CARDINALITY OF SETS OF ρ-UPPER AND ρ-LOWER CONTINUOUS FUNCTIONS

MAREK BIENIAS, SZYMON GŁA̧B AND WŁADYSŁAW WILCZYŃSKI

Abstract

We prove that the cardinality of the set of all 1-upper continuous functions $f:(0,1) \rightarrow \mathbb{R}$ equals $2^{\mathfrak{c}}$. In particular, there is a non-Borel 1-upper continuous function. We also prove that there are $2^{\mathfrak{c}} \rho$-lower continuous functions for $\rho \in\left(0, \frac{1}{2}\right)$.

1. Introduction

S. Kowalczyk and K. Nowakowska in [4] introduced the notion of ρ-upper continuous functions, where $\rho \in(0,1)$. The notion of ρ-upper continuity is an example of the so called path continuity, which was widely described in [1]. They prove that each function of that class is Lebesgue measurable and has the Denjoy property. They also show that for any $\rho \in\left(0, \frac{1}{2}\right)$, there are ρ-continuous functions which are not of Baire class one. Similar class, of the so called $[\lambda, \rho]$-continuous functions, was studied by K. Nowakowska in [7]. In [5] and [6], S. Kowalczyk and K. Nowakowska studied the so-called maximal additive and multiplicative classes for $[\lambda, \rho]$-continuous and ρ-upper continuous functions. A. Karasińska and E. Wagner-Bojakowska (cf. [2]) showed that there exists a function which is 1 -upper continuous (i.e. ρ-upper continuous for each $\rho \in[0,1)$) and is not approximately continuous. Moreover, they showed that there is a function which is 1 -upper continuous but is not of Baire class one.

In this paper we prove that there are $2^{\mathfrak{c}}$ functions which are 1-upper continuous and $2^{\mathfrak{c}}$ functions which are ρ-lower continuous, for $\rho \in\left(0, \frac{1}{2}\right)$. In particular, there are non-Borel 1 -upper continuous and ρ-lower continuous functions. We also show that the class of all ρ-upper continuous functions for $\rho \in(0,1)$ is not closed under point-wise addition, and therefore it does not form a linear subspace of $\mathbb{R}^{\mathbb{R}}$.

We use standard set-theoretic notation - for any undefined notion we refer the reader to A. Kechris's monograph [3]. Let $\mathbb{N}=\{1,2,3, \ldots\}$ stands for the set of all natural numbers and let m stands for Lebesgue measure on the real line. Let E be a measurable subset of \mathbb{R} and let $x \in \mathbb{R}$. The numbers

$$
\underline{d}^{+}(E, x)=\liminf _{t \rightarrow 0^{+}} \frac{m(E \cap[x, x+t])}{t}
$$

and

$$
\bar{d}^{+}(E, x)=\limsup _{t \rightarrow 0^{+}} \frac{m(E \cap[x, x+t])}{t}
$$

[^0]Key words and phrases. Lebesgue density, path continuity, continuous functions.
are called respectively the right lower density of E at x and right upper density of E at x. The left lower and upper densities of E at x are defined analogously. If

$$
\underline{d}^{+}(E, x)=\bar{d}^{+}(E, x) \quad \text { and } \quad \underline{d}^{-}(E, x)=\bar{d}^{-}(E, x),
$$

then we call these numbers the right density and left density of E at x, respectively. The numbers

$$
\underline{d}(E, x)=\liminf _{t, k \rightarrow 0^{+}} \frac{m(E \cap[x-t, x+k])}{t+k}
$$

and

$$
\bar{d}(E, x)=\limsup _{t, k \rightarrow 0^{+}} \frac{m(E \cap[x-t, x+k])}{t+k}
$$

are called the upper and lower density of E at x, respectively. Note that

$$
\underline{d}(E, x)=\min \left\{\underline{d}^{-}(E, x), \underline{d}^{+}(E, x)\right\}
$$

and

$$
\bar{d}(E, x)=\max \left\{\bar{d}^{-}(E, x), \bar{d}^{+}(E, x)\right\} .
$$

If $\underline{d}(E, x)=\bar{d}(E, x)$, we call this number the density of E at x and denote it by $d(E, x)$. If $d(E, x)=1$, then we say that x is a density point of E.

Let us recall the notion of ρ-upper and ρ-lower continuity.

Definition 1. Let $\rho \in(0,1)$ and let $f: I \rightarrow \mathbb{R}$, where $I \subseteq \mathbb{R}$ is an open interval. We say that f is
(i) ρ-upper continuous at $x \in I$ provided there exists a measurable set $E \subseteq I$ with $x \in E$, such that $\bar{d}(E, x)>\rho$ and $\left.f\right|_{E}$ is continuous at x;
(ii) ρ-lower continuous at $x \in I$ provided there exists a measurable set $E \subseteq I$ with $x \in E$, such that $\underline{d}(E, x)>\rho$ and $\left.f\right|_{E}$ is continuous at x;

If f is ρ-upper (ρ-lower resp.) continuous at every point of I, we say that f is ρ-upper (ρ-lower resp.) continuous.

We will denote the class of all ρ-upper (ρ-lower resp.) continuous functions defined on a unit interval $(0,1)$ by $\mathcal{U C}_{\rho}$ ($\mathcal{L C} \mathcal{C}_{\rho}$ resp.). We say that f is 1 -upper continuous if it is ρ-upper continuous for every $\rho \in[0,1)$.

For any nonempty set A we will denote the family of all finite sequences of elements of A by $A^{<\mathbb{N}}$. For any finite sequence $s=\left(s_{1}, \ldots, s_{n}\right) \in A^{<\mathbb{N}}$ and $a \in A$ by $\hat{s^{\wedge} a}$ we denote a concatenation of s and a, i.e. $\hat{s^{\prime} a}=\left(s_{1}, \ldots, s_{n}, a\right)$. By $|s|$ we denote the length of s. If $\alpha \in A^{\mathbb{N}}$, then let $\alpha \mid n=(\alpha(1), \ldots, \alpha(n))$ and $\alpha \mid 0=\emptyset$. Moreover, by $2^{<\mathbb{N}}$ (resp. $2^{\mathbb{N}}$) we mean the set $\{0,1\}^{<\mathbb{N}}$ (resp. $\{0,1\}^{\mathbb{N}}$). For $n \in \mathbb{N}$ we denote $2^{n}=\left\{s \in 2^{<\mathbb{N}}:|s|=n\right\}$ and $2^{0}=\{\emptyset\}$.

2. Cardinality of the set $\mathcal{U C}_{\rho}$

Note that the definition of upper 1-continuous functions and approximately continuous functions are similar but not identical. We have that f is 1 -upper continuous at x if there is a measurable set E such that $\bar{d}(E, x)=1$ and $\left.f\right|_{E \cup\{x\}}$ is continuous, and we say that f is approximately continuous at x if there is a measurable set E such that $d(E, x)=1$ and $\left.f\right|_{E \cup\{x\}}$ is continuous. This slight difference in the definition has a huge consequence. Since an approximately continuous function is of Baire class one, there are \mathfrak{c} approximately continuous functions. In this section we show that there are 2^{c} functions which are 1-upper continuous.

The main idea is the following. We may define sequences $\left(x_{n}\right)_{n \in \mathbb{N}},\left(y_{n}\right)_{n \in \mathbb{N}},\left(u_{n}\right)_{n \in \mathbb{N}}$ and $\left(w_{n}\right)_{n \in \mathbb{N}}$ of positive numbers such that $x_{n+1}<y_{n+1}<u_{n+1}<w_{n+1}<x_{n}$ for each $n \in \mathbb{N},\left(x_{n}\right)_{n \in \mathbb{N}}$ tends to 0 and

$$
\bar{d}\left(\bigcup_{n \in \mathbb{N}}\left[x_{n}, y_{n}\right], 0\right)=\bar{d}\left(\bigcup_{n \in \mathbb{N}}\left[u_{n}, w_{n}\right], 0\right)=1
$$

Then, we define $f: \mathbb{R} \rightarrow \mathbb{R}$ in the following way:

- put $f(x)=1$ if $x \in\left[x_{n}, y_{n}\right]$ or $-x \in\left[x_{n}, y_{n}\right]$ or $x>x_{1}$ or $x<-x_{1}$
- put $f(x)=0$ if $x \in\left[u_{n}, w_{n}\right]$ or $-x \in\left[u_{n}, w_{n}\right]$
- on $\mathbb{R} \backslash\{0\}$ define f to be (locally) affine.

The question is how to define f at 0 ? One can put $f(0)=1$ or $f(0)=0$. In both cases f is 1 -upper continuous at 0 , and consequently f is 1-upper continuous on its domain. Our plan is to make a similar construction of a function f for which the set A where we can freely put 0 or 1 is large, i.e. of cardinality \mathfrak{c}. Since there are $2^{\mathfrak{c}}$ functions from A to $\{0,1\}$ our construction will show that we may define f in $2^{\mathfrak{c}}$ ways to get a 1 -upper continuous function.

Theorem 2. The set $\mathcal{U C}_{1}$ has cardinality 2^{c}. In particular there is a non-Borel 1-upper continuous function.

Proof. Let $\left(q_{n}\right)_{n \in \mathbb{N}}$ be a decreasing sequence of numbers from the interval $\left(0, \frac{1}{3}\right)$ that it is convergent to 0 . One can construct a sequence $\left\{I_{s}: s \in 2^{<\mathbb{N}}\right\}$ of closed subintervals of $[0,1]$ such that

1. $I_{\emptyset}=[0,1]$;
2. $\forall s \in 2^{<\mathbb{N}} \min I_{s^{\wedge} 0}=\min I_{s}, \max I_{s^{\wedge} 1}=\max I_{s}$;
3. $\forall s \in 2^{<\mathbb{N}} \forall i \in\{0,1\}\left|I_{s^{\wedge} i}\right|=q_{|s|+1}\left|I_{s}\right|$.

Let

$$
\mathcal{C}=\bigcup_{\alpha \in 2^{\mathbb{N}}} \bigcap_{n \in \mathbb{N}} I_{\alpha \mid n} .
$$

One can easily check, that \mathcal{C} is a Cantor-like set (i.e. perfect, zero-dimensional and of measure zero).
The above construction is similar to the classical geometric construction of the ternary Cantor. Starting from the unit interval $I_{\emptyset}=[0,1]$, in the first step we remove the open middle subinterval
leaving two subintervals: I_{0}, I_{1} of lengths q_{1}. In the second step the open middle subintervals of the remaining intervals I_{0}, I_{1} are removed, leaving four segments: $I_{00}, I_{01}, I_{10}, I_{11}$ of lengths $q_{2}\left|I_{0}\right|=q_{2} \cdot q_{1}$ and so on.

Let $A, B \subseteq[0,1]$ be the unions of the closures of intervals removed in the odd and even steps respectively, i.e.

$$
\begin{aligned}
& A=\bigcup_{k \in \mathbb{N}} \bigcup_{s \in 2^{2 k-2}} \overline{I_{s} \backslash\left(I_{s^{\wedge} 0} \cup I_{s^{\wedge} 1}\right)} \\
& B=\bigcup_{k \in \mathbb{N}} \bigcup_{s \in 2^{2 k-1}} \overline{I_{s} \backslash\left(I_{s^{\wedge} 0} \cup I_{s^{\wedge} 1}\right)}
\end{aligned}
$$

Observe, that $A \cup B=[0,1] \backslash \mathcal{C}^{\prime}$, where $\mathcal{C}^{\prime} \subseteq \mathcal{C}$ is created by removing the boundary of the set $[0,1] \backslash \mathcal{C}$ from \mathcal{C}. In particular \mathcal{C}^{\prime} has cardinality \mathfrak{c}. Let $g: A \cup B \rightarrow\{0,1\}$ be a characteristic function of A. To illustrate the idea, the function g is created by putting 1 over the closure of the intervals removed in the odd step and putting 0 elsewhere. Let $\mathcal{C}^{\prime \prime}=\mathcal{C}^{\prime} \backslash\{0,1\}$, let $F \subseteq \mathcal{C}^{\prime \prime}$ and define a function $g_{F}:(0,1) \rightarrow\{0,1\}$ by the formula

$$
g_{F}(x)=\left\{\begin{array}{l}
1, \text { when } x \in F \\
g(x), \text { when } x \in A \cup B \\
0, \text { otherwise }
\end{array}\right.
$$

We will show that g_{F} is 1-upper continuous. Let $x \in(0,1)$ and let $E=g_{F}^{-1}\left(\left\{g_{F}(x)\right\}\right)$. We have the following possibilities:
(1) $x \in A$, then $\bar{d}^{+}(E, x)=1$ or $\bar{d}^{-}(E, x)=1$. Hence, $\bar{d}(E, x)=1$ and g_{F} is 1 -upper continuous at x.
(2) $x \in B$, then $\bar{d}^{+}(E, x)=1$ or $\bar{d}^{-}(E, x)=1$. Hence, $\bar{d}(E, x)=1$ and g_{F} is 1 -upper continuous at x.
(3) $x \in F$, then there are sequences: $\left(n_{k}\right)_{k \in \mathbb{N}}$ of odd numbers, $\left(J_{n_{k}}\right)_{k \in \mathbb{N}}$ of intervals, $\left(s_{n_{k}}\right)_{k \in \mathbb{N}}$ of finite $0-1$ sequences, such that for every $k \in \mathbb{N}$:
a) $\left|s_{n_{k}}\right|=n_{k}-1$;
b) $\{x\}=\bigcap_{k \in \mathbb{N}} I_{s_{n_{k}}}$;
c) $J_{n_{k}}$ is a connected component of A;
d) $\frac{\left|J_{n_{k}}\right|}{\left|I_{n_{n_{k}}}\right|}=1-2 q_{n_{k}}$;
e) both sequences $\left(\min J_{n_{k}}\right)_{k \in \mathbb{N}},\left(\max J_{n_{k}}\right)_{k \in \mathbb{N}}$ converge to x from the right.

The above sequences can be chosen in the following way: there is a sequence $\left(J_{n_{k}}\right)_{k \in \mathbb{N}}$ of intervals removed in the odd step (i.e. connected components of A) that is convergent (in the sense of (e)) to x from the right and such that the interval $J_{n_{k}}$ was removed exactly from
$I_{s_{n_{k}}}$. By c) and the definition of g, we have that $J_{n_{k}} \subseteq E$. Hence, by b), d) and e) we obtain that $\bar{d}^{+}(E, x)=1$ and g_{F} is 1-upper continuous at x.
(4) $x \in \mathcal{C}^{\prime \prime} \backslash F$, then by a similar reasoning as in the case when $x \in F$, the function g_{F} is 1-upper continuous at x.

Since there are exactly $2^{\text {c }}$ subsets of $\mathcal{C}^{\prime \prime}$, the set $\mathcal{U C} \mathcal{C}_{1}$ has cardinality $2^{\text {c }}$.

3. Cardinality of the set $\mathcal{L C}_{\rho}$

Let $\rho \in\left(0, \frac{1}{2}\right)$. This section is devoted to the proof that the cardinality of the set $\mathcal{L C}{ }_{\rho}$ is $2^{\text {c }}$. The idea of a construction of $2^{\mathfrak{c}} \rho$-lower continuous functions is similar to the one from the previous section and uses a geometric construction of the ternary Cantor set.

Lemma 3. Let $b_{n}=\frac{1}{2 n-1}$ and $a_{n}=\frac{1}{2 n}$, for $n \in \mathbb{N}$. Let $A=\bigcup_{n \in \mathbb{N}}\left[a_{n}, b_{n}\right)$, then $d^{+}(A, 0)=\frac{1}{2}$.
The above fact is probably folklore, but for the reader's convenience we state the proof.
Proof. For $h \in(0,1)$ let $\varphi(h)=\frac{m(A \cap(0, h))}{h}$. Let $n \in \mathbb{N}$ and observe that

$$
\varphi\left(\frac{1}{2 n-1}\right)>\frac{1}{2}
$$

and

$$
\varphi\left(\frac{1}{2 n}\right)<\frac{1}{2} .
$$

By the simple properties of the function φ, we have that $d^{+}(A, 0)=\lim _{n \rightarrow \infty} \varphi\left(\frac{1}{n}\right)=\frac{1}{2}$.
Lemma 4. For every open interval $(a, b) \subseteq(0,1)$ and every $\varepsilon>0$ there exists a set $E \subseteq(a, b)$ such that for all $h \in(0, b-a)$

$$
\left|\frac{m(E \cap(a, a+h))}{h}-\frac{1}{2}\right|<\varepsilon .
$$

Proof. Let $(a, b) \subseteq(0,1), \varepsilon>0$ and let $A \subseteq(0,1)$ be as in Lemma 3. There exists $n_{0} \in \mathbb{N}$ such that

$$
\left|\frac{m\left(A \cap\left(0, \frac{1}{n_{0}}\right)\right)}{\frac{1}{n_{0}}}-\frac{1}{2}\right|<\varepsilon .
$$

In particular for every $n \geq n_{0}$

$$
\left|\frac{m\left(A \cap\left(0, \frac{1}{n}\right)\right)}{\frac{1}{n}}-\frac{1}{2}\right|<\varepsilon .
$$

Let us put $A_{n_{0}}=A \cap\left(0, \frac{1}{n_{0}}\right), B_{n_{0}}=\left(0, \frac{1}{n_{0}}\right) \backslash A_{n_{0}}$. The idea is to fit the set $A_{n_{0}}$ into the first half of (a, b) and to fit the set $-B_{n_{0}}$ into the second one, i.e. let $\tilde{E}=\left(\alpha \cdot A_{n_{0}}+a\right) \cup\left(b-\alpha \cdot B_{n_{0}}\right)$, where $\alpha=\frac{(b-a) n_{0}}{2}$.

For the further applications we have to modify the set \tilde{E}. Let $\left\{\ldots, x_{-1}, x_{0}, x_{1}, x_{2}, \ldots\right\}$ be an increasing sequence of all endpoints of the intervals that form the set \tilde{E}, where $x_{0}=\frac{a+b}{2}$. For every $i \in \mathbb{Z}$ one can choose a small enough $h_{i}>0$ such that for the set $F=\bigcup_{i \in \mathbb{Z}}\left(x_{i}-h_{i}, x_{i}+h_{i}\right)$ we have

- $d^{+}(F, a)=0$;
- $d^{-}(F, b)=0$.

It is easy to see that $E=\tilde{E} \backslash F$ has the desired properties.
Remark 5. In the sequel we will be using the following construction: for an interval $(a, b) \subseteq(0,1)$ and $\varepsilon>0$, let $E \subseteq(a, b)$ be as in Lemma \& and define a function $f:(a, b) \rightarrow[0,1]$ by the formula

$$
f(x)=\left\{\begin{array}{l}
1, \text { when } x \in E \\
0, \text { when } x \in(a, b) \backslash(E \cup F) \\
\text { locally affine, when } x \in F
\end{array}\right.
$$

where F is as in the proof of Lemma 4 and the locally affine mappings over F ensure that f is continuous.

Theorem 6. Let $\rho \in\left(0, \frac{1}{2}\right)$. The set $\mathcal{L C}{ }_{\rho}$ has cardinality 2^{c}. In particular there is a non-Borel ρ-lower continuous function.

Proof. Consider a sequence $\left(\varepsilon_{n}\right)_{n \in \mathbb{N}}$, where $\varepsilon_{n}=\frac{1}{10^{n}}$ for $n \in \mathbb{N}$. One can construct a sequence $\left\{I_{s}: s \in 2^{<\mathbb{N}}\right\}$ of closed subintervals of $[0,1]$ such that

1. $I_{\emptyset}=[0,1]$;
2. $\forall s \in 2^{<\mathbb{N}} \min I_{s^{\wedge} 0}=\min I_{s}, \max I_{s^{\wedge} 1}=\max I_{s}$;
3. $\forall s \in 2^{<\mathbb{N}} \forall i \in\{0,1\}\left|I_{s^{\wedge}}\right|=\frac{1}{3}\left|I_{s}\right|$.

Let

$$
\mathcal{C}=\bigcup_{\alpha \in 2^{\mathbb{N}}} \bigcap_{n \in \mathbb{N}} I_{\alpha \mid n},
$$

then \mathcal{C} is the ternary Cantor set.
The idea of the proof is to define a function $f:(0,1) \backslash \mathcal{C} \rightarrow[0,1]$ by putting functions as in Remark 5 for $\varepsilon_{n}>0$ inside all of the intervals removed in the $n^{\text {th }}$ step. To formalize this concept: for every $n \in \mathbb{N}$ and $s \in 2^{n-1}$ let $J_{s}=I_{s} \backslash\left(I_{s^{\wedge} 0} \cup I_{s^{\wedge} 1}\right)$ and $f_{s}: J_{s} \rightarrow[0,1]$ be as in Remark 5 for $\varepsilon_{|s|+1}=\varepsilon_{n}$. Let us put $f=\bigcup_{s \in 2^{<\mathbb{N}}} f_{s}$. We will show that for any $D \subseteq \mathcal{C} \backslash\{0,1\}$, the function $f_{D}:(0,1) \rightarrow[0,1]$ defined by

$$
f_{D}(x)=\left\{\begin{array}{l}
1, \text { when } x \in D \\
f(x), \text { when } x \in(0,1) \backslash \mathcal{C} \\
0, \text { otherwise },
\end{array}\right.
$$

is ρ-lower continuous. Let $D \subseteq \mathcal{C} \backslash\{0,1\}$ and fix a point $x \in(0,1)$ and let $B=f_{D}^{-1}\left(\left\{f_{D}(x)\right\}\right)$. We have the following possibilities:
(1) $x \in(0,1) \backslash \mathcal{C}$, then f_{D} is continuous at x. Hence, it is ρ-lower continuous.
(2) $x \in \mathcal{C} \backslash\{0,1\}$ and x is not an endpoint of any interval J_{s}. We will show that $\underline{d}^{+}(B, x)>\rho$. Let $h>0$ and consider the right neighborhood of x of the form $(x, x+h)$. We have two possibilities:
a) $x+h \in \mathcal{C}$, then for $\mathcal{J}=\left\{J_{s}: J_{s} \subseteq(x, x+h)\right\}$ and $\mathcal{S}=\left\{s \in 2^{<\mathbb{N}}: J_{s} \in \mathcal{J}\right\}$ we have that $h=m((x, x+h))=\sum_{J \in \mathcal{J}} m(J)$. Moreover, for $N_{h}=\min \{|s|+1: s \in \mathcal{S}\}, N_{h}$ tends to ∞ whenever $h \rightarrow 0$. By Lemma 4 the following estimation holds

$$
\left(\frac{1}{2}-\varepsilon_{N_{h}}\right) h<m(B \cap(x, x+h))<\left(\frac{1}{2}+\varepsilon_{N_{h}}\right) h .
$$

(b) or $x+h \notin \mathcal{C}$, then there is a finite $0-1$ sequence s_{h} such that $x+h \in J_{s_{h}}$. Let $\mathcal{J}=\left\{J_{s}: J_{s} \subseteq(x, x+h)\right\}$ and $\mathcal{S}=\left\{s \in 2^{<\mathbb{N}}: J_{s} \in \mathcal{J}\right\}$. We have that

$$
h=m\left((x, x+h) \cap\left(\bigcup \mathcal{J} \cup J_{s_{h}}\right)\right) .
$$

Moreover, let $N_{h}=\min \{|s|+1: s \in \mathcal{S}\}$ and $N=\min \left\{N_{h},\left|s_{h}\right|+1\right\}$. Observe that $N \rightarrow \infty$ whenever $h \rightarrow 0$. Let $d=\min J_{s_{h}}$. Since

$$
m(B \cap(x, x+h))=m(B \cap \bigcup \mathcal{J})+m(B \cap(d, x+h)),
$$

by Lemma 4 the following inequalities hold:

$$
m(B \cap(x, x+h))<\left(\frac{1}{2}+\varepsilon_{N_{h}}\right)(d-x)+\left(\frac{1}{2}+\varepsilon_{\left|s_{h}\right|+1}\right)(x+h-d)<\left(\frac{1}{2}+\varepsilon_{N}\right) h
$$

and

$$
m(B \cap(x, x+h))>\left(\frac{1}{2}-\varepsilon_{N_{h}}\right)(d-x)+\left(\frac{1}{2}-\varepsilon_{\left|s_{h}\right|+1}\right)(x+h-d)>\left(\frac{1}{2}-\varepsilon_{N}\right) h .
$$

By the above calculations, for a small enough $h>0$, the number $\frac{m(B \cap(x, x+h))}{h}$ can be as close to $\frac{1}{2}$ as we want. In particular $\underline{d}^{+}(B, x)>\rho$. By a similar argument (taking the intervals from the left neighborhood of x) we may prove that $\underline{d}^{-}(B, x)>\rho$.
(3) $x \in \mathcal{C} \backslash\{0,1\}$ and x is an endpoint of some interval J_{s}. In this case $\underline{d}^{+}(B, x)>\rho$ and $\underline{d}^{-}(B, x)>\rho$ as well, where one of these inequalities follows from Lemma 4 and the other one can be proved by a similar argument as in the previous case.

Summarizing, $\underline{d}(B, x)>\rho$ and f_{D} is ρ-lower continuous at x. The fact that there are 2^{c} subsets of $\mathcal{C} \backslash\{0,1\}$ completes the proof.

We end the paper with two open questions:
(1) Does there exist a linear space $X \subseteq \mathbb{R}^{\mathbb{R}}$ of dimension $2^{\mathfrak{c}}$ such that any $f \in X \backslash\{0\}$ is 1-upper continuous? In other words: is the set $\mathcal{U C}_{1} 2^{\text {c }}$-lineable?
(2) What is the cardinality of the set of $[\lambda, \rho]$-continuous functions? Is it $2^{\mathfrak{c}}$ for some positive λ and ρ ?

Acknowledgement. The first and the second author have been supported by the NCN grant DEC-2012/07/D/ST1/02087.

References

[1] Bruckner, A. M.; O'Malley, R. J.; Thomson, B. S. Path derivatives: a unified view of certain generalized derivatives. Trans. Amer. Math. Soc. 283 (1984), no. 1, 97-125.
[2] Karasińska, A.; Wagner-Bojakowska, E. Some remarks on ρ-upper continuous functions. Tatra Mt. Math. Publ. 46 (2010), 85-89.
[3] Kechris, A.S.: Classical Descriptive Set Theory. Springer, New York 1998.
[4] Kowalczyk, S.; Nowakowska, K. A note on ρ-upper continuous functions. Tatra Mt. Math. Publ. 44 (2009), 153-158.
[5] Kowalczyk, S.; Nowakowska, K. Maximal classes for the family of $[\lambda, \rho]$-continuous functions. Real Anal. Exchange 36 (2010/11), no. 2, 307-324.
[6] Kowalczyk, S.; Nowakowska, K. Maximal classes for ρ-upper continuous functions. J. Appl. Anal. 19 (2013), no. 1, 6989.
[7] Nowakowska, K. On the family of [λ, ρ]-continuous functions. Tatra Mt. Math. Publ. 44 (2009), 129-138.

Institute of Mathematics, Łódź University of Technology, Wólczańska 215, 93-005 Łódź, Poland
E-mail address: marek.bienias88@gmail.com, szymon.glab@p.lodz.pl

Department of Real Functions, Faculty of Mathematics, University of Lódź, Banacha 22, 90-238, Łódź, Poland

E-mail address: wwil@uni.lodz.pl

[^0]: 2010 Mathematics Subject Classification. Primary: 26A15; Secondary: 54C30.

