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Abstract. In the paper we construct several algebraic structures (vector spaces, algebras and free
algebras) inside sets of different types of surjective functions. Among many results we prove that: the
set of everywhere but not strongly everywhere surjective complex functions is strongly c-algebrable and
that its 2c-algebrability is consistent with ZFC; under CH the set of everywhere surjective complex
functions which are Sierpiński-Zygmund in the sense of continuous but not Borel functions is strongly
c-algebrable; the set of Jones complex functions is strongly 2c-algebrable.

1. Introduction

For some time now, many mathematicians have been looking at the largeness of some sets by
constructing algebraic structures inside them. This approach is called algebrability. A comprehensive
description of this concept as well as numerous examples and some general techniques can be found
in the surveys [10, 15].

Following R. Aron, A. Bartoszewicz, S. G la̧b, V. Gurariy, D. Pérez-Garćıa, J.B. Seoane-Sepúlveda,
[4, 5, 6, 12] let us recall the following notions:

Definition 1.1. Let κ be a cardinal number.

(1) Let L be a vector space and A ⊆ L. We say that A is κ-lineable if A ∪ {0} contains a
κ-dimensional subspace of L;

(2) Let L be a commutative algebra and A ⊆ L. We say that A is κ-algebrable if A∪{0} contains
a κ-generated subalgebra B of L (i.e. the minimal cardinality of the system of generators of
B is κ).

(3) Let L be a commutative algebra and A ⊆ L. We say that A is strongly κ-algebrable if A∪{0}
contains a κ-generated subalgebra B that is isomorphic to a free algebra.

Fact 1.2. Observe that the set X = {xα : α < κ} is the set of free generators of some free algebra

if and only if the set X̃ of elements of the form xk1α1
xk2α2
· · ·xknαn is linearly independent; equivalently

for any k ∈ N, any nonzero polynomial P in k variables without a constant term and any distinct
xα1 , ..., xαk ∈ X, we have that P (xα1 , ..., xαk) is nonzero.

This paper is devoted to the investigation of algebrability properties of several classes of surjective
functions. In the sequel we take into our considerations the following ones: everywhere surjective
type functions (section 3), Sierpiński-Zygmund functions (section 4) and Jones functions (section 5).
In the paper the symbol K stands for the set R or C. We use a standard set theoretical notion. In
particular, we identify ordinal number α with the set of all ordinals β < α. Cardinal numbers are
those ordinals α which are not equipotent with any β < α. A cardinal number κ is called regular,
if it cannot be decomposed into less than κ sets of cardinality less than κ. Moreover, to indicate
the difference between the sets of natural numbers with or without 0 we use standard notation, i.e.
N = {1, 2, 3, ...} and ω = {0, 1, 2, ...} (it should be mentioned here that ω is also identified with the
first infinite cardinal).

2. The general method

We start with the simple, but in the view of further results, useful observation. It is a foundation
of a powerful method whose particular case is the so-called exponential like function method.
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Theorem 2.1. Let κ be a cardinal number, A ⊆ KK be a κ-generated algebra (resp. free algebra,
vector space) and G ⊆ KK. Assume that there exists a function F : K→ K such that f ◦ F ∈ G \ {0}
for every f ∈ A \ {0}. Then G is κ-algebrable (resp. strongly κ-algebrable, κ-lineable).

Proof. Observe that a function h : A → G defined by h(f) = f ◦F is a morphism of structures. Hence,
if A is κ-generated algebra (resp. free algebra or vector space), then h[A] has the same property. �

It turns out that algebra A, which is very useful in several cases, is the c-generated free algebra of
the so-called exponential like functions. In 2013 M. Balcerzak et al. (see [7]) introduced the following
notion.

Definition 2.2 ([7]). We say that a function f : R → R is exponential like (of rank m ∈ N),
whenever for x ∈ R

f(x) =
m∑
i=1

aie
βix,

for some distinct nonzero real numbers β1, ..., βm and some nonzero real numbers a1, ..., am (let us
denote the set of all exponential like functions f : R→ R by EXP(R)).

In this setting, actually using the fact that EXP(R) is strongly c-algebrable, they proved the
following.

Theorem 2.3 ([7]). Let X be a nonempty set and G ⊆ RX . Assume that there exists a function
F : X → R such that f ◦ F ∈ G \ {0} for every f ∈ EXP(R). Then G is strongly c-algebrable.

It is a simple observation, looking at the proof of Theorem 2.3, that this result is a particular case
of Theorem 2.1. Many applications of Theorem 2.3 can be found in the paper by A. Bartoszewicz et
al. ([11]).

In the next sections, while applying Theorem 2.1, it will be used many times a c-generated free
algebra A ⊆ CC such that any f ∈ A \ {0} is surjective and is ”≤ ω-to-one” mapping (i.e. the
preimage f−1({x}) of any singleton is of cardinality at most ω). The construction of such an algebra
A is possible, thanks to the results of N. Albuquerque et al. (cf. [1]). We recall the necessary notion
and lemmas, which are well-known facts of the complex analysis.

Definition 2.4. The (growth) order ρ(f) of an entire function f ∈ H(C) (by the symbol H(C), we
denote the algebra of all entire functions from C to C) is the infimum of all positive real numbers α
with the following property: max{|f(z)| : |z| = r} < er

α
for all r > r(α), for some r(α) > 0.

Remark 2.5 ([1]). (1) The order of a constant function is 0.
(2) For every α ∈ (0, 1) there is fα ∈ H(C) such that ρ(f) = α.
(3) Every nonconstant entire function f with ∞ > ρ(f) /∈ N is surjective.

The authors of [1] proved the following fact:

Fact 2.6 (Lemma 2.4, [1]). Let f1, ..., fn ∈ H(C) be such that ρ(fi) 6= ρ(fj) whenever i 6= j. Then
ρ(P (f1, ..., fn)) = maxk∈{1,...,n} ρ(fk), for every nonconstant polynomial P in n complex variables.

Having these tools, we may prove the following (this fact was not pointed out by the authors but
can be easily deduced from the proof of Theorem 2.6 (see [1])).

Theorem 2.7. There exists a c-generated free algebra A, whose every nonzero member is a surjective
and ”≤ ω-to-one” entire mapping.

Proof. Let F = {fα : α ∈ (0, 1)} ⊆ H(C), where ρ(fα) = α for α ∈ (0, 1) (the existence of fα follows
from Remark 2.5). Consider the algebra A generated by F . We will show that A has the desired
properties.

Let f ∈ A \ {0}. Then there is a nonzero polynomial in n variables without a constant term and
α1, ..., αn ∈ (0, 1) such that f = P (fα1 , ..., fαn). By Fact 2.6, ρ(f) = max{α1, ...αn} ∈ (0, 1). Therefore
f is surjective and A is a c-generated free algebra.
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Let f ∈ A \ {0} and suppose that f is not ”≤ ω-to-one”. Then there is an uncountable set A ⊆ C
such that f |A is constant. Then A has an accumulation point and by a well-known property of entire
functions, f is constant, which is impossible because f is surjective. �

3. Everywhere, but not strongly everywhere surjective functions

This section is devoted to the algebrability properties of the different classes of everywhere surjective
functions.

Definition 3.1. A function f : K→ K is called:

(1) everywhere surjective (f ∈ ES(K)), if it takes every value on every nonempty open set (i.e.
for every y ∈ K and every nonempty open set I, f [I] 3 y);

(2) strongly everywhere surjective (f ∈ SES(K)), if it takes every value c times on every nonempty
open set (i.e. for every y ∈ K and every nonempty open set I the set {x ∈ I : f(x) = y} is of
cardinality c);

(3) perfectly everywhere surjective (f ∈ PES(K)), if f [P ] = K for any perfect set P ⊆ K.
These classes have been considered in the context of lineability and algebrability by many authors

(see [4, 5, 14, 29, 30, 32]). In particular, in [29, Theorem 2.6, 2.7, 2.8] it was proved that the set
PES(R) is 2c-lineable, the set SES(R) \ PES(R) is also 2c-lineable and that PES(C) is c-algebrable.
Moreover, in [14] the authors showed that the latter set is 2c-algebrable. On the other hand A.
Bartoszewicz et al. proved that SES(C)\PES(C) is 2c-algebrable (see [9]). Moreover, A. Bartoszewicz
et al. showed (see [13]) that these results can be strengthened by proving strong 2c-algebrability of the
sets PES(C) and SES(C) \ PES(C). Hence, the last open problem connected with the above classes
is the algebrability of the set ES(C) \ SES(C) (it is known that this set is c-lineable, see [29]). As an
application of Theorem 2.1, in particular, we prove strong c-algebrability of the set ES(C) \ SES(C).

Let us generalize the notion of everywhere surjective functions in the following direction.

Definition 3.2. Let κ be a cardinal number. We say that a function f : K → K is everywhere κ
surjective (f ∈ ESκ(K)), if it takes every value at least κ times on every nonempty open set (i.e. for
every y ∈ K and every nonempty open set I, |{x ∈ I : f(x) = y}| ≥ κ).

Remark 3.3. It is easy to see that

(1) ES(K) = ESκ(K) for every κ ≤ ω, κ > 0;
(2) ESκ(K) ⊆ ESλ(K) for every κ ≥ λ;
(3) SES(K) = ESc(K);
(4) ESκ(K) = ∅ for every κ > c.

It is known (see [3]), that there exists a function F ∈ ES(C) \ SES(C) such that |F−1({y})| = ω,
for any y ∈ C. In fact the construction from the paper [3] gives an example of a function from
ES(K) \ ESω1(K) (this is obvious since the construction works in ZFC).

This construction can be easily generalized to the obtain following one (to the end of this section,
we assume that κ, λ are cardinal numbers such that ω ≤ λ ≤ c and λ < κ).

Lemma 3.4. There exists a Lebesgue measurable function F : K → K that has the Baire property,
such that for any y ∈ K and any nonempty open set I, the set {x ∈ I : F (x) = y} is of cardinality λ.
In particular F ∈ ESλ(K) \ ESκ(K)

Proof. Let {Un : n ∈ N} be a countable base of open sets in K. By induction, we can define a sequence
(Cn)n∈N of Cantor-like sets (i.e. perfect, nowhere dense sets and of Lebesgue measure zero) such that
Cn ⊆ Un \

⋃
k<nCk, for n ∈ N. As any perfect set contains c disjoint perfect subsets, for any n ∈ N

let {Cαn : α < λ} be a family of disjoint perfects subsets of Cn. Let gαn : Cαn → K be a bijection for
n ∈ N and α < λ.

Let us define

F (x) =

{
gαn(x), when x ∈ Cαn
x, otherwise.

It is easy to see that F has the required property. Moreover, as
⋃
n∈N

⋃
α<λC

α
n is null and meager,

F is Lebesgue measurable and has the Baire property. �
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The above together with Theorem 2.1 allow us to state:

Theorem 3.5. The set ESλ(C)\ESκ(C) is strongly c-algebrable. In particular, the set ES(C)\SES(C)
is strongly c-algebrable. The same holds in the class of Lebesgue measurable functions that have the
Baire property.

Proof. Let A be a c-generated free algebra as in Theorem 2.7 and let F ∈ ESλ(C) \ ESκ(C) be as in
Lemma 3.4. We will show that f ◦F ∈ ESλ(C) \ESκ(C), for any f ∈ A\{0}. Let f ∈ A\{0} and let
I ⊆ C be nonempty and open. We have that (f ◦ F )[I] = f [F [I]] = f [C] = C, since f is surjective.
Moreover, |(f ◦ F )−1({y})| = |F−1(f−1({y}))| = λ < κ, for any y ∈ C, as a countable union of sets
of cardinality λ. Moreover, f ◦ F ∈ ESλ(C) by surjectivity of f. Thus, f ◦ F ∈ ESλ(C) \ ESκ(C).
By Theorem 2.1, the first part of the assertion has been proved. Moreover, since any f ∈ A is
continuous and F is Lebesgue measurable and has the Baire property, the composition f ◦ F is
Lebesgue measurable and has the Baire property as well. This ends the proof. �

On the other hand, since |ESλ(K) \ ESκ(K)| = 2c, a natural question is what can we say about
algebrability of ESλ(K) \ ESκ(K) at a higher level? We give a partial answer to this question.

Definition 3.6. Let A, I ⊆ P(K). We say that a family A is I-independent, whenever A
ε(1)
1 ∩ ... ∩

A
ε(n)
n ∈ I, for any distinct A1, ..., An ∈ A, any ε ∈ {0, 1}n and n ∈ N (where A0 = K\A and A1 = A).

A slight modification of the construction in the proof of Lemma 3.4 can give us the following one
(we leave this result without a proof, as it is a simple transfinite construction).

Lemma 3.7. Let B ⊆ K be c-dense in K (i.e. it intersects any nonempty open set on the set of
cardinality c). There exists a function g : B → K such that for any nonempty open set I ⊆ K and
any y ∈ K the set {x ∈ I ∩A : g(x) = y} is of cardinality λ.

Theorem 3.8. The set of Lebesgue measurable functions with the Baire property that belong to
ESλ(C) \ ESκ(C) is 2λ-algebrable.

Proof. Let {Cαn : n ∈ N, α < λ} be a family of Cantor-like sets constructed in the same way as in the
proof of Lemma 3.4. For α < λ let us put Bα =

⋃
n∈NC

α
n . Clearly each set Bα is c-dense in C. By a

well-known theorem of G. Fichtenholz and L. Kantorovich (see [27] and [33, Lemma 7.7]) there exists
[λ]λ-independent family {Nξ : ξ < 2λ} in λ, where [λ]λ stands for the family of all subsets of λ that

have cardinality λ. For ξ < 2λ, let Bξ =
⋃
α∈Nξ Bα. For any α < λ let us define gα : Bα → C as in

Lemma 3.7, i.e. such that |g−1
α ({y}) ∩ I| = λ for any nonempty open set I ⊆ C and any y ∈ C. Let

F = {fξ : ξ < 2λ} where fξ : C→ C and

fξ(x) =

{
gα(x), when x ∈ Bα, α ∈ Nξ

0, elsewhere.

We will show that Alg(F) ⊆ (ESλ(C) \ ESκ(C)) ∪ {0}. Let n ∈ N, fξ1 , ..., fξn ∈ F and P be a

polynomial in n variables without a constant term. Note that C =
⋃
ε∈{0,1}n(Bξ1)ε(1) ∩ ...∩ (Bξn)ε(n).

For ε ∈ {0, 1}n let us set Pε(x) = P (ε(1) · x, ..., ε(n) · x). We have two possibilities:

• Pε = 0 for every ε ∈ {0, 1}n. Then P (fξ1 , ..., fξn) = 0, or

• there is ε ∈ {0, 1}n with Pε 6= 0. Let α ∈ N ε(1)
ξ1
∩ ... ∩N ε(n)

ξn
, then P (fξ1 , ..., fξn)|Bα = Pε ◦ gα,

and for any nonempty open set I ⊆ C and y ∈ C we have inequalities

|{x ∈ I : P (fξ1 , ..., fξn)(x) = y}| ≥ |{x ∈ I ∩Bα : Pε ◦ gα(x) = y}| =

= |{x ∈ I ∩Bα : gα(x) ∈ P−1
ε ({y})}| = λ.

On the other hand, for any y ∈ C \ {0} we have that

(P (fξ1 , ..., fξn))−1({y}) ⊆
⋃

ε∈{0,1}n

⋃
α∈Nε(1)

ξ1
∩...∩Nε(n)

ξn

(Pε ◦ gα)−1({y})

is a union of λ many sets each of cardinality λ, i.e. it is of cardinality λ < κ.
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It is easy to see that any element of Alg(F) is a Lebesgue measurable function with the Baire property
(as it is equal to 0 on a co-meager and co-null set). �

Corollary 3.9. If ω1 < c then by taking λ = ω1 and κ = c we obtain 2ω1-algebrability of the set
ESω1(C) \ SES(C) and as a consequence 2ω1-algebrability of ES(C) \ SES(C).

Corollary 3.10. It is consistent with ZFC that the set ES(C) \ SES(C) is 2c-algebrable.

Proof. It is the set theoretical folklore that conditions ω1 < c and 2ω1 = 2c are consistent with ZFC,
cf. Easton’s Theorem, [33, Theorem 15.18]. �

Let us note that c+-lineability of the set ES(C) \ SES(C) was proved under CH by K. Potka in
[38] and again very recently in ZFC by C. Ciesielski et al. in [19].

Let us state two problems that are still unsolved:

Problem 3.11. (1) Is the set ES(C)\SES(C) strongly 2c-algebrable (in ZFC or in some model)?
(2) Is it 2c-algebrable in ZFC?

At the end of this section let us state the following observations and comments. It is easy to see
that any perfectly everywhere surjective function is neither Lebesgue measurable, nor has the Baire
property, nor is s-measurable (where s denotes the σ-field of Marczewski sets, see [36]). Recently,
G. Araújo et al. in [2] proved that the set of real, measurable, everywhere surjective functions is
c-lineable and asked whether it is 2c-lineable (obviously as a set of real surjective functions it cannot
be algebrable). Looking at the proof of Theorem 3.8 and simply taking R instead of C and linear
combinations instead of polynomials, one can obtain the following.

Theorem 3.12. The set of Lebesgue measurable functions with the Baire property that belong to
ESλ(R) \ ESκ(R) is 2λ-lineable.

The following corollary for λ = c answers the problem cited above (see [2, Remark 3.3]).

Corollary 3.13. The set of Lebesgue measurable, strongly everywhere surjective real functions with
the Baire property is 2c-lineable.

An alternative proof of this fact and of even a stronger result can be deduced from the work [13]
of A. Bartoszewicz, S. G la̧b and A. Paszkiewicz. It is enough to repeat the proofs of Theorems 2.1,
3.6 and 3.7 in [13], in the case of real functions using linear combinations instead of polynomials to
get the following theorems.

Theorem 3.14. The set of all Lebesgue and s- measurable real functions with the Baire property that
belong to SES(R) is 2c-lineable.

Theorem 3.15. The sets:

• of functions from SES(R) which have the Baire property but are neither Lebesgue nor s-
measurable
• of functions from SES(R) which are Lebesgue measurable but neither have the Baire property

nor are s- measurable

are 2c-lineable.

4. Sierpiński-Zygmund functions

In 1923, W. Sierpiński and A. Zygmund (see [39]) constructed an example of a function f : R→ R
with a discontinuous restriction f |Z for any set Z ⊆ R of cardinality c. Let Φ be a family of functions
defined on subsets of K and with values in K. By SZ(Φ) ⊆ KK we denote the family of all functions
f : K → K with f |Z /∈ Φ for any Z ∈ [K]c (the symbol [K]c stands for the family of all subsets
of K that have cardinality c). Such a family occurs in the literature for two families: Φ = C of
all continuous functions (see [8], [20], [21] or [24]) or Φ = Bor of all Borel functions (see [11], [14],
[29], [31] or [35]) both in the real or complex case. In this setting, the function constructed by W.
Sierpiński and A. Zygmund is a real function from SZ(C). Actually, it is not difficult to observe that
the definition of SZ(Φ) can be generalized for functions between arbitrary perfect Polish spaces. On
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the other hand, while considering algebrability properties of SZ(Φ) we restrict our considerations to
the functions from KK or KX where X is a perfect Polish space.

In both cases (i.e. for Φ = C and Φ = Bor) the authors call a function f ∈ SZ(Φ) simply Sierpiński-
Zygmund function, so one could expect that SZ(C) = SZ(Bor). In the context of algebrability only
the set SZ(Bor) was taken into consideration. It was done for the first time by J.L. Gámez-Merino
et al. in [29], where the authors proved that this set is c+-lineable and also c-algebrable. Moreover,
A. Bartoszewicz et al. in [14] showed the following.

Theorem 4.1 ([10, 14]). The set SZ(Bor) is strongly κ-algebrable, if there exists an almost disjoint
family in c of cardinality κ (a family {Aα : α < κ} ⊆ [c]c is called almost disjoint in c, provided that
for any distinct α, β < κ we have |Aα ∩Aβ| < c).

It should be mentioned here that the original proof of this theorem had a small gap (it was correct
whenever c is a regular cardinal) but the correct argumentation can be found in [10]. On the other
hand, by the fact that any additive group A ⊆ SZ(Bor) ∪ {0} generates an almost disjoint family in
c (it is enough to consider the graphs as subsets of K2), Theorem 4.1 is in fact a characterization of
κ-algebrability of SZ(Bor) (as well as κ-lineability of SZ(Bor)). Notice also that the same character-
izations hold for the family SZ(C). It is known that in ZFC there is an almost disjoint family in c of
cardinality greater than c. However, J.L. Gámez-Merino and J.B. Seoane-Sepúlveda (in [31]) showed
that there is a model of ZFC in which there is no almost disjoint family in c of cardinality 2c (it had
been known earlier as folklore but it was probably impossible to find this result in the literature).

Let us come back to the problem of the equality SZ(C) = SZ(Bor). Although the inclusion
SZ(Bor) ⊆ SZ(C) is clear, the opposite one can be false. Let us recall some terminology that is
useful in the next theorems.

Definition 4.2. Let X,Y be topological spaces. A function f : X → Y is called:

• countably continuous if there exists a countable partition (Xn)n∈N of X such that the restric-
tion of f to any Xn is continuous;
• < c-continuous if there exists a cardinal κ < c and a partition (Xα)α<κ of X such that the

restriction of f to any Xα is continuous.

Observe that these notions coincide under CH. The following result characterizes < c-continuity
under the assumption that c is a regular cardinal. (Note that this observation generalizes a charac-
terization of countable continuity formulated (without the proof) for X = Y = R by U. Darji in [25].)
To the end of this section X is a perfect Polish space.

Proposition 4.3. If f : X → K satisfies the following condition

(∗) for every set U ∈ [X]c there is Z ∈ [U ]c with f |Z ∈ C,
then f is < c-continuous. If additionally c is a regular cardinal then every < c-continuous function
f : X → K satisfies the condition (∗).

Proof. Suppose that f : X → K is not < c-continuous. Let CGδ = {gα : α < c} be a family of
all continuous functions g : A → K with A being a Gδ set in X. For each α < c choose xα ∈
X \ {xβ : β < α} such that (xα, f(xα)) /∈

⋃
β<α gβ. This is possible because f is not < c-continuous,

so f *
⋃
β<α{(xβ, f(xβ))} ∪

⋃
β<α gβ. Then U = {xα : α < c} ∈ [X]c and |(f |U) ∩ g| < c for each

g ∈ CGδ , so f |U is SZ(C) (see [39] and cf. [20], [21]). Hence f |Z /∈ C for each Z ∈ [U ]c and we reach
a contradiction.

Now assume that c is regular and that f : X → K is < c-continuous, so X =
⋃
α<κXα, where κ < c

and f |Xα ∈ C for each α < κ. Fix U ∈ [X]c, then there is α < κ for which Z = U ∩Xα is of size c
and f |Z is continuous. �

To state the next result we need to recall the definitions of some cardinal invariants:

• dec(Bor, C) denotes the minimal cardinal κ such that for every Borel function f : X → K
there is a partition (Xα)α<κ of X, with f |Xα ∈ C for all α < κ. This cardinal has been defined
(in a more general case) by J. Cichoń, M. Morayne, J. Pawlikowski and S. Solecki in [17] (cf.
[18]).
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• cov (M) (covering of category) denotes the minimal cardinality of a cover of X with meager
sets.
• d (dominating number) denotes the minimal cardinality of a dominating family D ⊆ ωω.

Recall that cov (M) ≤ dec(Bor, C) ≤ d, (see [17, Theorem 5.7] and [16, Theorem 4.3], cf. [18,
Theorem 4.1]). Hence, the cardinal dec(Bor, C) can be different in different models of ZFC.

Theorem 4.4. Consider SZ(C),SZ(Bor) as subsets of KX .

(1) If c is a successor cardinal and dec(Bor, C) = c, then SZ(C) \ SZ(Bor) 6= ∅.
(2) If c is a regular cardinal and dec(Bor, C) < c, then SZ(C) \ SZ(Bor) = ∅.

Proof. Ad (1): By the assumption, there exists a Borel function f0 : X → K which is not < c-
continuous (see also [34], [16] or [18]). By Proposition 4.3, there exists a set U ∈ [X]c such that
f0|Z /∈ C for any Z ∈ [U ]c, so f0|U ∈ SZ(C). Now, using a standard method of transfinite induction
we can extend f0|U to a SZ(C) function f defined on the set X (see [21, Lemma 5]). It easy to
observe that f |U is Borel, so f /∈ SZ(Bor).
Ad (2): Assume that c is a regular cardinal and dec(Bor, C) = κ < c. Then each Borel function
f : X → K can by covered by κ continuous functions. Now, if f /∈ SZ(Bor), then there is B ∈ [X]c

with f |B ∈ Bor. Let f̃ : X → K be a Borel extension of f |B. Since f̃ can be covered by κ < c
continuous functions, f |B has the same property, and by the regularity of c, f |B0 ∈ C for some
B0 ∈ [B]c. Hence f /∈ SZ(C). �

Corollary 4.5. The equality SZ(Bor) = SZ(C) is independent with ZFC.

Proof. First, let us observe that the condition SZ(C) \ SZ(Bor) 6= ∅ is consistent with ZFC. In fact,
it holds in every model of ZFC with cov (M) = c and c being a successor cardinal.

Now, the equality SZ(Bor) = SZ(C) holds in any model of ZFC in which c is a regular cardinal
and d < c, so e.g. in the iterated perfect set model (or any model of ZFC in which the Covering
Property Axiom CPA holds, see [23] (see also [22, Theorem 3.1])). �

Corollary 4.6. The family of all real or complex functions f ∈ SZ(C) \ SZ(Bor) ⊆ KK is either
empty or strongly c-algebrable.

Proof. Suppose SZ(C) \ SZ(Bor) 6= ∅. Fix F ∈ SZ(C) \ SZ(Bor).
In the case K = R, let us fix f ∈ EXP(R) \ {0}. It is easy to see that f ◦ F ∈ SZ(C) \ SZ(Bor) (cf.
[20, Theorem 4.1]). Hence applying Theorem 2.3 finishes the proof for K = R.
In the case K = C, let us fix f ∈ A\{0} where A is an c-generated free algebra of entire, ”≤ ω-to-one”
surjective mappings (see Theorem 2.7). We will show, that f ◦F ∈ SZ(C) \ SZ(Bor). Following [20,
Theorem 4.1], it is enough to show that any f ∈ A fulfills the following condition:

every choice function g : C→ C of f (i.e. g(y) ∈ f−1({y}) for y ∈ C) satisfies the following:

(?) ∀X∈[C]c ∃Y ∈[X]c g|Y is continuous.

Let f ∈ A and g : C → C be its choice function. Let us fix a set X ∈ [C]c. Since f is an entire
function, the set A = {x ∈ C : f ′(x) = 0} is countable and for any x ∈ C \ A there is an open set
Ux 3 x such that f |Ux is invertible and (f |Ux)−1 is continuous. By the Lindelöf property for the
Polish space C \ A, the open cover {Ux : x ∈ C \ A} contains a countable subcover, i.e. there is a
sequence (xn)n∈N of elements from C \ A such that C \ A ⊆

⋃
n∈N Uxn . As g[X] is of cardinality c,

there is n0 ∈ N such that |g[X] ∩ Uxn0 | = c. Clearly for Y = g−1(g[X] ∩ Uxn0 ) we have that Y ∈ [X]c

and g|Y = (f |Un0)−1|Y i.e. g|Y is continuous. Hence f ◦ F ∈ SZ(C) \ SZ(Bor) and application of
Theorem 2.1 finishes the proof for K = C.

�

Corollary 4.7. Assume CH. The family ES(C)∩ (SZ(C) \ SZ(Bor)) ⊆ CC is strongly c-algebrable.

Proof. We need to construct an example F ∈ ES(C) which belongs to the class SZ(C)\SZ(Bor). Let
(Cn)n∈N be a countable family of pairwise disjoint Cantor sets such that each non-empty open set U
contains some Cn, as in the proof of Lemma 3.4. Let F1 : C1 → C belong to the class SZ(C)\SZ(Bor).
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Now, CH implies (in fact the equality cov (M) = c plays a key role here) that for each n > 1 we can
choose a SZ(C) surjection Fn : Cn → C (cf [21, Lemma 5]). Then

⋃
n≥1 Fn is a SZ(C) function, and

using a standard method of transfinite induction we can extend it to a SZ(C) function F defined on
the set C (see [21, Lemma 5]). It easy to observe that F [U ] = C for any non-empty open set U ⊆ C,
hence F ∈ ES(C). Moreover, F |C1 /∈ SZ(Bor), so F /∈ SZ(Bor). Now applying Theorem 2.1 to the
algebra A from Theorem 2.7 gives the assertion. �

Corollary 4.8. Assume CH. The family ES(R) ∩ (SZ(C) \ SZ(Bor)) ⊆ RR is c-lineable.

Proof. One can define F ∈ ES(R) ∩ (SZ(C) \ SZ(Bor)) in the similar way as it was done in the
proof of Corollary 4.7. Let A ⊆ RR be a c-dimensional vector space of continuous, ”< ω-to-one”
surjections (for example A = span{eax− e−ax : a ∈ R}, see [15]). It is easy to see that an application
of Theorem 2.1 to a vector space A finishes the proof. �

Note that SZ(C)∩SES(C) = ∅, thus Corollary 4.7 implies (under CH) the strong c-algebrability of
the set ES(C) \ SES(C). Finally, note that an example of a SZ(C) surjection cannot be constructed
in ZFC (see [8]).

Clearly, the family SZ(C) \ SZ(Bor) is either empty or it is of cardinality 2c. Using analogous
methods as in proof of [29, Theorem 5.6] one can observe that under CH, the family SZ(C)\SZ(Bor)
is c+-lineable.

Problem 4.9. Assume CH. Is the family SZ(Bor) \ SZ(C) strongly 2c-algebrable (2c-algebrable or
2c-lineable)? Note that CH implies the existence of an almost disjoint family in c of cardinality 2c.

5. Jones functions

This section is devoted to the following class of functions.

Definition 5.1. A function f : K→ K (K = R or K = C) is called a Jones function (f ∈ J (K)), if
for every closed set K ⊆ K×K with an uncountable projection on the x-axis, we have f ∩K 6= ∅.

It is easy to see that the following diagram holds (by an arrow we mean a strict inclusion)

J (K)→ PES(K)→ ESκ(K)→ ESλ(K),

for ω ≤ λ < κ ≤ c.
In [28] J.L. Gámez-Merino proved that the set J (C) is 2c-lineable. Moreover, T. Natkaniec (see

[37]) showed that J (C) is 2c-algebrable and that both sets J (C) and J (R) contain large sets of free
generators (i.e. of cardinality 2c). Unfortunately, contrary to what was claimed in [37], the algebra
generated by those generators is not contained in J (C). Hence, the problem whether the set J (C) is
strongly 2c-algebrable remained unsolved.

A positive answer to this problem is our goal in this section, but firstly we recall some necessary
notions. By an ultrafilter on the set ω we mean any maximal nontrivial family of subsets of ω that
is closed under taking supersets and finite intersections. Endowing ω with the discrete topology, by
βω we denote its Stone-Čech compactification. It is well-known that βω can be viewed as the set of
all ultrafilters on ω, hence |βω| = 2c (for details we refer to [26]).

For every n ∈ N let us fix a set Hn of surjective functions h : Kn → K with |Hn| ≤ c.

Theorem 5.2. There is a family {fξ : ξ < 2c} ⊆ KK such that for any h ∈ Hn and any distinct
ordinals ξ1 < ξ2 < · · · < ξn < 2c we have h(fξ1 , . . . , fξn) ∈ J (K).

Proof. Let H =
⋃∞
n=1Hn × nω (we use a standard set theoretical notation, i.e. nω = {0, ..., n− 1}ω).

Let us denote by K the family of all closed sets K ⊆ K×K with uncountable projection on the x-axis.
As |K| = |H| = c, let {(Kα, hα, pα) : α < c} be an enumeration of K × H. Let {rα : α < c} be an
enumeration of K. Inductively we define a function ξ : c → c in the following way. Let ξ(0) be the
smallest ordinal such that there is y ∈ K with (r0, y) ∈ Kξ(0). In general for α < c, let ξ(α) be the
smallest ordinal among c\{ξ(β) : β < α} such that there is y ∈ K with (rα, y) ∈ Kξ(α). Obviously, by
the definition ξ is injective. We will show that ξ is a bijection. Suppose on the contrary that ξ[c] 6= c,
i.e. there is β < c that is not in the range of ξ. Since Kβ ∈ K, its projection on the x-axis as well as
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the set X = {α < c : there is y ∈ K with (rα, y) ∈ Kβ}, is of cardinality c. Hence, ξ maps injectively
X into β and we reach a contradiction.

Observe that the family {(rα,Kξ(α), hξ(α), pξ(α)) : α < c} is such that

(i) for any triple (K,h, p) ∈ K×H, there is exactly one α < c with (Kξ(α), hξ(α), pξ(α)) = (K,h, p),
(ii) for any α < c there is y ∈ K with (rα, y) ∈ Kξ(α),
(iii) {rα : α < c} is an enumeration of K.

Hence, without the loss of generality, we may assume that the family {(rα,Kα, hα, pα) : α < c} has
properties (i)-(iii).

For any ordinal α < c, let n be the unique natural number such that (hα, pα) ∈ Hn × nω. By (ii)
there is y ∈ K with (rα, y) ∈ Kα. Since hα : Kn → K is surjective, we can choose a vector ~xα ∈ Kn

such that hα(~xα) = y (the vector ~xα will be thought of as a function ~xα : n→ K). Observe also that
the map pα ∈ nω possesses a continuous extension pα : βω → n to the Stone-Čech compactification
of ω.

Now to each ultrafilter U ∈ βω let us assign a function fU : K → K defined by the formula
fU (rα) = ~xα ◦ pα(U). We claim that the indexed family of functions {fU : U ∈ βω} ⊆ KK is the
desired one. Let U0, ...,Un−1 ∈ βω be distinct, let h ∈ Hn and let K ∈ K. We will show that
h(fU0 , ..., fUn−1) ∩ K 6= ∅. Since the ultrafilters U0, ...,Un−1 are distinct, we can find a partition
ω = U0 ∪ ... ∪ Un−1 such that Ui ∈ Uj if and only if i = j. This partition determines a function
p ∈ nω such that p−1(i) = Ui for every i ∈ n. Then its extension p : βω → n has the property
p(Ui) = i for every i ∈ n. For the triple (K,h, p), by (i), there is exactly one α < c such that
(Kα, hα, pα) = (K,h, p). We have that

h(fU0 , ..., fUn−1)(rα) = hα(fU0(rα), ..., fUn−1(rα)) = hα(~xα ◦ pα(U0), ..., ~xα ◦ pα(Un−1)) =

= hα(~xα(0), ..., ~xα(n− 1)) = hα(~xα) = y,

where y ∈ K is such that (rα, y) ∈ Kα by the choice of the vector ~xα. Hence, h(fU0 , ..., fUn−1) ∩K 6=
∅. �

Observe that in particular by taking Hn as the family of all nonzero polynomials in n complex
variables without a constant term, we obtain the following.

Corollary 5.3. The set J (C) is strongly 2c-algebrable.

On the other hand, to obtain 2c-lineability of J (C) (or J (R)), one can take Hn as the family of
all nonzero polynomials of the 1st degree in n complex (or real) variables without a constant term.
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[8] M. Balcerzak, K. Ciesielski, T. Natkaniec, Sierpiński-Zygmund functions that are Darboux, almost continuous
or have a perfect road, Archive for Math. Logic 37(1) (1997), 29–35.



10 ARTUR BARTOSZEWICZ, MAREK BIENIAS, SZYMON G LA̧B AND TOMASZ NATKANIEC

[9] A. Bartoszewicz, M. Bienias, S. G la̧b, Independent Bernstein sets and algebraic constructions, J. Math. Anal.
Appl. 393 (2012) 138–143.

[10] A. Bartoszewicz, M. Bienias, S. G la̧b, Lineability, algebrability and strong algebrability of some sets in RR

and CC, Traditional and present-day topics in real analysis, 213–232, Faculty of Mathematics and Computer
Science, University of  Lódź,  Lódź, 2013.

[11] A. Bartoszewicz, M. Bienias, M. Filipczak, S. G la̧b, Strong c-algebrability of strong Sierpiński-Zygmund,
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Fund. Math. 24 (1935), 17–34.
[37] T. Natkaniec, Algebrability of some families of Darboux-like functions. Linear Algebra Appl. 439 (2013), no.

10, 3256–3263.
[38] K. P lotka, Algebraic structures within subsets of Hamel and SierpińskiZygmund functions, Bull. Belg. Math.
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