
ON SOME σ-IDEAL WITHOUT CCC

MARTA FRANKOWSKA AND SZYMON GŁA̧B

Abstract. We prove that σ-ideal σ(a) has property (M) and, consequently,
fails ccc property. It is also shown that σ(a) is generated by the family {E \
Φ(E) : E = cl(E)}. Finally, we show that if for any A ∈ σ(a) and U open in
density topology, A ∩ U is meager in U .

1. Preliminaries

The aim of this paper is to give a complete characterization of σ-ideal σ(a). The
definition of condition (a) was introduced by Marcin Grande in 2001 in the paper
On the sets of discontinuity points of functions satisfying some approximate quasi-
continuity conditions [G1]. In Theorem 1 Grande proved that the set A is a set
of discontinuity points of some approximately contionuous function f with propert
(s1) (see [G1]) if and only if it is an Fσ set of Lebesgue measure zero and satisfies
the (a) condition:

(a) for each nonempty set U ∈ τd contained in the closure cl(A) of the set A the
set U ∩A is nowhere dense in U .

In 2003 Zbigniew Grande and Ewa Strońska proved that the family of all sets sat-
isfying the condition (a) is an ideal of sets, which is Gδσ- but not Fσ-generated (see
[GS]). They also observed that every set satisfying condition (a) is nowhere dense
and of Lebeque measure zero. Answering the question of Grande and Strońska,
in 2011 Frankowska and Nowik proved that ideal (a) is not Gδ-generated ([FN2]).
They first proved this in the case of the ideal (a) defined on the Cantor set 2N

([FN1]). In fact, they proved that the ideals (a) are not Fσδ-generated; it was not
stated there explicitly but it can be easily extracted from the proofs.

2. Definitions and notion

Denote by λ the Lebesgue measure in R. For any measurable A ⊆ R by Φ(A)
we denote the set of density points of A i.e.

Φ(A) = {x ∈ R : lim inf
h→0+

λ(A ∩ [x− h, x+ h])

2h
= 1}.

We say that U ⊆ R is open in density topology, denoted by τd, if and only if U is
measurable and U ⊆ Φ(U) (see [T]).

We use the following characterization of sets A ∈ (a) rather than original defini-
tion.
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Theorem 1 ([N]). A set A ∈ (a) if and only if for every nonempty U ∈ τd there
exists an open set W in the standard topology such that U∩W 6= ∅ and U∩W ∩A =
∅.

Later, we will also need the following:

Theorem 2 ([GS]). For every closed (in the standard topology) set E ⊆ R we have
E \ Φ(E) ∈ (a).

3. σ(a) has property (M)

Definition 1. Let I be a proper (e.i. X /∈ I) ideal on uncountable Polish space X
which contains all singletons and has a Borel basis. We say that I has property (M)
if and only if there is a Borel measurable function f : X → 2N with f−1[{x}] /∈ I
for each x ∈ 2N.

Property (M) was introduced and investigated by Balcerzak in [B]. Obviously,
an ideal satisfying property (M) fails the ccc. Balcerzak, Rosłanowski and Shelah
in [BRS] consider whenever it is possible for both the ccc and property (M) to fail.
For more details we refer the reader to [B] and [BRS].

We will denote by E the σ-ideal generated by all Fσ subsets of R of Lebesgue
measure zero. In [M] Mauldin proved that there is a Borel measurable function
f : [0, 1] → [0, 1]N such that for any x ∈ [0, 1]N, f−1[{x}] is not a subset of any Fσ
set of Lebesgue measure zero. Evidently, E has (M) property. We will use similar
method to that used in Mauldin’s paper to prove that σ(a) has property (M). We
say that a Borel set B is fat if for any open subset U of real line such that U∩B 6= ∅,
the set U ∩B has positive Lebesgue measure. A fat set always contains a fat perfect
subset; for details see [Bu]

Theorem 3. σ(a) has property (M).

Proof. We define by induction the system of perfect subsets of real line 〈Ps : s ∈
N<N〉 such that for each s ∈ N<N:

(1) Ps is perfect.
(2) Ps is fat.
(3) Ps∧〈i〉 is a nowhere dense subset of Ps with the diameter less than 1

1+|s| for
each i ∈ N.

(4) If U ⊆ R is open and i ∈ N, then the following implication is true:

U ∩ Ps 6= ∅ ⇒ ∃i∈NPs∧〈2i〉 ∪ Ps∧〈2i+1〉 ⊆ U.

(5) Ps∧〈i〉 ⊆ Φ(Ps) for each i ∈ N.
(6) Ps∧〈i〉 ∩ Ps∧〈j〉 = ∅ for all natural i 6= j.

First, we choose nowhere dense perfect fat set P∅ (the construction of such set
you can find in [Bu]). Let fix any k ∈ N and suppose that we have defined Ps for
all s ∈ N<N such that |s| ≤ k. Fix s ∈ N<N with |s| = k. Let 〈Ui : i ∈ N〉 be
the family of all basis open sets such that Ui ∩ Ps 6= ∅. Fix i ∈ N and suppose
that we have already defined sets {Ps∧〈2j〉, Ps∧〈2j+1〉 : j = 0, 1, . . . , i − 1}. Since⋃i−1
j=0

(
Ps∧〈2j〉 ∪ Ps∧〈2j+1〉

)
is nowhere dense subset of Ps, we can find nonempty

open W ⊆ U such that W ∩ Ps 6= ∅ and
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W ∩
i−1⋃
j=0

(
Ps∧〈2j〉 ∪ Ps∧〈2j+1〉

)
= ∅

.
Moreover, Ps is fat set and W ∩Ps 6= ∅, so we conclude that W ∩Ps has positive

Lebesgue measure. Let Qs be the countable set dense in Ps. Finally, we can find
two disjoint perfect fat Ps∧〈2i〉, Ps∧〈2i+1〉 ⊆W ∩Φ(Ps)\Qs with diameters less than

1
1+|s| .

Now a function φ : NN → R is defined by imposing the following condition:

{φ(x)} =
⋂
n∈N

Px |̀n.

Note that φ is an embedding and φ−1 : φ[NN]→ NN is continuous. Next we define
σ : NN → 2N by σ(x)(n) = x(n) mod 2. Finally, the function f : φ[NN] → 2N is
given by f = σ ◦ φ−1.

Let us fix x0 ∈ 2N. We will show that f−1[{x0}] /∈ σ(a). Suppose that 〈Xn : n ∈
N〉 is any partition of

f−1[{x0}] = φ[σ−1[{x0}]].
Then

σ−1[{x0}] =
⋃
n∈N

φ−1[Xn].

The homeomorphism τ : σ−1[{x0}]→ NN is defined by imposing the following con-
dition

τ−1(y)(n) = 2 · y(n) + x0(n).

NN is Baire space, hence there is n0 ∈ N and s ∈ N<N such that

cl([s] ∩ τ [φ−1[Xn0
]]) = [s].

Let us consider s1 ∈ N<N with |s1| = |s| and s1(n) = 2 · s(n) + x0(n) for each
n < |s|. Note that τ [[s1] ∩ σ−1[{x0}]] = [s] and hence [s1] ∩ φ−1[Xn0 ] is dense in
[s1] ∩ σ−1[{x0}]. Next, we find

yk ∈ φ−1[Xn0
] ∩ [s∧1 〈2k + x0(|s1|)〉]

for each natural k. Then

φ(yk) ∈ Xn0
∩ Ps∧1 〈2k+x0(|s1|)〉.

If U is open set such that U ∩ Φ(Ps1) 6= ∅, then there is natural k such that
Ps∧1 〈2k+x0(|s1|)〉 ⊆ U ∩Φ(Ps1). Hence φ(yk) ∈ U ∩Φ(Ps1)∩Xn0

. Thus, by Theorem
1, we obtain Xn0

/∈ (a) and, consequently, f−1[{x0}] /∈ σ(a).
Finally, we choose c ∈ φ[NN] and define function g : R→ 2N by:

g(x) =

{
f(x), for x ∈ φ[NN],
f(a), for x ∈ R \ φ[NN].

Obviously, g is Borel function such that g−1[{y}] does not belong to σ(a) for any
y ∈ 2N and the proof is complete. �

An immediate consequence of Theorem 3 is the following corollary.

Corollary 4. σ(a) does not satisfy the countable chain condition ( ccc).
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The following result generalizes a theorem of Marcin Grande ([G2, Theorem 2])
stating that there are sets measurable with respect to the Lebesgue measure and
with Baire property which are not in σ-field generated by the union B∪(a). In fact,
we prove even more i.e. there are analytic sets which are not in σ-field generated
by the union B ∪ (a).

Proposition 5. If σ-ideal I ⊂ P(R) has property (M), then there is an analytic
set A such that A /∈ B 4 I.

Proof. Suppose that I is σ-ideal of subsets of real line with property (M). Let
U ⊂ R × R be the universal for the class of analytic sets i.e. for each analytic set
A there is x ∈ R such that Ux = A.

Let f : R → R be a Borel measurable fuction such that f−1[{y}] /∈ I for any
y ∈ R.

We define C = {x ∈ R : 〈f(x), x〉 /∈ U}. Observe that C is coanalytic set which
does not belong to B 4 I.

On the contrary, suppose that C = B 4M and B ∈ B, M ∈ I. Then, there
is x0 ∈ R such that Ux0

= B. Let x1 be any element of the f−1[{x0}] \M . We
consider two cases:

(1) x1 ∈ C = B 4M . Since x1 ∈ B, 〈x0, x1〉 ∈ U . It follows immediately that
〈f(x1), x1〉 ∈ U and hence x1 /∈ C, which is impossible.

(2) x1 /∈ C = B 4 M . Since x1 /∈ B, 〈x0, x1〉 /∈ U . It follows easily that
〈f(x1), x1〉 /∈ U and hence x1 ∈ C, a contradiction.

�

4. Characterization of (a′)

In this section we will be concern with the family of sets (a′) given by

(a′) = {X ⊂ R : ∃E closed and such that X ⊂ E \ Φ(E)}.
Grande and Strońska in [GS] showed that for any closed E ⊂ R we have E \

Φ(E) ∈ (a), hence (a′) ⊆ (a). The natural question arises whether these two
families are equal. We give a negative answer to this question showing that the
family (a′) is not an ideal.

Proposition 6. The family (a′) is not an ideal.

Proof. Let C ⊂ [0, 1] be a set homeomorphic to the ternary Cantor set such that
C has positive measure and 0, 1 ∈ C. Let

⋃
n∈N(an, bn) = [0, 1] \ C be such that

intervals (an, bn) are pairwise disjoint. Note that the set {an, bn : n ∈ N} is dense
in C. For any n find (xnk )k∈N, (y

n
k )k∈N ⊂ (an, bn) such that xnk → an and ynk → bn.

Let X = {xnk , ynk : n, k ∈ N}. Then cl(X) = X ∪ C and X ∩ C = ∅. Note that

X ⊂ cl(X) \ C ⊂ cl(X) \ Φ(cl(X)).

Therefore X ∈ (a′).
Now fix p ∈ Φ(C). Clearly, p ∈ C. Consider the set Y = X ∪ {p}. Observe

that any nonempty open in density topology U ⊂ cl(X) is contained in C. Thus
U ∩ X = {p} is nowhere dense in U . (One can prove it in simpler way, since
X, {p} ∈ (a′) ⊂ (a) and (a) is an ideal). We only need to show that Y /∈ (a′) and
hence (a′) is not an ideal, so in the consequence (a′) 6= (a).

Suppose that there is a closed set E with Y ⊂ E\Φ(E). Then cl(X) ⊂ E and p ∈
E. Then Φ(E) contains Φ(C) and in the consequence p ∈ Φ(E), a contradiction. �
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According to the above proposition, families (a) and (a′) are different. However,
we will prove that these families generate the same σ-ideal.

Let us first prove the following lemma:

Lemma 7 (folklore). Let F ⊂ R be closed. Then F ∩ Φ(F ) is open in density
topology.

Proof. We need to show that Φ(F ∩ Φ(F )) = F ∩ Φ(F ). Since every point of
F ∩Φ(F ) is its density point, F ∩Φ(F ) ⊆ Φ(F ∩Φ(F )). On the other hand let x be
a point of density of F ∩Φ(F ). Then x is a limit point of F ∩Φ(F ), and therefore
since F is closed, x ∈ F . That means Φ(F ∩ Φ(F )) ⊆ F ∩ Φ(F ). �

Let X ∈ (a). We define derivative X ′ = {x ∈ X : x ∈ Φ(cl(X))} and inductively
Xα = {x ∈

⋂
ξ<αX

ξ : x ∈ Φ(cl(
⋂
ξ<αX

ξ))}.
Let λ stand for the Lebesgue measure.

Proposition 8. Let X ∈ (a). Then for any α < ω1 we have
(i) the set Xα ∩ Φ(Xα) has measure zero;
(ii) cl(Xα) is a nowhere dense subset of cl(Xβ) ∩ Φ(cl(Xβ)) for every β < α;

(iii) if λ(cl(Xα)) > 0, then λ(cl(Xα)) < λ(cl(Xβ)) for every β < α.

Proof. (i) follows from the fact that Xα ⊂ X and X ∈ N .
(ii) Suppose that cl(Xα) is not nowhere dense subset of cl(Xβ) ∩ Φ(cl(Xβ)).

Then cl(Xα) contains a relatively open subset V of cl(Xβ) ∩ Φ(cl(Xβ)). Clearly
V is open in density topology. Moreover X ∩ V = Xα ∩ V is dense in V , which
contradicts the fact that X ∈ (a).

(iii) It follows from the fact that open dense subset V of P ∩ Φ(P ) where P is
perfect with λ(P ) > 0 has also positive measure.

�

Let X ∈ (a). On account of Proposition 8(iii) there is α < ω1 such that
λ(cl(Xα)) = 0. Set

rank(X) = min{α < ω1 : λ(cl(Xα)) = 0}.
Then Xrank(X) = ∅ and Xα 6= ∅ for each α < rank(X).

The following shows that the defined hierarchy of sets in the ideal (a) is non-
trivial.

Theorem 9. For every α < ω1 there is a countable set X ∈ (a) with rank(X) = α.

Proof. Our proof starts with the observation that for each α < ω1 there is a se-
quence {Cξ : ξ < α} of perfect sets such that

• λ(Cξ) > 0;
• if β < α, then Cβ is nowhere dense subset of

⋂
ξ<β Cξ;

•
⋂
ξ<α Cξ is a singleton.

Let X0 ⊂ R be such that cl(X0) ⊇ C0, X0 ∩ C0 = ∅ and C0 = (X0)′, where
(X0)′ denotes the Cantor-Bendixson derivative of X0. It means that C0 is a set of
limit points of X0 and X0 consists of all isolated points of cl(X0). The construction
of such X0 is the same as that of X in the proof of Proposition 6. We define by
induction on β < α Xβ such that:

(1) Xβ ⊂
⋂
ξ<β Cξ;

(2) cl(Xβ) ⊇ Cβ ;
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(3) (Xβ)′ = Cβ ;
(4) Xβ ∩ Cβ = ∅.

Let X =
⋃
β<αXα.

We need following lemmas:

Lemma 10. Let Z ⊂ R, V ∈ τd and V 6= ∅. If Z ∩ V is dense in V , with respect
to the natural topology on R, and x ∈ Z is an isolated point of Z, then x /∈ V .

Proof. Suppose that x ∈ V . Since V is open in τd, x is a density point of V . Thus
for any open interval I 3 x with I ∩Z = {x}, we have (I \ {x})∩V 6= ∅. Therefore
I ∩ Z is not dense in I ∩ V . Since Z ∩ V is dense in V , x /∈ V . �

Lemma 11. Let V ∈ τd, V 6= ∅. Then X ∩ V is nowhere dense in V .

Proof. Suppose that X ∩ V is not nowhere dense in V . Then we may assume that
X ∩V is dense in V (if not we will find V ′ ⊂ V such that X ∩V ′ is dense in V ′ and
we will work with Y ′ instead of Y ). By Lemma 10 we obtain that V is disjoint with
X0. Thus (X \X0) ∩ V is dense in V . But X1 is set of isolated point of X \X0.
Using Lemma 10 we obtain that V ∩ X1 = ∅. Proceeding inductively we obtain
that V ∩ Xβ = ∅. Hence V ∩ X = V ∩

⋃
Xβ =

⋃
(V ∩ Xβ) = ∅, and we reach a

contradiction. �

From the Lemma 11 we obtain that X ∈ (a). By the construction we obtain
that Xβ = Xβ . Hence rank(X) = α.

�

Theorem 12. σ(a′) = σ(a).

Proof. Since (a′) ⊂ (a), obviously we only need to show that σ(a) ⊂ σ(a′).
Let X ∈ (a). Let α < ω1 be a rank of X. Then

X \X ′ ⊂ cl(X) \ Φ(cl(X)).

In general
Xξ \Xξ+1 ⊂ cl(Xξ) \ Φ(cl(Xξ)).

Since X =
⋃
ξ<αX

ξ \Xξ+1 and X0 = X, X ∈ σ(a′).
�

A possible way to prove that the ideal generated by (a′) and (a) are not equal
is to show that an union of two sets with finite ranks has a finite rank. Then any
set from the ideal generated by (a′) would have finite rank, while, by Theorem 9,
there is a set in (a) with infinite rank. However, the authors are not able to prove
it. Therefore the following problem remains unsolved.

Open question. Are the ideals generated by (a) and (a′) equal?

Note that the continuous image of a null and perfect set may be of positive mea-
sure. Therefore the sets from (a) and (a′) are not preserved by continuous functions.
We say that a mapping f : R → R is a density preserving homeomorphism if f is
autohomeomorphism of the real line with the natural topology and for any measur-
able S ⊂ R, f(x) is a density point of the set f(S) whenever x is a density point
of S. This notion was introduced by Bruckner in [Br] and afterwards studied by
Niewiarowski in [Ni]. The class of density preserving homeomorphisms contains
continuously differentiable homeomorphisms whose derivatives never vanish, and it
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is contained in the class of absolutely continuous functions [Br]. Clearly, density
preserving homeomorphisms preserve (a), (a′) and ranks of sets from (a), i.e. if
X ∈ (a), then rank(X) = rank(f(X)) for any density preserving homeomorphism
f . Since the hierarchy of sets in (a) is nontrivial, there not exists a universal set in
(a) which contains a copy of every set from (a).

Proposition 13. There is no universal set A ∈ (a) such that for any set B ∈ (a)
there is a density preserving homeomorphism f : R→ R such that f(B) ⊂ A.

Proof. Let A ∈ (a). By Theorem 9 there is a set B ∈ (a) such that rank(B) >
rank(A). Suppose that there is a density preserving homeomorphism f : R → R
such that f(B) ⊂ A. Then rank(f(B)) > rank(A) which contradicts the mono-
tonicity of the rank operator. �

5. σ(a) and porous sets

Andrzej Nowik in [N] showed that every porous set satisfies condition (a). We
will prove that every porous set satisfies condition (a′). Let us remind the definition
of porosity and porous set.

Definition 2. Let A ⊆ R, x ∈ R and let I ⊆ R be any open interval. We denote
by l(A, I) the maximal length of open subinterval J ⊆ I disjoint with A.

If the limit

lim supε→0+

l(A, (x− ε, x+ ε))

ε
exists, we donote it by ρ(A, x) and call it the porosity of set A in point x.

A set A is porous if and only if it has a positive porosity in every point x ∈ A.
The σ- ideal generated by the family of porous set we denote by σP.s

The following lemma will be useful.

Lemma 14. Let X ∈ R The following conditions are equivalent:
(1) X ∈ (a′);
(2) Φ(cl(X)) ∩X = ∅.

Proof. Assume that X ∈ (a′). Let E ⊆ R be a closed set such that X ⊆ E \Φ(E).
Then cl(X) ⊆ E and thus Φ(cl(X)) ⊆ Φ(E). Clearly, Φ(cl(X)) ∩X = ∅.

On the other hand, suppose that X ⊆ R is such that Φ(cl(X)) ∩X = ∅. Then
take E = cl(X). Obviously, X ⊆ E \ Φ(E). �

Theorem 15. For every porous set A ⊆ R there is a closed E ⊆ R such that
A ⊆ E \ Φ(E).

Proof. Suppose that A ⊆ R is porous set. We only need to show that A∩Φ(cl(A)) =
∅. Let fix a ∈ A. Since A is porous set,

lim supε→0+

l(A, (x− ε, x+ ε))

ε
> 0.

Choose a decreasing seguence of numbers {εk}k∈N tending to 0 and η > 0 such that

l(A, (a− εk, a+ εk)) ≥ η · εk.

Let Ik be an open interval of length η · εk such that Ik ⊆ (a − εk, a + εk) \ A.
Then cl(A) ∩ Ik = ∅ and thus
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λ((a− εk, a+ εk) ∩ cl(A))

2εk
≤ 2εk − η · εk

2εk
= 1− η

2
.

Clearly, a is not a density point of cl(A) and by Lemma 14 A is in (a′). �

Note that if a set A is porous, then its closure clA is porous as well. Moreover,
if A is porous at a point a ∈ A, then a is not a density point of A. Therefore
if A is porous, then Φ(A) = ∅, and by Lebesgue Theorem A has measure zero.
Consequently any porous set can be covered by closed set of measure zero. But any
such set is in (a′) that is in the first level of hierarchy on (a). We will show that
there is a set S with property (a′) which is not in E .

To prove it, take a fat perfect set P . By Theorem 16 the set S of all points in
P which are not density points of P is a comeager in P . Since S = P \ Φ(P ), S
has property (a′). Let G ⊂ S be a Gδ subset of S which is dense in P . Suppose to
the contrary that G is in E . Then G ⊂

⋃
n∈N Fn where Fn are closed null sets and

F1 ⊂ F2 ⊂ . . . . Then there is n with intG(Fn) 6= ∅. Thus Fn ∩ P is open in P and
by fatness of P we obtain that Fn ∩ P has positive measure. A contradiction.

What we prove does not mean that every set in E has property (a′). By Theorem
9 in each level of hierarchy on (a) there is a countable set, which in turn is in E .
Moreover, there is a countable set which is not in (a). Therefore E is not contained
in (a) but it is a proper subset of σ(a).

6. σ(a) and meager sets

Let us recall that Nowik proved in [N] that A ∈ (a) if and only if for any
nonempty U open in density topology A ∩ U is nowhere dense in U . The natural
question arises whether the analogous fact is true for σ(a)? Obviously, if A ∈ σ(a),
then A ∩ U is meager in U . We shall prove that the converse implication is not
true.

Let M denotes the family of meager subsets of R and for any X ⊂ R, M(X)
stands for the family of meager subsets of X.

We define the σ-ideal AFC(τd) by a condition:

X ∈ AFC(τd) iff ∀U∈τd\∅X ∩ U ∈M(U).

Theorem 16 (Bu). If γ > 0.5 and P ⊆ R is nowhere dense perfect set, then Dγ(P )
is a meager set in P .

In the above theorem of Buczolich γ ∈ (0, 1] and Dγ(P ) is the set of points of
lower density greater or equal to γ i.e.

Dγ(P ) = {x ∈ R : lim inf
h→0

λ((x− h, x+ h) ∩ P )

2h
≥ γ}.

Particularly, if γ = 1, then Φ(P ) is meager in P for any nowhere dense perfect
set P ⊆ R.

Lemma 17. Let N ⊆ R be a closed, nowhere dense set. Then for any nonempty
D ∈ τd the set

N ∩D ∩ cl(int(cl(D)))

is nowhere dense subset of D (in euclidian topology).
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Proof. Suppose that N ⊆ R is closed and nowhere dense (in euclidian topology)
and D ∈ τd \ {∅}. Suppose, contrary to our claim, that N ∩D ∩ cl(int(cl(D))) is
not a nowhere dense subset of D. Then there exists an open W ⊆ R such that

∅ 6= W ∩D ⊆ N ∩D ∩ cl(int(cl(D))).

Since W is open and W ∩D ⊆ cl(int(cl(D))), W ∩ int(cl(D)) 6= ∅.
Let W ∗ = W ∩ int(cl(D)). Clearly, W ∗ is open and nonempty and hence W ∗ ⊆

W ∩ cl(D). Moreover,

W ∩ cl(D) ⊆ cl(W ∩D) ⊆ N
and hence W ∗ ⊆ N , since N is closed and W is open. This contradicts our assump-
tion that N is nowhere dense.

�

Theorem 18. For any nonempty D ∈ τd and any meager set M ⊆ R we have
M ∩D ∈M(D).

Proof. Consider D ∈ τd \ {∅} and M ∈ M. Define D1 = D \ cl(int(cl(D))).
Obviously, D1 ∈ τd. We shall prove that int(cl(D1)) = ∅. Conversely, suppose that
there exists an open W ⊆ R such that W ⊆ cl(D1). Since D1 ∩ int(cl(D)) = ∅,
cl(D1) ∩ int(cl(D)) = ∅ and hence W ∩ int(cl(D)) is empty. On the other hand,
W ⊆ cl(D1) ⊆ cl(D) and thus W ⊆ int(cl(D)). We obtain a contradiction.

We will show that D1 ∈ M(D). Observe that cl(D1) is a perfect set, since
D1 ∈ τd. What is more, int(cl(D1)) = ∅ and hence cl(D1) is nowhere dense.
According to Theorem 16, Φ(cl(D1)) is meager in cl(D1). Hence there exists a
family {En}n∈N such that:

(1) En ⊆ cl(D1) for each n ∈ N;
(2) intcl(D1)(En) = ∅, where intcl(D1)(En) denotes the interior of En in cl(D1)

in euclidian topology;
(3) Φ(cl(D1)) ⊆

⋃
n∈NEn.

We will prove that intD(D ∩ En) is empty. To obtain a contradiction, suppose
that there is an open W ⊆ R such that ∅ 6= D ∩W ⊆ D ∩ En. Recall now that
cl(D1) ∩ int(cl(D)) = ∅. Since D ∩W ⊆ En ⊆ cl(D1), D ∩W ∩ int(cl(D)) = ∅.
Clearly, W ∩ D1 ⊆ W ∩ D. We will show that W ∩ D1 is nonempty. Indeed, if
W ∩D1 = W ∩D \ cl(int(cl(D))) is empty, then would be

W ∩D ⊆ cl(int(cl(D))) \ int(cl(D)) = Fr(int(cl(D))),

since W ∩D∩ int(cl(D)) = ∅. Let N = Fr(int(cl(D))). Of course, N is closed and
nowhere dense. By the Lemma 17 N ∩D ∩ cl(int(cl(D))) is nowhere dense subset
of D. Observe that

Fr(int(cl(D))) ∩D ∩ cl(int(cl(D))) = Fr(int(cl(D))) ∩D
and

∅ 6= W ∩D ⊆ Fr(int(cl(D))) ∩D ∈ NWD(D).

These contradicts the fact that W is open. Hence ∅ 6= W ∩D1 ⊆ En. Since En is
closed andW is open, W∩cl(D1) ⊆ cl(W∩D1) ⊆ En, contrary to intcl(D1)(En) = ∅.
We obtain a contradiction assuming that intD(D ∩ En) is nonempty.

Hence intD(D ∩ En) = ∅. Moreover, since D1 ∈ τd, D1 ⊆ Φ(D1) ⊆ Φ(cl(D1)) ⊆⋃
n∈NEn. Finally, we conclude that D1 ⊆

⋃
n∈N(D ∩ En), and consequently, D1 ∈

M(D).
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Now, let M ∈ M. Then there exists the family of closed nowhere dense sests
{Nn}n∈N such that M ⊆

⋃
n∈NNn. Since D = D1 ∪ cl(int(cl(D))),

M ∩D ⊆ D1 ∪
⋃
n∈N

Nn ∩D ∩ cl(int(cl(D))) ∈M(D).

�

From Theorem 18 it immediately follows that the σ-ideal AFC(τd) is exactly
the σ-ideal of meager sets and hence σ(a) ( AFC(τd).

Summarizing, we have the following diagram:

E σ(a′) σ(a) AFC(τd) =M- - = -

6

σP

σ(P ∪ E)

Figure 1. Relations between σ(a) and others σ-ideals
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