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Abstract. In this note we consider the following notion of largeness for subgroups of S∞. A group

G is large if it contains a free subgroup of c generators. We give a necessary condition for a countable

structure A to have a large group Aut(A) of automorphisms of A. It turns out that any countable

free subgroup of S∞ can be extended to a large free subgroup of S∞, and, under Martin’s Axiom,

any free subgroup of S∞ of cardinality less than c can also be extended to a large free subgroup of

S∞. Finally, if Gn are countable groups, then either
∏

n∈N Gn is large or it does not contain any free

subgroup of uncountably many generators.

1. Introduction

In this paper we study properties of the automorphism group Aut(A) of an ultragomogeneous

countable structure A. An ultrahomogeneous structure A can be seen as the Fräıssé limit of its

Fräıssé class, that is the class K of all finitely generated substructures of A. A Fräıssé class has three

properties: the hereditary property, the joint embedding property, and the amalgamation property.

For details see [3]. Some authors show connections between properties of the Fräıssé classes K and

the automorphism groups of their Fräıssé limits, see for example [4], [5].

We are going to search for a large free subgroup of Aut(A), for countable structures A. Macpherson

in [6] showed that if A is ω-categorical, then Aut(A) contains a dense free subgroup of rank ω and

the automorphism group of the Random Graph contains a dense free subgroup of 2 generators.

Cameron proved that every closed oligomoprhic subgroup of S∞ contains Aut(Q,≤) and the latter

group contains a free subgroup of rank continuum, see [1, page 84]. Melles and Shelah in [8] proved

that, if A is a saturated model of a complete theory T with |A| = λ > |T |, then Aut(A) has a dense

free subgroup of cardinality 2λ. Gartside and Knight in [2] showed that, if A is ω-categorical and

Kn = {(g1, . . . , gn) ∈ Aut(A)n : g1, . . . , gn are free generators}, then Kn is comeager in Aut(A)n for

every n. Some other results of this sort can be found in the survey paper [7]. It was proved by Shelah

in [11] that Aut(A) cannot be a free uncountable group where A is a countable structure. Recently,

Shelah proved in [12] that even any uncoutable Polish group cannot be free.

Let (A, C,F ,R) be a countable structure where C stands for a set of all constants, F for a set of

functions and R for a set of relations. We will use one symbol A for a structure and its underlying set.

Recall that a structure A is ultrahomogeneous, if every embedding of a finitely generated substructure

can be extended to an automorphism of A. By gen(X) we denote the substructure of A generated by

X, i.e., the intersection of all substructures containing X. In particular, gen(∅) = gen(C). By Aut(A)

we denote the group of all automorphisms of A. Since A is countable, Aut(A) is isomorphic to a
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closed subgroup of the group S∞ of all permutations of N. Then Aut(A) with a topology inherited

from S∞ is a topological group. If B1, B2 ⊂ A are finitely generated substructures and g : B1 → B2

is an isomorphism, then g will be called a partial isomorphism. The set of all partial isomorphisms

of A will be denoted by Part(A).

By P we denote the set of pairs (n, p) where p : {0, 1}n → Part(A) and dom(p(s)) is an n-element

substructure of A for every s ∈ {0, 1}n. The set P is ordered in the following way: (n, p) ≤ (k, q) if

and only if k ≤ n and q(t) ⊂ p(s) (i.e. p(s) extends q(t)) provided t ≺ s (i.e., s is an extension of

t). We will show that, under some reasonable assumption on A, the generic filter G on P produces

a family of c many free generators in Aut(A). Note that the poset P is countable, and therefore it

has countable chain property. In Section 2 we will use the Rasiowa-Sikorski lemma to get a generic

filter G that intersects countably many particular dense subsets of P. In this way we will infer that

Aut(A) contains a free subgroup of c generators, and this result is valid in ZFC. In Section 3 it will

be proved (by a similar argument and also under ZFC) that any countably generated free subgroup

of S∞ can be extended to a c-generated free subgroup of S∞, and that under the Martin’s Axiom

any less than c generated free subgroup of S∞ can be extended to a c-generated free subgroup of S∞.

In Section 4 we prove the following dichotomy: the product
∏
n∈NGn of countable groups Gn either

contains a c-generated free subgroup or it does not contain an uncountably generated free subgroup.

Section 5 is devoted to final remarks and open questions.

2. c-generated free subgroups of Aut(A)

In this section we will assume that every finitely generated substructure of A is finite, that is, its

Fräıssé class consists of finite structures. The next lemma shows that a generic filter gives a family

of functions which maps A onto itself.

Lemma 2.1. For every k ∈ A, the set

Dk := {(n, p) ∈ P : ∀s ∈ {0, 1}n k ∈ dom(p(s)) ∩ rng(p(s))}

is dense in P.

Proof. Let k ∈ A and (n, p) ∈ P. For any s ∈ dom(p), let p̃(s) be an automorphism of A such

that p(s) ⊂ p̃(s). Now let (Cm) be an increasing sequence of finitely generated structures such that

A =
⋃
m∈NCm. Then there exists n0 such that for any s ∈ dom(p), we have dom(p(s)) ⊂ Cn0 , and

k ∈ dom(p̃(s) � Cn0) ∩ rng(p̃(s) � Cn0).

Let n′ = |Cn0 | and for any t ∈ {0, 1}n′ , set p′(t) = p̃(t � n) � Cn0 . Then (n′, p′) ≤ (n, p) and

(n′, p′) ∈ Dk. �

In the following reasoning, we will apply the trick using an increasing sequence (Cm) without any

comments.

If g ∈ Part(A), then we set V (g) := {f ∈ Aut(A) : g ∈ f}. It is well known that the family of all

sets of the form V (g) constitutes a basis of the natural topology on Aut(A).

Lemma 2.2. Let F be a nowhere dense subset of Aut(A). Then the set

DF = {(n, p) ∈ P : ∀s ∈ {0, 1}n V (p(s)) ∩ F = ∅}
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is dense in P.

Proof. Let (n, p) ∈ P. Since F is nowhere dense, for every s ∈ {0, 1}n there exists an embedding

gs : Bs → A (Bs is a finitely generated substructure) such that gs is an extension of p(s) and

V (gs) ∩ F = ∅. Let C = gen (
⋃
{dom(gs) : s ∈ dom(p)}). Let n′ = |C| and for every t ∈ {0, 1}n′ let

p′(t) : C → A be an embedding and an extension of gt�n. Then (n′, p′) ≤ (n, p) and (n′, p′) ∈ DF

(this holds because V (p′(t)) ⊂ V (gt�n)). �

Consider the following example. Let A = N and define unary relations Rn on A, n ∈ N, such that

x ∈ Rn if and only if x = 2n or x = 2n + 1. Since (A, {Rn : n ∈ N}) is a relational structure, any

its finitely generated substructure is finite. If f ∈ Aut(A), then f(2n) = 2n and f(2n+ 1) = 2n+ 1,

or f(2n+ 1) = 2n and f(2n) = 2n+ 1. Clearly, A is ultrahomogeneous and Aut(A) is isomorphic to

ZN
2 . Hence for any f ∈ Aut(A) we have f ◦ f = id which means that Aut(A) even does not contain a

free subgroup of one generator.

This example shows that in aim to get a promised large free subgroup, we need an additional

assumption.

Let us introduce the following definition. We say that a relational structure A is ω-independent if

for any finitely generated substructures B1, B2 of A, and for any m, there is a set D ⊂ A \ (B1 ∪B2)

consisting of m+ 1 elements such that, for any embedding f : B1 → B2, and any partial permutation

g of D, the function f ∪ g is an embedding of B1 ∪ dom(g) into A.

Now we show that some natural examples of ultrahomogeneous structures are ω-independent and

have the property that every finitely generated substructure is finite.

1. First consider N without any structure. Then every finite set is a finitely generated substructure,

and the embeddings are exactly one-to-one mappings. To see that N is ω-independent, fix two finite

subsets B1, B2 ⊂ N. Let C = B1∪B2 and let x0, . . . , xm be pairwise distinct elements of N\C. Then

it is clear that the union of any one-to-one mapping f : B1 → B2 and a partial permutation g of

x0, . . . , xm is an embedding.

2. A next example is a rational Urysohn space U. Recall that a metric space is a rational Urysohn

space, if it is countable and every finite rational space (i.e., with rational distances) has an isometric

copy in U. It is known that U is ultrahomogeneous in the sense that, for every finite rational metric

space C ⊂ U and every isometrical embedding f : C → U, there is an isometry f̃ : U → U which

extends f . The following is standard and well-known:

Claim 2.3. Assume that A is an ultrahomogeneous structure. Let Y be a structure which is iso-

morphic to a finitely generated substructure of A such that Y = X ∪ Z, Z ∩ X = ∅ and X ⊂ A,

for some X,Z. Then there is Z ′ ⊂ A and a partial isomorphism g : Z → Z ′ such that the mapping

h : Y → X ∪ Z ′, given by h(x) = x for x ∈ X and h(x) = g(x) for x ∈ Z, is a partial isomorphism

of Y and X ∪ Z ′.

Now we prove that the Urysohn space is ω-independent. Let B1, B2 be two finite subspaces of U,

C = B1 ∪ B2, let d be a metric on U and M = max{d(z, c) : z, c ∈ C} + 1. Define a finite rational

metric space (Y, ρ) as follows. Let Y = C∪{a0, . . . , am} where a0, . . . , am are distinct elements which

do not belong to C. If x, y ∈ C, then put ρ(x, y) = d(x, y); if x ∈ C and y = ai, then put ρ(x, y) = M ;

finally, if x = ai and y = aj , then ρ(x, y) = 1 if i 6= j and ρ(x, y) = 0 if i = j.
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Then (Y, ρ) is a finite rational metric space. Moreover, by Claim 2.3, there are x0, . . . , xm ∈ U \C
such that d(x, xi) = M for every x ∈ C and i = 0, . . . ,m, and d(xi, xj) = 1 for i 6= j. If f : B1 → B2

is an isometric embedding, and g is partial permutation of x0, . . . , xm, then it is easy to see that the

union of f and g is an isometric embedding. Hence the rational Urysohn space U is ω-independent.

3. Let G be a random graph, that is a countable infinite graph where for any finite disjoint sets X

and Y we can find a vertex with edges going to every vertex in X and no vertex in Y . We will show

that G is ω-independent. Fix two finite graphs B1 and B2. Take any distinct x0, . . . , xm and define

a graph B1 ∪ B2 ∪ {x0, . . . , xm} as an extension of B1 ∪ B2 such that there are no edges between

x0, . . . , xm and B1 ∪ B2, and there is no edge between xi and xj for i, j ≤ m. Using Claim 2.3 we

may assume that x0, . . . , xm ∈ G \ (B1 ∪ B2). Let g be any partial permutation of x0, . . . , xm and

f : B1 → B2 be an embedding. Put fg = f ∪ g : B1 ∪ dom(g) → G. Let a, b ∈ B1 ∪ dom(g). If

a, b ∈ B1 then there is an edge between a and b if and only if there is an edge between fg(a) and

fg(b). If a or b is among x0, . . . , xm, then there is neither edge between a and b nor between fg(a)

and fg(b). Thus fg embeds B1 ∪ dom(g) into G.

4. Let Gn be the random Kn-free graph, that is the ultrahomogeneous countable graph which

omits Kn, the complete graph on n vertices. Equivalently, Gn is the Fräıssé limit of the class of all

finite Kn-free graphs. Using the same argument as for the random graph, one can see that Gn is

ω-independent.

5. Let E be a countable equivalence relation with infinitely many infinite equivalence classes. Let

f : B1 → B2 be an embedding between two finite equivalence relations B1 and B2 (i.e., finite sets

with equivalence classes induced from E). Take a set {x0, . . . , xm} of elements from fixed equivalence

class such that {x0, . . . , xm} ∩ (B1 ∪ B2) = ∅. Clearly for any partial permutation g of {x0, . . . , xm}
the function f ∪ g is an embedding.

6. The same reasoning remains true if one considers En, a countable equivalence relation with n

many infinite equivalence classes.

7. Let (D,≤) be the universal countable ultrahomogeneous partially ordered set. This is a Fräıssé

limit of all finite partially ordered sets – see [9] and [10] for more information. Let f : B1 → B2 be

an embedding between two finite suborders B1 and B2 of D. Take a set {x0, . . . , xm} ⊂ D such that

∀i, j(i 6= j =⇒ ¬(xi ≤ xj)) and ∀y ∈ B1 ∪B2∀i(¬(xi ≤ y) and ¬(y ≤ xi)).

Then for any partial permutation g of {x0, . . . , xm}, the function f ∪ g is an embedding.

Let x0, . . . , xm be pairwise distinct elements of A. A shift on {x0, . . . , xm} is a partial function

ϕ : {x0, . . . , xm} → A such that ϕ(xi) = xi−1 for i = 1, . . . ,m (ϕ is a left-shift) or ϕ(xi) = xi+1 for

i = 0, . . . ,m− 1 (ϕ is a right-shift). Note that ϕ is either not defined at x0 or at xm, so ϕ is actually

a partial mapping on {x0, . . . , xm}. An (x0, . . . , xm)-function, where x0, . . . , xm are pairwise distinct,

is a partial function g :
⋃k
i=1 Ii → A such that:

(i) I1, . . . , Ik are pairwise disjoint;

(ii) each Ii is of the form {xp, xp+1, . . . , xq} for some 0 ≤ p < q ≤ m;

(iii) each restriction g � Ii is a shift.

We will consider the following condition:
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(∗) For any finitely generated substructures B1, B2 ⊂ A and any m ∈ N, there exist pairwise

distinct x0, . . . , xm ∈ A \ (B1 ∪ B2) such that for any embedding f : B1 → B2 and any

(x0, ..., xm)-function g, there exists an embedding fg : gen(B1 ∪ dom(g))→ A with f, g ⊂ fg.

Since every (x0, ..., xm)-function g is a partial permutation of {x0, . . . , xm}, the condition (∗) is a

weaker than ω-independence.

Assume that A is a Fräıssé limit of a class K0. Let

K = K0 ? LO := {〈B,≤〉 : B ∈ K0 and ≤ is a linear ordering on B}.

A class K0 satisfies the strong amalgamation property if for any A,B,C ∈ K0 and embeddings

f : A→ B and g : A→ C, there is D ∈ K0 and embeddings r : B → D, s : C → D with r ◦ f = s ◦ g,

such that r(B) ∩ s(C) = r(f(A)) = s(g(A)). In [4] it was proved that, if K0 is a Fräıssé class with

strong amalgamation property, then so is K. We will denote the Fräıssé limit of K by A≤.

Lemma 2.4. Let A be on ω-independent ultrahomogeneous relational countable structure. Then A≤

satisfies (∗).

Proof. Let B1, B2 ⊂ A and let m ∈ N. Since A is ω-independent, there is a set {y0, . . . , ym} ⊂
A\ (B1∪B2) such that, for any embedding f : B1 → B2 and any partial permutation g of y0, . . . , ym,

the function f ∪ g is an embedding. We define a linear order � on B1 ∪B2 ∪ {y0, . . . , ym} as follows:

� on B1 ∪ B2 equals ≤, yi � yk provided i ≤ k, and x � yi for every x ∈ B1 ∪ B2 and i = 0, . . . ,m.

Since B1 ∪ B2 ∪ {y0, . . . , ym} is a substructure of A, and � is a linear order on it, the structure

〈B1∪B2∪{y0, . . . , ym},�〉 can be embedded into A≤. By Claim 2.3 we can find x0, . . . , xm ∈ A such

that 〈B1 ∪B2 ∪ {x0, . . . , xm},≤〉 is a substructure of A≤ isomorphic to 〈B1 ∪B2 ∪ {y0, . . . , ym},�〉.
Take any A≤-embedding f : B1 → B2 and any (x0, . . . , xm)-function g. Then f ∪ g is an A-

embedding. Note that each of functions f and g preserves ≤. Since each element of B1 ∪ B2 is in

relation ≤ with each xi, the function f ∪ g is an A≤-embedding. �

8. Consider the structure (Q,≤) of all rational numbers. If N stands for natural numbers without

any structure, then (Q,≤) is isomorphic to N≤. By Lemma 2.4 (Q,≤) has (∗).
9. Let (B,∨,∧,¬, 0, 1) be a countable atomless Boolean algebra. Let B1, B2 ⊂ B be finite subal-

gebras and let f : B1 → B2 be an embedding. Let C = gen(B1 ∪B2) be the smallest subalgebra of B
containing B1 and B2. Let {ci : i ∈ I} be the set of all atoms of C. We say that a finite subalgebra

X of B is independent of C provided there is a finite set {xj : j ∈ J} with gen({xj : j ∈ J}) = X and

∧
j∈J1

xj ∧
∧
j∈J2

¬xj ∧ ci 6= 0

for every i ∈ I and every partition J1, J2 of J . Clearly, such an algebra X exists and any one-to-one

self-mapping of {xj : j ∈ J} can be extended to an automorphism of X.

Claim 2.5. Let X be a finite algebra independent of X1 ∪X2, and let g be an automorphism of X.

Then f ∪ g can be extended to an embedding fg : gen(B1 ∪X)→ B.
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Proof. Let {ak : k ∈ K} be the set of all atoms of B1, and {bk : k ∈ K} ⊂ B2 be such that f(ak) = bk.

The atoms of gen(B1 ∪X) are of the form∧
j∈J1

xj ∧
∧
j∈J2

¬xj ∧ ak

for every k ∈ K and every partition J1, J2 of J . Define fg on atoms as follows

fg

∧
j∈J1

xj ∧
∧
j∈J2

¬xj ∧ ak

 = g

∧
j∈J1

xj ∧
∧
j∈J2

¬xj

 ∧ f(ak).

Clearly, fg can be uniquely extended to a homomorphism fg : gen(B1 ∪ X) → B. We need only to

prove that fg is one-to-one. Suppose that

fg

∧
j∈J1

xj ∧
∧
j∈J2

¬xj ∧ ak

 = fg

∧
j∈J ′1

xj ∧
∧
j∈J ′2

¬xj ∧ ak′

 .

Then

g

∧
j∈J1

xj ∧
∧
j∈J2

¬xj

 ∧ f(ak) = g

∧
j∈J ′1

xj ∧
∧
j∈J ′2

¬xj

 ∧ f(ak′).

Since X is independent of B2, then elements of both sides of the above equality are nonzero. Hence

from the fact that f is embedding, we have ak = ak′ . Moreover, g is an isomorphism of X, so J1 = J ′1

and J2 = J ′2. �

Let B1, B2 ⊂ B be a finite subalgebras and let f : B1 → B2 be an embedding. For any m ∈ N one

can find x0, . . . , xm witnessing that X = gen({x0, . . . , xm}) is independent of C = gen(B1 ∪B2). Let

g be any partial permutation of x0, . . . , xm. We extend g to an isomorphism of X, and using Claim

2.5, we find an embedding fg extending f ∪ g. This shows that B is ω-independent (in particular, it

satisfies (∗)).
Note that B is not a relational structure, so we cannot apply Lemma 2.4.

It a folklore that U, G, Gn, E and En possesses strong amalgamation property, and there exist their

ordered counterparts - the ordered rational Urysohn space U≤, the ordered random graph G≤, the

ordered Kn-free random graph Gn
≤ and the ordered relations E≤ and En≤. All of those structures are

relational and ω-independent, so we can apply Lemma 2.4 and conclude that each of them satisfies

the condition (∗).
Now we will show how the property (∗) implies the existence of a large free subgroup of Aut(A).

Let m ∈ N, r1, . . . , rk ∈ {1, . . . ,m} be such that ri 6= ri+1 for i ∈ {1, . . . , k− 1}, and let n1, ..., nk ∈
Z \ {0}. Then

(1) w(y1, . . . , ym) = yn1
r1 y

n2
r2 . . . y

nk
rk

will be called a word of length n where n = |n1|+ · · ·+ |nk|. If additionally, f1, . . . , fm are functions

or partial functions defined on A, then by w(f1, . . . , fm) we denote the function defined in a natural

way: the operation is the composition and the domain of w(f1, . . . , fm) is the natural domain. It is

possible that w(f1, . . . , fm) = ∅, and if all fi are elements of Aut(A), then w(f1, . . . , fm) is also an

element of Aut(A). We also consider the empty set ∅ as a word of length zero. In that case we also
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define w(f1, . . . , fk) = id, the identity function. Clearly, f1, . . . , fm ∈ Aut(A) are free generators, i.e.

they generate a free subgroup of Aut(A), if w(f1, . . . , fm) 6= id for every nonempty word w(y1 . . . , ym).

Lemma 2.6. For every nonempty word w(y1, . . . , ym) of length n, and for distinct x0, . . . , xn, there

exist (x0, . . . , xn)-functions g1, . . . , gm such that w(g1, . . . , gm)(x0) = xn.

Proof. Assume that w is given by (1). We will define functions grk , grk−1
, . . . , gr1 step by step. Since

it is possible that ri = rj for i 6= j, some of the functions g1, . . . , gm may be defined in more than one

step.

If nk < 0, then put grk(xi) = xi−1 for i = 1, . . . , |nk|, and if nk > 0, then put grk(xi) = xi+1 for

i = 0, . . . , |nk| − 1.

If nk−1 < 0, then put grk−1
(xi) = xi−1 for i = |nk|+ 1, . . . , |nk|+ |nk−1|, and if nk−1 > 0, then put

grk−1
(xi) = xi+1 for i = |nk|, . . . , |nk|+ |nk−1| − 1.

We continue this procedure and finally, if n1 < 0, then put gr1(xi) = xi−1 for i = (|nk|+ · · ·+ |n2|+
1), . . . , (|nk|+ · · ·+ |n1|), and if nk > 0, then put gr1(xi) = xi+1 for i = (|nk|+ · · ·+ |n2|), . . . , (|nk|+
· · ·+ |n1| − 1).

To illustrate the reasoning consider the following example. Let w(y1, y2) = y−2
1 y2y

3
1. Then r1 =

1, r2 = 2, r3 = 1, n1 = −2, n2 = 1, n3 = 3 and we define g1 as the right-shift on {x0, x1, x2, x3}, g2 as

the right-shift on {x3, x4} and, finally, g1 as the left-shift on {x4, x5, x6}. Then g1 is a union of two

shifts. �

Lemma 2.7. Assume that A has the property (∗). For any nonempty word w(y1, . . . , ym) and any

pairwise distinct finite sequences s1, . . . , sm of 0’s and 1’s of the same length, the set

Ds1,...,sm
w = {(n, p) : |s1| ≤ n and for every t1, . . . , tm ∈ {0, 1}n with si ≺ ti we have

w(p(t1), . . . , p(tm)) 6= id}

is dense in P.

Proof. Choose any (n, p) ∈ P and letB1 be a finitely generated substructure ofA such that
⋃
{dom(p(s)) :

s ∈ dom(p)} ⊂ B1 and |B1| ≥ |s1|. Set n′ = |B1| and for every s ∈ {0, 1}n′ let p′(s) : B1 → A be an

embedding which extends p(s � n). Then (n′, p′) ≤ (n, p).

Let B2 = gen (
⋃
{rng(p′(s)) : s ∈ dom(p′)}), and let (x0, . . . , x|w|), where |w| stands for the length

of w, be chosen as in the condition (∗). Then choose (x0, . . . , x|w|)-functions g1, ..., gm as in Lemma

2.6. Now, for every i = 1, . . . ,m and every s ∈ {0, 1}n′ with si ≺ s, let fs : gen (B1 ∪ dom(gi)) → A

be chosen for p′(s) and gi, according to the condition (∗). Let E = gen (
⋃
{dom(fs) : si ≺ s}) and

n′′ = |E|. Finally, for every t ∈ {0, 1}n′′ , let p′′(s) : E → A be defined in the following way. If

si ≺ t for some i = 1, ...,m, then p′′(t) is an extension of ft�n′ ; otherwise, let p′′(t) be any extension

of p′(t � n′). Then (n′′, p′′) ≤ (n′, p′) and consequently, (n′′, p′′) ≤ (n, p).

We need to show that (n′′, p′′) ∈ Ds1,...,sm
w . If t1, . . . , tm ∈ {0, 1}n

′′
are such that si ≺ ti, then

p′′(t1), . . . , p′′(tm) are extensions of g1, . . . , gm, respectively. Thus by Lemma 2.6 we obtain

w(p′′(t1), . . . , p′′(tm))(x0) = w(g1, . . . , gm)(x0) = x|w|.

�
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Theorem 2.8. Assume that A satisfies (∗). Then for every residual set Z ⊂ Aut(A), there is a

family F ⊂ Z of c many free generators.

Proof. Let Z be a residual subgroup of Aut(A). By Lemmas 2.1, 2.2, 2.7 and the Rasiowa-Sikorski

Lemma, there exists a filter G on P, which has nonempty intersection with all sets Dk, D
s1,...,sl
w and

DFn , where (Fn) is a sequence of nowhere dense sets such that Aut(A) \ Z =
⋃
Fn.

Let g : {0, 1}N → Aut(A) be defined in the following way. If α ∈ {0, 1}N, then

g(α) =
⋃
{p(α � n) : (n, p) ∈ G}.

At first we show that g(α) is well defined. If (n, p), (n′, p′) ∈ G, then there is (m, q) ∈ G below (n, p)

and (n′, p′). This ensures us that, if x ∈ dom(p(α � n)) ∩ dom(p′(α � n′)), then p(α � n)(x) = p′(α �

n′)(x).

Now, we show that dom(g(α)) = rng(g(α)) = A. Let k ∈ A. Since Dk is dense, there is (n, p) ∈
Dk ∩G. Then

k ∈ dom(p(α � n)) ∩ rng(p(α � n)) ⊂ dom(g(α)) ∩ rng(g(α)).

Now we show that g(α) ∈ Aut(A). It is enough to show that for any finitely generated substruc-

ture C, g(α) � C is an embedding. Assume C = {x1, . . . , xk}. Since C ⊂ dom(g(α)), there are

(p1, n1), . . . , (pk, nk) ∈ G such that xi ∈ dom(pi(α � ni)). Since G is a filter, there is (m, q) ∈ G

below each (ni, pi). This shows that g(α)(xi) = q(α � m)(xi) for every i = 1, . . . , k. Thus

g(α) � C = q(α � m) � C which shows that it is an embedding.

Now we will show that g(α) ∈ Z. Let k ∈ N, and let (n, p) ∈ G∩DFk
. Then g(α) ∈ V (p(α � n)) ⊂

Aut(A) \ Fk. Since k has been taken arbitrarily, g(α) ∈ Aut(A) \
⋃
n∈N Fn = Z.

It remains to show that {g(α) : α ∈ {0, 1}N} is a family of free generators. Let w(y1, . . . , ym) be

any word and α1, . . . , αm be distinct elements of {0, 1}N. Let k ∈ N be such that αi � k 6= αj � k for

i 6= j. Let (n, p) ∈ Dα1�k,...,αm�k
w ∩G. Since αi � k ≺ αi � n for i = 1, . . . ,m, for some x ∈ A, we have

w(g(α1), . . . , g(αm))(x) = w(p(α1 � n), . . . , p(αm � n))(x) 6= x.

This ends the proof. �

Let us note that condition (∗) does not imply that Aut(A) is oligomorphic (e.g. let A be the rational

Urysohn space), therefore our result is different from that of Cameron mentioned in Introduction.

3. Large free subgroups of S∞

Now we show that, in the case of S∞, the automorphism group of N without any structure, we

can strengthen the thesis of Theorem 2.8. Clearly, S∞ is simply the group all bijections of N. We

say that a bijection f ∈ S∞ is proper (or has infinite support), if for every finite set B ⊂ N, there is

x /∈ B such that f(x) 6= x.

Lemma 3.1. Assume that f1, . . . , fm are free generators and w(y1, . . . , ym) is any nonempty word.

Then w(f1, . . . , fm) is proper.

Proof. This follows from the fact that each f ∈ S∞ with the property fn 6= id for every n > 0 (which

clearly is fulfilled by the function w(f1, . . . , fm)) is automatically proper. Indeed, otherwise f would
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correspond to a bijection of a finite set (that is, f = g ∪ idN\A for some finite A ⊂ N, where g is a

permutation of A) and hence fn = id where n = |A|!. �

Lemma 3.2. Let A be a relational structure which is ω-independent. For every bijections f1, . . . , fk ∈
Aut(A), k ≥ 2, such that f2, . . . , fk−1 are proper, every nonzero numbers n1, . . . , nk−1 and every finite

structure C ⊂ A, there exist x ∈ A \ C, finite structures B1, B2 ⊂ A \ C and a bijection g : B1 → B2

such that x ∈ dom (fk ◦ gnk−1 ◦ fk−1 ◦ gnk−2 ◦ · · · ◦ gn1 ◦ f1) and

fk ◦ gnk−1 ◦ fk−1 ◦ gnk−2 ◦ · · · ◦ gn1 ◦ f1(x) 6= x.

Proof. We assume k > 2 (the case k = 2 is much simpler and will be obvious after considering the case

k > 2). Since A is ω-independent, there exist y0, . . . , yt, t > 2|C|+ 5k, such that for any isomorphism

h : C → C and any partial permutation h′ of y0, . . . , yt, the function h ∪ h′ is an embedding.

We first show that there are elements x0, x1, ..., x2k−1 such that:

(a) xi /∈ C, i = 0, . . . , 2k − 1;

(b) fi(x2i−2) = x2i−1 for i = 1, . . . , k;

(c) x1, . . . , x2k−2 are distinct;

(d) x0 6= x2k−1.

At first, take

x1 ∈ {y0, . . . , yt} \
(
f−1

1 (C) ∪ C
)

and put x0 = f−1
1 (x1). Then take

x2 ∈ N \
(
f−1

2 (C) ∪ C ∪ f−1
2 ({x0, x1}) ∪ {x0, x1}

)
such that f2(x2) 6= x2 and put x3 = f2(x2). It is easy to see that (a) holds for i = 0, 1, 2, 3; (b) holds

for i = 1, 2; and (c) holds for i = 1, 2. In the next step we take

x4 ∈ N \
(
f−1

3 (C) ∪ C ∪ f−1
3 ({x0, x1, x2, x3}) ∪ {x0, x1, x2, x3}

)
such that f3(x4) 6= x4 and put x5 = f3(x4). We continue this procedure and finally, we take

x2k−2 ∈ N \
(
f−1
k (C) ∪ C ∪ f−1

k ({x0, x1, x2, x3, . . . , x2k−3}) ∪ {x0, x1, . . . , x2k−3}
)

and x2k−1 = fk(x2k−2). Then (a), (b), (c) and (d) are satisfied.

Now take elements y1
0, . . . , y

1
|n1|, y

2
0, . . . , y

2
|n2|, . . . , y

k−1
0 , . . . , yk−1

|nk−1| such that

(i) yi0 = x2i−1 and yi|ni| = x2i for i = 1, . . . , k − 1;

(ii) yij /∈ C for all i, j;

(iii) y1
0, . . . , y

1
|n1|, y

2
0, . . . , y

2
|n2|, . . . , y

k−1
0 , . . . , yk−1

|nk−1| are distinct.

By (a) and (c), we can chose such elements. For every i = 1, . . . , k − 1, let

Di = {yi0, . . . , yi|ni|−1} if ni > 0

or

Di = {yi1, . . . , yi|ni|} if ni < 0.

Now we define a function g on B = D1 ∪ · · · ∪Dk−1 in the following way. For every i = 1, . . . , k − 1,

set

g(yil) = yil+1, l = 0, . . . , |ni| − 1, if ni > 0
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or

g(yil) = yil−1, l = 1, . . . , |ni|, if ni < 0.

By (iii), the function g is well defined, it is one-to-one, and B ∪ g(B) ⊂ N \ C. Also, for every

i = 1, . . . , k − 1, by (i), we have

gni(x2i−1) = gni(yi0) = yi|ni| = x2i.

Finally, this together with (b) and (d) gives us the assertion. �

Lemma 3.3. Assume that f1, . . . , fm ∈ S∞ are pairwise distinct free generators. Then there is

g ∈ S∞ \ {f1, . . . , fm} such that f1, . . . , fm, g are free generators.

Proof. It is enough to show that there exists g ∈ S∞ such that for any word w = w(y1, . . . , ym+1)

such that ym+1 appears in w, w(f1, . . . , fm, g) 6= id. The family of such words is countable and let

W = {wn : n ∈ N} be a family of all of these words. We will define sequences (Cn) and (C ′n) of

pairwise disjoint, finite subsets of N, and a sequence of partial functions (gn) such that for every

n ∈ N,

1. C ′n ⊂ Cn;

2. Cn \ C ′n 6= ∅;
3. gn : C ′n → Cn is one-to-one, and

4. there is xn ∈ Cn such that xn ∈ dom(wn(f1, . . . , fm, gn)) and wn(f1, . . . , fm, gn)(xn) 6= xn.

Then any bijective extension of g =
⋃
n∈N gn will satisfy our needs. Such an extension exists, since

by 1-3, the sets dom(g), N \ dom(g), rng(g) and N \ rng(g) are infinite.

Let n = 1. Write y instead of ym+1. Then

w1 = uk · ynk−1 · uk−1 · ynk−2 · · · yn1 · u1

for some words u1, . . . , uk in which y does not appear (it is possible that u1 or uk are empty words but

for i /∈ {1, k}, ui is nonempty). By Lemma 3.2 applied to functions fi = ui(f1, . . . , fm) (if ui is empty

then fi = id) and C = ∅, there are finite sets B1, B2, an element x1 and a bijective map g1 : B1 → B2

such that x1 ∈ dom(w1(f1, ..., fm, g1)) and w1(f1, . . . , fm, g1)(x1) 6= x1. Let C1 = B1 ∪B2 ∪ {x1, y1},
where y1 /∈ B1 ∪B2 ∪ {x1}, and C ′1 = B1.

Assume that we have already made a construction up to the step n. Then we proceed exactly as

in the first step, but for word wn+1, and we use Lemma 3.2 for C = C1 ∪ · · · ∪ Cn. �

If w,w′ are words, then by w′ ≤ w, we denote the fact that w′ is created from w by the erasing of

some symbols from the left side. In particular,

yn2
r2 . . . y

nk
rk
≤ yn1

r1 y
n2
r2 . . . y

nk
rk

and if n1 > 0, then

yn1−1
r1 yn2

r2 . . . y
nk
rk
≤ yn1

r1 y
n2
r2 . . . y

nk
rk
.

Also, we assume that ∅ ≤ w for any w.
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Lemma 3.4. For any k, l ∈ N, any word w(y1, . . . , ym) with k+l = m, any free generators f1, . . . , fk ∈
S∞, and any pairwise different sequences s1, . . . , sl of 0’s and 1’s of the same length, the set

Ds1,...,sl
w,f1,...,fk

= {(n, p) : n ≥ |s1| and for every t1, . . . , tl ∈ {0, 1}n such that si ≺ ti we have

w(f1, . . . , fk, p(t1), . . . , p(tl)) 6= id)}

is dense in P.

Proof. Take any (n, p) ∈ P and set D =
⋃
{dom(p(s))∪ rng(p(s)) : s ∈ dom(p)}. Let g1, . . . , gl ∈ S∞ \

{f1, . . . , fk} be pairwise distinct and such that f1, . . . , fk, g1, . . . , gl are free generators; we can do it by

Lemma 3.3. PutB =
⋃
{w′(f1, . . . , fk, g1, . . . , gl)

−1(D) : w′ ≤ w} where w′(f1, . . . , fk, g1, . . . , gl)
−1(D)

denotes the preimage ofD under w′(f1, . . . , fk, g1, . . . , gl); in particular, D ⊂ B. Since f1, . . . , fk, g1, . . . , gl

are free and B is finite, by Lemma 3.1 there exists x ∈ N\B such that w(f1, . . . , fk, g1, . . . , gl)(x) 6= x.

For every i = 1, . . . , l, let

Ei = {w′(f1, . . . , fk, g1, . . . , gl)(x) : w′ ≤ w and w′ begins with yk+i},

Ei = {w′(f1, . . . , fk, g1, . . . , gl)(x) : yk+iw
′ ≤ w}.

Since x ∈ N \B, then Ei ∩D = ∅ and Ei ∩D = ∅. Now for every i = 1, . . . , n put hi = gi � Ei. Then

hi is a bijection between Ei and Ei.

We are ready to define (n′, p′). Let

n′ = n+ |s1|+ max{|E1|, . . . , |En|}.

For every i = 1, . . . , l, let Gi ⊂ N \ (B ∪ Ei ∪ Ei) be such that |Gi|+ n+ |Ei| = n′.

Now, for t ∈ {0, 1}n′ with si ≺ t, put

p′(t) = p(t � n) ∪ hi ∪ idGi .

For the remaining t ∈ {0, 1}n′ , let p′(t) be any bijective extension of p(t � n) with | dom(p′(t))| = n′.

Clearly, (n′, p′) ∈ P and (n′, p′) ≤ (n, p). If t1, . . . , tl ∈ {0, 1}n
′

and si ≺ ti for i = 1, . . . , l, then

w(f1, . . . , fk, p
′(t1), . . . , p′(tl))(x) = w(f1, . . . , fk, h1, . . . , hl)(x) = w(f1, . . . , fk, g1, . . . , gl)(x) 6= x.

Hence (n′, p′) ∈ Dg1,...,gl
w,f1,...,fk

. �

Now we extend Theorem 2.8 and Lemma 3.3.

Theorem 3.5. For any residual set Z ⊂ S∞ and any countable family of free generators F , there is

a family of free generators F ′ ⊂ Z of cardinality c such that F ∪ F ′ is a family of free generators.

Proof. The proof is very similar to that of Theorem 2.8 - using the Rasiowa-Sikorski Lemma, we chose

a generic filter G which has nonempty intersection with all sets Dk, DFk
, and Ds1,...,sl

w and Ds1,...,sl
w,f1,...,fk

(where f1, . . . , fk are elements of F). Again, for every α ∈ {0, 1}N, we set

g(α) =
⋃
{p(α � n) : (n, p) ∈ G}.

In view of the proof of Theorem 2.8, we only have to show that F ∪ {g(α) : α ∈ {0, 1}N} is a family

of free generators. Let w = w(y1, . . . , yn) be any word, let k, l ∈ N be such that k + l = n and let

f1, . . . , fk ∈ F be distinct. Let α1, . . . , αl be different elements of {0, 1}N and let r ∈ N be such that
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αi � r 6= αj � r for i 6= j. Let (n, p) ∈ Dα1�r,...,αl�r
w,f1,...,fk

∩G. Since αi � r ≺ αi � n for i = 1, . . . , l, there is

x ∈ N such that

w(f1, . . . , fk, g(α1), . . . , g(αl))(x) = w(f1, . . . , fk, p(α1 � n), . . . , p(αl � n))(x) 6= x.

This ends the proof. �

LetM stand for the σ-ideal of meager subsets of R. Let mcountable = min{κ :’MA(κ) for countable

posets’ fails} (MA stands for Martin Axiom). It is well-known, see [13], that

mcountable = cov(M) := min{|F| :
⋃
F = R,F ⊂M}.

Since the poset P is countable, we obtain the following.

Theorem 3.6. For any residual set Z ⊂ S∞ and any family of free generators F of cardinality less

than cov(M), there is a family of free generators F ′ ⊂ Z of cardinality c such that F ∪F ′ is a family

of free generators.

4. Products of countable groups

In this section we will give a necessary and sufficient condition for a sequence of countable groups

G1, G2, . . . to exist a free subgroup of
∏
Gn of c generators. A family {Xs : s ∈ S} of subsets of N

is independent if
⋂
s∈E Xs ∩

⋂
s∈F (N \Xs) 6= ∅ for every finite F,E ⊂ S with E ∩ F = ∅. It is well

known that there is an independent family of cardinality c.

Lemma 4.1. Let n ≥ 2. There exists a family F = {fα : α < c} of functions from {0, 1, . . . , n− 1}N

such that for any α0 < α1 < · · · < αn−1 < c there is k ∈ N such that fαi(k) = i.

Proof. Let {pk : k ∈ N} be an enumeration of all subsets of N of cardinality n. Enumerate each pk

as {pk(0), . . . , pk(n − 1)}. Let {Uα : α < c} be an independent family of N. For any α we define

fα : N→ {0, 1, . . . , n−1} as follows. Fix k ∈ N. If there is i < n such that pk(i) ∈ Uα and pk(j) /∈ Uα
for every j 6= i, then put fα(k) = i; otherwise put fα(k) = 0.

Let α0 < α1 < · · · < αn−1. Pick mi ∈ Uαi \
⋃
j 6=i Uαj and put p(i) = mi for i < n. There is k ∈ N

with p = pk. Then fαi(k) = i. �

Recall that, if a word w is of the form w = w(y1, ..., ym), then we assume that all variables of w

are in y1, ..., ym, but not necessarily all y′is must appear in w.

Theorem 4.2. Let Gn, n ∈ N, be a family of groups.

(i) If for any nonempty word w(y1, ..., ym) there are infinitely many n’s for which there are

gn,1, . . . , gn,m ∈ Gn with w(gn,1, . . . , gn,m) 6= en where en is a neutral element of Gn, then∏∞
n=1Gn contains a free group of c generators.

(ii) If every Gn is countable and for some nonempty word w(y1, . . . , ym) and for almost every n

and every gn,1, . . . , gn,m ∈ Gn we have w(gn,1, . . . , gn,m) = en, then
∏∞
n=1Gn does not contain

any free group of uncountably many generators.
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Proof. Assume that for any word w(y1, ..., ym) there are infinitely many n’s for which there are

gwn,1, . . . , g
w
n,m ∈ Gn with w(gwn,1, . . . , g

w
n,m) 6= en. For any nonempty word w = w(y1, ..., ym), put

Ew = {n ∈ N : there are gwn,1, . . . , g
w
n,m ∈ Gn with w(gwn,1, . . . , g

w
n,m) 6= en}.

Then {Ew : w = w(y1, ..., ym) is a nonempty word} is a countable family of infinite sets. Let {E′w :

w = w(y1, ..., ym) is a nonempty word} be a disjoint refinement of this family, i.e. a family of pairwise

disjoint infinite sets with E′w ⊂ Ew for any nonempty word w. For any α < c, define fα ∈
∏
Gn as

follows. Let w be a word. Consider two cases.

1. If w = w(yk) is a word with one variable yk, then let {fwα : α < c} be an enumeration of the set∏
n∈E′w{en, g

w
n,k} \

∏
n∈E′w{en}.

2. If w = w(y1, . . . , ym) then using Lemma 4.1, we can find a family {fwα : α < c} such that for any

α1 < · · · < αm there is n ∈ E′w with fwαi
(n) = gwn,ki for i ≤ m. Finally, let fα(n) = fwα (n) if n ∈ E′w,

and fα(n) = en, otherwise.

Clearly, in both cases, {fα : α < c} consists of free generators.

Assume now, that Gn are countable and let w(y1, . . . , ym) be a word such that there is N with

w(gn,1, . . . , gn,m) = en for n ≥ N and all gn,1, . . . , gn,m ∈ Gn. Suppose
∏∞
n=1Gn contains a free

group of uncountably many generators, say {fα : α < ω1}. Then for every distinct α1, . . . , αm < ω1

and there is n < N , depending on αi’s, with w(fα1(n), . . . , fαm(n)) 6= en. Since the groups Gn are

countable, one can find two distinct m-element sets {α1, . . . , αm} and {β1, . . . , βm} of ordinals less

than ω1 such that w(fα1(n), . . . , fαm(n)) = w(fβ1(n), . . . , fβm(n)) for every n < N . Then

w(fα1(n), . . . , fαm(n))w−1(fβ1(n), . . . , fβm(n)) = en

for every n ∈ N. This contradicts the fact that {fα : α < ω1} are free generators. �

From Theorem 4.2 we immediately obtain the following dichotomy.

Corollary 4.3. Let Gn, n ∈ N, be countable groups. Then either
∏
n∈NGn contains free subgroups

of c generators or it does not contain free subgroup of uncountably many generators.

5. Final remarks and open questions

The results of Section 2 can be deduced from those of Section 3 for some class of structures. We say

that a subset X of A is independent if any bijection f : X → X can be extended to an automorphism

of A. If A contains an infinite independent set X, then take a set F ⊂ S∞(X) of c free generators,

and extend every f ∈ F to an automorphism f ′ of A. Then F ′ = {f ′ : f ∈ F} is a set of free

generators in Aut(A).

Let X be an infinite independent, in the sense of Boolean algebras, set in B. Then X is independent

in the above sense. Now, let X ⊂ U be an isometric copy of N with the metric d given by d(x, y) =

1 ⇐⇒ x 6= y. Then X is an independent subset of U. However, Q does not contain an independent

subset of cardinality greater than 2. The direct sum of countably many copies of (Q,+) is a countable

ultrahomogeneous structure and any of its finitely generated substructures is a torsion free Abelian

group. Note that all of its finitely generated substructures are not finite but each of them contains an

infinite independent subset. Hence its automorphism group contains a large free subgroup and this

cannot be proved by our method.
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We are interested in extending of small free subgroups of Aut(A) to large free groups. We introduce

the following cardinal number

fA = min{|F| : F is a maximal set of free generators in Aut(A)}

where ”maximal” means that F cannot be extended to a larger set of free generators. In Section 3

we proved that f := fN is an uncountable cardinal ≥ cov(M).

We end with the list of open questions.

1. Can one prove a similar result to that in Section 2, for structures whose finitely generated sub-

structures are infinite?

2. Does (∗) imply that fA is uncountable? Does Martin’s Axiom imply that fA = c?

3. Is is true that f = cov(M)?

4. Is it true that Aut(A) either does not contain an uncountably (infinitely) generated free subgroup

or it contains a free subgroup of c generators?
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