CARDINALITY OF SETS OF ρ -UPPER AND ρ -LOWER CONTINUOUS FUNCTIONS

MAREK BIENIAS, SZYMON GŁĄB AND WŁADYSŁAW WILCZYŃSKI

ABSTRACT. We prove that the cardinality of the set of all 1-upper continuous functions $f: (0,1) \to \mathbb{R}$ equals $2^{\mathfrak{c}}$. In particular, there is a non-Borel 1-upper continuous function. We also prove that there are $2^{\mathfrak{c}} \rho$ -lower continuous functions for $\rho \in (0, \frac{1}{2})$.

1. INTRODUCTION

S. Kowalczyk and K. Nowakowska in [4] introduced the notion of ρ -upper continuous functions, where $\rho \in (0, 1)$. The notion of ρ -upper continuity is an example of the so called path continuity, which was widely described in [1]. They prove that each function of that class is Lebesgue measurable and has the Denjoy property. They also show that for any $\rho \in (0, \frac{1}{2})$, there are ρ -continuous functions which are not of Baire class one. Similar class, of the so called $[\lambda, \rho]$ -continuous functions, was studied by K. Nowakowska in [7]. In [5] and [6], S. Kowalczyk and K. Nowakowska studied the so-called maximal additive and multiplicative classes for $[\lambda, \rho]$ -continuous and ρ -upper continuous functions. A. Karasińska and E. Wagner-Bojakowska (cf. [2]) showed that there exists a function which is 1-upper continuous (i.e. ρ -upper continuous for each $\rho \in [0, 1)$) and is not approximately continuous. Moreover, they showed that there is a function which is 1-upper continuous but is not of Baire class one.

In this paper we prove that there are $2^{\mathfrak{c}}$ functions which are 1-upper continuous and $2^{\mathfrak{c}}$ functions which are ρ -lower continuous, for $\rho \in (0, \frac{1}{2})$. In particular, there are non-Borel 1-upper continuous and ρ -lower continuous functions. We also show that the class of all ρ -upper continuous functions for $\rho \in (0, 1)$ is not closed under point-wise addition, and therefore it does not form a linear subspace of $\mathbb{R}^{\mathbb{R}}$.

We use standard set-theoretic notation – for any undefined notion we refer the reader to A. Kechris's monograph [3]. Let $\mathbb{N} = \{1, 2, 3, ...\}$ stands for the set of all natural numbers and let m stands for Lebesgue measure on the real line. Let E be a measurable subset of \mathbb{R} and let $x \in \mathbb{R}$. The numbers

$$\underline{d}^+(E,x) = \liminf_{t \to 0^+} \frac{m(E \cap [x, x+t])}{t}$$

and

$$\overline{d}^+(E,x) = \limsup_{t \to 0^+} \frac{m(E \cap [x,x+t])}{t}$$

²⁰¹⁰ Mathematics Subject Classification. Primary: 26A15; Secondary: 54C30.

Key words and phrases. Lebesgue density, path continuity, continuous functions.

are called respectively the right lower density of E at x and right upper density of E at x. The left lower and upper densities of E at x are defined analogously. If

$$\underline{d}^+(E,x) = \overline{d}^+(E,x)$$
 and $\underline{d}^-(E,x) = \overline{d}^-(E,x),$

then we call these numbers the right density and left density of E at x, respectively. The numbers

$$\underline{d}(E,x) = \liminf_{t,k \to 0^+} \frac{m(E \cap [x-t,x+k])}{t+k}$$

and

$$\overline{d}(E, x) = \limsup_{t, k \to 0^+} \frac{m(E \cap [x - t, x + k])}{t + k}$$

are called the upper and lower density of E at x, respectively. Note that

$$\underline{d}(E, x) = \min\{\underline{d}^{-}(E, x), \underline{d}^{+}(E, x)\}\$$

and

$$\overline{d}(E,x) = \max\{\overline{d}^{-}(E,x), \overline{d}^{+}(E,x)\}.$$

If $\underline{d}(E, x) = \overline{d}(E, x)$, we call this number the density of E at x and denote it by d(E, x). If d(E, x) = 1, then we say that x is a density point of E.

Let us recall the notion of ρ -upper and ρ -lower continuity.

Definition 1. Let $\rho \in (0,1)$ and let $f: I \to \mathbb{R}$, where $I \subseteq \mathbb{R}$ is an open interval. We say that f is

- (i) ρ -upper continuous at $x \in I$ provided there exists a measurable set $E \subseteq I$ with $x \in E$, such that $\overline{d}(E, x) > \rho$ and $f|_E$ is continuous at x;
- (ii) ρ -lower continuous at $x \in I$ provided there exists a measurable set $E \subseteq I$ with $x \in E$, such that $\underline{d}(E, x) > \rho$ and $f|_E$ is continuous at x;

If f is ρ -upper (ρ -lower resp.) continuous at every point of I, we say that f is ρ -upper (ρ -lower resp.) continuous.

We will denote the class of all ρ -upper (ρ -lower resp.) continuous functions defined on a unit interval (0,1) by \mathcal{UC}_{ρ} (\mathcal{LC}_{ρ} resp.). We say that f is 1-upper continuous if it is ρ -upper continuous for every $\rho \in [0, 1)$.

For any nonempty set A we will denote the family of all finite sequences of elements of A by $A^{<\mathbb{N}}$. For any finite sequence $s = (s_1, ..., s_n) \in A^{<\mathbb{N}}$ and $a \in A$ by $\hat{s}a$ we denote a concatenation of s and a, i.e. $\hat{s}a = (s_1, ..., s_n, a)$. By |s| we denote the length of s. If $\alpha \in A^{\mathbb{N}}$, then let $\alpha | n = (\alpha(1), ..., \alpha(n))$ and $\alpha | 0 = \emptyset$. Moreover, by $2^{<\mathbb{N}}$ (resp. $2^{\mathbb{N}}$) we mean the set $\{0, 1\}^{<\mathbb{N}}$ (resp. $\{0, 1\}^{\mathbb{N}}$). For $n \in \mathbb{N}$ we denote $2^n = \{s \in 2^{<\mathbb{N}} : |s| = n\}$ and $2^0 = \{\emptyset\}$.

2. Cardinality of the set \mathcal{UC}_{ρ}

Note that the definition of upper 1-continuous functions and approximately continuous functions are similar but not identical. We have that f is 1-upper continuous at x if there is a measurable set E such that $\overline{d}(E, x) = 1$ and $f|_{E \cup \{x\}}$ is continuous, and we say that f is approximately continuous at x if there is a measurable set E such that d(E, x) = 1 and $f|_{E \cup \{x\}}$ is continuous. This slight difference in the definition has a huge consequence. Since an approximately continuous function is of Baire class one, there are \mathfrak{c} approximately continuous functions. In this section we show that there are $2^{\mathfrak{c}}$ functions which are 1-upper continuous.

The main idea is the following. We may define sequences $(x_n)_{n \in \mathbb{N}}$, $(y_n)_{n \in \mathbb{N}}$, $(u_n)_{n \in \mathbb{N}}$ and $(w_n)_{n \in \mathbb{N}}$ of positive numbers such that $x_{n+1} < y_{n+1} < u_{n+1} < w_{n+1} < x_n$ for each $n \in \mathbb{N}$, $(x_n)_{n \in \mathbb{N}}$ tends to 0 and

$$\overline{d}(\bigcup_{n\in\mathbb{N}}[x_n,y_n],0)=\overline{d}(\bigcup_{n\in\mathbb{N}}[u_n,w_n],0)=1.$$

Then, we define $f : \mathbb{R} \to \mathbb{R}$ in the following way:

- put f(x) = 1 if $x \in [x_n, y_n]$ or $-x \in [x_n, y_n]$ or $x > x_1$ or $x < -x_1$
- put f(x) = 0 if $x \in [u_n, w_n]$ or $-x \in [u_n, w_n]$
- on $\mathbb{R} \setminus \{0\}$ define f to be (locally) affine.

The question is how to define f at 0? One can put f(0) = 1 or f(0) = 0. In both cases f is 1-upper continuous at 0, and consequently f is 1-upper continuous on its domain. Our plan is to make a similar construction of a function f for which the set A where we can freely put 0 or 1 is large, i.e. of cardinality \mathfrak{c} . Since there are 2^{\mathfrak{c}} functions from A to $\{0,1\}$ our construction will show that we may define f in 2^{\mathfrak{c}} ways to get a 1-upper continuous function.

Theorem 2. The set \mathcal{UC}_1 has cardinality $2^{\mathfrak{c}}$. In particular there is a non-Borel 1-upper continuous function.

Proof. Let $(q_n)_{n \in \mathbb{N}}$ be a decreasing sequence of numbers from the interval $(0, \frac{1}{3})$ that it is convergent to 0. One can construct a sequence $\{I_s : s \in 2^{<\mathbb{N}}\}$ of closed subintervals of [0, 1] such that

1. $I_{\emptyset} = [0, 1];$ 2. $\forall s \in 2^{<\mathbb{N}} \min I_{s^{\circ}0} = \min I_s, \max I_{s^{\circ}1} = \max I_s;$ 3. $\forall s \in 2^{<\mathbb{N}} \forall i \in \{0, 1\} |I_{s^{\circ}i}| = q_{|s|+1}|I_s|.$

Let

$$\mathcal{C} = \bigcup_{\alpha \in 2^{\mathbb{N}}} \bigcap_{n \in \mathbb{N}} I_{\alpha|n}.$$

One can easily check, that C is a Cantor-like set (i.e. perfect, zero-dimensional and of measure zero).

The above construction is similar to the classical geometric construction of the ternary Cantor. Starting from the unit interval $I_{\emptyset} = [0, 1]$, in the first step we remove the open middle subinterval leaving two subintervals: I_0, I_1 of lengths q_1 . In the second step the open middle subintervals of the remaining intervals I_0, I_1 are removed, leaving four segments: $I_{00}, I_{01}, I_{10}, I_{11}$ of lengths $q_2|I_0| = q_2 \cdot q_1$ and so on.

Let $A, B \subseteq [0, 1]$ be the unions of the closures of intervals removed in the odd and even steps respectively, i.e.

$$A = \bigcup_{k \in \mathbb{N}} \bigcup_{s \in 2^{2k-2}} \overline{I_s \setminus (I_{s^{\circ}0} \cup I_{s^{\circ}1})}$$
$$B = \bigcup_{k \in \mathbb{N}} \bigcup_{s \in 2^{2k-1}} \overline{I_s \setminus (I_{s^{\circ}0} \cup I_{s^{\circ}1})}$$

Observe, that $A \cup B = [0,1] \setminus \mathcal{C}'$, where $\mathcal{C}' \subseteq \mathcal{C}$ is created by removing the boundary of the set $[0,1] \setminus \mathcal{C}$ from \mathcal{C} . In particular \mathcal{C}' has cardinality \mathfrak{c} . Let $g: A \cup B \to \{0,1\}$ be a characteristic function of A. To illustrate the idea, the function g is created by putting 1 over the closure of the intervals removed in the odd step and putting 0 elsewhere. Let $\mathcal{C}'' = \mathcal{C}' \setminus \{0,1\}$, let $F \subseteq \mathcal{C}''$ and define a function $g_F: (0,1) \to \{0,1\}$ by the formula

$$g_F(x) = \begin{cases} 1, \text{ when } x \in F \\ g(x), \text{ when } x \in A \cup B \\ 0, \text{ otherwise.} \end{cases}$$

We will show that g_F is 1-upper continuous. Let $x \in (0,1)$ and let $E = g_F^{-1}(\{g_F(x)\})$. We have the following possibilities:

- (1) $x \in A$, then $\overline{d}^+(E, x) = 1$ or $\overline{d}^-(E, x) = 1$. Hence, $\overline{d}(E, x) = 1$ and g_F is 1-upper continuous at x.
- (2) $x \in B$, then $\overline{d}^+(E, x) = 1$ or $\overline{d}^-(E, x) = 1$. Hence, $\overline{d}(E, x) = 1$ and g_F is 1-upper continuous at x.
- (3) $x \in F$, then there are sequences: $(n_k)_{k \in \mathbb{N}}$ of odd numbers, $(J_{n_k})_{k \in \mathbb{N}}$ of intervals, $(s_{n_k})_{k \in \mathbb{N}}$ of finite 0-1 sequences, such that for every $k \in \mathbb{N}$:
 - a) $|s_{n_k}| = n_k 1;$
 - b) $\{x\} = \bigcap_{k \in \mathbb{N}} I_{s_{n_k}};$
 - c) J_{n_k} is a connected component of A;
 - d) $\frac{|J_{n_k}|}{|I_{s_{n_k}}|} = 1 2q_{n_k};$
 - e) both sequences $(\min J_{n_k})_{k \in \mathbb{N}}, (\max J_{n_k})_{k \in \mathbb{N}}$ converge to x from the right.

The above sequences can be chosen in the following way: there is a sequence $(J_{n_k})_{k\in\mathbb{N}}$ of intervals removed in the odd step (i.e. connected components of A) that is convergent (in the sense of (e)) to x from the right and such that the interval J_{n_k} was removed exactly from $I_{s_{n_k}}$. By c) and the definition of g, we have that $J_{n_k} \subseteq E$. Hence, by b), d) and e) we obtain that $\overline{d}^+(E, x) = 1$ and g_F is 1-upper continuous at x.

(4) $x \in \mathcal{C}'' \setminus F$, then by a similar reasoning as in the case when $x \in F$, the function g_F is 1-upper continuous at x.

Since there are exactly $2^{\mathfrak{c}}$ subsets of \mathcal{C}'' , the set \mathcal{UC}_1 has cardinality $2^{\mathfrak{c}}$.

3. Cardinality of the set \mathcal{LC}_{ρ}

Let $\rho \in (0, \frac{1}{2})$. This section is devoted to the proof that the cardinality of the set \mathcal{LC}_{ρ} is 2^c. The idea of a construction of 2^c ρ -lower continuous functions is similar to the one from the previous section and uses a geometric construction of the ternary Cantor set.

Lemma 3. Let
$$b_n = \frac{1}{2n-1}$$
 and $a_n = \frac{1}{2n}$, for $n \in \mathbb{N}$. Let $A = \bigcup_{n \in \mathbb{N}} [a_n, b_n)$, then $d^+(A, 0) = \frac{1}{2}$.

The above fact is probably folklore, but for the reader's convenience we state the proof.

Proof. For $h \in (0,1)$ let $\varphi(h) = \frac{m(A \cap (0,h))}{h}$. Let $n \in \mathbb{N}$ and observe that

$$\varphi(\frac{1}{2n-1}) > \frac{1}{2}$$

and

$$\varphi(\frac{1}{2n}) < \frac{1}{2}$$

By the simple properties of the function φ , we have that $d^+(A,0) = \lim_{n \to \infty} \varphi(\frac{1}{n}) = \frac{1}{2}$.

Lemma 4. For every open interval $(a,b) \subseteq (0,1)$ and every $\varepsilon > 0$ there exists a set $E \subseteq (a,b)$ such that for all $h \in (0, b - a)$

$$\left|\frac{m(E\cap(a,a+h))}{h} - \frac{1}{2}\right| < \varepsilon.$$

Proof. Let $(a,b) \subseteq (0,1), \varepsilon > 0$ and let $A \subseteq (0,1)$ be as in Lemma 3. There exists $n_0 \in \mathbb{N}$ such that

$$\left|\frac{m(A\cap(0,\frac{1}{n_0}))}{\frac{1}{n_0}}-\frac{1}{2}\right|<\varepsilon.$$

In particular for every $n \ge n_0$

$$\left|\frac{m(A\cap(0,\frac{1}{n}))}{\frac{1}{n}} - \frac{1}{2}\right| < \varepsilon.$$

Let us put $A_{n_0} = A \cap (0, \frac{1}{n_0}), B_{n_0} = (0, \frac{1}{n_0}) \setminus A_{n_0}$. The idea is to fit the set A_{n_0} into the first half of (a, b) and to fit the set $-B_{n_0}$ into the second one, i.e. let $\tilde{E} = (\alpha \cdot A_{n_0} + a) \cup (b - \alpha \cdot B_{n_0})$, where $\alpha = \frac{(b-a)n_0}{2}$.

For the further applications we have to modify the set \tilde{E} . Let $\{\dots, x_{-1}, x_0, x_1, x_2, \dots\}$ be an increasing sequence of all endpoints of the intervals that form the set \tilde{E} , where $x_0 = \frac{a+b}{2}$. For every $i \in \mathbb{Z}$ one can choose a small enough $h_i > 0$ such that for the set $F = \bigcup_{i \in \mathbb{Z}} (x_i - h_i, x_i + h_i)$ we have

- $d^+(F,a) = 0;$
- $d^{-}(F,b) = 0.$

It is easy to see that $E = \tilde{E} \setminus F$ has the desired properties.

Remark 5. In the sequel we will be using the following construction: for an interval $(a,b) \subseteq (0,1)$ and $\varepsilon > 0$, let $E \subseteq (a,b)$ be as in Lemma 4 and define a function $f : (a,b) \to [0,1]$ by the formula

$$f(x) = \begin{cases} 1, \text{ when } x \in E \\ 0, \text{ when } x \in (a,b) \setminus (E \cup F) \\ \text{locally affine, when } x \in F \end{cases}$$

where F is as in the proof of Lemma 4 and the locally affine mappings over F ensure that f is continuous.

Theorem 6. Let $\rho \in (0, \frac{1}{2})$. The set \mathcal{LC}_{ρ} has cardinality 2^c. In particular there is a non-Borel ρ -lower continuous function.

Proof. Consider a sequence $(\varepsilon_n)_{n \in \mathbb{N}}$, where $\varepsilon_n = \frac{1}{10^n}$ for $n \in \mathbb{N}$. One can construct a sequence $\{I_s : s \in 2^{<\mathbb{N}}\}$ of closed subintervals of [0, 1] such that

1. $I_{\emptyset} = [0, 1];$ 2. $\forall s \in 2^{<\mathbb{N}} \min I_{s^{\circ}0} = \min I_s, \max I_{s^{\circ}1} = \max I_s;$ 3. $\forall s \in 2^{<\mathbb{N}} \forall i \in \{0, 1\} |I_{s^{\circ}i}| = \frac{1}{3}|I_s|.$

Let

$$\mathcal{C} = \bigcup_{\alpha \in 2^{\mathbb{N}}} \bigcap_{n \in \mathbb{N}} I_{\alpha|n},$$

then \mathcal{C} is the ternary Cantor set.

The idea of the proof is to define a function $f: (0,1) \setminus \mathcal{C} \to [0,1]$ by putting functions as in Remark 5 for $\varepsilon_n > 0$ inside all of the intervals removed in the n^{th} step. To formalize this concept: for every $n \in \mathbb{N}$ and $s \in 2^{n-1}$ let $J_s = I_s \setminus (I_{s^0} \cup I_{s^1})$ and $f_s: J_s \to [0,1]$ be as in Remark 5 for $\varepsilon_{|s|+1} = \varepsilon_n$. Let us put $f = \bigcup_{s \in 2^{<\mathbb{N}}} f_s$. We will show that for any $D \subseteq \mathcal{C} \setminus \{0,1\}$, the function $f_D: (0,1) \to [0,1]$ defined by

$$f_D(x) = \begin{cases} 1, \text{ when } x \in D\\ f(x), \text{ when } x \in (0,1) \setminus \mathcal{C}\\ 0, \text{ otherwise,} \end{cases}$$

is ρ -lower continuous. Let $D \subseteq \mathcal{C} \setminus \{0, 1\}$ and fix a point $x \in (0, 1)$ and let $B = f_D^{-1}(\{f_D(x)\})$. We have the following possibilities:

(1) $x \in (0,1) \setminus C$, then f_D is continuous at x. Hence, it is ρ -lower continuous.

- (2) $x \in C \setminus \{0,1\}$ and x is not an endpoint of any interval J_s . We will show that $\underline{d}^+(B,x) > \rho$. Let h > 0 and consider the right neighborhood of x of the form (x, x + h). We have two possibilities:
 - a) $x + h \in \mathcal{C}$, then for $\mathcal{J} = \{J_s : J_s \subseteq (x, x + h)\}$ and $\mathcal{S} = \{s \in 2^{<\mathbb{N}} : J_s \in \mathcal{J}\}$ we have that $h = m((x, x + h)) = \sum_{J \in \mathcal{J}} m(J)$. Moreover, for $N_h = \min\{|s| + 1 : s \in \mathcal{S}\}$, N_h tends to ∞ whenever $h \to 0$. By Lemma 4 the following estimation holds

$$(\frac{1}{2} - \varepsilon_{N_h})h < m(B \cap (x, x+h)) < (\frac{1}{2} + \varepsilon_{N_h})h.$$

(b) or $x + h \notin C$, then there is a finite 0 - 1 sequence s_h such that $x + h \in J_{s_h}$. Let $\mathcal{J} = \{J_s : J_s \subseteq (x, x + h)\}$ and $\mathcal{S} = \{s \in 2^{<\mathbb{N}} : J_s \in \mathcal{J}\}$. We have that

$$h = m((x, x + h) \cap (\bigcup \mathcal{J} \cup J_{s_h})).$$

Moreover, let $N_h = \min\{|s| + 1 : s \in S\}$ and $N = \min\{N_h, |s_h| + 1\}$. Observe that $N \to \infty$ whenever $h \to 0$. Let $d = \min J_{s_h}$. Since

$$m(B \cap (x, x+h)) = m(B \cap \bigcup \mathcal{J}) + m(B \cap (d, x+h)),$$

by Lemma 4 the following inequalities hold:

$$m(B \cap (x, x+h)) < (\frac{1}{2} + \varepsilon_{N_h})(d-x) + (\frac{1}{2} + \varepsilon_{|s_h|+1})(x+h-d) < (\frac{1}{2} + \varepsilon_N)h$$

and

$$m(B \cap (x, x+h)) > (\frac{1}{2} - \varepsilon_{N_h})(d-x) + (\frac{1}{2} - \varepsilon_{|s_h|+1})(x+h-d) > (\frac{1}{2} - \varepsilon_N)h.$$

By the above calculations, for a small enough h > 0, the number $\frac{m(B \cap (x,x+h))}{h}$ can be as close to $\frac{1}{2}$ as we want. In particular $\underline{d}^+(B,x) > \rho$. By a similar argument (taking the intervals from the left neighborhood of x) we may prove that $\underline{d}^-(B,x) > \rho$.

(3) $x \in \mathcal{C} \setminus \{0,1\}$ and x is an endpoint of some interval J_s . In this case $\underline{d}^+(B,x) > \rho$ and $\underline{d}^-(B,x) > \rho$ as well, where one of these inequalities follows from Lemma 4 and the other one can be proved by a similar argument as in the previous case.

Summarizing, $\underline{d}(B, x) > \rho$ and f_D is ρ -lower continuous at x. The fact that there are 2^c subsets of $\mathcal{C} \setminus \{0, 1\}$ completes the proof.

We end the paper with two open questions:

- (1) Does there exist a linear space $X \subseteq \mathbb{R}^{\mathbb{R}}$ of dimension 2^c such that any $f \in X \setminus \{0\}$ is 1-upper continuous? In other words: is the set \mathcal{UC}_1 2^c-lineable?
- (2) What is the cardinality of the set of $[\lambda, \rho]$ -continuous functions? Is it 2^c for some positive λ and ρ ?

Acknowledgement. The first and the second author have been supported by the NCN grant DEC-2012/07/D/ST1/02087.

References

- Bruckner, A. M.; O'Malley, R. J.; Thomson, B. S. Path derivatives: a unified view of certain generalized derivatives. Trans. Amer. Math. Soc. 283 (1984), no. 1, 97–125.
- [2] Karasińska, A.; Wagner-Bojakowska, E. Some remarks on ρ-upper continuous functions. Tatra Mt. Math. Publ. 46 (2010), 85–89.
- [3] Kechris, A.S.: Classical Descriptive Set Theory. Springer, New York 1998.
- [4] Kowalczyk, S.; Nowakowska, K. A note on ρ-upper continuous functions. Tatra Mt. Math. Publ. 44 (2009), 153–158.
- [5] Kowalczyk, S.; Nowakowska, K. Maximal classes for the family of [λ, ρ]-continuous functions. Real Anal. Exchange 36 (2010/11), no. 2, 307–324.
- [6] Kowalczyk, S.; Nowakowska, K. Maximal classes for ρ-upper continuous functions. J. Appl. Anal. 19 (2013), no. 1, 6989.
- [7] Nowakowska, K. On the family of $[\lambda, \rho]$ -continuous functions. Tatra Mt. Math. Publ. 44 (2009), 129–138.

INSTITUTE OF MATHEMATICS, ŁÓDŹ UNIVERSITY OF TECHNOLOGY, WÓLCZAŃSKA 215, 93-005 ŁÓDŹ, POLAND *E-mail address*: marek.bienias88@gmail.com, szymon.glab@p.lodz.pl

DEPARTMENT OF REAL FUNCTIONS, FACULTY OF MATHEMATICS, UNIVERSITY OF ŁÓDŹ, BANACHA 22, 90-238, ŁÓDŹ, POLAND

E-mail address: wwil@uni.lodz.pl