Szymon Głąb

Topological size of sets in function spaces defined by pointwise product and convolution

with Filip Strobin

Institute of Mathematics, Łódź University of Technology

Szymon Głąb (and Filip Strobin) Topological size of sets in function spaces defined by pointwise product and co

Balcerzak & Wachowicz - first results

There are topological function spaces X such that a natural multiplication $f \cdot g$ is defined, but its result is not necessarily element of X. A general problem is whether the set of those pairs (f,g) for which $f \cdot g \notin X$ is topologically large.

```
Balcerzak & Wachowicz, 2000

The following sets

(i) \{(x, y) \in c_0 \times c_0 : (\sum_{i=1}^n x_i y_i)_{n=1}^{\infty} \text{ is bounded}\},

(ii) \{(f, g) \in L^1[0, 1] \times L^1[0, 1] : \int_0^1 |f \cdot g| < \infty\}

are meager of type F_{\sigma}.
```

Balcerzak & Wachowicz - first results

There are topological function spaces X such that a natural multiplication $f \cdot g$ is defined, but its result is not necessarily element of X. A general problem is whether the set of those pairs (f,g) for which $f \cdot g \notin X$ is topologically large.

Balcerzak & Wachowicz, 2000

The following sets (i) $\{(x, y) \in c_0 \times c_0 : (\sum_{i=1}^n x_i y_i)_{n=1}^\infty \text{ is bounded}\},\$ (ii) $\{(f, g) \in L^1[0, 1] \times L^1[0, 1] : \int_0^1 |f \cdot g| < \infty\}$ are meager of type F_{σ} .

Jachymski's extension of the classical Banach-Steinhaus theorem

A function $\varphi: X \to \mathbb{R}_+$ is called *L*-subadditive, $L \ge 1$, if $\varphi(x + y) \le L(\varphi(x) + \varphi(y))$ for any $x, y \in X$.

Jachymski, 2005, an extension of the classical Banach–Steinhaus theorem

Given $k \in \mathbb{N}$, let $X_1, ..., X_k$ be Banach spaces, $X = X_1$ if k = 1, and $X = X_1 \times ... \times X_k$ if k > 1. Assume that $L \ge 1$, $F_n : X \to \mathbb{R}_+$ $(n \in \mathbb{N})$ are lower semicontinuous and such that all functions $x_i \mapsto F_n(x_1, ..., x_k)$ (i = 1, ..., k) are *L*-subadditive and even. Let $E = \{x \in X : (F_n(x))_{n=1}^{\infty}$ is bounded}. Then the following statements are equivalent:

Balcerzak & Wachowicz, 2000

The set $E = \{(x, y) \in c_0 \times c_0 : (\sum_{i=1}^n x_i y_i)_{n=1}^\infty$ is bounded} is meager.

一名 医下口 医下

Jachymski's extension of the classical Banach-Steinhaus theorem

A function $\varphi: X \to \mathbb{R}_+$ is called *L*-subadditive, $L \ge 1$, if $\varphi(x + y) \le L(\varphi(x) + \varphi(y))$ for any $x, y \in X$.

Jachymski, 2005, an extension of the classical Banach-Steinhaus theorem

Given $k \in \mathbb{N}$, let $X_1, ..., X_k$ be Banach spaces, $X = X_1$ if k = 1, and $X = X_1 \times ... \times X_k$ if k > 1. Assume that $L \ge 1$, $F_n : X \to \mathbb{R}_+$ $(n \in \mathbb{N})$ are lower semicontinuous and such that all functions $x_i \mapsto F_n(x_1, ..., x_k)$ (i = 1, ..., k) are *L*-subadditive and even. Let $E = \{x \in X : (F_n(x))_{n=1}^{\infty} \text{ is bounded}\}$. Then the following statements are equivalent:

- (i) E is meager;
- (ii) $E \neq X$;
- (iii) $\sup\{F_n(x):n\in\mathbb{N},\ ||x||\leq 1\}=\infty.$

Balcerzak & Wachowicz, 2000

The set $E = \{(x, y) \in c_0 \times c_0 : (\sum_{i=1}^n x_i y_i)_{n=1}^\infty$ is bounded} is meager.

伺い イラト イラト

Jachymski's extension of the classical Banach-Steinhaus theorem

A function $\varphi: X \to \mathbb{R}_+$ is called *L*-subadditive, $L \ge 1$, if $\varphi(x + y) \le L(\varphi(x) + \varphi(y))$ for any $x, y \in X$.

Jachymski, 2005, an extension of the classical Banach-Steinhaus theorem

Given $k \in \mathbb{N}$, let $X_1, ..., X_k$ be Banach spaces, $X = X_1$ if k = 1, and $X = X_1 \times ... \times X_k$ if k > 1. Assume that $L \ge 1$, $F_n : X \to \mathbb{R}_+$ $(n \in \mathbb{N})$ are lower semicontinuous and such that all functions $x_i \mapsto F_n(x_1, ..., x_k)$ (i = 1, ..., k) are *L*-subadditive and even. Let $E = \{x \in X : (F_n(x))_{n=1}^{\infty} \text{ is bounded}\}$. Then the following statements are equivalent:

- (i) E is meager;
- (ii) $E \neq X$;
- (iii) $\sup\{F_n(x):n\in\mathbb{N}, ||x||\leq 1\}=\infty.$

Balcerzak & Wachowicz, 2000

The set $E = \{(x, y) \in c_0 \times c_0 : (\sum_{i=1}^n x_i y_i)_{n=1}^\infty \text{ is bounded}\}$ is meager.

伺い イラト イラト

Let X be a metric space. B(x, R) stands for the ball with a radius R centered at a point x. Let $c \in (0, 1]$. We say that $M \subset X$ is *c*-lower porous, if

$$\forall x \in M \quad \liminf_{R \to 0^+} \frac{\gamma(x, M, R)}{R} \ge \frac{c}{2},$$

where

$$\gamma(x, M, R) = \sup\{r \ge 0 : \exists z \in X \mid B(z, r) \subset B(x, R) \setminus M\}.$$

At first, we were interested in a further generalization of Jachymski's theorem changing meagerness by σ -porosity. It is not possible. To see it, consider the following set:

$$E = \left\{ x \in \mathbb{R} : \left(\sum_{k=1}^{n} \frac{|\sin(k!\pi x)|}{k} \right)_{n=1}^{\infty} \text{ is bounded} \right\}.$$

Using Jachymski's Theorem for $F_n(x) = \sum_{k=1}^n |\sin(k!\pi x)|/k$ we obtain that this set is meager ($E \neq \mathbb{R}$ since it is of measure zero) and E is not σ -upper porous (it is well known example of such set).

伺い イラト イラト

Let X be a metric space. B(x, R) stands for the ball with a radius R centered at a point x. Let $c \in (0, 1]$. We say that $M \subset X$ is *c*-lower porous, if

$$\forall x \in M \quad \liminf_{R \to 0^+} \frac{\gamma(x, M, R)}{R} \geq \frac{c}{2},$$

where

$\gamma(x, M, R) = \sup\{r \ge 0 : \exists z \in X \ B(z, r) \subset B(x, R) \setminus M\}.$

At first, we were interested in a further generalization of Jachymski's theorem changing meagerness by σ -porosity. It is not possible. To see it, consider the following set:

$$E = \left\{ x \in \mathbb{R} : \left(\sum_{k=1}^{n} \frac{|\sin(k!\pi x)|}{k} \right)_{n=1}^{\infty} \text{ is bounded} \right\}.$$

Using Jachymski's Theorem for $F_n(x) = \sum_{k=1}^n |\sin(k!\pi x)|/k$ we obtain that this set is meager ($E \neq \mathbb{R}$ since it is of measure zero) and E is not σ -upper porous (it is well known example of such set).

Let X be a metric space. B(x, R) stands for the ball with a radius R centered at a point x. Let $c \in (0, 1]$. We say that $M \subset X$ is *c*-lower porous, if

$$\forall x \in M \quad \liminf_{R \to 0^+} \frac{\gamma(x, M, R)}{R} \geq \frac{c}{2},$$

where

$$\gamma(x, M, R) = \sup\{r \ge 0 : \exists z \in X | B(z, r) \subset B(x, R) \setminus M\}.$$

At first, we were interested in a further generalization of Jachymski's theorem changing meagerness by σ -porosity. It is not possible. To see it, consider the following set:

$$E = \left\{ x \in \mathbb{R} : \left(\sum_{k=1}^{n} \frac{|\sin(k!\pi x)|}{k} \right)_{n=1}^{\infty} \text{ is bounded} \right\}.$$

Using Jachymski's Theorem for $F_n(x) = \sum_{k=1}^n |\sin(k!\pi x)|/k$ we obtain that this set is meager ($E \neq \mathbb{R}$ since it is of measure zero) and E is not σ -upper porous (it is well known example of such set).

Let X be a metric space. B(x, R) stands for the ball with a radius R centered at a point x. Let $c \in (0, 1]$. We say that $M \subset X$ is *c*-lower porous, if

$$\forall x \in M \quad \liminf_{R \to 0^+} \frac{\gamma(x, M, R)}{R} \geq \frac{c}{2},$$

where

$$\gamma(x, M, R) = \sup\{r \ge 0 : \exists z \in X | B(z, r) \subset B(x, R) \setminus M\}.$$

At first, we were interested in a further generalization of Jachymski's theorem changing meagerness by σ -porosity. It is not possible. To see it, consider the following set:

$$E = \left\{ x \in \mathbb{R} : \left(\sum_{k=1}^{n} \frac{|\sin(k!\pi x)|}{k} \right)_{n=1}^{\infty} \text{ is bounded} \right\}.$$

Using Jachymski's Theorem for $F_n(x) = \sum_{k=1}^n |\sin(k!\pi x)|/k$ we obtain that this set is meager ($E \neq \mathbb{R}$ since it is of measure zero) and E is not σ -upper porous (it is well known example of such set).

Let X be a metric space. B(x, R) stands for the ball with a radius R centered at a point x. Let $c \in (0, 1]$. We say that $M \subset X$ is *c*-lower porous, if

$$\forall x \in M \quad \liminf_{R \to 0^+} \frac{\gamma(x, M, R)}{R} \geq \frac{c}{2},$$

where

$$\gamma(x, M, R) = \sup\{r \ge 0 : \exists z \in X \mid B(z, r) \subset B(x, R) \setminus M\}.$$

At first, we were interested in a further generalization of Jachymski's theorem changing meagerness by σ -porosity. It is not possible. To see it, consider the following set:

$$E = \left\{ x \in \mathbb{R} : \left(\sum_{k=1}^{n} \frac{|\sin(k!\pi x)|}{k} \right)_{n=1}^{\infty} \text{ is bounded} \right\}.$$

Using Jachymski's Theorem for $F_n(x) = \sum_{k=1}^n |\sin(k!\pi x)|/k$ we obtain that this set is meager $(E \neq \mathbb{R} \text{ since it is of measure zero})$ and E is not σ -upper porous (it is well known example of such set).

Let X be a metric space. B(x, R) stands for the ball with a radius R centered at a point x. Let $c \in (0, 1]$. We say that $M \subset X$ is *c*-lower porous, if

$$\forall x \in M \quad \liminf_{R \to 0^+} \frac{\gamma(x, M, R)}{R} \geq \frac{c}{2},$$

where

$$\gamma(x, M, R) = \sup\{r \ge 0 : \exists z \in X \mid B(z, r) \subset B(x, R) \setminus M\}.$$

At first, we were interested in a further generalization of Jachymski's theorem changing meagerness by σ -porosity. It is not possible. To see it, consider the following set:

$$E = \left\{ x \in \mathbb{R} : \left(\sum_{k=1}^{n} \frac{|\sin(k!\pi x)|}{k} \right)_{n=1}^{\infty} \text{ is bounded} \right\}.$$

Using Jachymski's Theorem for $F_n(x) = \sum_{k=1}^n |\sin(k!\pi x)|/k$ we obtain that this set is meager ($E \neq \mathbb{R}$ since it is of measure zero) and E is not σ -upper porous (it is well known example of such set).

Let (X, Σ, μ) be a measure space and $p \in (0, \infty]$. For $n \in \mathbb{N}$ and $p_1, ..., p_n, r \in (0, \infty]$ we define the set

$$\boldsymbol{E}_r^{(p_1,\ldots,p_n)} = \{ (f_1,\ldots,f_n) \in \boldsymbol{L}^{p_1} \times \ldots \times \boldsymbol{L}^{p_n} : f_1 \cdot \ldots \cdot f_n \in \boldsymbol{L}^r \}.$$

Hölder inequality

If
$$\frac{1}{r} = \frac{1}{p_1} + ... + \frac{1}{p_n}$$
, then $E_r^{(p_1,...,p_n)} = L^{p_1} \times ... \times L^{p_n}$.

 $\Sigma_+ := \{A \in \Sigma : 0 < \mu(A) < \infty\},\$

Case when $E_r^{(p_1,\ldots,p_n)}$ is large

If one of the following conditions holds:

(i)
$$\sup\{\mu(A) : A \in \Sigma_+\} < \infty$$
 and $0 < \frac{1}{p_1} + ... + \frac{1}{p_n} < \frac{1}{r};$
(ii) $\inf\{\mu(A) : A \in \Sigma_+\} > 0$ and $\frac{1}{p_1} + ... + \frac{1}{p_n} > \frac{1}{r},$

Let (X, Σ, μ) be a measure space and $p \in (0, \infty]$. For $n \in \mathbb{N}$ and $p_1, ..., p_n, r \in (0, \infty]$ we define the set

$$\boldsymbol{E}_r^{(p_1,\ldots,p_n)} = \{(f_1,\ldots,f_n) \in \boldsymbol{L}^{p_1} \times \ldots \times \boldsymbol{L}^{p_n} : f_1 \cdot \ldots \cdot f_n \in \boldsymbol{L}^r\}.$$

Hölder inequality

If
$$\frac{1}{r} = \frac{1}{p_1} + ... + \frac{1}{p_n}$$
, then $E_r^{(p_1,...,p_n)} = L^{p_1} \times ... \times L^{p_n}$.

$\Sigma_+ := \{A \in \Sigma : 0 < \mu(A) < \infty\},\$

Case when $E_r^{(p_1,\ldots,p_n)}$ is large

If one of the following conditions holds:

(i)
$$\sup\{\mu(A) : A \in \Sigma_+\} < \infty$$
 and $0 < \frac{1}{p_1} + ... + \frac{1}{p_n} < \frac{1}{r}$;
(ii) $\inf\{\mu(A) : A \in \Sigma_+\} > 0$ and $\frac{1}{r} + ... + \frac{1}{r} > \frac{1}{r}$.

then $E_r^{(p_1,\ldots,p_n)} = L^{p_1} \times \ldots \times L^{p_n}$.

Let (X, Σ, μ) be a measure space and $p \in (0, \infty]$. For $n \in \mathbb{N}$ and $p_1, ..., p_n, r \in (0, \infty]$ we define the set

$$\mathsf{E}_r^{(p_1,\ldots,p_n)} = \{(f_1,\ldots,f_n) \in \mathsf{L}^{p_1} \times \ldots \times \mathsf{L}^{p_n} : f_1 \cdot \ldots \cdot f_n \in \mathsf{L}^r\}.$$

Hölder inequality

If
$$\frac{1}{r} = \frac{1}{p_1} + ... + \frac{1}{p_n}$$
, then $E_r^{(p_1,...,p_n)} = L^{p_1} \times ... \times L^{p_n}$.

$$\Sigma_+ := \{A \in \Sigma : 0 < \mu(A) < \infty\},$$

Case when $E_r^{(p_1,\ldots,p_n)}$ is large

If one of the following conditions holds:

(i)
$$\sup\{\mu(A) : A \in \Sigma_+\} < \infty$$
 and $0 < \frac{1}{p_1} + ... + \frac{1}{p_n} < \frac{1}{r};$

(ii)
$$\inf\{\mu(A) : A \in \Sigma_+\} > 0 \text{ and } \frac{1}{p_1} + ... + \frac{1}{p_n} > \frac{1}{r}$$
,

then $E_r^{(p_1,...,p_n)} = L^{p_1} \times ... \times L^{p_n}$.

Let (X, Σ, μ) be a measure space and $p \in (0, \infty]$. For $n \in \mathbb{N}$ and $p_1, ..., p_n, r \in (0, \infty]$ we define the set

$$\mathsf{E}_r^{(p_1,\ldots,p_n)} = \{(f_1,\ldots,f_n) \in \mathsf{L}^{p_1} \times \ldots \times \mathsf{L}^{p_n} : f_1 \cdot \ldots \cdot f_n \in \mathsf{L}^r\}.$$

Hölder inequality

If
$$\frac{1}{r} = \frac{1}{p_1} + ... + \frac{1}{p_n}$$
, then $E_r^{(p_1,...,p_n)} = L^{p_1} \times ... \times L^{p_n}$.

$$\Sigma_+ := \{A \in \Sigma : 0 < \mu(A) < \infty\},$$

Case when $E_r^{(p_1,\ldots,p_n)}$ is large

If one of the following conditions holds:

(i)
$$\sup\{\mu(A) : A \in \Sigma_+\} < \infty$$
 and $0 < \frac{1}{p_1} + ... + \frac{1}{p_n} < \frac{1}{r}$;
(ii) $\inf\{\mu(A) : A \in \Sigma_+\} > 0$ and $\frac{1}{p_1} + ... + \frac{1}{p_n} > \frac{1}{r}$,
then $E_r^{(p_1,...,p_n)} = L^{p_1} \times ... \times L^{p_n}$.

-

Case when $E_r^{(p_1,\ldots,p_n)}$ is small

Assume that one of the following conditions holds:

(i)
$$\frac{1}{p_1} + ... + \frac{1}{p_n} > \frac{1}{r}$$
 and $\inf\{\mu(A) : A \in \Sigma_+\} = 0;$

(ii)
$$\frac{1}{p_1} + \ldots + \frac{1}{p_n} < \frac{1}{r}$$
 and $\sup\{\mu(A) : A \in \Sigma_+\} = \infty$.

Then for any u > 0, the set

$$E_{u} = \{(f_{1}, ..., f_{n}) \in L^{p_{1}} \times ... \times L^{p_{n}} : ||f_{1} \cdot ... \cdot f_{n}||_{r} \leq u\}$$

is *c*-lower porous, where $c = c(p_1, ..., p_n)$. In particular, the set $E_r^{(p_1, ..., p_n)}$ is σ -*c*-lower porous.

Dichotomy

Either $E_r^{(p_1,\ldots,p_n)}$ is σ -*c*-lower porous or $E_r^{(p_1,\ldots,p_n)} = L^{p_1} \times \ldots \times L^{p_n}$.

Szymon Głąb (and Filip Strobin) Topological size of sets in function spaces defined by pointwise product and co

Case when $E_r^{(p_1,\ldots,p_n)}$ is small

Assume that one of the following conditions holds:

- (i) $\frac{1}{p_1} + ... + \frac{1}{p_n} > \frac{1}{r}$ and $\inf\{\mu(A) : A \in \Sigma_+\} = 0;$
- (ii) $\frac{1}{p_1} + \ldots + \frac{1}{p_n} < \frac{1}{r}$ and $\sup\{\mu(A) : A \in \Sigma_+\} = \infty$.

Then for any u > 0, the set

$$E_u = \{(f_1, ..., f_n) \in L^{p_1} \times ... \times L^{p_n} : ||f_1 \cdot ... \cdot f_n||_r \le u\}$$

is *c*-lower porous, where $c = c(p_1, ..., p_n)$. In particular, the set $E_r^{(p_1, ..., p_n)}$ is σ -*c*-lower porous.

Dichotomy

Either
$$E_r^{(p_1,\ldots,p_n)}$$
 is σ -c-lower porous or $E_r^{(p_1,\ldots,p_n)} = L^{p_1} \times \ldots \times L^{p_n}$.

Let (X, Σ, μ) be a measure space. Let $p, q \in (0, \infty]$ be such that if $p = \infty$, then also $q = \infty$. A Lorentz space $L^{p,q}(X, \Sigma, \mu)$ ($L^{p,q}$ in short) is the space of all measurable functions with a finite quasinorm (the triangle inequality does not hold)

$$\|f\|_{p,q} := \begin{cases} \left(\int_0^\infty p\mu(\{x:|f(x)|>\lambda\})^{\frac{q}{p}}\lambda^{q-1}d\lambda\right)^{\frac{1}{q}}, & \text{if } q<\infty;\\ \sup_{\lambda>0}\lambda\mu(\{x:|f(x)|>\lambda\})^{\frac{1}{p}}, & \text{if } p<\infty \text{ and } q=\infty;\\ \sup_{\lambda>0}|f|, & \text{if } p=q=\infty. \end{cases}$$

 $||f||_{p,p} = ||f||_p = (\int_X |f|^p)^{1/p}$ for $p \ge 1$.

Let (X, Σ, μ) be a measure space. Let $p, q \in (0, \infty]$ be such that if $p = \infty$, then also $q = \infty$. A Lorentz space $\mathbf{L}^{p,q}(X, \Sigma, \mu)$ ($\mathbf{L}^{p,q}$ in short) is the space of all measurable functions with a finite quasinorm (the triangle inequality does not hold)

$$\|f\|_{p,q} := \begin{cases} \left(\int_0^\infty p\mu(\{x:|f(x)|>\lambda\})^{\frac{q}{p}}\lambda^{q-1}d\lambda\right)^{\frac{1}{q}}, & \text{if } q<\infty;\\ \sup_{\lambda>0}\lambda\mu(\{x:|f(x)|>\lambda\})^{\frac{1}{p}}, & \text{if } p<\infty \text{ and } q=\infty;\\ \sup_{\lambda>0}|f|, & \text{if } p=q=\infty. \end{cases}$$

 $||f||_{p,p} = ||f||_p = (\int_X |f|^p)^{1/p}$ for $p \ge 1$.

Let (X, Σ, μ) be a measure space. Let $p, q \in (0, \infty]$ be such that if $p = \infty$, then also $q = \infty$. A Lorentz space $\mathbf{L}^{p,q}(X, \Sigma, \mu)$ ($\mathbf{L}^{p,q}$ in short) is the space of all measurable functions with a finite quasinorm (the triangle inequality does not hold)

$$\|f\|_{p,q} := \begin{cases} \left(\int_0^\infty p\mu(\{x:|f(x)|>\lambda\})^{\frac{q}{p}}\lambda^{q-1}d\lambda\right)^{\frac{1}{q}}, & \text{if } q<\infty;\\ \sup_{\lambda>0}\lambda\mu(\{x:|f(x)|>\lambda\})^{\frac{1}{p}}, & \text{if } p<\infty \text{ and } q=\infty;\\ \sup_{\lambda>0}|f|, & \text{if } p=q=\infty. \end{cases}$$

 $\|f\|_{p,p} = \|f\|_p = (\int_X |f|^p)^{1/p}$ for $p \ge 1$.

$$\mathsf{E}_{p,q}^{(p_1,q_1,...,p_n,q_n)} := \{ (f_1,...,f_n) \in \mathsf{L}^{p_1,q_1} \times ... \times \mathsf{L}^{p_n,q_n} : f_1 \cdots f_n \in \mathsf{L}^{p,q} \}.$$

Theorem

Let $n \in \mathbb{N}$ and $L^{p,q}, L^{p_1,q_1}, ..., L^{p_n,q_n}$ be Lorentz spaces such that if $p < \infty$, then $\frac{1}{p} \neq \frac{1}{p_1} + ... + \frac{1}{p_n}$. Then the following conditions are equivalent:

- (a) the set $E_{p,q}^{(p_1,q_1,\ldots,p_n,q_n)}$ is σ - α -lower porous in $\mathbf{L}^{p_1,q_1} \times \ldots \times \mathbf{L}^{p_n,q_n}$ for some $\alpha > 0$;
- (b) $E_{p,q}^{(p_1,q_1,...,p_n,q_n)} \neq \mathbf{L}^{p_1,q_1} \times ... \times \mathbf{L}^{p_n,q_n};$
- (c) one of the conditions holds:

(i)
$$\Sigma_+ \neq \emptyset$$
 and $\inf\{\mu(A) : A \in \Sigma_+\} = 0$ and $\frac{1}{p_1} + \dots + \frac{1}{p_n} > \frac{1}{p};$

- (ii) $\Sigma_+ \neq \emptyset$ and $\sup\{\mu(A) : A \in \Sigma_+\} = \infty$ and $\frac{1}{p_1} + \dots + \frac{1}{p_n} < \frac{1}{p_1}$;
- (iii) $\mu(X) = \infty$ and $\min\{p_1, ..., p_n\} = \infty$ and $p < \infty$.

$$E_{p,q}^{(p_1,q_1,...,p_n,q_n)} := \{ (f_1,...,f_n) \in \mathsf{L}^{p_1,q_1} \times ... \times \mathsf{L}^{p_n,q_n} : f_1 \cdots f_n \in \mathsf{L}^{p,q} \}.$$

Theorem

Let $n \in \mathbb{N}$ and $\mathbf{L}^{p,q}, \mathbf{L}^{p_1,q_1}, ..., \mathbf{L}^{p_n,q_n}$ be Lorentz spaces such that if $p < \infty$, then $\frac{1}{p} \neq \frac{1}{p_1} + ... + \frac{1}{p_n}$. Then the following conditions are equivalent:

(a) the set $E_{p,q}^{(p_1,q_1,\ldots,p_n,q_n)}$ is σ - α -lower porous in $\mathbb{L}^{p_1,q_1} \times \ldots \times \mathbb{L}^{p_n,q_n}$ for some $\alpha > 0$;

(b)
$$E_{p,q}^{(p_1,q_1,...,p_n,q_n)} \neq \mathbf{L}^{p_1,q_1} \times ... \times \mathbf{L}^{p_n,q_n}$$

(c) one of the conditions holds:

(i)
$$\Sigma_+ \neq \emptyset$$
 and $\inf\{\mu(A) : A \in \Sigma_+\} = 0$ and $\frac{1}{p_1} + \ldots + \frac{1}{p_n} > \frac{1}{p};$

(ii)
$$\Sigma_+ \neq \emptyset$$
 and sup $\{\mu(A) : A \in \Sigma_+\} = \infty$ and $\frac{1}{p_1} + ... + \frac{1}{p_n} < \frac{1}{p_n}$

iii)
$$\mu(X) = \infty$$
 and min $\{p_1, ..., p_n\} = \infty$ and $p < \infty$

$$E_{p,q}^{(p_1,q_1,...,p_n,q_n)} := \{ (f_1,...,f_n) \in \mathsf{L}^{p_1,q_1} \times ... \times \mathsf{L}^{p_n,q_n} : f_1 \cdots f_n \in \mathsf{L}^{p,q} \}.$$

Theorem

Let $n \in \mathbb{N}$ and $\mathbf{L}^{p,q}, \mathbf{L}^{p_1,q_1}, ..., \mathbf{L}^{p_n,q_n}$ be Lorentz spaces such that if $p < \infty$, then $\frac{1}{p} \neq \frac{1}{p_1} + ... + \frac{1}{p_n}$. Then the following conditions are equivalent:

(a) the set $E_{p,q}^{(p_1,q_1,\ldots,p_n,q_n)}$ is σ - α -lower porous in $\mathbf{L}^{p_1,q_1} \times \ldots \times \mathbf{L}^{p_n,q_n}$ for some $\alpha > 0$;

(b)
$$E_{p,q}^{(p_1,q_1,...,p_n,q_n)} \neq \mathbf{L}^{p_1,q_1} \times ... \times \mathbf{L}^{p_n,q_n};$$

(c) one of the conditions holds:

(i)
$$\Sigma_+ \neq \emptyset$$
 and $\inf\{\mu(A) : A \in \Sigma_+\} = 0$ and $\frac{1}{p_1} + \ldots + \frac{1}{p_n} > \frac{1}{p};$

(ii)
$$\Sigma_+ \neq \emptyset$$
 and $\sup\{\mu(A) : A \in \Sigma_+\} = \infty$ and $\frac{1}{m} + ... + \frac{1}{m} < \frac{1}{m}$

iii)
$$\mu(X) = \infty$$
 and min $\{p_1, ..., p_n\} = \infty$ and $p < \infty$

$$E_{p,q}^{(p_1,q_1,...,p_n,q_n)} := \{ (f_1,...,f_n) \in \mathsf{L}^{p_1,q_1} \times ... \times \mathsf{L}^{p_n,q_n} : f_1 \cdots f_n \in \mathsf{L}^{p,q} \}.$$

Theorem

Let $n \in \mathbb{N}$ and $\mathbf{L}^{p,q}, \mathbf{L}^{p_1,q_1}, ..., \mathbf{L}^{p_n,q_n}$ be Lorentz spaces such that if $p < \infty$, then $\frac{1}{p} \neq \frac{1}{p_1} + ... + \frac{1}{p_n}$. Then the following conditions are equivalent:

(a) the set $E_{p,q}^{(p_1,q_1,\ldots,p_n,q_n)}$ is σ - α -lower porous in $\mathbf{L}^{p_1,q_1} \times \ldots \times \mathbf{L}^{p_n,q_n}$ for some $\alpha > 0$;

(b)
$$E_{p,q}^{(p_1,q_1,...,p_n,q_n)} \neq \mathbf{L}^{p_1,q_1} \times ... \times \mathbf{L}^{p_n,q_n};$$

(c) one of the conditions holds:

(i)
$$\Sigma_+ \neq \emptyset$$
 and $\inf\{\mu(A) : A \in \Sigma_+\} = 0$ and $\frac{1}{p_1} + \ldots + \frac{1}{p_n} > \frac{1}{p};$

- (ii) $\Sigma_+ \neq \emptyset$ and $\sup\{\mu(A) : A \in \Sigma_+\} = \infty$ and $\frac{1}{n_1} + ... + \frac{1}{n_n} < \frac{1}{n_n}$
- iii) $\mu(X) = \infty$ and min $\{p_1, ..., p_n\} = \infty$ and $p < \infty$

伺い イヨト イヨト

$$\mathsf{E}_{p,q}^{(p_1,q_1,...,p_n,q_n)} := \{ (f_1,...,f_n) \in \mathsf{L}^{p_1,q_1} \times ... \times \mathsf{L}^{p_n,q_n} : f_1 \cdots f_n \in \mathsf{L}^{p,q} \}.$$

Theorem

Let $n \in \mathbb{N}$ and $\mathbf{L}^{p,q}, \mathbf{L}^{p_1,q_1}, ..., \mathbf{L}^{p_n,q_n}$ be Lorentz spaces such that if $p < \infty$, then $\frac{1}{p} \neq \frac{1}{p_1} + ... + \frac{1}{p_n}$. Then the following conditions are equivalent:

- (a) the set $E_{p,q}^{(p_1,q_1,\ldots,p_n,q_n)}$ is σ - α -lower porous in $\mathbf{L}^{p_1,q_1} \times \ldots \times \mathbf{L}^{p_n,q_n}$ for some $\alpha > 0$;
- (b) $E_{p,q}^{(p_1,q_1,...,p_n,q_n)} \neq \mathbf{L}^{p_1,q_1} \times ... \times \mathbf{L}^{p_n,q_n};$
- (c) one of the conditions holds:

(i)
$$\Sigma_+ \neq \emptyset$$
 and $\inf\{\mu(A) : A \in \Sigma_+\} = 0$ and $\frac{1}{p_1} + \dots + \frac{1}{p_n} > \frac{1}{p}$;
(ii) $\Sigma_+ \neq \emptyset$ and $\sup\{\mu(A) : A \in \Sigma_+\} = \infty$ and $\frac{1}{p_1} + \dots + \frac{1}{p_n} < \frac{1}{p}$;
(iii) $\mu(X) = \infty$ and $\min\{p_1, \dots, p_n\} = \infty$ and $n < \infty$

Let $\psi : [0, \infty) \to [0, \infty)$ be a continuous non-decreasing and convex with $\psi(0) = 0$, $\psi(t) > 0$ for t > 0, and $\lim_{t\to\infty} \psi(t) = \infty$. It is so-called *Young function*.

 $L^{\psi}(X, \Sigma, \mu)$ (L^{ψ} in short) is the set of all measurable functions f defined on X such that $\int_X \psi(v|f|) d\mu < \infty$ for some v > 0. Then L^{ψ} is a Banach space with the following norm

$$||f||_{\psi} := \inf\{u : \int_{X} \psi(\frac{|f|}{u}) d\mu \leq 1\}.$$

The space L^{ψ} is called the Orlicz space. If $p \ge 1$ and $\psi(t) = t^p$, then $L^{\psi} = L^p$.

$$\mathsf{E}_{\psi}^{(\psi_1,\ldots,\psi_n)} := \{ (f_1,\ldots,f_n) \in \mathsf{L}^{\psi_1} \times \ldots \times \mathsf{L}^{\psi_n} : f_1 \cdots f_n \in \mathsf{L}^{\psi} \}.$$

Let $\psi : [0, \infty) \to [0, \infty)$ be a continuous non-decreasing and convex with $\psi(0) = 0$, $\psi(t) > 0$ for t > 0, and $\lim_{t\to\infty} \psi(t) = \infty$. It is so-called Young function.

 $L^{\psi}(X, \Sigma, \mu)$ (L^{ψ} in short) is the set of all measurable functions f defined on X such that $\int_X \psi(v|f|)d\mu < \infty$ for some v > 0. Then L^{ψ} is a Banach space with the following norm

$$\|f\|_{\psi} := \inf\{u : \int_X \psi(\frac{|f|}{u}) d\mu \le 1\}.$$

The space L^{ψ} is called the Orlicz space. If $p \ge 1$ and $\psi(t) = t^p$, then $L^{\psi} = L^p$.

$$\mathsf{E}_{\psi}^{(\psi_1,\ldots,\psi_n)} := \{(f_1,\ldots,f_n) \in \mathsf{L}^{\psi_1} \times \ldots \times \mathsf{L}^{\psi_n} : f_1 \cdots f_n \in \mathsf{L}^{\psi}\}.$$

Let $\psi : [0, \infty) \to [0, \infty)$ be a continuous non-decreasing and convex with $\psi(0) = 0$, $\psi(t) > 0$ for t > 0, and $\lim_{t\to\infty} \psi(t) = \infty$. It is so-called Young function.

 $L^{\psi}(X, \Sigma, \mu)$ (L^{ψ} in short) is the set of all measurable functions f defined on X such that $\int_X \psi(v|f|)d\mu < \infty$ for some v > 0. Then L^{ψ} is a Banach space with the following norm

$$\|f\|_{\psi}:=\inf\{u:\int_X\psi(\frac{|f|}{u})d\mu\leq 1\}.$$

The space L^{ψ} is called the Orlicz space.

If $p \geq 1$ and $\psi(t) = t^{p}$, then $L^{\psi} = L^{p}$.

$$\mathsf{E}_{\psi}^{(\psi_1,...,\psi_n)} := \{ (f_1,...,f_n) \in \mathsf{L}^{\psi_1} \times ... \times \mathsf{L}^{\psi_n} : f_1 \cdots f_n \in \mathsf{L}^{\psi} \}.$$

Let $\psi : [0, \infty) \to [0, \infty)$ be a continuous non-decreasing and convex with $\psi(0) = 0$, $\psi(t) > 0$ for t > 0, and $\lim_{t\to\infty} \psi(t) = \infty$. It is so-called Young function.

 $L^{\psi}(X, \Sigma, \mu)$ (L^{ψ} in short) is the set of all measurable functions f defined on X such that $\int_X \psi(v|f|)d\mu < \infty$ for some v > 0. Then L^{ψ} is a Banach space with the following norm

$$\|f\|_{\psi}:=\inf\{u:\int_X\psi(\frac{|f|}{u})d\mu\leq 1\}.$$

The space L^{ψ} is called the Orlicz space. If $p \ge 1$ and $\psi(t) = t^{p}$, then $L^{\psi} = L^{p}$.

 $\mathsf{E}_{\psi}^{(\psi_1,...,\psi_n)} := \{ (f_1,...,f_n) \in \mathsf{L}^{\psi_1} \times ... \times \mathsf{L}^{\psi_n} : f_1 \cdots f_n \in \mathsf{L}^{\psi} \}.$

Let $\psi : [0, \infty) \to [0, \infty)$ be a continuous non-decreasing and convex with $\psi(0) = 0$, $\psi(t) > 0$ for t > 0, and $\lim_{t\to\infty} \psi(t) = \infty$. It is so-called *Young function*.

 $L^{\psi}(X, \Sigma, \mu)$ (L^{ψ} in short) is the set of all measurable functions f defined on X such that $\int_X \psi(v|f|)d\mu < \infty$ for some v > 0. Then L^{ψ} is a Banach space with the following norm

$$\|f\|_{\psi}:=\inf\{u:\int_X\psi(\frac{|f|}{u})d\mu\leq 1\}.$$

The space L^{ψ} is called the Orlicz space. If $p \ge 1$ and $\psi(t) = t^{p}$, then $L^{\psi} = L^{p}$.

$$\mathsf{E}_{\psi}^{(\psi_1,\ldots,\psi_n)} := \{(f_1,\ldots,f_n) \in \mathsf{L}^{\psi_1} \times \ldots \times \mathsf{L}^{\psi_n} : f_1 \cdots f_n \in \mathsf{L}^{\psi}\}.$$

Theorem

Let $\Sigma_+ \neq \emptyset$ and $\mathbf{L}^{\psi}, \mathbf{L}^{\psi_1}, ..., \mathbf{L}^{\psi_n}$ be Orlicz spaces. Assume that one of the conditions holds: • $\lim_{t\to 0} \frac{\psi^{-1}(t)}{\psi_t^{-1}(t)\cdots\psi_t^{-1}(t)}$ and $\lim_{t\to\infty} \frac{\psi^{-1}(t)}{\psi_t^{-1}(t)\cdots\psi_t^{-1}(t)}$ exists (finite or infinite) 2 the set $F = \{\frac{1}{\mu(A)} : A \in \Sigma_+\}$ is an interval. Then the following conditions are equivalent:

Theorem

Let $\Sigma_+ \neq \emptyset$ and $\mathbf{L}^{\psi}, \mathbf{L}^{\psi_1}, ..., \mathbf{L}^{\psi_n}$ be Orlicz spaces. Assume that one of the conditions holds: • $\lim_{t\to 0} \frac{\psi^{-1}(t)}{\psi_t^{-1}(t)\cdots\psi_t^{-1}(t)}$ and $\lim_{t\to\infty} \frac{\psi^{-1}(t)}{\psi_t^{-1}(t)\cdots\psi_t^{-1}(t)}$ exists (finite or infinite) 2 the set $F = \{\frac{1}{\mu(A)} : A \in \Sigma_+\}$ is an interval. Then the following conditions are equivalent: (a) the set $E_{\psi_1}^{(\psi_1,...,\psi_n)}$ is $\sigma_{-\frac{2}{n+1}}$ -lower porous in $\mathbf{L}^{\psi_1} \times ... \times \mathbf{L}^{\psi_n}$;

ゆ く き と く ほ と

Theorem

Let $\Sigma_+ \neq \emptyset$ and $\mathbf{L}^{\psi}, \mathbf{L}^{\psi_1}, ..., \mathbf{L}^{\psi_n}$ be Orlicz spaces. Assume that one of the conditions holds: • $\lim_{t\to 0} \frac{\psi^{-1}(t)}{\psi_t^{-1}(t)\cdots\psi_t^{-1}(t)}$ and $\lim_{t\to\infty} \frac{\psi^{-1}(t)}{\psi_t^{-1}(t)\cdots\psi_t^{-1}(t)}$ exists (finite or infinite) 2 the set $F = \{\frac{1}{\mu(A)} : A \in \Sigma_+\}$ is an interval. Then the following conditions are equivalent: (a) the set $E_{\psi_1}^{(\psi_1,...,\psi_n)}$ is $\sigma_{-\frac{2}{n+1}}$ -lower porous in $\mathbf{L}^{\psi_1} \times ... \times \mathbf{L}^{\psi_n}$; (b) $E_{\psi_1,\ldots,\psi_n}^{(\psi_1,\ldots,\psi_n)} \neq \mathbf{L}^{\psi_1} \times \ldots \times \mathbf{L}^{\psi_n};$

Theorem

Let $\Sigma_+\neq \emptyset$ and $\bm{L}^\psi, \bm{L}^{\psi_1},..., \bm{L}^{\psi_n}$ be Orlicz spaces. Assume that one of the conditions holds:

•
$$\lim_{t\to 0} \frac{\psi^{-1}(t)}{\psi_1^{-1}(t)\cdots\psi_n^{-1}(t)}$$
 and $\lim_{t\to\infty} \frac{\psi^{-1}(t)}{\psi_1^{-1}(t)\cdots\psi_n^{-1}(t)}$ exists (finite or infinite)

3 the set
$$F = \{ rac{1}{\mu(A)} : A \in \Sigma_+ \}$$
 is an interval.

Then the following conditions are equivalent:

(a) the set
$$E_{\psi}^{(\psi_1,...,\psi_n)}$$
 is $\sigma_{-\frac{2}{n+1}}$ -lower porous in $\mathbf{L}^{\psi_1} \times ... \times \mathbf{L}^{\psi_n}$

(b)
$$E_{\psi}^{(\psi_1,\ldots,\psi_n)} \neq \mathbf{L}^{\psi_1} \times \ldots \times \mathbf{L}^{\psi_n};$$

(c) one of the conditions holds:

(i)
$$\inf\{\mu(A) : A \in \Sigma_+\} = 0$$
 and $\liminf_{t \to \infty} \frac{\psi^{-1}(t)}{\psi_1^{-1}(t) \cdots \psi_n^{-1}(t)} = 0$;
(ii) $\sup\{\mu(A) : A \in \Sigma_+\} = \infty$ and $\liminf_{t \to 0} \frac{\psi^{-1}(t)}{\psi_1^{-1}(t) \cdots \psi_n^{-1}(t)} = 0$.

If
$$\psi(t) = t^{p}$$
, $\psi_{i}(t) = t^{p_{i}}$, then

$$\lim_{t \to 0} \frac{\psi^{-1}(t)}{\psi_{1}^{-1}(t) \cdots \psi_{n}^{-1}(t)} = 0 \iff \lim_{t \to 0} \frac{t^{\frac{1}{p}}}{t^{\frac{1}{p_{1}}} \cdots t^{\frac{1}{p_{n}}}} = 0 \iff \lim_{t \to 0} t^{\frac{1}{p} - (\frac{1}{p_{1}} + \dots + \frac{1}{p_{n}})} = 0$$

$$\iff \frac{1}{p} > \frac{1}{p_{1}} + \dots + \frac{1}{p_{n}}$$

and

$$\lim_{t\to\infty}\frac{\psi^{-1}(t)}{\psi_1^{-1}(t)\cdots\psi_n^{-1}(t)}=0\iff \frac{1}{p}<\frac{1}{p_1}+\cdots+\frac{1}{p_n}.$$

Szymon Głąb (and Filip Strobin) Topological size of sets in function spaces defined by pointwise product and co

Orlicz spaces - Strobin, Math. Slovaca 66 (2016), no. 1, 245-256.

Theorem

Let $\mathbf{L}^{\psi},\mathbf{L}^{\psi_1},...,\mathbf{L}^{\psi_n}$ be Orlicz spaces. Then the following conditions are equivalent:

(a) the set $E_{\psi}^{(\psi_1,...,\psi_n)}$ is meager in $\mathbf{L}^{\psi_1} \times ... \times \mathbf{L}^{\psi_n}$;

(b) $E_{\psi}^{(\psi_1,\ldots,\psi_n)} \neq \mathbf{L}^{\psi_1} \times \ldots \times \mathbf{L}^{\psi_n}.$

Orlicz spaces - Strobin, Math. Slovaca 66 (2016), no. 1, 245-256.

Theorem

Let $\mathbf{L}^{\psi}, \mathbf{L}^{\psi_1}, ..., \mathbf{L}^{\psi_n}$ be Orlicz spaces. Then the following conditions are equivalent: (a) the set $E_{\psi}^{(\psi_1,...,\psi_n)}$ is meager in $\mathbf{L}^{\psi_1} \times ... \times \mathbf{L}^{\psi_n}$; (b) $E_{\psi}^{(\psi_1,...,\psi_n)} \neq \mathbf{L}^{\psi_1} \times ... \times \mathbf{L}^{\psi_n}$.

Orlicz spaces - Strobin, Math. Slovaca 66 (2016), no. 1, 245-256.

Theorem

Let $\mathbf{L}^{\psi},\mathbf{L}^{\psi_1},...,\mathbf{L}^{\psi_n}$ be Orlicz spaces. Then the following conditions are equivalent:

(a) the set
$$E_{\psi}^{(\psi_1,...,\psi_n)}$$
 is meager in $\mathbf{L}^{\psi_1} \times ... \times \mathbf{L}^{\psi_n}$;

(b)
$$E_{\psi}^{(\psi_1,\ldots,\psi_n)} \neq \mathbf{L}^{\psi_1} \times \ldots \times \mathbf{L}^{\psi_n}$$
.

Assume that G is a locally compact group and let μ be a left-invariant Haar measure on G. If f, g are two measurable functions, $x \in G$, then the convolution of f and g in the point x is given by

$$f \star g(x) = \int_G f(y)g(y^{-1}x) \ d\mu(y).$$

Assume that p > 1. The famous L^p -conjecture, stated by Zelazko and Rajagopalan in 1960's, asserts that if for all $f, g \in L^p$, $f \star g \in L^p$ (that is, $f \star g$ is defined almost everywhere on G and belongs to L^p), then G is compact. During the next 30 years this conjecture had been established in special cases, and, finally, in 1990 Saeki proved the L^p -conjecture in its general form. Abtahi, Nasr–Isfahani and Rejali in 2007 proved that if G is not compact, then there exist functions $f, g \in L^p$ such that $f \star g$ is not well defined in the sense that there exists a set $K \subset G$ of a positive measure such that for any $x \in K$, $f \star g(x) = \infty$.

くぼう くちゃ くちゃ

Assume that G is a locally compact group and let μ be a left-invariant Haar measure on G. If f, g are two measurable functions, $x \in G$, then the convolution of f and g in the point x is given by

$$f \star g(x) = \int_G f(y)g(y^{-1}x) \ d\mu(y).$$

Assume that p > 1. The famous L^{p} -conjecture, stated by Zelazko and Rajagopalan in 1960's, asserts that if for all $f, g \in L^{p}$, $f \star g \in L^{p}$ (that is, $f \star g$ is defined almost everywhere on G and belongs to L^{p}), then G is compact. During the next 30 years this conjecture had been established in special cases, and, finally, in 1990 Saeki proved the L^{p} -conjecture in its general form. Abtahi, Nasr–Isfahani and Rejali in 2007 proved that if G is not compact, then there exist functions $f, g \in L^{p}$ such that $f \star g$ is not well defined in the sense that there exists a set $K \subset G$ of a positive measure such that for any $x \in K$, $f \star g(x) = \infty$.

くぼう くちゃ くちゃ

Assume that G is a locally compact group and let μ be a left-invariant Haar measure on G. If f, g are two measurable functions, $x \in G$, then the convolution of f and g in the point x is given by

$$f \star g(x) = \int_G f(y)g(y^{-1}x) \ d\mu(y).$$

Assume that p > 1. The famous L^{p} -conjecture, stated by Zelazko and Rajagopalan in 1960's, asserts that if for all $f, g \in L^{p}$, $f \star g \in L^{p}$ (that is, $f \star g$ is defined almost everywhere on G and belongs to L^{p}), then G is compact. During the next 30 years this conjecture had been established in special cases, and, finally, in 1990 Saeki proved the L^{p} -conjecture in its general form. Abtahi, Nasr–Isfahani and Rejali in 2007 proved that if G is not compact, then there exist functions $f, g \in L^{p}$ such that $f \star g$ is not well defined in the sense that there exists a set $K \subset G$ of a positive measure such that for any $x \in K$, $f \star g(x) = \infty$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Assume that G is a locally compact group and let μ be a left-invariant Haar measure on G. If f, g are two measurable functions, $x \in G$, then the convolution of f and g in the point x is given by

$$f \star g(x) = \int_G f(y)g(y^{-1}x) \ d\mu(y).$$

Assume that p > 1. The famous L^{p} -conjecture, stated by Zelazko and Rajagopalan in 1960's, asserts that if for all $f, g \in L^{p}$, $f \star g \in L^{p}$ (that is, $f \star g$ is defined almost everywhere on G and belongs to L^{p}), then G is compact. During the next 30 years this conjecture had been established in special cases, and, finally, in 1990 Saeki proved the L^{p} -conjecture in its general form. Abtahi, Nasr–Isfahani and Rejali in 2007 proved that if G is not compact, then there exist functions $f, g \in L^{p}$ such that $f \star g$ is not well defined in the sense that there exists a set $K \subset G$ of a positive measure such that for any $x \in K$, $f \star g(x) = \infty$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Assume that G is a locally compact group and let μ be a left-invariant Haar measure on G. If f, g are two measurable functions, $x \in G$, then the convolution of f and g in the point x is given by

$$f \star g(x) = \int_G f(y)g(y^{-1}x) \ d\mu(y).$$

Assume that p > 1. The famous L^{p} -conjecture, stated by Zelazko and Rajagopalan in 1960's, asserts that if for all $f, g \in L^{p}$, $f \star g \in L^{p}$ (that is, $f \star g$ is defined almost everywhere on G and belongs to L^{p}), then G is compact. During the next 30 years this conjecture had been established in special cases, and, finally, in 1990 Saeki proved the L^{p} -conjecture in its general form. Abtahi, Nasr–Isfahani and Rejali in 2007 proved that if G is not compact, then there exist functions $f, g \in L^{p}$ such that $f \star g$ is not well defined in the sense that there exists a set $K \subset G$ of a positive measure such that for any $x \in K$, $f \star g(x) = \infty$.

周 ト イ ヨ ト イ ヨ ト

Theorem

Assume that G is locally compact but not compact topological group and μ is a Haar measure on G. If p, q > 1 are such that $\frac{1}{p} + \frac{1}{q} < 1$, then

i) For every compact subset $K \subset G$, the set

 $E_{K} = \{(f,g) \in L^{p} \times L^{q} : \exists x \in K \ f \star g(x) \text{ is finite or infinite} \}$

is σ -*c*-lower porous for some c > 0.

(ii) If G is σ -compact, then the set

 $E = \{(f,g) \in L^p \times L^q : \exists x \in G \ f \star g(x) \text{ is finite or infinite} \}$

is σ -lower porous.

Theorem

Assume that G is locally compact but not compact topological group and μ is a Haar measure on G. If p, q > 1 are such that $\frac{1}{p} + \frac{1}{q} < 1$, then

(i) For every compact subset $K \subset G$, the set

 $E_{K} = \{(f,g) \in L^{p} \times L^{q} : \exists x \in K \ f \star g(x) \text{ is finite or infinite}\}$

is σ -*c*-lower porous for some c > 0.

(ii) If G is σ -compact, then the set

 $E = \{(f,g) \in L^p \times L^q : \exists x \in G \ f \star g(x) \text{ is finite or infinite} \}$

is σ -lower porous.

Theorem

Assume that G is locally compact but not compact topological group and μ is a Haar measure on G. If p, q > 1 are such that $\frac{1}{p} + \frac{1}{q} < 1$, then

(i) For every compact subset $K \subset G$, the set

 $E_{\mathcal{K}} = \{(f,g) \in L^{p} \times L^{q} : \exists x \in \mathcal{K} \ f \star g(x) \text{ is finite or infinite} \}$

is σ -*c*-lower porous for some c > 0.

(ii) If G is σ -compact, then the set

 $E = \{(f,g) \in L^p \times L^q : \exists x \in G \ f \star g(x) \text{ is finite or infinite} \}$

is σ -lower porous.

I. Akbarbaglu, G. , S. Maghsoudi, F. Strobin, Topological size of some subsets in certain Calderón-Lozanowskii spaces, Adv. Math. 312 (2017), 737–763.

For any Young function φ we define:

 $a_{\varphi} = \sup\{x \in \mathbb{R} : \varphi(x) = 0\}$ and $b_{\varphi} = \sup\{x \in \mathbb{R} : \varphi(x) < \infty\}.$

Let (Ω, Σ, μ) be a complete σ -finite measure space. A Banach space $E = (E, \|\cdot\|_E)$ is called a Banach ideal space on Ω if E is a linear subspace of $L^0(\Omega)$ with the ideal property: if $f \in E, g \in L^0(\Omega)$ and $|g(t)| \leq |f(t)|$ for μ -almost all $t \in \Omega$, then $g \in E$ and $\|g\|_E \leq \|f\|_E$.

Let $I_{\varphi}: L^0(\Omega) \to [0,\infty]$ be a semimodular defined by

$$I_{\varphi}(f) = \begin{cases} \|\varphi(|f|)\|_{E} & \text{if } \varphi(|f|) \in E, \\ \infty & \text{otherwise.} \end{cases}$$

The *Calderón-Lozanowskiĭ* space E_arphi is the space

$$E_arphi = \{f \in L^0(\Omega): I_arphi(cf) < \infty ext{ for some } c > 0\}$$

$$\|f\|_{E\varphi} = \inf\{c > 0: I_{\varphi}(f/c) \leq 1\}.$$

For any Young function φ we define:

 $a_{\varphi} = \sup\{x \in \mathbb{R} : \varphi(x) = 0\}$ and $b_{\varphi} = \sup\{x \in \mathbb{R} : \varphi(x) < \infty\}.$

Let (Ω, Σ, μ) be a complete σ -finite measure space. A Banach space $E = (E, \|\cdot\|_E)$ is called a Banach ideal space on Ω if E is a linear subspace of $L^0(\Omega)$ with the ideal property: if $f \in E, g \in L^0(\Omega)$ and $|g(t)| \leq |f(t)|$ for μ -almost all $t \in \Omega$, then $g \in E$ and $\|g\|_E \leq \|f\|_E$. Let $I_{\varphi} : L^0(\Omega) \to [0, \infty]$ be a semimodular defined by

$$I_{\varphi}(f) = \begin{cases} \|\varphi(|f|)\|_{E} & \text{if } \varphi(|f|) \in E, \\ \infty & \text{otherwise.} \end{cases}$$

The *Calderón-Lozanowskiĭ* space E_arphi is the space

$$E_arphi = \{f \in L^0(\Omega): I_arphi(cf) < \infty ext{ for some } c > 0\}$$

$$\|f\|_{E\varphi} = \inf\{c > 0: I_{\varphi}(f/c) \leq 1\}.$$

For any Young function φ we define:

 $a_{\varphi} = \sup\{x \in \mathbb{R} : \varphi(x) = 0\}$ and $b_{\varphi} = \sup\{x \in \mathbb{R} : \varphi(x) < \infty\}.$

Let (Ω, Σ, μ) be a complete σ -finite measure space. A Banach space $E = (E, \|\cdot\|_E)$ is called a *Banach ideal space* on Ω if E is a linear subspace of $L^0(\Omega)$ with the ideal property:

if $f \in E, g \in L^0(\Omega)$ and $|g(t)| \leq |f(t)|$ for μ -almost all $t \in \Omega$, then $g \in E$ and $||g||_E \leq ||f||_E$. Let $I_{\varphi} : L^0(\Omega) \to [0, \infty]$ be a semimodular defined by

$$I_{\varphi}(f) = \begin{cases} \|\varphi(|f|)\|_{E} & \text{if } \varphi(|f|) \in E, \\ \infty & \text{otherwise.} \end{cases}$$

The *Calderón-Lozanowskii̇́* space E_{arphi} is the space

$$E_arphi = \{f \in L^0(\Omega): I_arphi(cf) < \infty ext{ for some } c > 0\}$$

$$\|f\|_{E\varphi} = \inf\{c > 0: I_{\varphi}(f/c) \leq 1\}.$$

For any Young function φ we define:

 $a_{\varphi} = \sup\{x \in \mathbb{R} : \varphi(x) = 0\}$ and $b_{\varphi} = \sup\{x \in \mathbb{R} : \varphi(x) < \infty\}.$

Let (Ω, Σ, μ) be a complete σ -finite measure space. A Banach space $E = (E, \|\cdot\|_E)$ is called a Banach ideal space on Ω if E is a linear subspace of $L^{0}(\Omega)$ with the ideal property: if $f \in E, g \in L^0(\Omega)$ and $|g(t)| \leq |f(t)|$ for μ -almost all $t \in \Omega$, then $g \in E$ and $\|g\|_{E} < \|f\|_{E}$

$$I_{\varphi}(f) = \left\{ egin{array}{cc} \| arphi(|f|) \|_E & ext{if} \quad arphi(|f|) \in E, \ \infty & ext{otherwise}. \end{array}
ight.$$

$$E_arphi = \{f \in L^0(\Omega): I_arphi(cf) < \infty ext{ for some } c > 0\}$$

$$\|f\|_{E\varphi} = \inf\{c > 0: I_{\varphi}(f/c) \leq 1\}.$$

For any Young function φ we define:

 $a_{\varphi} = \sup\{x \in \mathbb{R} : \varphi(x) = 0\}$ and $b_{\varphi} = \sup\{x \in \mathbb{R} : \varphi(x) < \infty\}.$

Let (Ω, Σ, μ) be a complete σ -finite measure space. A Banach space $E = (E, \|\cdot\|_E)$ is called a Banach ideal space on Ω if E is a linear subspace of $L^0(\Omega)$ with the ideal property: if $f \in E, g \in L^0(\Omega)$ and $|g(t)| \leq |f(t)|$ for μ -almost all $t \in \Omega$, then $g \in E$ and $\|g\|_E \leq \|f\|_E$. Let $I_{\varphi} : L^0(\Omega) \to [0, \infty]$ be a semimodular defined by

$$I_{\varphi}(f) = \left\{ egin{array}{cc} \| arphi(|f|) \|_E & ext{if} \quad arphi(|f|) \in E, \ \infty & ext{otherwise.} \end{array}
ight.$$

The *Calderón-Lozanowskiĭ* space E_arphi is the space

$$E_arphi=\{f\in L^0(\Omega): I_arphi(cf)<\infty ext{ for some } c>0\}$$

$$\|f\|_{E\varphi} = \inf\{c > 0: I_{\varphi}(f/c) \leq 1\}.$$

For any Young function φ we define:

 $a_{\varphi} = \sup\{x \in \mathbb{R} : \varphi(x) = 0\}$ and $b_{\varphi} = \sup\{x \in \mathbb{R} : \varphi(x) < \infty\}.$

Let (Ω, Σ, μ) be a complete σ -finite measure space. A Banach space $E = (E, \|\cdot\|_E)$ is called a Banach ideal space on Ω if E is a linear subspace of $L^0(\Omega)$ with the ideal property: if $f \in E, g \in L^0(\Omega)$ and $|g(t)| \leq |f(t)|$ for μ -almost all $t \in \Omega$, then $g \in E$ and $\|g\|_E \leq \|f\|_E$. Let $I_{\varphi} : L^0(\Omega) \to [0, \infty]$ be a semimodular defined by

$$I_{\varphi}(f) = \left\{egin{array}{cc} \|arphi(|f|)\|_E & ext{if} \quad arphi(|f|) \in E, \ \infty & ext{otherwise.} \end{array}
ight.$$

The Calderón-Lozanowskii space E_{φ} is the space

$${\it E}_arphi=\{f\in L^0(\Omega): I_arphi(cf)<\infty ext{ for some } c>0\}$$

$$\|f\|_{E\varphi} = \inf\{c > 0: I_{\varphi}(f/c) \leq 1\}.$$

For any Young function φ we define:

 $a_{\varphi} = \sup\{x \in \mathbb{R} : \varphi(x) = 0\}$ and $b_{\varphi} = \sup\{x \in \mathbb{R} : \varphi(x) < \infty\}.$

Let (Ω, Σ, μ) be a complete σ -finite measure space. A Banach space $E = (E, \|\cdot\|_E)$ is called a Banach ideal space on Ω if E is a linear subspace of $L^0(\Omega)$ with the ideal property: if $f \in E, g \in L^0(\Omega)$ and $|g(t)| \leq |f(t)|$ for μ -almost all $t \in \Omega$, then $g \in E$ and $\|g\|_E \leq \|f\|_E$. Let $I_{\varphi} : L^0(\Omega) \to [0, \infty]$ be a semimodular defined by

$$I_{\varphi}(f) = \left\{ egin{array}{cc} \| arphi(|f|) \|_E & ext{if} \quad arphi(|f|) \in E, \ \infty & ext{otherwise.} \end{array}
ight.$$

The Calderón-Lozanowskii space E_{φ} is the space

$$E_{arphi}=\{f\in L^0(\Omega): I_{arphi}(cf)<\infty ext{ for some } c>0\}$$

$$\|f\|_{E\varphi} = \inf\{c > 0: I_{\varphi}(f/c) \leq 1\}.$$

- If E = L¹(Ω), then E_φ is the Orlicz space L^φ(Ω) equipped with the Luxemburg norm.
- If E is a Lorentz function (sequence) space, then E_φ is the corresponding Orlicz-Lorentz function (sequence) space equipped with the Luxemburg norm.
- If φ(t) = t^p, 1 ≤ p < ∞, then E_φ is in this case the p convexification E^(p) of E with the norm ||f||_{E^(p)} = |||f|^p||_E^{1/p}.
- If $\varphi(t) = 0$ for $t \in [0, 1]$ and $\varphi(t) = \infty$ otherwise, then $E_{\varphi} = L^{\infty}(\Omega)$ and the corresponding norms are equal.

- If E = L¹(Ω), then E_φ is the Orlicz space L^φ(Ω) equipped with the Luxemburg norm.
- **(a)** If *E* is a Lorentz function (sequence) space, then E_{φ} is the corresponding Orlicz-Lorentz function (sequence) space equipped with the Luxemburg norm.
- If φ(t) = t^p, 1 ≤ p < ∞, then E_φ is in this case the p convexification E^(p) of E with the norm ||f||_{E^(p)} = |||f|^p||_E^{1/p}.
- If $\varphi(t) = 0$ for $t \in [0, 1]$ and $\varphi(t) = \infty$ otherwise, then $E_{\varphi} = L^{\infty}(\Omega)$ and the corresponding norms are equal.

- If E = L¹(Ω), then E_φ is the Orlicz space L^φ(Ω) equipped with the Luxemburg norm.
- If E is a Lorentz function (sequence) space, then E_φ is the corresponding Orlicz-Lorentz function (sequence) space equipped with the Luxemburg norm.
- If φ(t) = t^p, 1 ≤ p < ∞, then E_φ is in this case the p convexification E^(p) of E with the norm ||f||_{E^(p)} = |||f|^p||_E^{1/p}.
- If $\varphi(t) = 0$ for $t \in [0,1]$ and $\varphi(t) = \infty$ otherwise, then $E_{\varphi} = L^{\infty}(\Omega)$ and the corresponding norms are equal.

- If E = L¹(Ω), then E_φ is the Orlicz space L^φ(Ω) equipped with the Luxemburg norm.
- If E is a Lorentz function (sequence) space, then E_φ is the corresponding Orlicz-Lorentz function (sequence) space equipped with the Luxemburg norm.
- If φ(t) = t^p, 1 ≤ p < ∞, then E_φ is in this case the p convexification E^(p) of E with the norm ||f||_{E^(p)} = |||f|^p||_E^{1/p}.
- If $\varphi(t) = 0$ for $t \in [0,1]$ and $\varphi(t) = \infty$ otherwise, then $E_{\varphi} = L^{\infty}(\Omega)$ and the corresponding norms are equal.

- If E = L¹(Ω), then E_φ is the Orlicz space L^φ(Ω) equipped with the Luxemburg norm.
- If E is a Lorentz function (sequence) space, then E_φ is the corresponding Orlicz-Lorentz function (sequence) space equipped with the Luxemburg norm.
- If φ(t) = t^p, 1 ≤ p < ∞, then E_φ is in this case the p convexification E^(p) of E with the norm ||f||_{E^(p)} = |||f|^p||_E^{1/p}.
- If $\varphi(t) = 0$ for $t \in [0, 1]$ and $\varphi(t) = \infty$ otherwise, then $E_{\varphi} = L^{\infty}(\Omega)$ and the corresponding norms are equal.

Let (Ω, Σ, μ) be a complete σ -finite measure space and E be a Banach ideal in $L^0(\Omega)$ such that $\chi_A \in E$ for every $A \in \Sigma_+$.

Theorem

Let E_{φ_1} , E_{φ_2} , E_{φ_3} be Calderón-Lozanowskii spaces with $\Sigma_+ \neq \emptyset$. Assume that $a_{\varphi_3} = 0$ and for any $\varepsilon > 0$ there is $A \in \Sigma_+$ such that $\frac{1}{||\chi_A||_E} \leq \min\{\varphi_1(b_{\varphi_1}), \varphi_2(b_{\varphi_2})\}$ and $\frac{\|\chi_A\|_{E_{\varphi_1}} \cdot \|\chi_A\|_{E_{\varphi_2}}}{\|\chi_A\|_{E_{\varphi_3}}} = \frac{\varphi_3^{-1}\left(\frac{1}{\|\chi_A\|}\right)}{\varphi_1^{-1}\left(\frac{1}{\|\chi_A\|}\right) \cdot \varphi_2^{-1}\left(\frac{1}{\|\chi_A\|}\right)} \leq \varepsilon.$ (1) Then the set $F = \{(f_1, f_2) \in E_{\varphi_1} \times E_{\varphi_2} : f_1 \cdot f_2 \in E_{\varphi_3}\}$ is $\sigma - \frac{2}{3}$ -lower porous.

Let (Ω, Σ, μ) be a complete σ -finite measure space and E be a Banach ideal in $L^0(\Omega)$ such that $\chi_A \in E$ for every $A \in \Sigma_+$.

Theorem

Let E_{φ_1} , E_{φ_2} , E_{φ_3} be Calderón-Lozanowskii spaces with $\Sigma_+ \neq \emptyset$. Assume that $a_{\varphi_3} = 0$ and for any $\varepsilon > 0$ there is $A \in \Sigma_+$ such that $\frac{1}{||\chi_A||_E} \leq \min\{\varphi_1(b_{\varphi_1}), \varphi_2(b_{\varphi_2})\}$ and $\frac{||\chi_A||_{E_{\varphi_1}} \cdot ||\chi_A||_{E_{\varphi_2}}}{||\chi_A||_{E_{\varphi_3}}} = \frac{\varphi_3^{-1}\left(\frac{1}{||\chi_A||}\right)}{\varphi_1^{-1}\left(\frac{1}{||\chi_A||}\right) \cdot \varphi_2^{-1}\left(\frac{1}{||\chi_A||}\right)} \leq \varepsilon.$ (1) Then the set $F = \{(f_1, f_2) \in E_{\varphi_1} \times E_{\varphi_2} : f_1 \cdot f_2 \in E_{\varphi_3}\}$ is $\sigma - \frac{2}{3}$ -lower porous.

Let (Ω, Σ, μ) be a complete σ -finite measure space and E be a Banach ideal in $L^0(\Omega)$ such that $\chi_A \in E$ for every $A \in \Sigma_+$.

Theorem

Let E_{φ_1} , E_{φ_2} , E_{φ_3} be Calderón-Lozanowskii spaces with $\Sigma_+ \neq \emptyset$. Assume that $a_{\varphi_3} = 0$ and for any $\varepsilon > 0$ there is $A \in \Sigma_+$ such that $\frac{1}{||\chi_A||_E} \le \min\{\varphi_1(b_{\varphi_1}), \varphi_2(b_{\varphi_2})\}$ and $\frac{\|\chi_A\|_{E_{\varphi_1}} \cdot \|\chi_A\|_{E_{\varphi_2}}}{\|\chi_A\|_{E_{\varphi_3}}} = \frac{\varphi_3^{-1}\left(\frac{1}{\|\chi_A\|}\right)}{\varphi_1^{-1}\left(\frac{1}{\|\chi_A\|}\right) \cdot \varphi_2^{-1}\left(\frac{1}{\|\chi_A\|}\right)} \le \varepsilon.$ (1) Then the set $F = \{(f_1, f_2) \in E_{\varphi_1} \times E_{\varphi_2} : f_1 \cdot f_2 \in E_{\varphi_3}\}$ is $\sigma - \frac{2}{3}$ -lower porous.

Let (Ω, Σ, μ) be a complete σ -finite measure space and E be a Banach ideal in $L^0(\Omega)$ such that $\chi_A \in E$ for every $A \in \Sigma_+$.

Theorem

Let E_{φ_1} , E_{φ_2} , E_{φ_3} be Calderón-Lozanowskii spaces with $\Sigma_+ \neq \emptyset$. Assume that $a_{\varphi_3} = 0$ and for any $\varepsilon > 0$ there is $A \in \Sigma_+$ such that $\frac{1}{||\chi_A||_E} \le \min\{\varphi_1(b_{\varphi_1}), \varphi_2(b_{\varphi_2})\}$ and $\frac{\|\chi_A\|_{E_{\varphi_1}} \cdot \|\chi_A\|_{E_{\varphi_2}}}{\|\chi_A\|_{E_{\varphi_3}}} = \frac{\varphi_3^{-1}\left(\frac{1}{\|\chi_A\|}\right)}{\varphi_1^{-1}\left(\frac{1}{\|\chi_A\|}\right) \cdot \varphi_2^{-1}\left(\frac{1}{\|\chi_A\|}\right)} \le \varepsilon.$ (1) Then the set $F = \{(f_1, f_2) \in E_{\varphi_1} \times E_{\varphi_2} : f_1 \cdot f_2 \in E_{\varphi_3}\}$ is $\sigma - \frac{2}{3}$ -lower porous.

A Banach ideal space E is called *order continuous* if for every $f \in E$ and every sequence $\{A_n\}$ satisfying $A_n \downarrow \emptyset$ (that is $A_n \supset A_{n+1}$ and $\mu\left(\bigcap_{n=1}^{\infty} A_n\right) = 0$), we have that $\|f\chi_{A_n}\|_E \downarrow 0$.

[heorem]

Let φ_1 , φ_2 and φ_3 be Young functions with $b_{\varphi_3} = \infty$ and E be a Banach ideal space with order continuous norm. If there exists $(h, k) \in E_{\varphi_1} \times E_{\varphi_2}$ such that $h \cdot k \notin E_{\varphi_3}$, then the set

$$\{(f,g)\in E_{\varphi_1}\times E_{\varphi_2}: f\cdot g\in E_{\varphi_3}\}$$

is of the first category in $E_{\varphi_1} \times E_{\varphi_2}$.

A Banach ideal space E is called *order continuous* if for every $f \in E$ and every sequence $\{A_n\}$ satisfying $A_n \downarrow \emptyset$ (that is $A_n \supset A_{n+1}$ and $\mu \left(\bigcap_{n=1}^{\infty} A_n\right) = 0$), we have that $\|f\chi_{A_n}\|_E \downarrow 0$.

Theorem

Let φ_1 , φ_2 and φ_3 be Young functions with $b_{\varphi_3} = \infty$ and E be a Banach ideal space with order continuous norm. If there exists $(h, k) \in E_{\varphi_1} \times E_{\varphi_2}$ such that $h \cdot k \notin E_{\varphi_3}$, then the set

 $\{(f,g)\in E_{arphi_1} imes E_{arphi_2}: f\cdot g\in E_{arphi_3}\}$

is of the first category in $E_{arphi_1} imes E_{arphi_2}$.

A Banach ideal space E is called *order continuous* if for every $f \in E$ and every sequence $\{A_n\}$ satisfying $A_n \downarrow \emptyset$ (that is $A_n \supset A_{n+1}$ and $\mu \left(\bigcap_{n=1}^{\infty} A_n\right) = 0$), we have that $\|f\chi_{A_n}\|_E \downarrow 0$.

Theorem

Let φ_1 , φ_2 and φ_3 be Young functions with $b_{\varphi_3} = \infty$ and E be a Banach ideal space with order continuous norm. If there exists $(h, k) \in E_{\varphi_1} \times E_{\varphi_2}$ such that $h \cdot k \notin E_{\varphi_3}$, then the set

 $\{(f,g)\in E_{arphi_1} imes E_{arphi_2}:f\cdot g\in E_{arphi_3}\}$

is of the first category in $E_{arphi_1} imes E_{arphi_2}$.

A Banach ideal space E is called *order continuous* if for every $f \in E$ and every sequence $\{A_n\}$ satisfying $A_n \downarrow \emptyset$ (that is $A_n \supset A_{n+1}$ and $\mu\left(\bigcap_{n=1}^{\infty} A_n\right) = 0$), we have that $\|f\chi_{A_n}\|_E \downarrow 0$.

Theorem

Let φ_1 , φ_2 and φ_3 be Young functions with $b_{\varphi_3} = \infty$ and E be a Banach ideal space with order continuous norm. If there exists $(h, k) \in E_{\varphi_1} \times E_{\varphi_2}$ such that $h \cdot k \notin E_{\varphi_3}$, then the set

$$\{(f,g)\in E_{\varphi_1}\times E_{\varphi_2}: f\cdot g\in E_{\varphi_3}\}$$

is of the first category in $E_{\varphi_1} \times E_{\varphi_2}$.

let G be a locally compact group with a fixed left Haar measure λ . Let E be a Banach ideal in $L^0(G)$ such that

- (a) if $f_n \nearrow f$ for some nonnegative functions $f_n \in E$, $n \in \mathbb{N}$ and $f \in L^0(G)$, then $||f_n||_E \to ||f||_E$ provided $f \in E$, and $||f_n||_E \to \infty$ if $f \notin E$.
- (b) if $V \subset G$ and $\lambda(V) < \infty$, then $\chi_V \in E$;
- (c) if $V \subset G$ and $\lambda(V) < \infty$, then there is $C_V < \infty$ such that $\int_V |f| d\lambda \le C_V ||f||_E$ for every $f \in E$.

let G be a locally compact group with a fixed left Haar measure λ . Let E be a Banach ideal in $L^0(G)$ such that

- (a) if $f_n \nearrow f$ for some nonnegative functions $f_n \in E$, $n \in \mathbb{N}$ and $f \in L^0(G)$, then $||f_n||_E \to ||f||_E$ provided $f \in E$, and $||f_n||_E \to \infty$ if $f \notin E$.
- (b) if $V \subset G$ and $\lambda(V) < \infty$, then $\chi_V \in E$;
- (c) if $V \subset G$ and $\lambda(V) < \infty$, then there is $C_V < \infty$ such that $\int_V |f| d\lambda \leq C_V ||f||_E$ for every $f \in E$.

let G be a locally compact group with a fixed left Haar measure λ . Let E be a Banach ideal in $L^0(G)$ such that

- (a) if $f_n \nearrow f$ for some nonnegative functions $f_n \in E$, $n \in \mathbb{N}$ and $f \in L^0(G)$, then $||f_n||_E \to ||f||_E$ provided $f \in E$, and $||f_n||_E \to \infty$ if $f \notin E$.
- (b) if $V \subset G$ and $\lambda(V) < \infty$, then $\chi_V \in E$;
- (c) if $V \subset G$ and $\lambda(V) < \infty$, then there is $C_V < \infty$ such that $\int_V |f| d\lambda \le C_V ||f||_E$ for every $f \in E$.

let G be a locally compact group with a fixed left Haar measure λ . Let E be a Banach ideal in $L^0(G)$ such that

- (a) if $f_n \nearrow f$ for some nonnegative functions $f_n \in E$, $n \in \mathbb{N}$ and $f \in L^0(G)$, then $||f_n||_E \to ||f||_E$ provided $f \in E$, and $||f_n||_E \to \infty$ if $f \notin E$.
- (b) if $V \subset G$ and $\lambda(V) < \infty$, then $\chi_V \in E$;
- (c) if $V \subset G$ and $\lambda(V) < \infty$, then there is $C_V < \infty$ such that $\int_V |f| d\lambda \le C_V ||f||_E$ for every $f \in E$.

let G be a locally compact group with a fixed left Haar measure λ . Let E be a Banach ideal in $L^0(G)$ such that

- (a) if $f_n \nearrow f$ for some nonnegative functions $f_n \in E$, $n \in \mathbb{N}$ and $f \in L^0(G)$, then $||f_n||_E \to ||f||_E$ provided $f \in E$, and $||f_n||_E \to \infty$ if $f \notin E$.
- (b) if $V \subset G$ and $\lambda(V) < \infty$, then $\chi_V \in E$;
- (c) if $V \subset G$ and $\lambda(V) < \infty$, then there is $C_V < \infty$ such that $\int_V |f| d\lambda \le C_V ||f||_E$ for every $f \in E$.

 $f, g \in L^{0}(G)$ are called *equimeasurable*, if $\lambda(\{x \in G : |f(x)| > t\}) = \lambda(\{x \in G : |g(x)| > t\})$ for every $t \ge 0$. We additionally assume that *E* is *rearrangement-invariant*, i.e (d) for every equimeasurable real functions $f, g \in E$, $||f||_{E} = ||g||_{E}$.

let G be a locally compact group with a fixed left Haar measure λ . Let E be a Banach ideal in $L^0(G)$ such that

(a) if $f_n \nearrow f$ for some nonnegative functions $f_n \in E$, $n \in \mathbb{N}$ and $f \in L^0(G)$, then $||f_n||_E \to ||f||_E$ provided $f \in E$, and $||f_n||_E \to \infty$ if $f \notin E$.

(b) if
$$V \subset G$$
 and $\lambda(V) < \infty$, then $\chi_V \in E$;

(c) if
$$V \subset G$$
 and $\lambda(V) < \infty$, then there is $C_V < \infty$ such that $\int_V |f| d\lambda \le C_V ||f||_E$ for every $f \in E$.

 $f, g \in L^{0}(G)$ are called *equimeasurable*, if $\lambda(\{x \in G : |f(x)| > t\}) = \lambda(\{x \in G : |g(x)| > t\})$ for every $t \ge 0$. We additionally assume that E is *rearrangement-invariant*, i.e (d) for every equimeasurable real functions $f, g \in E$, $||f||_{E} = ||g||_{E}$.

let G be a locally compact group with a fixed left Haar measure λ . Let E be a Banach ideal in $L^0(G)$ such that

(a) if $f_n \nearrow f$ for some nonnegative functions $f_n \in E$, $n \in \mathbb{N}$ and $f \in L^0(G)$, then $||f_n||_E \to ||f||_E$ provided $f \in E$, and $||f_n||_E \to \infty$ if $f \notin E$.

(b) if
$$V \subset G$$
 and $\lambda(V) < \infty$, then $\chi_V \in E$;

(c) if
$$V \subset G$$
 and $\lambda(V) < \infty$, then there is $C_V < \infty$ such that $\int_V |f| d\lambda \leq C_V ||f||_E$ for every $f \in E$.

 $f, g \in L^{0}(G)$ are called *equimeasurable*, if $\lambda(\{x \in G : |f(x)| > t\}) = \lambda(\{x \in G : |g(x)| > t\})$ for every $t \ge 0$. We additionally assume that *E* is *rearrangement-invariant*, i.e (d) for every equimeasurable real functions $f, g \in E$, $||f||_{E} = ||g||_{E}$.

Note that if $\lambda(V) = \lambda(U)$, then χ_V and χ_U are equimeasurable, hence

 $\|\chi_{\mathbf{V}}\|_{\mathbf{E}} = \|\chi_{\mathbf{U}}\|_{\mathbf{E}}$. Thus there exists a function $\xi_{\mathbf{E}} : [0, \infty) \to [0, \infty)$ such that for every measurable $V \subset G$ with $\lambda(V) < \infty$

$\xi_E(\lambda(V)) := \|\chi_V\|_E.$

The function ξ_E (which is uniquely determined just on the range of λ), is called the *fundamental function of E*.

Finally, we make the following assumptions on the fundamental function: (e) The fundamental function ξ_E is continuous at 0, that is, $\lim_{t\to 0} \xi_E(t) = 0$. (f) The fundamental function ξ_E is unbounded, that is, $\lim_{t\to\infty} \xi_E(t) = \infty$.

Note that if $\lambda(V) = \lambda(U)$, then χ_V and χ_U are equimeasurable, hence $\|\chi_V\|_E = \|\chi_U\|_E$. Thus there exists a function $\xi_E : [0, \infty) \to [0, \infty)$ such that for every measurable $V \subset G$ with $\lambda(V) < \infty$

$\xi_E(\lambda(V)) := \|\chi_V\|_E.$

The function ξ_E (which is uniquely determined just on the range of λ), is called the *fundamental function of* E.

Finally, we make the following assumptions on the fundamental function:

(e) The fundamental function ξ_E is continuous at 0, that is, $\lim_{t\to 0} \xi_E(t) = 0$.

(f) The fundamental function ξ_E is unbounded, that is, $\lim_{t\to\infty} \xi_E(t) = \infty$.

Note that if $\lambda(V) = \lambda(U)$, then χ_V and χ_U are equimeasurable, hence $\|\chi_V\|_E = \|\chi_U\|_E$. Thus there exists a function $\xi_E : [0, \infty) \to [0, \infty)$ such that for every measurable $V \subset G$ with $\lambda(V) < \infty$

 $\xi_E(\lambda(V)) := \|\chi_V\|_E.$

The function ξ_E (which is uniquely determined just on the range of λ), is called the *fundamental function of E*.

Finally, we make the following assumptions on the fundamental function: (e) The fundamental function ξ_E is continuous at 0, that is, $\lim_{t\to 0} \xi_E(t) = 0$. (f) The fundamental function ξ_E is unbounded, that is, $\lim_{t\to\infty} \xi_E(t) = \infty$.

Note that if $\lambda(V) = \lambda(U)$, then χ_V and χ_U are equimeasurable, hence $\|\chi_V\|_E = \|\chi_U\|_E$. Thus there exists a function $\xi_E : [0, \infty) \to [0, \infty)$ such that for every measurable $V \subset G$ with $\lambda(V) < \infty$

 $\xi_E(\lambda(V)) := \|\chi_V\|_E.$

The function ξ_E (which is uniquely determined just on the range of λ), is called the *fundamental function of E*.

Finally, we make the following assumptions on the fundamental function:

(e) The fundamental function ξ_E is continuous at 0, that is, $\lim_{t\to 0} \xi_E(t) = 0$. (f) The fundamental function ξ_E is unbounded, that is, $\lim_{t\to\infty} \xi_E(t) = \infty$.

Note that if $\lambda(V) = \lambda(U)$, then χ_V and χ_U are equimeasurable, hence $\|\chi_V\|_E = \|\chi_U\|_E$. Thus there exists a function $\xi_E : [0, \infty) \to [0, \infty)$ such that for every measurable $V \subset G$ with $\lambda(V) < \infty$

 $\xi_E(\lambda(V)) := \|\chi_V\|_E.$

The function ξ_E (which is uniquely determined just on the range of λ), is called the *fundamental function of E*.

Finally, we make the following assumptions on the fundamental function: (e) The fundamental function ξ_E is continuous at 0, that is, $\lim_{t\to 0} \xi_E(t) = 0$. (f) The fundamental function ξ_E is unbounded, that is, $\lim_{t\to\infty} \xi_E(t) = \infty$.

Note that if $\lambda(V) = \lambda(U)$, then χ_V and χ_U are equimeasurable, hence $\|\chi_V\|_E = \|\chi_U\|_E$. Thus there exists a function $\xi_E : [0, \infty) \to [0, \infty)$ such that for every measurable $V \subset G$ with $\lambda(V) < \infty$

 $\xi_E(\lambda(V)) := \|\chi_V\|_E.$

The function ξ_E (which is uniquely determined just on the range of λ), is called the *fundamental function of E*.

Finally, we make the following assumptions on the fundamental function: (e) The fundamental function ξ_E is continuous at 0, that is, $\lim_{t\to 0} \xi_E(t) = 0$.

(f) The fundamental function ξ_E is unbounded, that is, $\lim_{t\to\infty}\xi_E(t)=\infty$.

Theorem

Let G be a locally compact group that satisfies the condition

(*) for every compact neighbourhood V of the identity element of G, there exist $\alpha > 1$ and a strictly increasing sequence $(p_n)_{n \in \mathbb{N}}$ such that for each $n \in \mathbb{N}$, $\lambda(V^{2p_n}) < \alpha\lambda(V^{p_n})$;

and let $arphi_i,\ i=1,2,3$ be Young functions with $arphi_i(b_{arphi_i})>$ 0, for i=1,2,3 and

$$\liminf_{x \to 0} \frac{\varphi_1^{-1}(x)\varphi_2^{-1}(x)}{x\varphi_3^{-1}(x)} = \infty.$$

If G is non-compact, then the set $F := \{(f,g) \in E_{\varphi_1} \times E_{\varphi_2} : |f| * |g| \in E_{\varphi_3}\}$ is of first category in $E_{\varphi_1} \times E_{\varphi_2}$.

Locally compact group G having polynomial growth satisfies the condition (*). It is an extension of a result from [A. Kamińska and J. Musielak, On convolution operator in Orlicz spaces, *Rev. Mat. Complut.* 2 (1989), 157–178.] where it is shown that $F \neq E_{\varphi_1} \times E_{\varphi_2}$ in the case of Orlicz spaces E_{φ_i} for Abelian groups G.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem

Let G be a locally compact group that satisfies the condition

(*) for every compact neighbourhood V of the identity element of G, there exist $\alpha > 1$ and a strictly increasing sequence $(p_n)_{n \in \mathbb{N}}$ such that for each $n \in \mathbb{N}$, $\lambda(V^{2p_n}) < \alpha\lambda(V^{p_n})$;

and let φ_i , i = 1, 2, 3 be Young functions with $\varphi_i(b_{\varphi_i}) > 0$, for i = 1, 2, 3 and

$$\liminf_{x \to 0} \frac{\varphi_1^{-1}(x)\varphi_2^{-1}(x)}{x\varphi_3^{-1}(x)} = \infty.$$

If G is non-compact, then the set $F := \{(f,g) \in E_{\varphi_1} \times E_{\varphi_2} : |f| * |g| \in E_{\varphi_3}\}$ is of first category in $E_{\varphi_1} \times E_{\varphi_2}$.

Locally compact group G having polynomial growth satisfies the condition (*). It is an extension of a result from [A. Kamińska and J. Musielak, On convolution operator in Orlicz spaces, *Rev. Mat. Complut.* 2 (1989), 157–178.] where it is shown that $F \neq E_{\varphi_1} \times E_{\varphi_2}$ in the case of Orlicz spaces E_{φ_i} for Abelian groups G.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem

Let G be a locally compact group that satisfies the condition

(*) for every compact neighbourhood V of the identity element of G, there exist $\alpha > 1$ and a strictly increasing sequence $(p_n)_{n \in \mathbb{N}}$ such that for each $n \in \mathbb{N}$, $\lambda(V^{2p_n}) < \alpha\lambda(V^{p_n})$;

and let φ_i , i = 1, 2, 3 be Young functions with $\varphi_i(b_{\varphi_i}) > 0$, for i = 1, 2, 3 and

$$\liminf_{x \to 0} \frac{\varphi_1^{-1}(x)\varphi_2^{-1}(x)}{x\varphi_3^{-1}(x)} = \infty.$$

If G is non-compact, then the set $F := \{(f,g) \in E_{\varphi_1} \times E_{\varphi_2} : |f| * |g| \in E_{\varphi_3}\}$ is of first category in $E_{\varphi_1} \times E_{\varphi_2}$.

Locally compact group G having polynomial growth satisfies the condition (*). It is an extension of a result from [A. Kamińska and J. Musielak, On convolution operator in Orlicz spaces, *Rev. Mat. Complut.* 2 (1989), 157–178.] where it is shown that $F \neq E_{\varphi_1} \times E_{\varphi_2}$ in the case of Orlicz spaces E_{φ_i} for Abelian groups G.

- 4 回 5 - 4 戸 5 - 4 戸 5

Theorem

Let G be a locally compact group that satisfies the condition

(*) for every compact neighbourhood V of the identity element of G, there exist $\alpha > 1$ and a strictly increasing sequence $(p_n)_{n \in \mathbb{N}}$ such that for each $n \in \mathbb{N}$, $\lambda(V^{2p_n}) < \alpha\lambda(V^{p_n})$;

and let φ_i , i = 1, 2, 3 be Young functions with $\varphi_i(b_{\varphi_i}) > 0$, for i = 1, 2, 3 and

$$\liminf_{x \to 0} \frac{\varphi_1^{-1}(x)\varphi_2^{-1}(x)}{x\varphi_3^{-1}(x)} = \infty.$$

If G is non-compact, then the set $F := \{(f,g) \in E_{\varphi_1} \times E_{\varphi_2} : |f| * |g| \in E_{\varphi_3}\}$ is of first category in $E_{\varphi_1} \times E_{\varphi_2}$.

Locally compact group *G* having polynomial growth satisfies the condition (*). It is an extension of a result from [A. Kamińska and J. Musielak, On convolution operator in Orlicz spaces, *Rev. Mat. Complut.* 2 (1989), 157–178.] where it is shown that $F \neq E_{\varphi_1} \times E_{\varphi_2}$ in the case of Orlicz spaces E_{φ_i} for Abelian groups *G*.

(人間) (人) (人) (人) (人) (人)

Theorem

Let G be a locally compact group that satisfies the condition

(*) for every compact neighbourhood V of the identity element of G, there exist $\alpha > 1$ and a strictly increasing sequence $(p_n)_{n \in \mathbb{N}}$ such that for each $n \in \mathbb{N}$, $\lambda(V^{2p_n}) < \alpha\lambda(V^{p_n})$;

and let φ_i , i = 1, 2, 3 be Young functions with $\varphi_i(b_{\varphi_i}) > 0$, for i = 1, 2, 3 and

$$\liminf_{x \to 0} \frac{\varphi_1^{-1}(x)\varphi_2^{-1}(x)}{x\varphi_3^{-1}(x)} = \infty.$$

If G is non-compact, then the set $F := \{(f,g) \in E_{\varphi_1} \times E_{\varphi_2} : |f| * |g| \in E_{\varphi_3}\}$ is of first category in $E_{\varphi_1} \times E_{\varphi_2}$.

Locally compact group *G* having polynomial growth satisfies the condition (*). It is an extension of a result from [A. Kamińska and J. Musielak, On convolution operator in Orlicz spaces, *Rev. Mat. Complut.* **2** (1989), 157–178.] where it is shown that $F \neq E_{\varphi_1} \times E_{\varphi_2}$ in the case of Orlicz spaces E_{φ_i} for Abelian groups *G*.

Theorem

Let G be a locally compact group that satisfies the condition

(**) for every compact neighbourhood V of the identity element of G there exist $\kappa > 1$ and a sequence $(U_n)_{n \in \mathbb{N}}$ contained in V with $\lim_{n \to \infty} \lambda(U_n) = 0$ and $\lambda(U_n^{-1}U_n) \le \kappa \lambda(U_n)$;

and let φ_i , i = 1, 2, 3 be Young functions such that

$$\liminf_{x\to\infty}\frac{\varphi_1^{-1}(x)\varphi_2^{-1}(x)}{x\varphi_3^{-1}(x)}=\infty.$$

Then the set

$$F = \big\{ (f,g) \in L^{\varphi_1}(G) \times L^{\varphi_2}(G) : |f| * |g| \in L^{\varphi_3}(G) \big\}.$$

is of first category in $L^{\varphi_1}(G) \times L^{\varphi_2}(G)$.

Locally compact group G is amenable whenever it fulfills so-called Leptin condition, that is for every compact subset U of G and any $\epsilon > 0$ there exists a compact subset V in G of positive measure such that $\lambda(UV) < (1 + \epsilon)\lambda(V)$.

Theorem

Let G be an amenable locally compact group, φ a Young function with $\lim_{t\to 0} \varphi(t)/t = 0$, $\varphi(b_{\varphi}) > 0$ and ψ be a Young function with $\psi(b_{\psi}) = \infty$. If G is non-compact, then the set

$$F = \left\{ (f,g) \in E_{arphi} imes E_{\psi} : |f| * |g| \in E_{\psi}
ight\}$$

is of first category in $E_{\varphi} \times E_{\psi}$.

The above generalize the main result of [H. Hudzik, A. Kamińska and J. Musielak, On some Banach algebras given by a modular (1985)] from abelian locally compact groups to amenable ones in the context of Orlicz spaces. The amenability hypothesis cannot be dropped – R.A. Kunze and E.M. Stein (1960) show that the multiplication group of real matrices with determinant 1, $G = SL(2, \mathbb{R})$, satisfies $L^p(G) * L^2(G) \subset L^2(G)$ for $1 \le p < 2$.

化苯基苯 化苯基

Locally compact group G is amenable whenever it fulfills so-called Leptin condition, that is for every compact subset U of G and any $\epsilon > 0$ there exists a compact subset V in G of positive measure such that $\lambda(UV) < (1 + \epsilon)\lambda(V)$.

Theorem

Let G be an amenable locally compact group, φ a Young function with $\lim_{t\to 0} \varphi(t)/t = 0$, $\varphi(b_{\varphi}) > 0$ and ψ be a Young function with $\psi(b_{\psi}) = \infty$. If G is non-compact, then the set

$$F = \left\{ (f,g) \in E_{\varphi} imes E_{\psi} : |f| * |g| \in E_{\psi}
ight\}$$

is of first category in $E_{\varphi} \times E_{\psi}$.

The above generalize the main result of [H. Hudzik, A. Kamińska and J. Musielak, On some Banach algebras given by a modular (1985)] from abelian locally compact groups to amenable ones in the context of Orlicz spaces. The amenability hypothesis cannot be dropped – R.A. Kunze and E.M. Stein (1960) show that the multiplication group of real matrices with determinant 1, $G = SL(2, \mathbb{R})$, satisfies $L^p(G) * L^2(G) \subset L^2(G)$ for $1 \le p < 2$.

A 3 5 A 3 5 A

Locally compact group G is amenable whenever it fulfills so-called Leptin condition, that is for every compact subset U of G and any $\epsilon > 0$ there exists a compact subset V in G of positive measure such that $\lambda(UV) < (1 + \epsilon)\lambda(V)$.

Theorem

Let G be an amenable locally compact group, φ a Young function with $\lim_{t\to 0} \varphi(t)/t = 0$, $\varphi(b_{\varphi}) > 0$ and ψ be a Young function with $\psi(b_{\psi}) = \infty$. If G is non-compact, then the set

$$F = \left\{ (f,g) \in E_{\varphi} imes E_{\psi} : |f| * |g| \in E_{\psi}
ight\}$$

is of first category in $E_{\varphi} \times E_{\psi}$.

The above generalize the main result of [H. Hudzik, A. Kamińska and J. Musielak, On some Banach algebras given by a modular (1985)] from abelian locally compact groups to amenable ones in the context of Orlicz spaces.

The amenability hypothesis cannot be dropped – R.A. Kunze and E.M. Stein (1960) show that the multiplication group of real matrices with determinant 1, $G = SL(2, \mathbb{R})$, satisfies $L^{p}(G) * L^{2}(G) \subset L^{2}(G)$ for $1 \leq p < 2$.

Locally compact group G is amenable whenever it fulfills so-called Leptin condition, that is for every compact subset U of G and any $\epsilon > 0$ there exists a compact subset V in G of positive measure such that $\lambda(UV) < (1 + \epsilon)\lambda(V)$.

Theorem

Let G be an amenable locally compact group, φ a Young function with $\lim_{t\to 0} \varphi(t)/t = 0$, $\varphi(b_{\varphi}) > 0$ and ψ be a Young function with $\psi(b_{\psi}) = \infty$. If G is non-compact, then the set

$$F = \left\{ (f,g) \in E_{\varphi} \times E_{\psi} : |f| * |g| \in E_{\psi} \right\}$$

is of first category in $E_{\varphi} \times E_{\psi}$.

The above generalize the main result of [H. Hudzik, A. Kamińska and J. Musielak, On some Banach algebras given by a modular (1985)] from abelian locally compact groups to amenable ones in the context of Orlicz spaces. The amenability hypothesis cannot be dropped – R.A. Kunze and E.M. Stein (1960) show that the multiplication group of real matrices with determinant 1, $G = SL(2, \mathbb{R})$, satisfies $L^p(G) * L^2(G) \subset L^2(G)$ for $1 \le p < 2$.

Theorem

Assume that G is a non-compact but locally compact group and φ, ψ are Young functions with $\varphi(b_{\varphi}) > 0$, $\psi(b_{\psi}) > 0$, satisfying

$$\liminf_{x\to 0}\frac{\varphi^{-1}(x)\psi^{-1}(x)}{x}=\infty.$$

(1.) If E is a real space, then for every compact set V with $\lambda(V) > 0$, the set

 $F_V = \left\{ (f,g) \in E_{\varphi} imes E_{\psi} : f * g(x) \text{ is well defined in some point } x \in V
ight\}$

is of first category in $E_{\varphi} \times E_{\psi}$. (2.) If E is complex, then for every compact set V with $\lambda(V) > 0$, the set $F'_V = \{(f,g) \in E_{\varphi} \times E_{\psi} : |f| * |g|(x) \text{ is finite at some point } x \in V\}$

is of first category in $E_{\varphi} \times E_{\psi}$.

For each $x \in G$, $\lambda_x(A) = \lambda(Ax)$ is a left invariant regular Borel measure on G. The uniqueness of the left Haar measure implies that for each $x \in G$ there is a positive number, say $\Delta(x)$, such that $\lambda_x = \Delta(x)\lambda$. The function $\Delta : G \to (0, \infty)$ is called the modular function of G. Δ is a continuous homomorphism on G. The group G is called *unimodular* whenever $\Delta = 1$. In this case, the left Haar measure and the right Haar measure coincide.

Theorem

Assume that G is a non-unimodular locally compact group and φ , ψ are Young functions with $\lim_{t\to 0} \varphi(t)/t = 0$, $\varphi(b_{\varphi}) > 0$ and $\psi(b_{\psi}) > 0$. For every compact set V with $\lambda(V) > 0$, the set

 $F_V = \{(f,g) \in E_{\varphi} \times E_{\psi} : f * g \text{ is well defined in some point } x \in V\}$

is of first category in $E_{\varphi} \times E_{\psi}$.

Side results

S & Strobin, Dichotomies for $C_0(X)$ and $C_b(X)$ spaces, Czechoslovak Math. J. 63(1), (2013), 91–105.

Theorem

Assume that (X, μ) is a topological measure space which is inner regular and such that the topological space X is locally compact and σ -compact. Let $h \in \mathbf{L}^1_{loc}$ and let (D_n) be a sequence of measurable subsets of X such that $\sup_{n \in \mathbb{N}} \int_{D_n} |h| d\mu = \infty$. Then the set

$$E^0_{h,(D_n)} := \left\{ (f,g) \in \mathbf{C}_0 imes \mathbf{C}_0 : \left(\int_{D_n} fgh \ d\mu
ight)_{n=1}^{\infty} \ ext{is bounded}
ight\}$$

is σ -strongly ball porous.

Balcerzak & Wachowicz, 2000

The set $E = \{(x, y) \in c_0 \times c_0 : (\sum_{i=1}^n x_i y_i)_{n=1}^\infty$ is bounded} is meager.

くぼう くちょう くちょ

Side results

S & Strobin, Dichotomies for $C_0(X)$ and $C_b(X)$ spaces, Czechoslovak Math. J. 63(1), (2013), 91–105.

Theorem

Assume that (X, μ) is a topological measure space which is inner regular and such that the topological space X is locally compact and σ -compact. Let $h \in \mathbf{L}^1_{loc}$ and let (D_n) be a sequence of measurable subsets of X such that $\sup_{n \in \mathbb{N}} \int_{D_n} |h| d\mu = \infty$. Then the set

$$E^0_{h,(D_n)} := \left\{ (f,g) \in \mathbf{C}_0 imes \mathbf{C}_0 : \left(\int_{D_n} fgh \ d\mu
ight)_{n=1}^{\infty} \ ext{is bounded}
ight\}$$

is σ -strongly ball porous.

Balcerzak & Wachowicz, 2000

The set $E = \{(x, y) \in c_0 \times c_0 : (\sum_{i=1}^n x_i y_i)_{n=1}^\infty$ is bounded} is meager.

Side results

G& Strobin, Spaceability of sets in $L_p \times L_q$ and $C_0 \times C_0$, J. Math. Anal. Appl. 440 (2016), no. 2, 451–465.

Theorem

Assume that one of the following conditions hold:

(i) $0 < \frac{1}{p} + \frac{1}{q} < \frac{1}{r}$ and $\sup\{\mu(A) : A \in \Sigma, \mu(A) < \infty\} = \infty;$

(ii)
$$\frac{1}{p} + \frac{1}{q} > \frac{1}{r}$$
 and $\inf\{\mu(A) : A \in \Sigma, \mu(A) > 0\} = 0$.

Then the set $E = \{(f,g) \in L^p \times L^q : fg \notin L^r\}$ is speceable in $L^p \times L^q$.

Theorem

Let G be a locally compact non-compact topological group. Let K be a fixed compact symmetric neighborhood of the identity element of G. Let $\infty > p, g > 1$ be such that $\frac{1}{p} + \frac{1}{q} < 1$. Then the set

$$E = \{(f,g) \in L^p \times L^q : \forall_{x \in K} \ (f \star g(x) = \infty \text{ or } f \star g(x) \text{ does not exists})\}$$

is spaceable.

1. Is a quantitative version of Saeki Theorem (the solution for L^p -conjecture) true?

2. Are the spaceability results, such as in the previous slide, true for Calderón-Lozanowskii spaces?