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EXPONENTIAL MAPPING FOR LIE GROUPOIDS

BY

JAN KUBARSKI (LODZ)

0. Introduction. Lie groupoids have appeared in many problems
of differential geometry of higher order, e.g., in the theories of connections
of higher order, G-structures of higher order, pseudogroups, and in some
theory of differential equations. Originally (see [5]), Lie groupoids were
assceiated with principal fibre bundles. Ngo Van Que [27] formulated
in 1967 a precise abstract definition of these objects (see also [7] and [18]).
The development of the general theory of Lie groupoids can be found
in the papers of Pradines [22]-[26] and Kumpera [11], [12], and also in
(3], [4], [8], [15]-[17], [21], [31]-[34].

In [11] an exponential mapping was defined. This paper is devoted

to a closer examination of this notion.

A Lie groupoid (see [27]) is a collection

{0.1) P = (¢, (a,B), M, )

in which

(i) @ and M are smooth (i.e., of class C*°) manifolds with countable
bases, M being a connected manifold;

(ii) a: @ - M and f: ® - M are surmersions (i.e., submersions
plus onto);

(ii) +: D — @, where D = {(2,2") e DX D : a(2) = B(#')}, is a partial
multiplication which satisfies

(a) B(2-2') = B(2) and a(z-2") = a(?) if (2,2') € D and +(2, 2’) = 22,

(b) for every point @ € M there exists an element I, € @ such that
a(l,) = f(l,) =»and z-l, =z if a(2) =wand I,z = z if B(2) = @,

(¢) for every element 2z € @ there exists an element z~! € @ such that
22! =1,, where y = (2), and 27!z = [, where » = a(2);

(iv) the condition of tramsitivity holds, which means that (a, f):
@ — M x M is surjective;

(v) the mapping ~' = (P32 27! € ) is smooth;
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(vi) for every smooth manifold W and for every two smooth mappings
f,9: W — @ such that aof = pog, the mapping

f9=(Wazef(2)9(2) € D)
is smooth.

If & = (P, (a,p), M, ) is a Lie groupoid (shortly, L.g.), then @ is
called a space of the groupoid @, M is said to be a manifold of units, a and
B are called mappings “source” and “target”.

The set &, of those elements &, belonging to the space of a Lie
groupoid @, for which a(h) = B(h) = @ is called the isotropy group of
@ over . It is a Lie group [27]. For every Lie groupoid @ and every @ be-
longing to M (i.e., to a manifold of the units) a principal fibre bundle

&, = (P, M, y, ¢(x,x)’ )

is determined in the following way [27]: The set @, consists of all elements
h € @ such that ah = @ (i.e., a(h) = #). D, is a submanifold of &@. The
projection y: @, — M is equal to f|®,. The action of the Lie group @,
on @, is determined by the formula - (h, g) = kg, where h € @,, g € D, ;).

A Lie group is a Lie groupoid with a one-element manifold of the
units. A typical example is the Lie groupoid z*(M) of all invertible jets
of the k-th order of a manifold M, where a(j*f) = », B(j%f) = f(»), and
Jliof kg = §5(fog) (see [6], [13], and [14]).

An element % € @ such that ah = # and Sk = y will be denoted by

h
x—>y.

1. Lie algebroid of a Lie groupoid. Let & = (9, (a, ), M, ) be an
L.g. The diffeomorphism

D, = (P29 >9g-hedy)

is called a right tranmslation by the element h € @ (see [11]). The vector field
£onan open set 2 < @ is called right-invariant (shortly, r-i) if £is a-vertical
(i.e., ay &,= 0, g€ 2) and if £ is invariant with respect to all right trans-
lations by elements h e @ (i.e., &;= (D,)s,(&,), g€ 2 and gh € 2). See
also [19].

Example. Let X be a vector field on an open subset U of a mani-
fold N and let X be generated by a local one-parameter group of diffeomor-
phisms f;. Then the family fF determined on the open set g~ [U] = #*(N)
by the formula

WY =jsef ¥, YepT'[U],

is a local one-parameter group of diffeomorphisms. It generates a vector
field X* which is r-i (see [30]).
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The mappings ¢: U — @, where U is an open set in M such that
poo =idy and aoo: U — M is a diffeomorphism onto an open subset
of M, are called a-admissible B-sections.

The mapping ¢: a '[U] = a ' [U’] defined by the formula

p(9) = g-o(ag), gea'[U],

where ¢: U — @ is an g-admissible f-section such that aoo[U] = U’,
is called a right translation by the section o (see [11]).

THEOREM 1.1. If & is an r-i vector field on an open set 2 = @, then
there ewists exactly one r-i vector field & on Q' = p~'|B[R2]] such that the
restriction of & to Q is equal to &. If & is smooth, then so is &'.

Proof. The existence and uniqueness of & are evident. Assume
that & is smooth. We take an arbitrary element &’ = y belonging to
A7 [B[R2]] and an element @ 2 y belonging to 2 (fh = fg = y). Let
@: a”'[U] - a '[U'] be a right translation by an e-admissible f-section
o: U — @ for which # e U and o(z) = ¢~'-h. We take © = Qna '[U}
and @ = ¢[@]. Then he®, ge® and, clearly, £'|0' = (¢|0)«(&]0),
which completes the proof.

Let us consider the vector bundle (see [24]) ¢* (1" ®), i.e., first we take
the vector subbundle 7T°® < T® of the tangent bundle T'®, consisting
of all e-vertical vectors, and next we pull it back by the imbedding
t = Mozl e D).

The r-i field & on an open set 2 = @ determines a cross-section &,
of ¢*(T°®) over B[R] by the formula

(é0)e = (P )en(&n), @ €p[L], he 2, and fh = =.

The correctness of that formula follows from (&), = &'(I,) (for & see
Theorem 1.1). If £ is smooth, then so is &,.

THEOREM 1.2. Every cross-section 7 of i* (T° D) over an open set U = M
can be extended uniquely to an r-i vector field n" on p~'[U]. If n is smooth,
then so is 7.

Proof. We take a cross-section 7 of i* (7" ®) over an open set U = M.
It determines a vector field 5" on ~'[U] = @ by the formula

7' (h) = (¢h)nph(7l(ﬂh))a hep™'[U].

Clearly, #’ is r-i. Let  be a smooth cross-section. To prove the theorem
it suffices to show that »’ is smooth in a neighbourhood of every unit
l., xeU.

Fix the unit 7, , #, € U, and take a coordinate system z = (%, ..., 7,)
of the manifold M in the domain D; s %, and a coordinate system

A A A
&= (8yy..., 8, Dpg1y ooey (in+m7ﬁn+m+l’ veey ‘ﬁzn+m)
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of the manifold @ in the domain D; such that

(a) Zzo € D3,

(b) a[D;] = Dz, B[D;] < D,

(e) (9319 seey jn) = zof|D;,

(d) ("ﬁn+m+l’ ceey j;21z+m) = Zoa |‘D.t .

Clearly, there exists a neighbourhood V = D; of I, such that v, e V
implies t-c e D,. If 0 € V, then for¢ =1, ...,2n+m

("I')a(ff'i) o (‘Da)*ﬁh(ﬂph)(-’ii)
= npa(jlo ¢a) = nﬂu(¢ﬂua T '-)(%‘(T'a) GR).
We take the imbedding
U=(B R XE B X B — Bt Riveas
(a,b,¢,4d,e) '—’((a; b,¢),(c,d, e))y
and we put
W=1"! [d':[V] X :E[V]] G RPN

W is an open set containing the point

(él (lzo)i LU ‘ﬁ2n+m(lxo)7 £n+1 (lzo)’ Q) é2n+m (lzo)) >
There exist smooth functions f;: W - R,¢ =1, ..., 2n+m, for which
-'1‘73'(7"'0') =f; (51(7)7 ceey zf"n+m(":)7 £1(0)y ...y ﬁz;u-m(“)), t=1,...,2n+m,
where 7, ¢ € V and 7-o is defined. Hence

(7)s(&;) = ﬂﬁu(fi (‘ﬁl(')y ceey £n+m(°)7 £1(0)y +ey f’zn+m(°')))
n+m

= D) 1a(&)) S (#1(050) s -+ s Brim(Bpo)s 81(0)5 -3 Brnim(9))-

i=1
Finally, to complete the proof it suffices to sse thit thz funetion
Voor>n(#), j=1,...,n+m,

VS 4 I'_)filj (ﬁl(lﬁa)’ ey ﬁn+m(lpc)! ﬁl(o)’ a'e-aly ¢2n+m(a)))
t=1,..,2n4+m, j=1,...,n+m,
are smooth.

From Theorem 1.2 it follows that if & is an r-i vector field on an open
set 2 < @, then for any point g € 2 there exists a globally defined r-i
vector field n on @ such that £|@ = 5|@ for an open set ® = 2, where
g e€o.

We shall continue to assume that the r-i vector fields under con-
sideration are smooth.
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Let & and n be some r-i vecior fields on an open set 7' [U], U = M.
Then the following statements are irue:
(i) The Poisson bracket [&, n] is also an r-i vector field.
(ii) If f belongs to C*(M |U), then the vector field (fop)-& is also r-i
and we have

(foB):-& = (f-&)'s [&,(foB):n] = (foB)[&, n]1+(Beé)(S)

where &, is a cross-section of i*(T°®) over U determined by the formula
(&)= &(1,), @ € U (for (f-&,) see Theorem 1.2).
3 (iii) & 7s B-related to ewactly one vector field X on U. If we denote by
B« the morphism

(T D)2 v > Be(v) e TM,

then X is equal to B0 &, and it is denoted by P &.

(iv) The vector space of all smooth global cross-sections of i* (T° D), namely
C™(i* (T°®)) with bracket [ , ] defined by [&,n] = [£,9']y, s an R-Lie
algebra. This bracket has the property

I&, f-n] =f-[& 7]+ (B« &) (f) 7.

(v) The morphism B« has the following properties:

(a) Bu is an epimorphism,

(b) C®(fs): C°(i* (T ®P)) — C>(TM) is an R-Lie algebra homomor-
phism.

A Lie algebroid (shortly, L.a.) is a collection

A=(4,[,1,y)
in which
(1) A is a vector bundle over any manifold M/
(2) [,]: C®(4) x C*(4) - C®(4) is a mapping such that (C(4), [,])
is o Lie algebra (over R);
(3) y: A - TM is an epimorphism of the vector bundles;
(4) if 5, p e C®(4) and f e C®(M), then

I, f-ul =f-In, ul+(yon)(f)-p;
(5) C®(y): C®°(4) - C>(TM) is an R-Lie algebra homomorphism.
Thus an arbitrary L.g. & = (P, (e, ), M, -) determines any object
(1.1) (*(1°®), 1,1, )

which is a Lie algebroid (see [24]).

This definition is almost identical with that of Pradines [24]. It differs
in that Pradines does not require for the morphism y to be an epimorphism.
The reason is the fact that Pradines associates such an object with an
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object more general than L.g., namely with the differential one (see also
[1], [2], [9], [10], [20]).
Example. The L.a. of the L.g. #*(M) is isomorphiec to

(75 (TM), 1 5 1,5),
where
(i) J*(TM) is the vector bundle of the k-th order jets of vector
fields of M,
(ii) B = (J*(TM)> j O > O (a) e TH),
(iif) [, 1: O®(J*(TM)) x C°(J*(TM)) -~ O®(J*(TM)) is the only map-
ping for which (G’°°(J" (rm)), 1, ]]) is a Lie algebra and

loy fn] = fo, 77]]+(50)(f)77

for o, 7 e 0°(J*(TM)) and fe0®(M).

Investigations of such objects were carried out by Libermann [13],
[14].

Example.- The L.a. of the trivial L.g. M xG xM is a collection
(TM xg, [,1,f), where

(i) g is the Lie algebra of the Lie group G;

(ii) 7'M X g is the vector bundle over M in which a fibre over z € M
is equal to T, M x g;

(iii) f = (TM x g3 (v, u) v eTM);

(iv) if X, X’ are two vector fields on M and hy, ': M — g are two
smooth mappings, then

(X, B), (X', )] = ([X, X', Lxh' —Lx b+ [h, 1']).

A smooth mapping F: | Q — &', where @ and @’ are spaces of the
L.g.’s

(1.2) P = (¢1 (ay8), M, '); P = (¢” (a'y B'), M, ',)’

and £ contains all units 1, # € M, is called a local homomorphism from
@ into @’ if

(i) d'oF = a|R2, B'oF = B| Q,

(i) #,2',2-2" € Q implies F(z-2') = F(z)-F(2').

If 2 = &, then the local homomorphism is called a homomorphism
from @ into @’ (see [27]).

Let F: &|Q2 — @' be a local homomorphism from & into &’. It is
easy to see that the mapping

P, - (*(T°®) 2 v > Ty (v) ei*(T"9"))

has the following properties:
(i) Fy is a morphism of the vector bundles;
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(ii) if £ is a cross-section of i* (7 @), then &’ and ( F,o0 &)’ are F-related
(see Theorem 1.2);

(iii) 0=°(F,) is a Lie algebra homomorphism;

(iv) the diagram

l (Tad)) __) ’1"(TU¢)
is commutative.

From these properties we infer that the following definition is justified
[11], [24]:

Definition 1.1. Let

=(4,[,1,y) and A" =(4',1, I

be arbitrary L.a.’s over a manifold 3. A morphism H: A — A’ of the
vector bundles is called an L.a. morphism if C*(H): C®(4) — 0®(4’)
is a Lie algebra homomorphism and the following diagram is commutative:

The assignment of the L.a. (1.1) to an L.g. (0.1) and of the L.a. homo-
morphism F, to an L.g. homomorphism F is a covariant functor from
the category of L.g. into the one of L.a. It is called the Lie functor for L.g.

2. Groupoid of f-admissible a-sections I', .. (M, ®). The L.g. @ defined
by (0.1) determines another very important object, namely the groupoid
of p-admissible a-sections (see [11] and [12]) Lyjoo(M, @). It consists
of such local sections ¢: M | U — @ of the surmersion a: @ — M for which
U and U’ = poo[U] = M are open sets and Bfoo: M|U — M |U’ is
a diffeomorphism. The element ¢(2) will often be denoted by o,, and the
topology of M by Topl. We define the mappings

a,b: I'y \oo (M, ®) — TopM
by the formulas

a(o) = -Da’ b(o) = ﬂOO’[D,],
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where o: M|D, — & (i.e., D, is the domain of the o) for ¢ belonging to
Lo (M, @). The multiplication 7-¢ for o: M|U-—-® and 7: M|U’

a,Joc

— @ belonging to I, ,,.(M, &) is defined if poo[U] = U’, and we have
70 =(Usw > Tp(o,) "0z € D).

The collection (I, ,,(M, @), (a, b), Top M, ) i8 a groupoid. It is
called a groupoid of B-admissible a-sections. The isotropy group over the
unit M of this groupoid is denoted by I',(M , @). It is easy to find that
there exists a natural isomorphism between the groupoid I, 1,.(M, @) and
the groupoid of local right translations of & (see [117).

Let @ be an arbitrary L.g. defined by (0.1). For each cross-section
& of " (T°®) the r-i vector field generated by ¢ is denoted by &’ (see Theo-
rem 1.2). Every integral curve y of & lies in @, for some point 2 € M,
namely if y passes through %, then y lies in D

Let & be an arbitrary fixed global cross-section of i*(T° ®). Tt is easy
to see that the following statements are true:

(i) If 2, 2" belong to @, z-2’ is defined, and y is an integral curve of
¢’ passing through #, then 5’ = @0y is also an integral curve of & and
it passes through z-z’.

(ii) We take a certain point @, € M and

p: ' xI, >,

a local one-parameter group of diffeomorphisms (shortly, lo-p.g.d.),
which generates & on an open set Q' c & containing leyy Io = (—¢, ¢).

Then

(a) 2,2',2:2" € Q' imply ¢,(2-2') = g,(2) 2, te I,;

(b) 2€ Q" and I, € Q' imply ¢,(z) = Pi(ls,) 2, tel,;

() if I, e 2, sel,, lp(ogy) € 2’y then for every telI, such that
t+s eI, we have

Pris(lz) = @, (lﬂ(¢s(lz))) ‘@ (L)

THEOREM 2.1. Let £ belong to C™(:*(T°®)). For every point © e M
there ewist a neighbourhood U < M of ®, & number & > 0, and an l.0-p.g.d.

(2.1) @' pHUIXI, > D
which generates &' on B'[U].
Proof. Let us take an arbitrary fixed point # € M and an l.o-p.g.d.

@: 2x1, - @ which generates & on the open set 2 c @ containing the
unit I,. Put U = ¢7'[Q]. By (ii) the mapping ¢’ must be defined by

@' (2, 1) = @(lg )2, zeﬁ_l[U], tel,.
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It suffices to show that ¢’ is an l.o-p.g.d. which generates &’|f~'[U].
By the above it is easy to find that

(a) ¢'(2,0) =2, zep7'[U];

(b) q);_,_,(z) = ‘P; (‘P;(z))r 2, ‘P;(z) € ﬂ-l [U], s,t,8+tel;

(c) ¢’ generates &'|f7'[U].

To complete the proof it remains to see that ¢'(-, 1), t € I,, is a dif-
feomorphism.

Let ¢’ be an l.o-p.g.d. which generates & on f~'[U],where £ is a cross-
section of the vector bundle i*(T° @) over the open set U = M.

Put

Exp(t, &) = @oil U.

The mapping Exp (¢, §): M| U — & is an a-section. It is easy to find

that
(i) the mapping

vy = (Ux12 (y,1) = (BoExp(t, &) (y) € M)

is an l.o-p.g.d. which generates f.¢&';
(ii) Exp(t, &) is a p-admissible a-section, i.e.

Exp(t, &) e ra,loc(M, D);
(iii) if U’ = 9[U], then
¢ PIpTI[Ul @I [U'], tel,

are left translations.

The mapping 8: I, = I',,.(M, @) is called a local smooth one-par
ameter subgroup (shortly, 1.s.0-p.s.) of the groupoid I',;,.(M,®P) on th
open set U< M ([11], [12]) if

(i) 8;:= S(t) is defined on the set U;

(ii) the mapping 8 = (U xI,> («, 1) > 8;(2) € ) is smooth;

(iii) 8y =1 |U;

(iv) s,t,84+t eI, and @, foS,(®) € U imply

Ss+t (@) = St (ﬂO Ss(w)) °Ss(m) .

THEOREM 2.2. (a) If & is a local cross-section of i*(T° D) over an open
set U c M, and ¢’ is an l.o-p.g.d. (2.1) which generates &, then

8 = (L5 t > Bxp(t, &) € Iypoo( M, @)

18 an 1.8.0-p.8. of I'y100(M, @) over U. (In this case S is said to be generated
by &)

(b) Conversely, every 1.s.o-p.s. of I, ,.(M, @) over an open set U = M
is generated by ewactly one cross-section of i* (T D) over U.
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Proof. (a) is evident.
(b) Let 8 be an 1.s.0-p.s. of I',y,.(M, @) over an open set Uc M.
The uniqueness of & which generates 8 follows from the equality

0
(2.2) (@) = (8¢ (@)s (W

), wvelU.
0

We take the cross-section defined by (2.2). It is easy to see that the
mapping
¢' = (B UIX I3 (2, 1) > 8)(B2) -2 € D)

is an lo-p.g.d. which generates &. The above considerations prove that
& is smooth, and so is & Now we see that

(Exp(t, &) (@) = ¢’ (L, 1) = S,(2), @eT.

A vector field on a manifold is called complete if it is globally defined
and generated by a global one-parameter group of diffeomorphisms
(shortly, g.0-p.g.d.). An r-i vector field n on an L.g. @ defined by (0.1) is com-
plete if and only if the vector field By is complete on the manifold M
(see [11] and [12]).

A cross-section & of i*(T°®) is called complete if &' is complete on .

An 18.0-p.s. of I'10.(M, @) is called a global smooth one-parameter
subgroup (shortly, g.s.0-p.s.) of the group I,(M, @) if it is over M and
is defined on R.

A mapping 8: R — I',(M, ®) is a g.s.0-p.s. of T',(M, @) if and only if

(i) the mapping § = (M x R> (v, t) = 8(t)(2) € P) is smooth;

(ii) S is a homomorphism of the additive group R into I'y(M, @).

If & is a complete cross-section of i*(T°®), then

8 = (Rat+ Exp(t, §) € [o (M, ?))

is a g.s.0-p.s. of I',(M, @), and

(1) (S(')(.’I})),,o((()/at)h) = é(@), v € M,

(ii) po8 is a g.0-p.g.d. which generates Py &.

Bvery g.s.0-p.s. of I',(M, @) is generated by ewactly one complete cross-
section of i*(T" D).

3. Exponential mapping for Lie groupoids. We denote by (" (1 ?))
the set of all global cross-sections & of ¢* (7° @) such that f, & has a compact

support. They are complete.
The mapping

Exp, = (C° (i*(1°®)) > £ —Exp(1, &) e Tu(M, @)

is called an ewponential mapping on the L.g. @ defined by (0.1) (see [11],
[27], and [28]).



-—

LIE GROUPOIDS 277

For a cross-section & € OF° (i*(7°®)) and a number s € R the equality
Exp(1, s&) = Exp(s, &) holds.

THEOREM 3.1. Let F*: @|Q2 — @' be a local homomorphism from
@ into @' defined by (1.2). Assume that x, is an arbitrary point in M,
& e CX(i* (1" D)) a cross-section, and &> 0 a number such that the relation

(Expoté)(a,) € 2

holds for every tel,,,. Then there ewist a number ¢ (0 < ¢ <eé&) and a
neighbourhood U of @, such that
(i) (Expoté)(@)e 2 for xe U and |t| <1+¢,
(ii) (Expo (Fo0 &) (@) = F((Bxpy &) (@) for @ < U.
Proof. Since 4o (F,0 &)(x) = B0 £(z), we have
Frot e CP(i™(T°9)).
Put

§~1[Q] is an open subset of M x R containing {z,} X I, ,. It is easily
seen that there exist a neighbourhood U of @, and a number & (0 < ¢’ < ¢)
such that

U salp, a8 1Q].
For an arbitrary point (#,?¢) € U x I,,, we have
(BExpyté)(2) = S(z,1) € Q.
Hence the mapping
8 = (I3 t+> Fo((Expoté)| U) € Iyyoo( M, ?))

is an Ls.o-p.s. of I', 1o.(M, @) over U, which is generated by (F.o0¢)|U.
Therefore, equality (ii) holds.

Let us take the cross-sections &, ..., &, e CX(i*(T°®)) which are
a basis of ¢*(T°®) over U = M. The r-i vector fields &|D,, ..., &,|D,
are a basis of T'(®,) over @, ng~'[U] for an arbitrary point # € M. A basic
property of the exponential mapping is given in the sequel.

THEOREM 3.2. For each point x,e U there ewist open neighbourhoods
U, = E" of 0 and U < U of », such that the mapping

m

Exp, = (Umx U's(al, ..., a™, o) H(Exp¢ Za"&i)(a}) e¢>)

i=1
is a diffeomorphism onto its open image.
For the proof we need the following lemma which is known from
theory of differential equations:

8 — Colloquium Mathematicum 47.2



278 J. KUBARSKI

LEMMA. If Zy, ..., 2, are some vector fields on the manifold M, then for
any point y, € M there exist a neighbourhood W of y, and a cube

or — {(a...,a" eR™: || <K, i=1,...,m}, O0<K< oo,
such that for each point y € W and a € Qg there exists an integral curve

Py,a* IZ = "1[7 q’y,a(o) =Y,

m
of the vector field > a'Z;, and the mapping

li=1
Q= (W XTI, x Qg3 (y,t,a) = py.(t) € M)
18 smooth.

Proof of Theorem 3.2. From the above lemma it follows that for any
point @, € U there exist neighbourhoods U,<cR"of 0 and U’ = U of #,

such that the mapping }515,, is smooth. To prove the theorem it suffices to

show that the differential (EXDPg)s(,sp 18 a1 isomorphism. First, we shall
prove that the differential at the point @ = 0 of the mapping

m

Bxpo () = (U (@1 -oey ) > (Bxpo Y, a'8))(@0) < 22,)
1

i=
is an isomorphism. Denote this mapping by » and identify the tangent
spaces To(R™) and T,zo(szo) with R™ by means of the following isomor-
phism:
m
ToR™) > 2 ce; > (e, ..., ¢™) e R™,

i=1
Ty, (P,) 2 P AUS T CORR LR i
i=1

Then 4 = id g - Indeed, if b = (b',...,b™) € R™ is an arbitrary
point and 2, = (R3 s+—>s-be R™), then

d
#x(b) = ("Olb)*o(‘a—t‘ ) =d
0

m
because %o 4, is an integral eurve of the vector field > b & ?,, and xo 2,(0)
i=1

= @,. Now, the theorem is implied by the following fact:
If p: P> N, ¢: P - N are coregular mappings and f: P —P' is
a mapping such that gof = p, and p, eP, vy = P(Po)s

fi = flp~ [{wo}]: Plp~ [{wo}] —P'|q7 [{®}],

and (fy)xp, 18 an isomorphism, then fi, is also an isomorphism.
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The mapping inverse to Exp, is called the exponential coordinate
system determined by the cross-sections €1y evy &, € O™ (T° ®)) which are
a basis in a neighbourhood of z e I,

COROLLARY. There exists an open set Q < @ which contains all units
and is contained in the set

B = |(Exp, &) (2): zeM, £ e CP(i* (T @)}

THEOREM 3.3. Let m and n be any subbundles of i"(T°®) such that
(T°®) =m®n. Let 1y ey £ €CP (M) and Emt1r ooy Empn €02 (0) be
cross-sections which are a basis of m and n, respectively, over a non-empty
subset U = M. Then the cross-sections 19 ceey Emy Epins oees min OT€ @ basis

of i*(T°®P) over U. Let Exp, be defined Jor these sections. Then for each
point ® € U there exist neighbourhoods U’ = U of », U, < R™ of 0, and
U, = R* of 0 such that the mapping
A2 Up XU, XU - &
defined by
A8, 9) = Expy(a, 0), o Bxp,((0, b), y))- Fxps((0, 1), 9)
s a diffeomorplism onto its open image.

Proof. Let Exp,: W x U, > ® be the diffeomorphism onto its
open image 2, where W < R™+» — pm .y pn and U, = U are open sets
such that 0 e W and # e Use

Since 2 is smooth, we can take neighbourhoods U,, = R™of 0, U,c Rr®
of 0, and U’ < U, of # such that AMUnxU,xU']l< 2. We denote by
(@(2), ..., a™tn(z), a(z)) the exponential coordinates of z e Q. Then

w‘(ﬁp.((a, 0),y)) =d, =1, cymtn, yelU, ae W,

Let us take the mapping
t = (Exp,)"oi: U, x U, XU —>Wx U,
which is of the form

ia, b, y) = (ty(a’ b), ?/)-

To prove the theorem it suffices to show that the differential (t2)%(0, 0y
is an isomorphism. For § — 1,...,m+n we have

B 0™, B, L ™)

=B 3 o) oo St o), S0 i)

i=1 i=1 i=1
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Put

75 = (L2 s = 1(0,...,0,5,0,...,0) eR) fori,j=1,...,m+n,
ji—1
m+n
where ¢ > 0 and X I, = Uy, x U,. Then 7;,(s) = s-6}. Therefore, t};(0, 0)
= 6] and
det[t;(0,0): i,j<m+n] =1 #0,

which completes the proof.

THEOREM 3.4. An injective homomorphism F: @ — @' of the L.g.’s (1.2)
8 an Vmmersion.

Proof. It is easy to prove that a homomorphism F = & - @’
is an immersion if and only if F,: i*(T°®) — i'*(T"9")is a monomorphism
of the vector bundles. Let F be injective. We shall prove that 7, is a mono-
morphism. Let us take a vector v € i* (T" @) such that F,(v) = 0. Assume
that £ e C(¢*(T°®)) is a cross-section for which &(») = v. Then (Theo-
rem 3.1)

(Expot(Firo £)) (#) = (FoExpytf) (@).

Since F0 £(v) = Fy(v) =0, we have (F.0&)(l,) = 0. Hence the
integral curve of (F.of) passing through 1, is constant, and since
t > (Expo t(F40 &) (#) is such a curve, we obtain

(Bxpot(Fy0 8)) (@) = L.

Consequently, F ((Expd,té) (w)) =1,, and from the injectivity of
I we get (Expoté) () = l,. Since t > (Bxpyté)(#) is an integral curve
of &, we have v = £(z) = £(l,) = 0.

REFERENCES

[1] M. F. Atiyah, Complex analytic connections in fibre bundles, Transactions
of the American Mathematical Society 85 (1957), p. 181-207.

(2] R. A. Bowshell, Abstract velocity functors, Cahiers de Topologie et Géométrie
Différentielle 12 (1971), p. 57-91.

[3] R. Brown, G. Danesh-Naruie and J. P. L. Hardy, Topological groupoids:
II. Covering morphisms and G-spaces, Mathematische Nachrichten 74 (1976),
p. 143-156.

[4] R. BrownandJ.P.L. Hardy, Topological groupoids: I. Universal constructions,
ibidem 71 (1976), p. 273-286.

[5] C. Ehresmann, Les connexions infinitésimales dans un espace fibré différentiable,
Colloque de topologie (espaces fibrés) (Bruxelles 1950), Li¢ge 1951.

[6] — Les prolongements d'une variété différentiable, Comptes Rendus Hebdomadaires
des Séances de I’Académie des Sciences (Paris) 233 (1951), p. 598-600, 777-779,
1081-1083; ibidem 234 (1952), p. 1028-1030, 1424-1425.



LIE GROUPOIDS 2871A

71
(8]
[9]

[10]

[11]

(13]

[14]

[15]

[16]

[17]
[18]

[19]
[20]
[21]

[22]

[23]

[24]

— Catégories topologiques et catégories différentiables, p. 137-150 in: Colloque
Géométrie Différentielle Globale, Bruxelles 1958.

A. Fujimoto, Theory of G-structures, Publications of the study group of geometry,
Vol. 1, Okayama 1972.

F. W. Kamber and P. Tondeur, Invariant differential operators and cohomology
of Lie algebra sheaves, Memoirs of the American Mathematical Society 113,
Providence, R. I., 1971.

J. Kola¥ and V. Les6vsky, Foundations of the theory of Lie groupoids and
Lie algebroids (in Czech), Matematicky ustav CSAYV, pobocka v Brné, Seminaf
differencialni geometrie, Seminarni text.

A. Kumpera, An introduction to Lie groupoids, Nucleo de Estudos e Pesquisas
Cientificas, Rio de Janeiro 1971.

— and D. C. Spencer, Lie equations, Vol. 1. General theory, Annals of Math-
ematics Studies No. 73, Princeton University Press, Princeton 1972.

P. Libermann, Pseudogroupes infinitésimaux, faisceauw d’algébres de Lie
associés, I-III, Comptes Rendus Hebdomadaires des Séances de 1’Académie
des Sciences (Paris) 246 (1958), p. 40-43, 531-534, 1365-1368.

— Pseudogroupes infinitésimaus atlachés aux pseudogroupes de Lie, Bulletin
de la Société Mathématique de France 87 (1959), p. 409-425.

— Sur les prolongements des fibrés principaus et des groupoides différentiables
banachiques, Séminaire de Mathématiques Supérieures No. 42 (6t6 1969), Analyse
Globale, Les Presses de I’Université de Montréal, 1971.

— G@roupoides différentiables et presque parallélisme, Symposia Math., Ist. Naz.
Alta Mat., Roma 10 (1972), p. 59-93.

— Parallélismes, Journal of Differential Geometry 8 (1973), p. 511-539.

Y. Matsuhima, Pseudogroupes de Lie transitifs, Séminaire Bourbaki, Mai
1955.

P. Molino, Sous-modules tramsitifs, Bulletin de la Société Mathématique de
France 94 (1966), p. 15-24.

H. K. Nickerson, On differential operaiors and connections, Transactions of
the American Mathematical Society 99 (1961), p. 509-539.

E. Pourreza, Fibrés a groupoide structural local, Theése, Université Paul Sabatier
de Toulouse.

J. Pradines, Théorie de Lie pour les groupoides différentiables, Relations entre
propriétés locales et globales, Comptes Rendus Hebdomadaires des Séances de
I’Académie des Sciences (Paris) 263 (1966), p. 907-910.

— Théorie de Lie pour les groupoides différentiables, Caleul différentiel dans la
catégorie des groupoides infinitésimaux, ibidem 264 (1967), p. 245-248.

— Théorie de Lie pour les groupoides différentiables, Atti del Convegno Interna-
zionale di Geometria Differenziale, Bologna, 28-30 IX 1967.

— Géomdirie différentielle au-dessus, d'un groupoide, Comptes Rendus Hebdo-
madaires des Séances de I’Académie des Sciences (Paris) 266 (1968), p. 1194-1196.
— Troisiéme théoréme de Lie powr les groupoides différentiables, ibidem 267
(1968), p. 21-23.

N. V. Que, Du prolongement des espaces fibrés et des siructures infinitésimales,
Annales de I’Institut Fourier (Grenoble) 17 (1967), p. 157-223.

— Sur Vespace de prolongement différentiables, Journal of Differential Geometry
2 (1968), p. 33-40.

— Nonabelian Spencer coliomology and deformation theory, ibidem 3 (1969),
p. 165-211.



282 J. KUBARSKI

[30] A. A. Rodriques, The first and second fundamental theorems of Lie for Lie
pseudogroups, American Journal of Mathematics 84 (1962), p. 265-282.

[31] A. K. Seda, On compact transformation groupoids, Cahiers de Topologie et
Géométrie Différentielle 16 (1975), p. 409-414.

[32] — An extension theorem for transformation groupoids, Proceedings of the Royal
Irish Academy 75 A (1975), p. 255-262.

[33] — Haar measures for growpoids, ibidem 76 A (1976), p. 25-36.

[34] N. V. Than, Pseudogroupes de Lie et pseudogroupes infinitésimaux de Lie, I, 11,
Comptes Rendus Hebdomadaires des Séances de I’Académie des Sciences (Paris)
278 (1970), p. 435-438, 505-507.

INSTITUTE OF MATHEMATICS
TECHNICAL UNIVERSITY OF LODZ
LODZ

Regu par la Rédaction le 12. 6. 1978 ;
en version modifiée le 26. 6. 1980



