊆ Rm is closed and any component of X is

unbounded. Then X = LIM(
∑∞
n=1 xσ(n)) for some σ ∈ S∞.

Note that singletons are trivially ε-chainable for every ε > 0. Fix a ∈ SR(
∑∞
n=1 xn). Using Theorem 7.5 for

A ⊆ SR(
∑∞
n=1 xn) such that A = {a}, we obtain that there is τ ∈ S∞ such that LIM(

∑∞
n=1 xτ(n)) = {a}. As

we have seen in Proposition 6.2 is does not necessarily mean that
∑∞
n=1 xτ(n) = a. However, if we put di = a,

then d′i → a and by condition (iii) we get that almost all elements of the sequence (
∑p
n=1 xτ(n))

∞
p=1 of partial

sums are in every neighborhood of a. Therefore
∑∞
n=1 xτ(n) is convergent to a. Thus a ∈ SR(

∑∞
n=1 xn). Hence

as a byproduct of the proof of Theorem 7.5 we obtain the following.

Corollary 7.7. Let
∑∞
n=1 xn be a conditionally convergent series in a Banach space X, which has the (RP).

Then its sum range SR(
∑∞
n=1 xn) is a closed set.

Now, we will discuss a problem whether or not Corollary 7.7 can be reversed, namely whether or not the

closedness of the sum range SR(
∑∞
n=1 xn) implies the (RP) for a series

∑∞
n=1 xn. By Sn we denote the set of

all permutations of the set [1, n].

Lemma 7.8. Let k ∈ N and n =
(

2k
k

)
, then there exists a finite sequence x1, . . . , x2k ∈ Rn such that:

(1) ‖xi‖sup = 1 for every i ≤ 2k.

(2) ‖
∑k
i=1 xσ(i)‖sup ≥ k for every σ ∈ S2k.

(3)
∑2k
i=1 xi = 0.

Proof. Let k ∈ N. There are n =
(

2k
k

)
sequences of length 2k consisting of k many 1’s and k many −1’s.

Enumerate all such sequences as t1, . . . , tn. Define xi(j) = tj(i) for j = 1, . . . , n and i = 1, . . . , 2k. Now,

if σ ∈ S2k, then there is a sequence tjσ such that tjσ (σ(i)) = 1 for i = 1, . . . , k and tjσ (σ(i)) = −1 for

i = k + 1, . . . , 2k. Thus
k∑
i=1

xσ(i)(jσ) = k,

and consequently

‖
k∑
i=1

xσ(i)‖sup ≥ k.

�

Before we state the last result, first note that if the series
∑∞
i=1 xi does not have (RP), then one can find

ε > 0 such that for every δ > 0 and N ∈ N there exists the finite subsequence {yi}ni=1 ⊆ {xi}∞i=N for which

two conditions hold:

• ‖
∑n
i=1 yi‖ < δ.

• for every σ ∈ Sn there is j ≤ n such that ‖
∑j
i=1 yσ(i)‖sup ≥ ε.

The following theorem shows that Corollary 7.7 cannot be reversed.

Theorem 7.9. There is a conditionally convergent series
∑∞
n=1 zn in c0 such that it does not have (RP) and

its sum range SR(
∑∞
n=1 zn) is a singleton, in particular it is a closed set.

Proof. Define en = (δin)∞i=1 for every n ∈ N, where δin = 1, if i = n and δin = 0 otherwise. Let n0 = 0 and

nk =
(

2k+1

2k

)
+nk−1. For every k ∈ N let x

(k)
1 , . . . , x

(k)

2k+1 ∈ Rnk−nk−1 will be the sequence constructed in Lemma

7.8. Define y
(k)
i = 1

2k
·
∑nk−nk−1

j=1 x
(k)
i (j) · enk−1+j for i, k ∈ N. It easy to see that y

(k)
i ∈ c0. Define the series∑∞

n=1 zn as follows:

z1 = y
(1)
1 , z2 = −y(1)

1 , z3 = y
(1)
2 , z4 = −y(1)

2 , z5 = y
(1)
3 , z6 = −y(1)

3 , z7 = y
(1)
4 , z8 = −y(1)

4 , z9 = y
(2)
1 , z10 = −y(2)

1 , . . .
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It easy to see that
∑∞
n=1 zn converges to 0.

Let ε = 1 and N ∈ N, δ > 0. One can find k ∈ N, such that nk−1 > N . Then by Lemma 7.8 for

(y
(k)
1 , . . . , y

(k)

2k+1) ⊆ (zi)i≥N and every permutation σ ∈ S2k+1 we have

‖ 1

2k
·

2k∑
i=1

y
(k)
σ(i)‖sup = ‖ 1

2k
·

2k∑
i=1

x
(k)
σ(i)‖sup ≥

1

2k
· 2k = 1 = ε.

Moreover ‖
∑2k+1

i=1 y
(k)
i ‖ = 0 < δ. This proves that the series

∑∞
n=1 zn does not have (RP).

Since the projection of the series on each coordinate contains only finitely many nonzero terms and a finite

sum does not change under rearrangements, then SR(
∑∞
n=1 zn) = {θ}. �
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