Szymon Głąb, Mathematical Institute, Polish Academy of Science, Śniadeckich 8, 00-956 Warszawa, Poland.email: szymon_glab@yahoo.com

ON PARAMETRIC LIMIT SUPERIOR OF A SEQUENCE OF ANALYTIC SETS

Abstract

Let A_x stand for x-section of a set $A \subset 2^{\omega} \times 2^{\omega}$. We prove that any sequence $A^j \subset 2^{\omega} \times 2^{\omega}$, $j \in \omega$, of analytic sets, with uncountable $\limsup_{j \in H} A_x^j$ for all $x \in 2^{\omega}$ and $H \in [\omega]^{\omega}$, admits a perfect set $P \subset 2^{\omega}$ and $H \in [\omega]^{\omega}$ with uncountable $\bigcap_{j \in H} A_x^j$ for all $x \in P$. This is a parametric version of the Komjáth theorem [2].

1 Main Result.

In [2] Komjáth proved that if the sets A^0, A^1, \ldots are analytic sets in a Polish space, and $\limsup_{j \in H} A^j$ is uncountable for each $H \in [\omega]^{\omega}$, then there exists a set $G \in [\omega]^{\omega}$ for which the intersection $\bigcap_{j \in G} A^j$ is uncountable. The previous version of this statement was proved by Laczkovich in [3] for a sequence of Borel sets. Komjáth, assuming $MA(\omega_1)$, proved that this statement holds if the analicity of sets A^j is skipped, but assuming the axiom of constructibility, he proved that it is false for a sequence of coanalytic sets.

In this paper we prove a parametric version of the Komjáth result. The Parametrized Ellentuck theorem due to Pawlikowski [4] is our basic tool in the proof. We discuss examples which show that some stronger versions of our theorem are impossible.

We use standard set theoretical notation (see [1]). A subset P of a Polish space is called *perfect* if it is nonempty, closed, and dense in itself. For $\alpha \in [\omega]^{<\omega}$ and $H \in [\omega]^{\omega}$, let $[\alpha, H]$ be an *Ellentuck neighbourhood*; i.e., a set of the form $\{G \in [\omega]^{\omega} : \alpha \subset G \subset \alpha \cup (H \setminus \max(\alpha))\}$. A set $A \subset 2^{\omega} \times [\omega]^{\omega}$ is called *perfectly Ramsey* if for any perfect set $P \subset 2^{\omega}$ and any Ellentuck neighbourhood $[\alpha, H]$, there exists a perfect set $Q \subset P$ and an infinite set

Key Words: Analytic sets, Borel sets, limit superior of sets, parametrized Ellentuck theorem.

Mathematical Reviews subject classification: Primary 03E15, Secondary 54H05 Received by the editors December 13, 2004

Communicated by: Steve Jackson

¹

 $G \subset H$ such that either $Q \times [\alpha, G] \subset A$ or $(Q \times [\alpha, G]) \cap A = \emptyset$. For $A \subset 2^{\omega} \times 2^{\omega}$ and $x \in 2^{\omega}$, put $A_x = \{y \in 2^{\omega} : (x, y) \in A\}$; this is called *x*-section of *A*.

Theorem 1. Let $(A^j)_{j\in\omega}$ be a sequence of analytic subsets of $2^{\omega} \times 2^{\omega}$ such that

$$\forall x \in 2^{\omega} \ \forall H \in [\omega]^{\omega} \ card(\limsup_{i \in H} A_x^j) > \omega.$$

Then there exist a perfect set $P \subset 2^{\omega}$ and $H \in [\omega]^{\omega}$ such that

$$\forall x \in P \ card(\bigcap_{j \in H} A_x^j) > \omega.$$

PROOF. We treat $[\omega]^{\omega}$ as a Polish subspace of 2^{ω} , identifying $H \in [\omega]^{\omega}$ with its characteristic function. Define

$$A = \{(x, H) \in 2^{\omega} \times [\omega]^{\omega} : card(\bigcap_{j \in H} A_x^j) > \omega\}.$$

Consider

$$B = \{ (x, H, y) \in 2^{\omega} \times [\omega]^{\omega} \times 2^{\omega} : (x, y) \in \bigcap_{j \in H} A^j \} = \{ (x, H, y) \in 2^{\omega} \times [\omega]^{\omega} \times 2^{\omega} : \forall j \in \omega \ (j \notin H \text{ or } (x, y) \in A^j) \}$$

and note that B is analytic. Thus

$$A = \{(x, H) \in 2^{\omega} \times [\omega]^{\omega} : card(B_{(x, H)}) > \omega\}$$

is analytic, by the Mazurkiewicz–Sierpiński theorem [1, 29.19]. Now by [4], the set A is perfectly Ramsey. Hence, there exist a perfect set $P \subset 2^{\omega}$ and $H \in [\omega]^{\omega}$ such that either $P \times [\emptyset, H] \subset A$ or $(P \times [\emptyset, H]) \cap A = \emptyset$. This last case is impossible since for each $x \in P$, there is $G \in [H]^{\omega}$ such that $card(\bigcap_{i \in G} A_x^j) > \omega$ (see [2, Theorem 1]). Finally we obtain that

$$\forall x \in P \ card(\bigcap_{j \in H} A_x^j) > \omega. \ \Box$$

L		
L		

2 Examples.

Note that it is impossible to improve Theorem 1 (in ZFC) assuming that sets A^{j} are coanalytic (see [2, Theorem 4]). The following examples show that we also can not improve it assuming only that all sections of A^{j} are analytic (even clopen).

Example 1. We will construct a sequence $(A^j)_{j\in\omega}$ of subsets of $2^{\omega} \times 2^{\omega}$ such that

- $\forall H \in [\omega]^{\omega} \ \forall x \in 2^{\omega} \ card(\limsup_{j \in H} A_x^j) > \omega,$
- A_x^j is clopen for all $x \in 2^{\omega}$,

and there is no perfect set $P \subset 2^{\omega}$, and no $H \in [\omega]^{\omega}$ such that

$$\forall x \in P \ card(\bigcap_{j \in H} A_x^j) > \omega$$

Let $\{N_i : i \in \omega\}$ be a family of almost disjoint infinite subsets of ω such that for every $s \in [\omega]^{<\omega}$, there exists $i, j \in \omega$ with $N_i \cap N_j = s$. Let $\{B_i : i \in \omega\}$ be a partition of 2^{ω} into pairwise disjoint Bernstein subsets. Fix two disjoint clopen sets $C^0, C^1 \subset 2^{\omega}$. Put

$$A^{j} = \bigcup_{i \in \omega} B_{i} \times C^{\chi_{N_{i}}(j)},$$

where χ_{N_i} is the characteristic function of N_i . Immediately from the definition of A^j we obtain that for every $x \in 2^{\omega}$, A^j_x is a clopen set, and for any $x \in 2^{\omega}$ and $H \in [\omega]^{\omega}$, there exists $G \in [H]^{\omega}$ such that $card(\bigcap_{j \in G} A^j_x) > \omega$.

Suppose that there exists a perfect set P and $H \in [\omega]^{\omega}$ such that

$$\forall x \in P \ card(\bigcap_{j \in H} A_x^j) > \omega.$$

Then P intersects every set B_i , $i \in \omega$. For each i, since P intersects B_i , it follows that either $H \subset N_i$ or $H \subset \omega \setminus N_i$. Since $N_i \cap N_j$ is finite for $i \neq j$, there exists $i_0 \in \omega$ such that $H \subset \omega \setminus N_i$ for all $i \neq i_0$. Let $s \subset H$ be finite and nonempty. There exists $i, j \in \omega$ such that $N_i \cap N_j = s$. Then $H \cap N_i \neq \emptyset$, and $H \cap N_i \neq \emptyset$. This implies that $i = j = i_0$, which is a contradiction. \Box

Remark. If the axiom of constructibility holds that there is a partition $\{B_i : i \in \omega\}$ of 2^{ω} into pairwise disjoint Bernstein sets, such that $B_i \in \Delta_2^1(2^{\omega})$ for all $i \in \omega$. Hence, we can construct a sequence $(A^j)_{j \in \omega}$ of Δ_2^1 sets in 2^{ω} with the same properties as in Example 1.

Now we will show that under CH there is a more pathological example.

Lemma 2. Assume CH and list all sets in $[\omega]^{\omega}$ as H_{α} , $\alpha < \omega_1$. Then there are sets $G_{\alpha} \in [\bigcup_{\beta < \alpha} H_{\beta}]^{\omega}$, $\alpha < \omega_1$, such that for each $\alpha < \omega_1$ we have

$$\forall \beta < \alpha \ (G_{\alpha} \cap H_{\beta} \neq \emptyset \text{ and } H_{\beta} \setminus G_{\alpha} \neq \emptyset).$$

PROOF. Let $G_0 \in [\omega]^{\omega}$ be such that $G_0 \subset H_0$ and $H_0 \setminus G_0 \neq \emptyset$. For $\alpha < \omega_1$, let $(F_n)_{n \in \omega}$ be an enumeration of $\{H_\beta : \beta < \alpha\}$. For $n \in \omega$, let $F_n = \{a_n^0, a_n^1, a_n^2, \ldots\}$ and fix $m_n \in F_n \setminus \{a_i^j : i, j < 2n\}$. Put $G_\alpha = \{m_n : n \in \omega\}$ and notice that

$$\forall n \in \omega \ (G_{\alpha} \cap F_n \neq \emptyset \text{ and } F_n \setminus G_{\alpha} \neq \emptyset). \ \Box$$

Example 2. Assume CH. Let G_{α} , $\alpha < \omega_1$, be sets from Lemma 2. Let $\{r_{\alpha} : \alpha < \omega_1\}$ be an enumeration of 2^{ω} . Fix two disjoint clopen sets $C^0, C^1 \subset 2^{\omega}$. Put

$$A^{j} = \bigcup_{\alpha < \omega_{1}} \{ r_{\alpha} \} \times C^{\chi_{G_{\alpha}}(j)}.$$

Suppose that there is an uncountable set $E \subset \omega_1$ and $H \in [\omega]^{\omega}$ such that for all $\alpha \in E$, we have

$$card(\bigcap_{j\in H} A^j_{r_{\alpha}}) = \omega_1.$$

Since $A_r^j = C^0$ or $A_r^j = C^1$, we obtain

$$[\forall \alpha \in E \; \forall j \in H \; (A^j_{r_\alpha} = C^0)] \text{ or } [\forall \alpha \in E \; \forall j \in H \; (A^j_{r_\alpha} = C^1)].$$

There exists $\alpha_0 < \omega_1$ for which $H = H_{\alpha_0}$. Let $\alpha \in E$ be such that $\alpha_0 < \alpha$. Since $G_{\alpha} \cap H \neq \emptyset$ and $H \setminus G_{\alpha} \neq \emptyset$, pick $j_1 \in G_{\alpha} \cap H$ and $j_0 \in H \setminus G_{\alpha}$. See that $A_{r_{\alpha}}^{j_1} = C^1$ and $A_{r_{\alpha}}^{j_0} = C^0$, which yields a contradiction. Hence for every uncountable $P \subset 2^{\omega}$ and $H \in [\omega]^{\omega}$, there is $r \in P$ with $\bigcap_{j \in H} A_r^j = \emptyset$. \Box

The Referee claims that "it might be interesting to have a direct forcing proof of the Theorem 1. For example, is it true that if S denotes Sacks forcing and \mathbb{M} denotes Mathias forcing, and if (x, H) is generic for $S \times \mathbb{M}$, then $\bigcap_{i \in H} A_x^j$ is uncountable?"

Acknowledgement. I would like to thank Professor G. Debs who has found an error in a former version of the proof of Theorem 1.

References

- [1] A. S. Kechris, Classical Descriptive Set Theory, Springer, New York, 1998.
- [2] P. Komjáth, On the limit superior of analytic sets, Anal. Math., 10 (1984), 283–293.
- [3] M. Laczkovich, On the limit superior of sequence of sets, Anal. Math., 3 (1977), 199–206.
- [4] J. Pawlikowski, Parametrized Ellentuck theorem, Topology Appl., 37 (1990), 65–73.