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Abstract. A subset of the plane is called two point set whether it intersects
any line in exactly two points. We give constructions of two point sets pos-

sessing some additional properties. Among these properties we consider: being
a Hamel base, belonging to some σ-ideal, being (completely) nonmeasurable

with respect to different σ-ideals, being κ-covering.

We also give examples of properties that are not satisfied by any two point
set: being Luzin, Sierpiński and Bernstein set.

We also consider a natural generalizations of two point set, namely: partial

two point sets and n point sets for n = 3, 4, . . . ,ℵ0, ℵ1. We obtained consistent
results connecting partial two point sets and some combinatorial properties

(e.g. being m.a.d. family).

1. introduction

At the beginning of the XX century Mazurkiewicz in [11] constructed a set on
the plane which meets any line in exactly two points. Any such set is called a two
point set.

Any two point set must be somehow complex, namely Larman in [9] show that
it cannot be Fσ. It is a long standing open problem whether there is a Borel two
point set (see [10]). The best known approximation to that problem is due to Miller
who, assuming V = L, proved that there is a coanalytic two point set [12].

The aim of this paper is to construct two point sets which posses some ad-
ditional properties. First, we focus on being Hamel base and being completely
I-nonmeasurable. (A is completely I-nonmeasurable if the intersection A ∩B does
not belong to I for any Borel set B /∈ I; see e.g. [3], [14], [15], [19].)
We also construct a two point set which does not belong to the σ-algebra s (of
Marczewski measurable sets). In contrast, we prove that there exists a two point
set which belongs to the σ-ideal s0 (of Marczewski null sets). In particular, we
generalize result from [13].
Recently Schmerl proved in [16] that there is a two point set which can be covered
by countably many circles. In particular, there is a two point set which is meager
and null.

We positively answer the question whether every n point set (for n = 2, 3, . . .)
can be represented as a union of n bijections. We also show that any two point set
does not contain an additive function. We construct a two point set which does not
contain any measurable function.
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We observe that a two point set cannot be any of the following: a Luzin set,
a Sierpiński set, a Bernstein set. However, under CH, we construct a partial two
point set which is a strong Luzin set (or a strong Sierpiński set).

We also compare the notion of κ point set with the notion of κ-covering and κ-
I-covering. (A is κ-covering if for every subset X of size κ there exists a translation
h of R2 such that h[X] ⊆ A; A is κ-I-covering if for every subset X of size κ there
exists an isomorphism h of R2 such that h[X] ⊆ A; see [7].)

We give some consistent examples of partial two point sets which are, in a sense,
m.a.d. families, maximal families of eventually different functions.

2. Completely I-nonmeasurable Hamel base

We say that I is a σ-ideal of subsets of R2 if I is closed under taking subsets and
closet under taking countable unions.

Let I be a σ-ideal of subsets of R2 containing all singletons and having a Borel
base (i.e. for every I ∈ I there is a Borel set B ∈ I such that I ⊆ B). We recall
the notion of completely I-nonmeasurability which was studied in e.g. [3], [7], [14],
[15], [19]. This notion is also known as I-Bernstein set.

Definition 2.1. We say that a set A ⊆ R2 is completely I-nonmeasurable iff it
intersects all I-positive Borel sets (i.e sets which are in Borel \ I) but does not
contain any of them.

When I = [R2]≤ω then the notion of completely I-nonmeasurable set coincide
with the notion of a Bernstein set.

We will assume that I is a σ-ideal of subsets of R2 with the property that for
every I-positive Borel set there is c many pairwise disjoint lines which intersect it
on the set of cardinality c.

Let us observe that σ-ideal of null sets N and σ-ideal of meager sets M on
the real plane (by Fubini Theorem and by Kuratowski-Ulam Theorem) fulfill this
condition.

We say that H ⊆ R2 is a Hamel base if H is a base of R2 treated as a linear
space over Q.

Theorem 2.2. There exists a two point set A ⊆ R2 that is completely I-nonmeasu-
rable Hamel base.

Proof. Let {lξ : ξ < c} be an enumeration of all straight lines in the plane R2, let
{Bξ : ξ < c} be an enumeration of all I-positive Borel sets on a plane R2 and let
{hξ : ξ < c} be a Hamel base of R2. We will define, by induction on ξ < c, the
sequence {Aξ : ξ < c} of subsets of R2 such that for every ξ < c:

(1) |Aξ| < ω,
(2)

⋃
ζ≤ξ Aζ does not have three collinear points,

(3)
⋃
ζ≤ξ Aζ contains precisely two points of lξ,

(4) Bξ ∩
⋃
ζ≤ξ Aζ 6= ∅,

(5)
⋃
ζ≤ξ Aζ is linearly independent over Q,

(6) hξ ∈ spanQ(
⋃
ζ≤ξ Aζ).

To make an inductive construction assume that for some ξ < c we have already
defined the sequence {Aζ : ζ < ξ} which fulfills (1)-(6). Let A<ξ =

⋃
ζ<ξ Aζ .

Clearly |A<ξ| < c. Let L be the family of all lines which meet A<ξ in exactly two
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points. Then |L| ≤ |A2
<ξ| < c. Moreover | spanQ(A<ξ)| < c. We will define Aξ in

three steps. In each step we will focus on one of desired properties of Aξ.
Step I (two point set). Note that (2) implies lξ ∩A<ξ has at most two points.

If |lξ ∩A<ξ| = 2, then set A
(1)
ξ = ∅.

Let us focus on |lξ ∩ A<ξ| < 2. Then |lξ ∩ l| ≤ 1 for any l ∈ L. Therefore
|lξ \

⋃
L| = c. Choose

x(1) ∈ lξ \ spanQ

(
A<ξ ∪

⋃
l∈L

(l ∩ lξ)
)
,

y(1) ∈ lξ \ spanQ

(
A<ξ ∪ {x(1)} ∪

⋃
l∈L

(l ∩ lξ)
)
.

Set A
(1)
ξ = {x(1), y(1)} if A<ξ∩ lξ = ∅ and set A

(1)
ξ = {x(1)} if A<ξ∩ lξ is a singleton.

Step II (complete I-nonmeasurability). Let L′ be the family of all lines which

meet A<ξ ∪ A(1)
ξ in exactly two points. Then |L′| < c and L ⊆ L′. Since Bξ is

I-positive Borel set, therefore we can find a line l such that l ∩ (A<ξ ∪ A(1)
ξ ) = ∅

and |l ∩Bξ| = c.
Choose

x(2) ∈ (l ∩Bξ) \ spanQ

(
A<ξ ∪A(1)

ξ ∪
⋃

l∈L′
(l ∩ lξ)

)
.

Set A
(2)
ξ = {x(2)}.

Step III (Hamel base). Let us focus on the condition (6). If hξ ∈ spanQ(A<ξ ∪
A

(1)
ξ ∪ A

(2)
ξ ), then set A

(3)
ξ = ∅. Assume now that hξ /∈ spanQ(A<ξ ∪ A(1)

ξ ∪ A
(2)
ξ ).

Let L′′ be the family of all lines which meet A<ξ ∪ A(1)
ξ ∪ A(2)

ξ in exactly two

points. Then |L′′| < c and L ⊆ L′ ⊆ L′′. Choose the line l parallel to hξ, with

l ∩ (A<ξ ∪A(1)
ξ ∪A

(2)
ξ ) = ∅. Choose

x(3) ∈ l \ spanQ

(
A<ξ ∪A(1)

ξ ∪A
(2)
ξ ∪ {hξ} ∪

⋃
l∈L′′

(l ∩ lξ)
)
.

Set y(3) = x(3) + hξ. Then,

y(3) ∈ l \ spanQ

(
A<ξ ∪A(1)

ξ ∪A
(2)
ξ ∪

⋃
l∈L′′

(l ∩ lξ)
)
.

Set A
(3)
ξ = {x(3), y(3)}.

Finally set Aξ = A
(1)
ξ ∪A

(2)
ξ ∪A

(3)
ξ .

Clearly conditions (1)-(6) are satisfied. So, the inductive construction is finished.
The set A =

⋃
ξ<cAξ will have desired property. Evidently, conditions (2) and

(3) imply that the set A is a two point set. Since every I-positive Borel set must have
an uncountable section so the set A does not contain any set from {Bξ : ξ < c} and
(4) makes sure it intersects all of them, so the set A is completely I-nonmeasurable.
Moreover, conditions (5) and (6) imply that A is a Hamel base of R2.

�

Considering I = N , we get the following corollary.

Corollary 2.3. There exists a two point set A ⊆ R2, that is a Hamel base such
that λ∗(A) = λ∗(R2 \A) = 0, where λ∗ denotes the inner Lebesgue measure on the
plane.
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3. Marczewski null and Marczewski nonmeasurable set

In this section we will consider a σ-ideal s0 and a σ-algebra s of subsets of R2

that were introduced by Marczewski (see e.g. [17], [6]).

Definition 3.1. We say that a set A ⊆ R
(1) belongs to s0 iff for every perfect set P there exists a perfect set Q ⊆ P

such that Q ∩A = ∅.
(2) is s-measurable iff for every perfect set P there exists perfect set Q ⊆ P

such that Q ∩A = ∅ or Q ⊆ A.
(3) is s-nonmeasurable iff A is not s-measurable.

Definition 3.2. We say that a subset A ⊆ R2 is a Bernstein set iff for every perfect
set P ⊆ R2

A ∩ P 6= ∅ ∧Ac ∩ P 6= ∅.

Let us recall that every Bernstein set is s-nonmeasurable.
Let us start with the result connected with the σ-ideal s0 of Marczewski null

sets.

Theorem 3.3. There exists a two point set A ⊆ R2 that belongs to s0.

Proof. Let {lξ : ξ < c} be an enumeration of all straight lines in the plane R2. Let
{Qξ : ξ < c} be an enumeration of all perfect sets in R2 such that every perfect set
occurs c many times.

We will define, by induction on ξ < c sequences {Aξ : ξ < c} of subsets of R2

and {Pξ : ξ < c} of perfect or empty sets such that

(?) for every perfect set Q there is ξ0 < c such that Pξ0 6= ∅ and Pξ0 ⊆ Q;

and for every ξ < c,

(1) |Aξ| < ω,
(2)

⋃
ζ≤ξ Aζ does not contain three collinear points,

(3)
⋃
ζ≤ξ Aζ contains precisely two points of lξ,

(4) Pξ ⊆ Qξ,
(5)

⋃
ζ≤ξ Pζ ∩

⋃
ζ≤ξ Aζ = ∅,

(6) |lη \
⋃
ζ≤ξ Pζ | = c for every η ≥ ξ.

Assume that for some ξ < c sequences {Aζ : ζ < ξ} and {Pζ : ζ < ξ} are already
constructed. Set A<ξ =

⋃
ζ<ξ Aζ .

Assume first that for every line l in a plane, |Qξ ∩ l| < c. Then |Qξ ∩ l| ≤ ω.
Since |A<ξ| < c we can choose a perfect set Pξ ⊆ Qξ such that Pξ ∩ A<ξ = ∅
and |Pξ ∩ l| ≤ ω for every line l. Since intersection of Pξ with any line is at most
countable then |lη \

⋃
ζ≤ξ Pζ | = c, for every η ≥ ξ and

⋃
ζ≤ξ Pζ ∩

⋃
ζ<ξ Aζ = ∅.

Assume now that there exist a line l such that |l ∩ Qξ| = c. If l = lα for some
α ≥ ξ, then put Pξ = ∅. If l = lα for some α < ξ, then |l ∩ A<ξ| = 2 and since
l ∩Qξ is closed with |l ∩Qξ| = c one can choose a perfect set Pξ ⊆ Qξ ∩ l disjoint
with A<ξ. Then |lη \

⋃
ζ≤ξ Pζ | = c for every η ≥ ξ and

⋃
ζ≤ξ Pζ ∩

⋃
ζ<ξ Aζ = ∅.

As in Theorem 2.3 we can choose a set Aξ satisfying (1) - (3) outside the set⋃
ζ≤ξ Pζ what finishes inductive construction.

Finally, there exist sequences {Aξ : ξ < c} and {Pξ : ξ < c}, satisfying (1) - (6)
and by the construction they fulfill the condition (?).

Then, the set A =
⋃
ξ<cAξ will have the desired property. �
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Let us note here that the unit circle intersects any line in at most two points
but it cannot be extended to a two point set. In [5] and [4] it was investigated how
small should be a subset of the unit circle to be extendable to a two point set. It
turns out that sets of inner positive measure on the unit circle cannot be extended
to two point sets. We show that there is a subset of the unit circle of full outer
measure which can be extended to a two point set.

Theorem 3.4. There exists a two point set A ⊆ R2 that is s-nonmeasurable.
Moreover, A contains a subset of the unit circle of full outer measure.

Proof. Let us observe that if B is a Bernstein set in some uncountable closed set
C then B is s-nonmeasurable. Moreover, if a set D is such that D ∩ C = B then
D is also s-nonmeasurable.

We construct a two point set A such that its intersection with the unit circle
is a Bernstein subset of the unit circle. Let {lξ : ξ < c} be an enumeration of all
straight lines in R2. Let {Pξ : ξ < c} be an enumeration of all perfect subsets of
unit circle.

We will define inductively a sequence {Aξ : ξ < c} of subsets of R2 and a sequence
{yξ : ξ < c} of points from the unit circle such that for every ξ < c:

(1) |Aξ| < ω,
(2)

⋃
ζ≤ξ Aζ does not contain three collinear points,

(3)
⋃
ζ≤ξ Aζ contains precisely two points of lξ,

(4) Pξ ∩
⋃
ζ≤ξ Aζ 6= ∅,

(5) yξ ∈ Pξ,
(6) Aξ ∩ {yζ : ζ ≤ ξ} = ∅.

The existence of the sequence {Aξ : ξ < c} follows in the similar way as in
Theorem 2.3. Here, the key observation is that for each perfect set Pξ of unit circle
there exist c many straight lines passing through Pξ and the origin.

Setting A =
⋃
ξ<cAξ we obtain a two point s-nonmeasurable set. Clearly, A is

of full outer measure on the unit circle. �

Using the method from the previous section we can strengthen the results in the
following way.

Theorem 3.5. Let I a σ-ideal of subsets of R2 with the property that for every
I-positive Borel set there is c many pairwise disjoint lines which intersect it on the
set of cardinality c.

(1) There exists a two point set A ⊆ R2, that is completely I-nonmeasurable,
s0 Hamel base.

(2) There exists a two point set B ⊆ R2, that is completely I-nonmeasurable,
s-nonmeasurable Hamel base.

To prove it one should combine the ideas of Theorems 2.3, 3.3 and 3.4.
The first part of the above theorem generalize the result from [13].

4. A union of graphs of functions

In this section we will focus on the question whether a two point set can be
decomposed into a union of two functions having some additional properties.

Let us start with a simple observation.

Proposition 4.1. Every two point set is an union of two functions.
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Proof. Let A be a two point set. In particular it intersects every vertical line in
exactly two points. For x ∈ R let us denote by Ax = A ∩ ({x} × R). Clearly Ax

has two elements, so Ax = {(x, y1), (x, y2)}. Define the functions f1, f2 : R → R
as follows f1(x) = y1, f2(x) = y2. Then we get that A = f1 ∪ f2. This finishes the
proof. �

Let us introduce a notion which generalize in a natural way the notion of two
point set.

Definition 4.2. Let κ be a cardinal number, κ ≥ 2. We say that a subset of the
plane is a κ point set iff it meets any line in exactly κ points.

Proposition 4.3. Let n ≥ 2 be a natural number. For any n point set A there is
no additive function f ⊆ A.

Proof. Let A be an n point set and suppose that there is an additive function
f ⊆ A. Notice that f(2) = f(1 + 1) = f(1) + f(1) = 2f(1) and, more generally
for k ≥ 1, f(k) = kf(1). So points (1, f(1)), (2, 2f(1)), . . . , (n+ 1, (n+ 1)f(1)) are
members of A which lies on the same line. This leads to a contradiction. �

Now, let us focus on the class of bijections.
We will use the following theorem (see e.g. [1]).

Theorem 4.4 (Hall). Assume that X, Y are infinite sets. Let R ⊆ X × Y be a
relation that fulfills the following property

(∀k ∈ N)(∀X ′ ⊆ X)(|X ′| = k −→ |R[X ′]| ≥ k),

where R[X ′] = {y : (∃x ∈ X ′)((x, y) ∈ R)}. Then there exists an injection h : X →
Y such that h ⊆ R.

We will also use the following theorem (see e.g. [6]).

Theorem 4.5 (Cantor, Bernstein). Let X, Y be any sets. Assume that f : X → Y
and g : Y → X are injections. Then there exists A ⊆ X and B ⊆ Y such that
f � A : A→ Y \B and g � B : B → X \A are bijections.

Theorem 4.6. Fix a natural number n. Let A ⊆ R2 be such that its intersection
with every horizontal and vertical line has exactly n elements. Then there exist n
bijections F0, ..., Fn−1 : R→ R such that A = F0 ∪ ... ∪ Fn−1.

Proof. Let us notice that A ⊆ R × R fulfills the assumptions of Theorem 4.4. So
there exists an injection f : R→ R such that f ⊆ A.

A set A−1 = {(x, y) : (y, x) ∈ A} also fulfills the assumptions of Theorem 4.4.
So there exists an injection g : R→ R such that g ⊆ A−1.

By Theorem 4.5 we can construct a bijection F0 : R→ R of the form F0 = (f �
A) ∪ (g−1 � (R \A)). So, F0 ⊆ A.

Let us notice that A \ F0 is such that its intersection with every horizontal and
vertical line has exactly n − 1 elements. So, the proof can be finished by a simple
induction. �

We get the immediate corollary.

Corollary 4.7. Let n ≥ 2 be a natural number. Any n point set can be decomposed
into n bijections.
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One can ask if any two point set can be decomposed into two measurable (with
Baire property) functions. We will prove that this is not the case. Moreover,
there is a two point set which does not admit a measurable (with Baire property)
uniformization.

We will use the following, probably well-known, lemma. We give a short proof
of it for reader’s convenience.

Lemma 4.8. There exists an unbounded Fσ set C ⊆ R+ of measure zero such
that its intersection with any interval in R+ is of cardinality c. (In particular, C is
meager.)

Proof. Let C denote the standard ternary Cantor set. Let Q+ denote the set of
positive rationals. Set

C = C + Q+ = {x+ y : x ∈ C ∧ y ∈ Q+}.

This finishes the proof. �

Theorem 4.9. For any Bernstein set B ⊆ R there exists a two point set A ⊆ R2

which is null and meager such that for any function f ⊆ A, f−1((0, 1)) is B.

Proof. Let B ⊆ R be a Bernstein set and let {lξ : ξ < c} be an enumeration of all
straight lines in the plane R2. Let C∗ = {r · eit : t ∈ [0, 2π], r ∈ C} where C is the
set from Lemma 4.8. Notice that C∗ is Fσ-set. By Fubini’s Theorem and Ulam’s
Theorem the set C∗ is meager and of measure zero in the plane R2. Notice that
|lξ ∩ C∗| = c for any ξ < c. We will define, by induction on ξ < c, the sequence
{Aξ : ξ < c} of subsets of C∗ such that for every ξ < c,

(1) |Aξ| < ω;
(2)

⋃
ζ≤ξ Aζ does not have three collinear points;

(3)
⋃
ζ≤ξ Aζ contains precisely two points of lξ;

(4) If lξ is a vertical line with x−coordinate xξ ∈ B then
⋃
ζ≤ξ Aζ ∩ lξ ⊆

{xξ} × (0, 1);
(5) If lξ is a horizontal line with y−coordinate yξ ∈ (0, 1) then

⋃
ζ≤ξ Aζ ∩ lξ ⊆

B × {yξ};
(6) If neither (4) nor (5) then

(⋃
ζ≤ξ Aζ ∩ lξ

)
∩ (B × (0, 1)) = ∅.

Assume that for some ξ < c the sequence {Aζ : ζ < ξ} is already defined. Set
A<ξ =

⋃
ζ<ξ Aζ . Let L be the family of all lines which meet A<ξ in exactly two

points. Then |L| ≤ |A2
<ξ| < c. Note that Lξ ∩ A<ξ has at most two elements.

Consider three cases.
Case 1 (lξ is a vertical line with x−coordinate xξ ∈ B). If |lξ ∩ A<ξ| = 2 then

put Aξ = ∅. If |lξ ∩ A<ξ| < 2, then |lξ ∩ l| ≤ 1 for any l ∈ L. Choose two numbers
y1
ξ , y

2
ξ ∈ (0, 1) such that (xξ, y

1
ξ ), (xξ, y

2
ξ ) ∈ (C∗ ∩ lξ) \

(⋃
l∈L l ∩ lξ

)
. It is possible

since |C∗ ∩ lξ| = c and
∣∣⋃

l∈L l ∩ lξ
∣∣ < c. Set Aξ = {(xξ, y1

ξ ), (xξ, y
2
ξ )} if lξ ∩A<ξ = ∅

or Aξ = {(xξ, y1
ξ )} if |lξ ∩A<ξ| = 1;

Case 2 (lξ is a horizontal line with y−coordinate yξ ∈ (0, 1).) Since lξ ∩ C∗ is
uncountable Fσ, it contains a perfect set and |π1[lξ ∩C∗]∩B| = c. If |lξ ∩A<ξ| = 2
then put Aξ = ∅. If |lξ ∩ A<ξ| < 2, then |lξ ∩ l| ≤ 1 for any l ∈ L and choose an
arbitrary two points x1

ξ , x
2
ξ ∈ B such that (x1

ξ , yξ), (x
2
ξ , yξ) ∈ (C∗∩lξ)\

(⋃
l∈L l ∩ lξ

)
.

Set Aξ = {(x1
ξ , yξ), (x

2
ξ , yξ)} if lξ ∩A<ξ = ∅ or Aξ = {(xξ, y1

ξ )} if |lξ ∩A<ξ| = 1;
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Case 3 (otherwise). If |lξ∩A<ξ| = 2 then setAξ = ∅. If |lξ∩A<ξ| < 2 then |lξ∩l| ≤
1 for any l ∈ L and choose an arbitrary (x1

ξ , y
1
ξ ), (x2

ξ , y
2
ξ ) ∈ (C∗ ∩ lξ) \

(⋃
l∈L l ∩ lξ

)
with x1

ξ , x
2
ξ /∈ B and y1

ξ , y
2
ξ /∈ (0, 1). It is possible since |π1[lξ ∩ C∗] ∩ (R \ B)| = c.

Set Aξ = {(x1
ξ , y

1
ξ ), (x2

ξ , y
2
ξ )} if lξ ∩A<ξ = ∅ or Aξ = {(x1

ξ , y
1
ξ )} if |lξ ∩A<ξ| = 1;

At the end set A =
⋃
ξ<cAξ. Since A ⊆ C∗, it is meager and null. By (4)-(6) if

f ⊆ A then f−1((0, 1)) = B.
�

5. Luzin and Sierpiński set

We start this section with the definitions of special subsets of the real plane R2.

Definition 5.1. We say that a subset A ⊆ R2 is a Luzin set iff intersection of the
set A with every meager set is countable.

Moreover, a set A ⊆ R2 is a strongly Luzin set iff A is a Luzin set and the
intersection of A with every Borel nonmeager set has cardinality c.

Definition 5.2. We say that a subset A ⊆ R2 is a Sierpiński set iff intersection of
the set A with every null set is countable.

Moreover, a set A ⊆ R2 is a strongly Sierpinński set iff A is a Sierpiński set
and the intersection of A with every Borel of positive Lebesgue measure set has
cardinality c.

The following remark holds.

Remark 5.3. Assume A ⊆ R2 is two point set. Then

(1) A is not Bernstein,
(2) A is not Luzin,
(3) A is not Sierpiński.

Proof. 1) Each line l is a perfect set such that |A∩l| = 2, so A cannot be a Bernstein
set.
2) Let M be a perfect meager subset of R. Then M × R is meager and

|(M × R) ∩A| = 2|M | = c.

So, A cannot be a Luzin set.
3) Let N be a perfect null subset of R. Then N × R is null and

|(N × R) ∩A| = 2|N | = c.

So, A cannot be a Sierpiński set. �

Let us give the following definition.

Definition 5.4. A set A ⊆ R2 is a partial two point set iff A intersects every line
in at most two points.

Theorem 5.5. (CH)

(1) There exists a partial two point set A that is a strong Luzin set.
(2) There exists a partial two point set B that is a strong Sierpiński set.

Proof. Let us focus on the Luzin set. The case of the Sierpiński set is similar.
Fix a base {Bα : α < ω1} of the ideal of meager sets and let {Dα : α < ω1} be

the enumeration of Borel nonmeager sets such that each set appears ω1 many times.
We will construct a sequence {xα : α < ω1} satisfying the following properties:
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(1) Aα = {xξ : ξ ≤ α} does not contain three collinear points,
(2) xα ∈ Dα \

⋃
ξ<αBξ.

We will show that at any α step we can pick xα such that (1) and (2) are fulfilled.
Since Aξ is countable so is

⋃
ξ<αAξ. Therefore the set

L<α = {l : l is a line and |l ∪
⋃

ξ<α
Aξ| = 2}

is countable. Hence, both L<α and
⋃
ξ<αBξ are meager. Consequently, one can

pick a point xα from Dα that meets neither L<α nor
⋃
ξ<αBξ. So, the inductive

construction in done.
Finally, set A = {xα : α < ω1}. It is a required partial two point set that is

strong Luzin. �

Let us remark that sets A and B constructed in Theorem 5.5 are s0. Moreover
A is strongly null and B is strongly meager. For the definitions of strongly meager
and strongly null we refer the reader to [2].

Theorem 5.5 can be strengthen. If we assume that add(M ) = cof(M ) = κ then
we can construct partial two point set A such that |A| = κ and for every Borel set
B, |B ∩A| < κ if and only if B ∈M .

The analogous observation is true in the case of null sets N .

6. κ-covering

At the beginning of this section we will recall the notion of κ-covering and κ-I-
covering (see [7]).

Definition 6.1. Let κ be a cardinal number. A set A ⊆ R2 is called a κ-covering
iff

(∀X ∈ [R2]κ)(∃y ∈ R2) y +X ⊆ A.
where y +X denotes {y + x : x ∈ X}.

Let Iso(R2) be the group of all isometries of the real plane R2.

Definition 6.2. Let κ be a cardinal number. A set A ⊆ R2 is called a κ-I-covering
iff

(∀X ∈ [R2]κ)(∃g ∈ Iso(R2)) g[X] ⊆ A.

Obviously, if A is κ-covering then A is κ-I-covering and if κ < λ then A is
κ-covering (κ-I-covering) implies that A is λ-covering (λ-I-covering).

Let us start with the following result.

Theorem 6.3. There exists a ℵ0 point set which is not 2-I-covering.

Proof. Let us enumerate the set of all lines Lines = {lξ : ξ < c} in R2. We construct
the transfinite sequence (Aξ : ξ < c) of countable subsets of R2 such that for every
ξ < c:

(1) l ∩Aξ = ∅ for every l ∈ L<ξ,
(2) if lξ /∈ L<ξ then |lξ ∩Aξ| = ℵ0,
(3) d(a, b) 6= 1 for every a, b ∈

⋃
ζ<ξ Aζ .

where L<ξ = {l ∈ Lines : |l ∩
⋃
ζ<ξ Aζ | = ℵ0} and d : R2 × R2 → R+ denotes the

standard metric on R2.
Let us notice that L<ξ ⊆ {l ∈ Lines : |l∩

⋃
ζ<ξ Aζ | ≥ 2}. So, |L<ξ| < c and The

inductive construction can be done.
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Now, setting A =
⋃
ξ<cAξ, we obtain the requested set. Indeed, (1) and (2)

implies that A is an ℵ0 point set and (3) guaranties that A is not 2-I-covering. �

Theorem 6.4. There exists a ℵ0 point set which is ℵ0-covering.

Proof. Let us enumerate the set of all lines Lines = {lξ : ξ < c} and the family
of all countable subsets of the real plane [R2]ω = {Xξ : ξ < c}. We construct the
transfinite sequence ((Aξ, yξ) ∈ [R2]ω × R2 : ξ < c) with the following properties:

(1) l ∩Aξ = ∅ for every l ∈ L<ξ,
(2) if lξ /∈ L<ξ then |lξ ∩Aξ| = ℵ0,
(3) yξ +Xξ ⊆ Aξ.

where L<ξ = {l ∈ Lines : |l ∩
⋃
ζ<ξ Aζ | = ℵ0}.

Let us notice that

{y : y+Xξ ∩
⋃
L<ξ 6= ∅} = {y : ∃x ∈ Xξ ∃l ∈ L<ξ y+ x ∈ l} =

⋃
l∈L<ξ

⋃
x∈Xξ

l− x.

The latter set, as a union of < c many lines, does not cover the whole R2. Set yξ
in such a way that yξ /∈

⋃
l∈L<ξ

⋃
x∈Xξ l − x. The rest of inductive construction is

similar as in Theorem 6.6.
The resulting set A =

⋃
ξ<cAξ is an ℵ0 point set by (1) and (2). yξ’s constructed

in (3) witness that A is ℵ0-covering. �

Theorem 6.5. It is relatively consistent with ZFC that ℵ1 < c and there exists a
ℵ1 point set which is also ℵ1-covering.

Proof. Let us consider V a model of ZFC such that V � c = 2ℵ1 = ℵ2. Such a
model can be obtained by adding ω2 Cohen reals to the constructible universe L.
The rest of the proof goes in the similar way as the proof of Theorem 6.4. �

We can obtain the following result.

Theorem 6.6. Fix an integer n ≥ 2.

• There exists an n point set which is not 2-I-covering.
• There exists an n point set which is n-covering.

Proof. The proof of this theorem is similar to the proofs of the Theorem 6.3 and
Theorem 6.4. �

Let us recall that A is 2-covering iff A−A = R2. This gives the following result.

Corollary 6.7. There exists a two point set A such that A−A = R2.

7. Combinatorial properties

Let us recall that a family A of infinite subsets of ω is an almost disjoint family
(ad) iff any two distinct members of A has finite intersection. A is a maximal almost
disjoint family (mad) iff it is ad family which is maximal with respect to inclusion.

Analogously, we say that B ⊆ ωω is a family of eventually different functions iff
every two distinct members x, y ∈ B are equal only on a finite subset of ω.

Let κ be a cardinal number. We say that the family {Aξ ∈ P (ω) : ξ < κ} is a
tower iff

• (∀ξ, η < κ) ξ < η −→ Aη ⊆∗ Aξ and
• there is no B ∈ [ω]ω (∀ξ < κ) B ⊆∗ Aξ.
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Here, A ⊆∗ B means that |A \B| < ω.

Theorem 7.1 (CH). Let h : R → ωω be a bijection. There exist a partial two
point set A ⊆ R2 such that a family h[π1[A]∪π2[A]] forms a maximal family of the
eventually different functions. (πi denotes the projection on i-th coordinate.)

Proof. Let ωω = {fα : α < ω1}. By transfinite induction we will construct a set
A = {aξ : ξ < ω1} ⊆ R2 such that for every α < ω1

(1) Aα = {aξ : ξ < α} is a partial two point set,
(2) Fα = h[π1[Aα] ∪ π2[Aα]] is a family of eventually different functions,
(3) (∃ξ ≤ α)(∃i ∈ {0, 1}) |fα ∩ h(πi(aξ))| = ℵ0.

Assume now that we have already constructed a set Aα.
Case 1. (fα is eventually different from every function of the form h(πi(aξ)) for

ξ < α and i ∈ {0, 1}) Set xα = h−1(fα). We can find yα ∈ R such that

• (xα, yα) does not belong to any line from L(Aα),
• h(yα) is eventually different from every function from Fα ∪ {fα},

where L(Aα) denotes the family of all lines intersecting Aα in exactly two points.
A point yα can be found since Aα is countable.

Case 2. (|fα ∩ h(πi(aξ))| = ℵ0 for some ξ < α and i ∈ {0, 1}) Then we can find
xα, yα ∈ R such that

• (xα, yα) does not belong to any line from L(Aα),
• Fα ∪ {h(xα), h(yα)} is a family of eventually different functions.

Again, construction is possible since Aα is countable.
Set aα = (xα, yα). The inductive step is proved.
Let us notice that the resulting set A =

⋃
α<ω1

Aα is a partial two point set

by (1). h[π1[A] ∪ π2[A]] is a family of eventually different functions by (2). The
maximality of this family follows from (3). �

Remark 7.2. The same result is true if we replace a maximal family of eventually
different functions by a mad family. (In this case we consider a bijection h : R →
[ω]ω.)

In the proof of next theorem we adopt the method from Kunen’s theorem about
the existence of indestructible mad family (see [8]).

Theorem 7.3. Let us fix a standard Borel bijection h : R→ [ω]ω. It is consistent
with ZFC+¬CH that there exists a partial two point set A such that h[π1[A]∪π2[A]]
forms a mad family of size ω1.

Proof. Let us consider a model V ′ obtained from V � CH by adding κ > ω1 Cohen
reals (i.e. using forcing Fn(κ, 2)). It suffices to construct a partial two point set A
in V which remains maximal in the generic extension V ′.

Let us notice that, since every new uncountable subset of ω has a name in Fn(I, 2)
for some countable I ⊆ κ, it is enough to consider names in Fn(ω, 2).

In V , let us enumerate all possible pairs (pξ, τξ) : ω ≤ ξ < ω1 (by CH), where
pξ ∈ Fn(ω, 2) and τξ is a nice name for an infinite subset of ω. Take any countable
sequence (F in : n ∈ ω ∧ i ∈ {0, 1}) of pairwise disjoint countable subsets of ω.

Now we define a transfinite sequence (F iξ : ω ≤ ξ < ω1 ∧ i ∈ {0, 1}) satisfying
the following conditions for every ξ < ω1:

(1) (F iζ : ζ < ξ ∧ i ∈ {0, 1}) is an almost disjoint family,
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(2) if (∀η < ξ)(∀i ∈ 2)pξ  |τξ ∩ F iη| < ω

then pξ  |τξ ∩ F 0
ξ | = ω or pξ  |τξ ∩ F 1

ξ | = ω,

(3) {aζ = (h−1[{F 0
ζ }], h−1[{F 1

ζ }]) : ζ < ξ} forms a partial two point set.

To see that this recursion is possible let us assume that the construction at the step
ξ < ω1 is done. Now let us enumerate {F iη : η < ξ ∧ i ∈ 2} = {Bn : n ∈ ω} by

ω. If the assumptions in condition (2) is not fulfilled then choose any F 1
ξ almost

disjoint with every F iη for η < ξ and i ∈ 2 what is possible since |ξ| = ω. Now, let
us assume that the assumption of (2) is fulfilled. We show that

(??) (∀n ∈ ω)(∀q ≤ pξ)(∃m > n)(∃r < q) r  m ∈ τξ \ (B0 ∪ . . . Bn).

Let us fix any n ∈ ω and q < pξ. By assumption pξ  |τξ ∩ (B0 ∪ . . . Bn)| < ω. So

pξ  (∃m > n) m ∈ τ \ (B0 ∪ . . . ∪Bn).

q is stronger than pξ, so it forces the same sentence. Now, we can find a stronger
condition r < q and positive integer m > n such that

r  m ∈ τ \ (B0 ∪ . . . Bn).

This finishes the proof of (??).
Now let us enumerate the set ω × {q ∈ Fn(ω, 2) : q ≤ pξ} = {(nj , qj) : j < ω}.

Then for every j < ω there exist mj ∈ ω and rj < qj such that nj < mj and

rj  mj ∈ τξ \ (B0 ∪ . . . Bnj ).

Let F 1
ξ = {mj : j < ω}. Then F iη∩F 1

ξ is finite, so yξ = h−1[{F 1
ξ }] is a real different

from the other coordinates appeared in previous step construction.
Now we will construct the first coordinate of the new point. To do this, set

A<ξ = {(h−1(F 0
η ), h−1(F 1

η )) : η < ξ} ⊂ R2. Denote by L<ξ the set of all lines

l ⊆ R2 on the real plane such that |l ∩A<ξ| = 2. Let observe that the set

Y = {z ∈ R : (∃l ∈ L<ξ)(z, yξ) ∈ l}.

is countable. Let us enumerate Y = {zn : n < ω}. Now, consider the following
sequence Cn = h(zn), n ∈ ω.

To define the set F 0
ξ we will use the diagonal argument. Let us arrange elements

of each set Cn = {cni : i ∈ ω} in increasing sequence and let us define the increasing
sequence (dn)n∈ω of nonnegative integers:

dn = max{cni : i ≤ n}.

Now, let us choose an increasing sequence (mn)n∈ω such that for every n ∈ ω we
have

• dn < mn and
• mn ∈ ω \ F 1

ξ ∪B0 ∪ . . . ∪Bn.

Set F 0
ξ = {mn : n ∈ ω}. It is easy to see that

(1) F 0
ξ 6= Cn for every n ∈ ω,

(2) |F 0
ξ ∩Bn| < ω for every n ∈ ω,

(3) |F 0
ξ ∩ F 1

ξ | < ω.

The first property ensures that the set A<ξ∪{(h−1(F 0
ξ ), h−1(F 1

ξ ))} doesn’t contain

three collinear points. The second and third properties implies that the set {F iη :
η ≤ ξ ∧ i ∈ 2} forms almost disjoint family.
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Our construction of the sequence (F 0
ξ : ξ < ω) and (F 1

ξ : ξ < ω1) finished. It
remains to prove that

Fn(ω,2) {F 0
ξ : ξ < ω1} ∪ {F 1

ξ : ξ < ω1} is mad family.

If not then there exists condition p ∈ Fn(ω, 2) and nice name τ ∈ V Fn(ω,2) for
element of P (ω) such that

p  (∀ξ < ω1)(∀(i ∈ 2)) |τ ∩ F iξ | < ω.

There exists ξ < ω1 such that (p, τ) = (pξ, τξ). So, the assumptions in the condition
(2) is fulfilled. We know that τ witness that there exists q < p and n ∈ ω such that

q  τ ∩ F iξ ⊂ n.

From the other hand, there exists r < q and m > n such that r  m ∈ τ ∩ F 0
ξ or

there exists r′ < q and m′ > n such that r′  m′ ∈ τ ∩ F 1
ξ , a contradiction. �

Theorem 7.4. Let us fix a standard Borel bijection h : R→ [ω]ω. It is consistent
with ZFC+¬CH that there exists a partial two point set A such that h[π1[A]∪π2[A]]
forms a tower of size ω1.

We will omit the proof because it is very similar to the proof of Theorem 7.3.

Theorem 7.5. It is consistent with ZFC + ¬CH that there exists a partial two
point set C ⊆ R2 of size ω2 such that C is a Luzin set and

(∃A ∈ N )(∀D ∈ [C]ω1) A+D = R2.

Proof. Let us start with V � CH. Consider the generic extension V [cα : α < ω2]
obtained by adding ω2 independent Cohen reals. We can assume that cα ∈ R2 for
every α < ω2. Set C = {cα : α < ω2}.
C is a partial two point set. Indeed, take any line l which intersects two different

points of C: cα, cβ . Take any γ ∈ ω2 \ {α, β}. cγ is a Cohen real over V [cα, cβ ] and
l is a meager set coded in V [cα, cβ ]. So, cγ /∈ l.
C is a Luzin set. Take any Borel meager set M from V [cα : α < ω2]. M is coded

in V [cα : α ∈ I] for some countable I. So, M ∩ {cα : α ∈ ω2 \ I} = ∅.
Now, let us fix the Marczewski decomposition: R2 = A ∪ B, where A ∈ N ,

B ∈ M and A ∩ B = ∅. Let us recall that A,B are coded in V . Take any
D ⊆ C of size ω1. Take any x ∈ R2 (in V [cα : α < ω2]). x is in V [cα : α ∈ J ]
for some countable J . So, x − B is a meager set coded in V [cα : α ∈ J ]. Take
c ∈ D \ {cα : α ∈ J}. Then c /∈ x − B. So, x ∈ A + c. This shows that
R2 ⊆ A+D. �

In a similar way one can show the following result.

Theorem 7.6. It is consistent with ZFC + ¬CH that there exists a partial two
point set R ⊆ R2 of size ω2 such that R is a Sierpiński set and

(∃B ∈M )(∀D ∈ [R]ω1) B +D = R2.
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