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Abstract. We prove that the cardinality of the set of all 1-upper continuous functions f : (0, 1) → R

equals 2c. In particular, there is a non-Borel 1-upper continuous function. We also prove that there

are 2c ρ-lower continuous functions for ρ ∈ (0, 1
2
).

1. Introduction

S. Kowalczyk and K. Nowakowska in [4] introduced the notion of ρ-upper continuous functions,

where ρ ∈ (0, 1). The notion of ρ-upper continuity is an example of the so called path continuity, which

was widely described in [1]. They prove that each function of that class is Lebesgue measurable and

has the Denjoy property. They also show that for any ρ ∈ (0, 1
2), there are ρ-continuous functions

which are not of Baire class one. Similar class, of the so called [λ, ρ]-continuous functions, was

studied by K. Nowakowska in [7]. In [5] and [6], S. Kowalczyk and K. Nowakowska studied the

so-called maximal additive and multiplicative classes for [λ, ρ]-continuous and ρ-upper continuous

functions. A. Karasińska and E. Wagner-Bojakowska (cf. [2]) showed that there exists a function

which is 1-upper continuous (i.e. ρ-upper continuous for each ρ ∈ [0, 1)) and is not approximately

continuous. Moreover, they showed that there is a function which is 1-upper continuous but is not of

Baire class one.

In this paper we prove that there are 2c functions which are 1-upper continuous and 2c functions

which are ρ-lower continuous, for ρ ∈ (0, 1
2). In particular, there are non-Borel 1-upper continuous

and ρ-lower continuous functions. We also show that the class of all ρ-upper continuous functions for

ρ ∈ (0, 1) is not closed under point-wise addition, and therefore it does not form a linear subspace of

RR.

We use standard set-theoretic notation – for any undefined notion we refer the reader to A. Kechris’s

monograph [3]. Let N = {1, 2, 3, ...} stands for the set of all natural numbers and let m stands for

Lebesgue measure on the real line. Let E be a measurable subset of R and let x ∈ R. The numbers

d+(E, x) = lim inf
t→0+

m(E ∩ [x, x+ t])

t

and

d
+

(E, x) = lim sup
t→0+

m(E ∩ [x, x+ t])

t

2010 Mathematics Subject Classification. Primary: 26A15; Secondary: 54C30.

Key words and phrases. Lebesgue density, path continuity, continuous functions.
1



2 MAREK BIENIAS, SZYMON G LA̧B AND W LADYS LAW WILCZYŃSKI

are called respectively the right lower density of E at x and right upper density of E at x. The left

lower and upper densities of E at x are defined analogously. If

d+(E, x) = d
+

(E, x) and d−(E, x) = d
−

(E, x),

then we call these numbers the right density and left density of E at x, respectively. The numbers

d(E, x) = lim inf
t,k→0+

m(E ∩ [x− t, x+ k])

t+ k

and

d(E, x) = lim sup
t,k→0+

m(E ∩ [x− t, x+ k])

t+ k

are called the upper and lower density of E at x, respectively. Note that

d(E, x) = min{d−(E, x), d+(E, x)}

and

d(E, x) = max{d−(E, x), d
+

(E, x)}.

If d(E, x) = d(E, x), we call this number the density of E at x and denote it by d(E, x). If d(E, x) = 1,

then we say that x is a density point of E.

Let us recall the notion of ρ-upper and ρ-lower continuity.

Definition 1. Let ρ ∈ (0, 1) and let f : I → R, where I ⊆ R is an open interval. We say that f is

(i) ρ-upper continuous at x ∈ I provided there exists a measurable set E ⊆ I with x ∈ E, such

that d(E, x) > ρ and f |E is continuous at x;

(ii) ρ-lower continuous at x ∈ I provided there exists a measurable set E ⊆ I with x ∈ E, such

that d(E, x) > ρ and f |E is continuous at x;

If f is ρ-upper (ρ-lower resp.) continuous at every point of I, we say that f is ρ-upper (ρ-lower resp.)

continuous.

We will denote the class of all ρ-upper (ρ-lower resp.) continuous functions defined on a unit

interval (0, 1) by UCρ ( LCρ resp.). We say that f is 1-upper continuous if it is ρ-upper continuous

for every ρ ∈ [0, 1).

For any nonempty set A we will denote the family of all finite sequences of elements of A by A<N.

For any finite sequence s = (s1, ..., sn) ∈ A<N and a ∈ A by ŝ a we denote a concatenation of s and

a, i.e. ŝ a = (s1, ..., sn, a). By |s| we denote the length of s. If α ∈ AN, then let α|n = (α(1), ..., α(n))

and α|0 = ∅. Moreover, by 2<N (resp. 2N) we mean the set {0, 1}<N (resp. {0, 1}N). For n ∈ N we

denote 2n = {s ∈ 2<N : |s| = n} and 20 = {∅}.
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2. Cardinality of the set UCρ

Note that the definition of upper 1-continuous functions and approximately continuous functions

are similar but not identical. We have that f is 1-upper continuous at x if there is a measurable set

E such that d(E, x) = 1 and f |E∪{x} is continuous, and we say that f is approximately continuous

at x if there is a measurable set E such that d(E, x) = 1 and f |E∪{x} is continuous. This slight

difference in the definition has a huge consequence. Since an approximately continuous function is of

Baire class one, there are c approximately continuous functions. In this section we show that there

are 2c functions which are 1-upper continuous.

The main idea is the following. We may define sequences (xn)n∈N, (yn)n∈N, (un)n∈N and (wn)n∈N

of positive numbers such that xn+1 < yn+1 < un+1 < wn+1 < xn for each n ∈ N, (xn)n∈N tends to 0

and

d(
⋃
n∈N

[xn, yn], 0) = d(
⋃
n∈N

[un, wn], 0) = 1.

Then, we define f : R→ R in the following way:

• put f(x) = 1 if x ∈ [xn, yn] or −x ∈ [xn, yn] or x > x1 or x < −x1

• put f(x) = 0 if x ∈ [un, wn] or −x ∈ [un, wn]

• on R \ {0} define f to be (locally) affine.

The question is how to define f at 0? One can put f(0) = 1 or f(0) = 0. In both cases f is 1-upper

continuous at 0, and consequently f is 1-upper continuous on its domain. Our plan is to make a

similar construction of a function f for which the set A where we can freely put 0 or 1 is large, i.e.

of cardinality c. Since there are 2c functions from A to {0, 1} our construction will show that we may

define f in 2c ways to get a 1-upper continuous function.

Theorem 2. The set UC1 has cardinality 2c. In particular there is a non-Borel 1-upper continuous

function.

Proof. Let (qn)n∈N be a decreasing sequence of numbers from the interval (0, 1
3) that it is convergent

to 0. One can construct a sequence {Is : s ∈ 2<N} of closed subintervals of [0, 1] such that

1. I∅ = [0, 1];

2. ∀s ∈ 2<N min Isˆ0 = min Is,max Isˆ1 = max Is;

3. ∀s ∈ 2<N ∀i ∈ {0, 1} |Isˆi| = q|s|+1|Is|.

Let

C =
⋃
α∈2N

⋂
n∈N

Iα|n.

One can easily check, that C is a Cantor-like set (i.e. perfect, zero-dimensional and of measure zero).

The above construction is similar to the classical geometric construction of the ternary Cantor.

Starting from the unit interval I∅ = [0, 1], in the first step we remove the open middle subinterval
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leaving two subintervals: I0, I1 of lengths q1. In the second step the open middle subintervals of the

remaining intervals I0, I1 are removed, leaving four segments: I00, I01, I10, I11 of lengths q2|I0| = q2 ·q1

and so on.

Let A,B ⊆ [0, 1] be the unions of the closures of intervals removed in the odd and even steps

respectively, i.e.

A =
⋃
k∈N

⋃
s∈22k−2

Is \ (Isˆ0 ∪ Isˆ1)

B =
⋃
k∈N

⋃
s∈22k−1

Is \ (Isˆ0 ∪ Isˆ1)

Observe, that A ∪ B = [0, 1] \ C′, where C′ ⊆ C is created by removing the boundary of the set

[0, 1] \ C from C. In particular C′ has cardinality c. Let g : A∪B → {0, 1} be a characteristic function

of A. To illustrate the idea, the function g is created by putting 1 over the closure of the intervals

removed in the odd step and putting 0 elsewhere. Let C′′ = C′ \ {0, 1}, let F ⊆ C′′ and define a

function gF : (0, 1)→ {0, 1} by the formula

gF (x) =


1, when x ∈ F

g(x), when x ∈ A ∪B

0, otherwise.

We will show that gF is 1-upper continuous. Let x ∈ (0, 1) and let E = g−1
F ({gF (x)}). We have the

following possibilities:

(1) x ∈ A, then d
+

(E, x) = 1 or d
−

(E, x) = 1. Hence, d(E, x) = 1 and gF is 1-upper continuous

at x.

(2) x ∈ B, then d
+

(E, x) = 1 or d
−

(E, x) = 1. Hence, d(E, x) = 1 and gF is 1-upper continuous

at x.

(3) x ∈ F, then there are sequences: (nk)k∈N of odd numbers, (Jnk
)k∈N of intervals, (snk

)k∈N of

finite 0− 1 sequences, such that for every k ∈ N :

a) |snk
| = nk − 1;

b) {x} =
⋂
k∈N

Isnk
;

c) Jnk
is a connected component of A;

d)
|Jnk
|

|Isnk
| = 1− 2qnk

;

e) both sequences (min Jnk
)k∈N, (max Jnk

)k∈N converge to x from the right.

The above sequences can be chosen in the following way: there is a sequence (Jnk
)k∈N of

intervals removed in the odd step (i.e. connected components of A) that is convergent (in

the sense of (e)) to x from the right and such that the interval Jnk
was removed exactly from
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Isnk
. By c) and the definition of g, we have that Jnk

⊆ E. Hence, by b), d) and e) we obtain

that d
+

(E, x) = 1 and gF is 1-upper continuous at x.

(4) x ∈ C′′ \ F, then by a similar reasoning as in the case when x ∈ F, the function gF is 1-upper

continuous at x.

Since there are exactly 2c subsets of C′′, the set UC1 has cardinality 2c. �

3. Cardinality of the set LCρ

Let ρ ∈ (0, 1
2). This section is devoted to the proof that the cardinality of the set LCρ is 2c. The idea

of a construction of 2c ρ-lower continuous functions is similar to the one from the previous section

and uses a geometric construction of the ternary Cantor set.

Lemma 3. Let bn = 1
2n−1 and an = 1

2n , for n ∈ N. Let A =
⋃
n∈N

[an, bn), then d+(A, 0) = 1
2 .

The above fact is probably folklore, but for the reader’s convenience we state the proof.

Proof. For h ∈ (0, 1) let ϕ(h) = m(A∩(0,h))
h . Let n ∈ N and observe that

ϕ(
1

2n− 1
) >

1

2

and

ϕ(
1

2n
) <

1

2
.

By the simple properties of the function ϕ, we have that d+(A, 0) = lim
n→∞

ϕ( 1
n) = 1

2 . �

Lemma 4. For every open interval (a, b) ⊆ (0, 1) and every ε > 0 there exists a set E ⊆ (a, b) such

that for all h ∈ (0, b− a)

∣∣∣∣m(E ∩ (a, a+ h))

h
− 1

2

∣∣∣∣ < ε.

Proof. Let (a, b) ⊆ (0, 1), ε > 0 and let A ⊆ (0, 1) be as in Lemma 3. There exists n0 ∈ N such that∣∣∣∣∣m(A ∩ (0, 1
n0

))
1
n0

− 1

2

∣∣∣∣∣ < ε.

In particular for every n ≥ n0 ∣∣∣∣∣m(A ∩ (0, 1
n))

1
n

− 1

2

∣∣∣∣∣ < ε.

Let us put An0 = A ∩ (0, 1
n0

), Bn0 = (0, 1
n0

) \ An0 . The idea is to fit the set An0 into the first half of

(a, b) and to fit the set −Bn0 into the second one, i.e. let Ẽ = (α · An0 + a) ∪ (b − α · Bn0), where

α = (b−a)n0

2 .

For the further applications we have to modify the set Ẽ. Let {..., x−1, x0, x1, x2, ...} be an increasing

sequence of all endpoints of the intervals that form the set Ẽ, where x0 = a+b
2 . For every i ∈ Z one

can choose a small enough hi > 0 such that for the set F =
⋃
i∈Z

(xi − hi, xi + hi) we have
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• d+(F, a) = 0;

• d−(F, b) = 0.

It is easy to see that E = Ẽ \ F has the desired properties. �

Remark 5. In the sequel we will be using the following construction: for an interval (a, b) ⊆ (0, 1)

and ε > 0, let E ⊆ (a, b) be as in Lemma 4 and define a function f : (a, b)→ [0, 1] by the formula

f(x) =


1, when x ∈ E

0, when x ∈ (a, b) \ (E ∪ F )

locally affine, when x ∈ F

where F is as in the proof of Lemma 4 and the locally affine mappings over F ensure that f is

continuous.

Theorem 6. Let ρ ∈ (0, 1
2). The set LCρ has cardinality 2c. In particular there is a non-Borel ρ-lower

continuous function.

Proof. Consider a sequence (εn)n∈N, where εn = 1
10n for n ∈ N. One can construct a sequence

{Is : s ∈ 2<N} of closed subintervals of [0, 1] such that

1. I∅ = [0, 1];

2. ∀s ∈ 2<N min Isˆ0 = min Is,max Isˆ1 = max Is;

3. ∀s ∈ 2<N ∀i ∈ {0, 1} |Isˆi| = 1
3 |Is|.

Let

C =
⋃
α∈2N

⋂
n∈N

Iα|n,

then C is the ternary Cantor set.

The idea of the proof is to define a function f : (0, 1)\C → [0, 1] by putting functions as in Remark 5

for εn > 0 inside all of the intervals removed in the nth step. To formalize this concept: for every

n ∈ N and s ∈ 2n−1 let Js = Is \ (Isˆ0 ∪ Isˆ1) and fs : Js → [0, 1] be as in Remark 5 for ε|s|+1 = εn.

Let us put f =
⋃

s∈2<N
fs. We will show that for any D ⊆ C \ {0, 1}, the function fD : (0, 1) → [0, 1]

defined by

fD(x) =


1, when x ∈ D

f(x), when x ∈ (0, 1) \ C

0, otherwise,

is ρ-lower continuous. Let D ⊆ C \ {0, 1} and fix a point x ∈ (0, 1) and let B = f−1
D ({fD(x)}). We

have the following possibilities:

(1) x ∈ (0, 1) \ C, then fD is continuous at x. Hence, it is ρ-lower continuous.
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(2) x ∈ C \ {0, 1} and x is not an endpoint of any interval Js. We will show that d+(B, x) > ρ.

Let h > 0 and consider the right neighborhood of x of the form (x, x + h). We have two

possibilities:

a) x+ h ∈ C, then for J = {Js : Js ⊆ (x, x+ h)} and S = {s ∈ 2<N : Js ∈ J } we have that

h = m((x, x+ h)) =
∑
J∈J

m(J). Moreover, for Nh = min{|s|+ 1 : s ∈ S}, Nh tends to ∞

whenever h→ 0. By Lemma 4 the following estimation holds

(
1

2
− εNh

)h < m(B ∩ (x, x+ h)) < (
1

2
+ εNh

)h.

(b) or x + h /∈ C, then there is a finite 0 − 1 sequence sh such that x + h ∈ Jsh . Let

J = {Js : Js ⊆ (x, x+ h)} and S = {s ∈ 2<N : Js ∈ J }. We have that

h = m((x, x+ h) ∩ (
⋃
J ∪ Jsh)).

Moreover, let Nh = min{|s| + 1 : s ∈ S} and N = min{Nh, |sh| + 1}. Observe that

N →∞ whenever h→ 0. Let d = min Jsh . Since

m(B ∩ (x, x+ h)) = m(B ∩
⋃
J ) +m(B ∩ (d, x+ h)),

by Lemma 4 the following inequalities hold:

m(B ∩ (x, x+ h)) < (
1

2
+ εNh

)(d− x) + (
1

2
+ ε|sh|+1)(x+ h− d) < (

1

2
+ εN )h

and

m(B ∩ (x, x+ h)) > (
1

2
− εNh

)(d− x) + (
1

2
− ε|sh|+1)(x+ h− d) > (

1

2
− εN )h.

By the above calculations, for a small enough h > 0, the number m(B∩(x,x+h))
h can be as close

to 1
2 as we want. In particular d+(B, x) > ρ. By a similar argument (taking the intervals from

the left neighborhood of x) we may prove that d−(B, x) > ρ.

(3) x ∈ C \ {0, 1} and x is an endpoint of some interval Js. In this case d+(B, x) > ρ and

d−(B, x) > ρ as well, where one of these inequalities follows from Lemma 4 and the other one

can be proved by a similar argument as in the previous case.

Summarizing, d(B, x) > ρ and fD is ρ-lower continuous at x. The fact that there are 2c subsets of

C \ {0, 1} completes the proof.

�

We end the paper with two open questions:

(1) Does there exist a linear space X ⊆ RR of dimension 2c such that any f ∈ X \ {0} is 1-upper

continuous? In other words: is the set UC1 2c-lineable?

(2) What is the cardinality of the set of [λ, ρ]-continuous functions? Is it 2c for some positive λ

and ρ?
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