ON PARAMETRIC LIMIT SUPERIOR OF A SEQUENCE OF ANALYTIC SETS

Abstract

Let A_{x} stand for x-section of a set $A \subset 2^{\omega} \times 2^{\omega}$. We prove that any sequence $A^{j} \subset 2^{\omega} \times 2^{\omega}, j \in \omega$, of analytic sets, with uncountable $\lim \sup _{j \in H} A_{x}^{j}$ for all $x \in 2^{\omega}$ and $H \in[\omega]^{\omega}$, admits a perfect set $P \subset 2^{\omega}$ and $H \in[\omega]^{\omega}$ with uncountable $\bigcap_{j \in H} A_{x}^{j}$ for all $x \in P$. This is a parametric version of the Komjáth theorem [2].

1 Main Result.

In [2] Komjáth proved that if the sets A^{0}, A^{1}, \ldots are analytic sets in a Polish space, and $\lim \sup _{j \in H} A^{j}$ is uncountable for each $H \in[\omega]^{\omega}$, then there exists a set $G \in[\omega]^{\omega}$ for which the intersection $\bigcap_{j \in G} A^{j}$ is uncountable. The previous version of this statement was proved by Laczkovich in [3] for a sequence of Borel sets. Komjáth, assuming $M A\left(\omega_{1}\right)$, proved that this statement holds if the analicity of sets A^{j} is skipped, but assuming the axiom of constructibility, he proved that it is false for a sequence of coanalytic sets.

In this paper we prove a parametric version of the Komjáth result. The Parametrized Ellentuck theorem due to Pawlikowski [4] is our basic tool in the proof. We discuss examples which show that some stronger versions of our theorem are impossible.

We use standard set theoretical notation (see [1]). A subset P of a Polish space is called perfect if it is nonempty, closed, and dense in itself. For $\alpha \in$ $[\omega]^{<\omega}$ and $H \in[\omega]^{\omega}$, let $[\alpha, H]$ be an Ellentuck neighbourhood; i.e., a set of the form $\left\{G \in[\omega]^{\omega}: \alpha \subset G \subset \alpha \cup(H \backslash \max (\alpha))\right\}$. A set $A \subset 2^{\omega} \times[\omega]^{\omega}$ is called perfectly Ramsey if for any perfect set $P \subset 2^{\omega}$ and any Ellentuck neighbourhood $[\alpha, H]$, there exists a perfect set $Q \subset P$ and an infinite set

[^0]$G \subset H$ such that either $Q \times[\alpha, G] \subset A$ or $(Q \times[\alpha, G]) \cap A=\emptyset$. For $A \subset 2^{\omega} \times 2^{\omega}$ and $x \in 2^{\omega}$, put $A_{x}=\left\{y \in 2^{\omega}:(x, y) \in A\right\}$; this is called x-section of A.

Theorem 1. Let $\left(A^{j}\right)_{j \in \omega}$ be a sequence of analytic subsets of $2^{\omega} \times 2^{\omega}$ such that

$$
\forall x \in 2^{\omega} \forall H \in[\omega]^{\omega} \quad \operatorname{card}\left(\limsup _{j \in H} A_{x}^{j}\right)>\omega
$$

Then there exist a perfect set $P \subset 2^{\omega}$ and $H \in[\omega]^{\omega}$ such that

$$
\forall x \in P \operatorname{card}\left(\bigcap_{j \in H} A_{x}^{j}\right)>\omega
$$

Proof. We treat $[\omega]^{\omega}$ as a Polish subspace of 2^{ω}, identifying $H \in[\omega]^{\omega}$ with its characteristic function. Define

$$
A=\left\{(x, H) \in 2^{\omega} \times[\omega]^{\omega}: \operatorname{card}\left(\bigcap_{j \in H} A_{x}^{j}\right)>\omega\right\} .
$$

Consider

$$
\begin{gathered}
B=\left\{(x, H, y) \in 2^{\omega} \times[\omega]^{\omega} \times 2^{\omega}:(x, y) \in \bigcap_{j \in H} A^{j}\right\}= \\
\left\{(x, H, y) \in 2^{\omega} \times[\omega]^{\omega} \times 2^{\omega}: \forall j \in \omega \quad\left(j \notin H \text { or }(x, y) \in A^{j}\right)\right\}
\end{gathered}
$$

and note that B is analytic. Thus

$$
A=\left\{(x, H) \in 2^{\omega} \times[\omega]^{\omega}: \operatorname{card}\left(B_{(x, H)}\right)>\omega\right\}
$$

is analytic, by the Mazurkiewicz-Sierpiński theorem [1, 29.19]. Now by [4], the set A is perfectly Ramsey. Hence, there exist a perfect set $P \subset 2^{\omega}$ and $H \in[\omega]^{\omega}$ such that either $P \times[\emptyset, H] \subset A$ or $(P \times[\emptyset, H]) \cap A=\emptyset$. This last case is impossible since for each $x \in P$, there is $G \in[H]^{\omega}$ such that $\operatorname{card}\left(\bigcap_{j \in G} A_{x}^{j}\right)>\omega($ see $[2$, Theorem 1]). Finally we obtain that

$$
\forall x \in P \operatorname{card}\left(\bigcap_{j \in H} A_{x}^{j}\right)>\omega
$$

2 Examples.

Note that it is impossible to improve Theorem 1 (in ZFC) assuming that sets A^{j} are coanalytic (see [2, Theorem 4]). The following examples show that we also can not improve it assuming only that all sections of A^{j} are analytic (even clopen).

Example 1. We will construct a sequence $\left(A^{j}\right)_{j \in \omega}$ of subsets of $2^{\omega} \times 2^{\omega}$ such that

- $\forall H \in[\omega]^{\omega} \forall x \in 2^{\omega} \operatorname{card}\left(\lim \sup _{j \in H} A_{x}^{j}\right)>\omega$,
- A_{x}^{j} is clopen for all $x \in 2^{\omega}$,
and there is no perfect set $P \subset 2^{\omega}$, and no $H \in[\omega]^{\omega}$ such that

$$
\forall x \in P \operatorname{card}\left(\bigcap_{j \in H} A_{x}^{j}\right)>\omega
$$

Let $\left\{N_{i}: i \in \omega\right\}$ be a family of almost disjoint infinite subsets of ω such that for every $s \in[\omega]^{<\omega}$, there exists $i, j \in \omega$ with $N_{i} \cap N_{j}=s$. Let $\left\{B_{i}: i \in \omega\right\}$ be a partition of 2^{ω} into pairwise disjoint Bernstein subsets. Fix two disjoint clopen sets $C^{0}, C^{1} \subset 2^{\omega}$. Put

$$
A^{j}=\bigcup_{i \in \omega} B_{i} \times C^{\chi_{N_{i}}(j)}
$$

where $\chi_{N_{i}}$ is the characteristic function of N_{i}. Immediately from the definition of A^{j} we obtain that for every $x \in 2^{\omega}, A_{x}^{j}$ is a clopen set, and for any $x \in 2^{\omega}$ and $H \in[\omega]^{\omega}$, there exists $G \in[H]^{\omega}$ such that $\operatorname{card}\left(\bigcap_{j \in G} A_{x}^{j}\right)>\omega$.

Suppose that there exists a perfect set P and $H \in[\omega]^{\omega}$ such that

$$
\forall x \in P \operatorname{card}\left(\bigcap_{j \in H} A_{x}^{j}\right)>\omega
$$

Then P intersects every set $B_{i}, i \in \omega$. For each i, since P intersects B_{i}, it follows that either $H \subset N_{i}$ or $H \subset \omega \backslash N_{i}$. Since $N_{i} \cap N_{j}$ is finite for $i \neq j$, there exists $i_{0} \in \omega$ such that $H \subset \omega \backslash N_{i}$ for all $i \neq i_{0}$. Let $s \subset H$ be finite and nonempty. There exists $i, j \in \omega$ such that $N_{i} \cap N_{j}=s$. Then $H \cap N_{i} \neq \emptyset$, and $H \cap N_{j} \neq \emptyset$. This implies that $i=j=i_{0}$, which is a contradiction.

Remark. If the axiom of constructibility holds that there is a partition $\left\{B_{i}: i \in \omega\right\}$ of 2^{ω} into pairwise disjoint Bernstein sets, such that $B_{i} \in \Delta_{2}^{1}\left(2^{\omega}\right)$ for all $i \in \omega$. Hence, we can construct a sequence $\left(A^{j}\right)_{j \in \omega}$ of Δ_{2}^{1} sets in 2^{ω} with the same properties as in Example 1.

Now we will show that under CH there is a more pathological example.

Lemma 2. Assume $C H$ and list all sets in $[\omega]^{\omega}$ as $H_{\alpha}, \alpha<\omega_{1}$. Then there are sets $G_{\alpha} \in\left[\bigcup_{\beta<\alpha} H_{\beta}\right]^{\omega}, \alpha<\omega_{1}$, such that for each $\alpha<\omega_{1}$ we have

$$
\forall \beta<\alpha\left(G_{\alpha} \cap H_{\beta} \neq \emptyset \text { and } H_{\beta} \backslash G_{\alpha} \neq \emptyset\right)
$$

Proof. Let $G_{0} \in[\omega]^{\omega}$ be such that $G_{0} \subset H_{0}$ and $H_{0} \backslash G_{0} \neq \emptyset$. For $\alpha<\omega_{1}$, let $\left(F_{n}\right)_{n \in \omega}$ be an enumeration of $\left\{H_{\beta}: \beta<\alpha\right\}$. For $n \in \omega$, let $F_{n}=$ $\left\{a_{n}^{0}, a_{n}^{1}, a_{n}^{2}, \ldots\right\}$ and fix $m_{n} \in F_{n} \backslash\left\{a_{i}^{j}: i, j<2 n\right\}$. Put $G_{\alpha}=\left\{m_{n}: n \in \omega\right\}$ and notice that

$$
\forall n \in \omega \quad\left(G_{\alpha} \cap F_{n} \neq \emptyset \text { and } F_{n} \backslash G_{\alpha} \neq \emptyset\right)
$$

Example 2. Assume CH. Let $G_{\alpha}, \alpha<\omega_{1}$, be sets from Lemma 2. Let $\left\{r_{\alpha}: \alpha<\omega_{1}\right\}$ be an enumeration of 2^{ω}. Fix two disjoint clopen sets $C^{0}, C^{1} \subset$ 2^{ω}. Put

$$
A^{j}=\bigcup_{\alpha<\omega_{1}}\left\{r_{\alpha}\right\} \times C^{\chi_{G_{\alpha}}(j)} .
$$

Suppose that there is an uncountable set $E \subset \omega_{1}$ and $H \in[\omega]^{\omega}$ such that for all $\alpha \in E$, we have

$$
\operatorname{card}\left(\bigcap_{j \in H} A_{r_{\alpha}}^{j}\right)=\omega_{1} .
$$

Since $A_{r}^{j}=C^{0}$ or $A_{r}^{j}=C^{1}$, we obtain

$$
\left[\forall \alpha \in E \forall j \in H \quad\left(A_{r_{\alpha}}^{j}=C^{0}\right)\right] \text { or }\left[\forall \alpha \in E \forall j \in H \quad\left(A_{r_{\alpha}}^{j}=C^{1}\right)\right]
$$

There exists $\alpha_{0}<\omega_{1}$ for which $H=H_{\alpha_{0}}$. Let $\alpha \in E$ be such that $\alpha_{0}<\alpha$. Since $G_{\alpha} \cap H \neq \emptyset$ and $H \backslash G_{\alpha} \neq \emptyset$, pick $j_{1} \in G_{\alpha} \cap H$ and $j_{0} \in H \backslash G_{\alpha}$. See that $A_{r_{\alpha}}^{j_{1}}=C^{1}$ and $A_{r_{\alpha}}^{j_{0}}=C^{0}$, which yields a contradiction. Hence for every uncountable $P \subset 2^{\omega}$ and $H \in[\omega]^{\omega}$, there is $r \in P$ with $\bigcap_{j \in H} A_{r}^{j}=\emptyset$.

The Referee claims that "it might be interesting to have a direct forcing proof of the Theorem 1. For example, is it true that if \mathbb{S} denotes Sacks forcing and \mathbb{M} denotes Mathias forcing, and if (x, H) is generic for $\mathbb{S} \times \mathbb{M}$, then $\bigcap_{j \in H} A_{x}^{j}$ is uncountable?"

Acknowledgement. I would like to thank Professor G. Debs who has found an error in a former version of the proof of Theorem 1.

References

[1] A. S. Kechris, Classical Descriptive Set Theory, Springer, New York, 1998.
[2] P. Komjáth, On the limit superior of analytic sets, Anal. Math., 10 (1984), 283-293.
[3] M. Laczkovich, On the limit superior of sequence of sets, Anal. Math., 3 (1977), 199-206.
[4] J. Pawlikowski, Parametrized Ellentuck theorem, Topology Appl., 37 (1990), 65-73.

[^0]: Key Words: Analytic sets, Borel sets, limit superior of sets, parametrized Ellentuck theorem.

 Mathematical Reviews subject classification: Primary 03E15, Secondary 54H05
 Received by the editors December 13, 2004
 Communicated by: Steve Jackson

