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0. Introduction. Lie groupoids have appeared in many problems
of differential geometry of higher order, e.g., in the theories of connections
of higher order, (r-structures of higher order, pseudogroups, and in some
theory of differential equations. Originally (see [5]), Lie gronpoids were
associated with principal fibre bundles. 3STgo Van Que [27] formulated
in 1967 a precise abstract definition of these objects (see also [7] and [18]).
The development of the general theory of Lie groupoids can be found
in the papers of Pradines [22]- [26] and Kumpera [11], [12], and also in
[3], [4], [8], [15]-[17], [21], [31]- [34].

In [11] an exponential mapping was defined. This paper is devoted
to a closer examination of this notion.

A Lie groupoid (see [27]) is a collection

in which
(i) 0 and M are smooth (i.e., of class C°°) manifolds with countable

bases, M being a connected manifold;
(ii) a: 0 ^- M and /?: 0 -> M are surmersions (i.e., submersions

plus onto);
(iii) •: D ->• 0, where D = {(z, z') e 0 x 0 : a(z) = /?(«')}, is a partial

multiplication which satisfies
(a) /?(»•«') = 0(z) and a ( z - z ) = a(z') if (»,»') eD and -(z9z') « e-z't
(b) for every point x € M there exists an element lx e 0 such that

<r(y — ̂ (ZJ = a? and z*lx = z if a (3) = a? and Zx-^ = z if /?(») = #,
(c) for every element z e 0 there exists an element z~l e 0 such that
= ly, where y = f$(z)9 and z~l>z = ^, where a? = 0(3);

(iv) the condition of transitivity holds, which means that ( a , j f f ) :
> Jf x3/ is surjective;

(v) the mapping ~l = (03 z h-> s"1 e 0) is smooth;



(vi) for every smooth manifold W and for every two smooth mappings
/? g* W -+0 such that aof — fog, the mapping

f - g = (W3Z»f(z)'g(»)e0)
is smooth.

If 0 = (#, ( a , f ) , My •) is a Lie groupoid (shortly, L.g.), then 0 is
called a space of the groupoid <f», M is said to be a manifold of units, a and
/? are called mappings "source" and "target".

The set #(a.ja!) of those elements ft, belonging to the space of a Lie
groupoid 0, for which a(h) = f$(h) = a? is called the isotropy group of
<£ over #. It is a Lie group [27]. For every Lie groupoid <£ and every c& be-
longing to M (i.e., to a manifold of the units) a principal fibre bundle

0X = (0x,M,y,0(XtX),-)

is determined in the following way [27]: The set 0X consists of all elements
h e 0 such that ah = so (i.e., a(h) — x). 0X is a submanifold of 0. The
projection y: 0X ^> M i& equal to f$\0x. The action of the Lie group 0(XiX)

on 0X is determined by the formula •(&, </) = 7t-0, where A e £>x, g e <£(x,z).
A Lie group is a Lie groupoid with a one-element manifold of the

units. A typical example is the Lie groupoid nk(M) of all invertible jets
of the fc-th order of a manifold M, where a(j%f) = at, p(j%f) — f(a}), and
irtJ'fj =J*(f°9) (see [6], [13], and [14]). '

An element h e 0 such that ah — x and fh = y will be denoted by

1. Lie algebroid of a Lie groupoid. Let 0 = (0, (a, ft), M, •) be an
L.g. The diffeomorphism

is called a right translation by the element h e 0 (see [11]). The vector field
£ on an open set Q <= 0 is called right-invariant (shortly, r-i) if £ is a- vertical
(i.e., «*£0= 0, g e Q) and if f is invariant with respect to all right trans-
lations by elements h e 0 (i.e., £gh= (0h)*g(£g)i $£& and gh e Q). See
also [19].

Example. Let X be a vector field on an open subset U of a mani-
fold JV and let X be generated by a local one-parameter group of dif feomor-
phisms/f. Then the family ff determined on the open set P ~ l [ U ] c nk(N)
by the formula

is a local one-parameter group of diffeomorphisms. It generates a vector
field Xk which is r-i (see [30]).
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The mappings a: U -> 0, where U is an open set in M such that
poff = id^. and aoa: U -> M is a diffeomorphism onto an open subset
of Jlf, are called a-admissible ^-sections.

The mapping 9?: a-1[?7] -> a 1[Z7'] defined by the formula

where <r: 17 -> <£ is an a-admissible /J-section such that aocr[?7] = TJ\s called a right translation by ike section o (see [11]).

THEOREM 1.1. If I is an r-i vector field on an open set D c 3>, then
there exists exactly one r-i vector field f on Q' = /J"1 [/?[£>]] such that the
restriction of £ to Q is equal to £. If f is smooth, then so is £'.

Proof. The existence and uniqueness of £' are evident. Assume
that £ is smooth. We take an arbitrary element #' -> ?/ belonging to
/T1 [/?[£]] and an element x -^> y belonging to Q (ph = fig = y). Let
fp: a"1 [17] ->-a~1[Z7'] be a right translation by an a-admissible /^-section
a: U -> # for which a; e U" and <r(a?) = g~l-h. We take 6) - Qr\aTl[U}
and 0'=9»[0], Then 7ie0', geO and, clearly, f'|0' = (?|6>)*(£[<9) r

which completes the proof.
Let us consider the vector bundle (see [24]) **(1W0), i.e., first we take

the vector subbundle Ta 0 c T0 of the tangent bundle T&, consisting
of all a-vertical vectors, and next we pull it back by the imbedding
i = (MB x \-*lxe $).

The r-i field | on an open set Q c 0 determines a cross-section |0
of i*(T°0) over 0[fi] by the formula

fte^ and A = at.

The correctness of that formula follows from (£0)x — l'(^) (for I' see
Theorem 1.1). If | is smooth, then so is £0.

TIIEOIIEM 1.2. Every cross-section ?? of i*(Ta$) over an open set U c Jf
caw 6e extended uniquely to an r-i vector field r[ on f$~l [17]. I/ 77 is smooth,.
then so is rf .

Proof. We take a cross-section >; of i*(T°0) over an open set U c M.
It determines a vector field rf on /fT"1 [Z7] c 0 by the formula

Clearly, ^' is r-i. Let ?? be a smooth cross- section. To prove the theorem
it suffices to show that r\s smooth in a neighbourhood of every unit
lx, xeU.

Fix the unit L , #0 e U, and take a coordinate system x = (x11 ..., xn)
of the manifold M in the domain D- a ar0 and a coordinate system
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of the manifold <2> in the domain D^ such that
(a) lx& eD-,
(b) a[D^^D-
(c) (£19 . . . ,£„)

Clearly, there exists a neighbourhood V <= D^ of lx such that T, a e F
implies T • a e Z^ . If a e F, then for i = 1 , . . . , 2w + m

We take the imbedding

Z - (RnxRmxRnxRmxRn

(a, &, c, <Z, e) H>(
and we put

TF = l ~ l [ x [ V ] xx[V]] c

W is an open set containing the point

There exist smooth functions /< : TF ~> J2, i = 1 , . . . , 2n + T», for which

<M*-ff) =/i(^l(T)j » - i ^ » + m ( T ) , ^ i ( f f ) , ».5

where T, a e V and T - < T is defined. Hence

n+m

/-I

Fuially, to complete the proof it suffices to S3e thit th3 function

Va a^ypoiXj), 3 = 1, . . - ,« + »*,

i = 1, . . . ,
are smooth.

From Theorem 1.2 it follows that if £ is an r-i vector field on an open
set Q c 0, then for any point 0 e Q there exists a globally defined r-i
vector field 77 on 0 such that f|0 — ̂ |0 for an open set S c £?, where

We shall continue to assume that the r-i vector fields under con-
sideration are smooth.
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Let I and rj be some r-i vector fields on an open set ft J[P"], U <= M.
Then the following statements are true:

(i) The Poisson bracket [f, ?j] is also an r-i vector field.
(ii) Iff belongs to C°°(M\U), then the vector field (/o/?)-| is also r-i

and we have

(/o/JK = (/•£.)', [M/o/»)-i»] = (/o /»)[*, 17] + (|8.f ) ( / ) • !» ,

where £0 w a cross-section of i*(Ta0) over U determined by the formula
(!o)*= £ (U> » e ?7 (/or (/•£„)' see Tfceorew 1.2).

(iii) | w ^-related to exactly one vector field X on U. If we denote by
p# the morphism

then X is equal to j$*o £0 and it is denoted by /?* £.
(iv) The vector space of all smooth global cross-sections ofi*(Ta<&), namely

C™(<i*(Ta&)) with bracket [ , J de/ined 6y [I, ??I = [f, iy']0, is an R-Lie
algebra. This bracket has the property

(v) TAe morphism j3* /tas tAe following properties:
(a) /?* is an epimorphism,
(b) C°°(j5*): (^(^(T"*)) -^(^(rjf) w an -K-^e a^e&ra Aomomor-

A Lie algebroid (shortly, L.a.) is a collection

A = (A, [ , ] , y )

in which
(1) A is a rector bundle over any manifold M ;
(2) [ ,]: C™(A) x 0°°(J.) -> O^f^L) is a mapping such that (€T(A), [ ,])

is ^ Lie algebra (over JB);
(3) y : A -> T-3f is an epimorphism of the vector bundles;
(4) if 17, ̂ B eC°°(A) and/eC°°(Jf), then

(5) 0°°(y): 0°°(A) ->C°°(TJf) is an E-Lie algebra homomorphism.
Thus an arbitrary L.g. 0 = (3>, (a, ^), If, •) determines any object

(1-1) (<*(2«0), LL/5*)

which is a Lie algebroid (see [24]).
This definition is almost identical with that of Pradines [24], It differs

in that Pradines does not require for the morphism y to be an epimorphism.
The reason is the fact that Pradines associates such an object with an
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object more general than L.g., namely with the differential one (sec also
[1], [2], [9], [10], [20]).

Example. The L.a. of the L.g. nk(M) is isomorphic to

(J*(TM), I , I , / 5 ) ,
where

(i) Jk(TM) is the vector bundle of the Jc-th order jets of vector
fields of M9

(ii) 0 = (J*(TM) 3 j*& i-» Q(a>) e TM),
(iii) I , I: C">(Jk(TM)) x <7°°(J*(TJf)} -> C°°(Jk(TM)) is the only map-

ping for which (C°°(Jk(TM)), [ , ]) is a Lie algebra and

for a^eC^J^TM)) and fe 0
Investigations of such objects were carried out by Libermann [13],

Example. The L.a. of the trivial L.g. MxGxM is a collection
xg, I , I , j 8 ) , where
(i) g is the Lie algebra of the Lie group G;

(ii) TM x Q is the vector bundle over M in which a fibre over o> e If
is equal to TXM x Q ;

(iii) ft = (TM XQ3(v,u)\-^ve TM) ;
(iv) if T, ^' are two vector fields on M and A, ft': Jlf -> g are two

smooth mappings, then

A smooth mapping F: $\ -> &', where 0 and <Z>' are spaces of the
L.g.'s

(1.2) 0 = (0, (a , / ? ) , Jf, • ) , <?' = (<P' f (a',/T), Jf, -'),

and .Q contains all units lx, x e Jlf, is called a local homomorphism from
?P into #' if

(i) a'o^1 = a\Q, ft'oF = $\Q,
(ii) z,z',z-z' eQ implies ^(0-0') = ^(iSfJ-JP^').
If Q — 0, then the local homomorphism is called a homomorphism

from 0 into #' (see [27]).
Let J1: 0\Q->0' be a local homomorphism from # into ^'. It is

easy to see that the mapping

has the following properties:
(i) jP* is a morphism of the vector bundles;
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. , • (ii) if f is a cross-section of i*(Ta&), then |' and ($»o £)' are ̂ -related
Ffpee Theorem 1.2); , , ;

(iii) 0°°(^#) is a Lie algebra homomorphism; ; f ; v .,.
(iv) the diagram

is commutative.
From these properties we infer that the following definition is justified

[11], [24]:
Definit ion 1.1. Let

A = (A,l,l,r) and A' = (A', [ , ] ' , / )

be arbitrary L.a.'s over a manifold M. A morphism H: A -> A' of the
vector bundles is called an L.a. morphism if C°°(H): C°°(A) -* C°°(A')
is a Lie algebra homomorphism and the following diagram is commutative:

>- -.. > i . * ' . " . ' ' . i \..
V. 1 V:«: \' :̂. .',- -:.. • .- " M.

The assignment of the L.a. (1.1) to an L.g. (0.1) and of the L.a. homo-
morphism JP* to an L.g. homomorphism F is a covariant functor from
the category of L.g. into the one of L.a, It is called the Lie functor for L.g.

2. Groupoid of /^-admissible a-sections ,raloc(3/, #). The L.g. d> defined
by (0.1) determines another very important object, namely the groupoid
of /ff-adinissible a-sections (see [11] and [12]) -Tailoc(-M", 0). It consists
of such local sections G: M \ -> 0 of the surmersion a: 0 -> M for which
U and U' = fioa[U] c M are open sets and ftoa: M\ ->- M Uf is
a. diffeomorphism. The element o(x) wrill often be denoted by ax, and the
topology of M by TopJf. We define the mappings

by the formulas

a(a) =Va, b(a) =
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where a: M\Da -> 0 (i.e., Da is the domain of the a) for a belonging to
Fatloo(M,$). The multiplication T-CF for a: M\U-+& and T: 3/| Ur

-> 0 belonging to ra>loc(.M", 0) is defined if ^ocr[Z7] = *7', and we have

The collection (Fail1K(M, #}, (a, &) , TopJf , •) is a groupoid. It is
called a groupoid of ft '-admissible a-sections. The isotropy group over the
unit M of this groupoid is denoted by Fa(H, 0). It is easy to find that
there exists a natural isomorphism between the groupoid Fatloc(H, 0) and
the groupoid of local right translations of 0 (see [11]).

Let ^ be an arbitrary L.g. defined by (0.1). For each cross-section
£ of i*(Ta0) the r-i vector field generated by £ is denoted by £' (see Theo-
rem 1.2). Every integral curve y of £' lies in 0X for some point $ e M,
namely if y passes through h, then y lies in 0ah .

Let £ be an arbitrary fixed global cross-section of i*(T"0). It is easy
to see that the following statements are true:

(i) If 2, z belong to 0, z-zf is defined, and y is an integral curve of
£ passing through z, then y' = 0z>oy is also an integral curve of £' and
it passes through si -ft'.

(ii) We take a certain point #0 e M and
'

a local one-parameter group of diffeomorphisms (shortly, Lo-p.g.d.),
which generates £' on an open set Q' <= 0 containing I , Ie = ( — e, e).

Then
(a) ZjZ'iZ'z'tQ' imply <pt(z-z') ~ (pt(z)-zf, t e Zc;
(b) zeQ' and ̂  e Q' imply w(») = ̂ (l^'Z, t e Jej
(c) if lxeQ'j selej I 0 ( 9 ( i ) ) £ & r t then for every <eZ . such that

i 4- 5 e Jfi we have*

THEOREM 2.1. £e* £ fteZowfir /o C°°(i*(Ta0)). For every point x e M
there exist a neighbourhood U c M of &, a number e > 0, and an l.o-p.g.d.

(2.1)

which generates £' on p

Proof. Let us take an arbitrary fixed point x e M and an Lo-p.g.d.
<p: Q x I6 -*• 0 which generates £' on the open set Q <= 0 containing the
unit lx. Put U = i"1 [i2]. By (ii) the mapping 9?' must be defined by
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It suffices to show that y' is an l.o-p.g.d. which generates ^'\y the above it is easy to find that

(a) 9> ' (* ,0) = *, *ep

(c) 9?' generates f I
To complete the proof it remains to see that g/(- ,<), tels, is a dif-

feomorphism.
Let <f>' be an l.o-p.g.d. which generates |' on /?-1 [17] ,where £ is a cross-

section of the vector bundle i*(T°0) over the open set U c M.
Put

|) == <p'toi\

The mapping Exp(<, |): 1/1 U ̂  & is an a-section. It is easy to find
that

(i) the mapping

6 Jf

is an l.o-p.g.d. which generates ^*l';
(ii) Exp(f, |) is a /5-admissible a-section, i.e.

(iii) if V = ViL^l tben

are left translations.
The mapping 8: IK -> /^^(Jf, 0) is called a ?ocaZ smooth one-par

ameter subgroup {shortly, l.s.o-p.s.) of the groupoid raiiQO(M,$) on th
open set U c jlf ([11], [12]) if

(i) 8t :— 8(t) is defined on the set Z7;
(ii) the mapping $ = (?7xla3 (%,t) i-* St(a;) 60) is smooth;

(iii) 89=i\U;
(iv) 5, i, s + t el. and a?, poSs(x) e C7 imply

THEOREM 2.2. (a) If g is a local cross-section of i*(Ta&) over an open
set U a M , and <p' is an l.o-p.g.d. (2.1) which generates £', then

s = (j. 3 1 H* Exp(«, i) 6 ra>100( jif , *))
is an l.s.o-p.s. of Fa}ac(M, *) owr U. (In this case 5 is said to be generated
by f.)

(b) Conversely ', every l.s.o-p.s. of ratloo(M9 0) over an open set U c M
is generated by exactly one cross-section o/i*(Ta<2>) over U".
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Proof, (a) is evident,
(b) Let S be an l.s.o-p.s. of railoo(N, 0) over an open set U c M.

The uniqueness of £ which generates 8 follows from the equality

(2.2)
/ i \ -3- ,

\* O/

We take the cross-section defined by (2.2), It is easy to see that the
mapping

is an l.o-p.g.d. which generates £'. The above considerations prove that
£' is smooth, and so is £. JS"ow we see that

(Exp(«, £))(#) = v'(lx, t) = S t ( x ] , xeU.

A vector field on a manifold is called complete if it is globally defined
and generated by a global one-parameter group of diffcomorphisms
(shortly, g.o-p.g.d.). An r-i vector field r\n an L.g. $ defined by (0.1) is com-
plete if and only if the vector field /?*)? is complete on the manifold JJ/
(see [11] and [12]).

A cross-section £ of i*(Ta0) is called complete if £' is complete on 0.
An l.s.o-p.s. of railoc(Mj 0) is called a global smooth one-parameter

subgroup (shortly, g.s.o-p.s.) of the group Pa(M, 0) if it is over M and
is defined on J2.

A mapping 8: R -> Pa(M, 0) is a g.s.o-p.s. of Fa(M, 0) if and only if
(i) the mapping S = (M x R a (a?, t) 1-5- S(t) (x) e 0) is smooth-^

(ii) S is a homomorphism of the additive group R into ra(M, 0).
If | is a complete cross- section of i*(Ta<&), then

S = (.R9^Exp(£, £ ) e F t t ( M , 0))

is a g.s.o-p.s. of ra(M, 0), and
(i) (S(-)(f)W<0/0l)|9) r f (» )> »e Jtf,

(ii) poS is a g.o-p.g.d. which generates /?*£.
Every g.s.o-p.s. of ra(M, 0) is generated by exactly one complete cross-

section of i*(Ta0),

3, Exponential mapping for Lie groupoids. We denote by C™(i*(Ta<$>))
the set of all global cross-sections I of i*(Ta<&) such that /?* £ has a compact
support. They are complete.

The mapping

Expo - (Of (i*^)) 9 * ̂ Exp(l, £) e ra(3f , *))

is called an exponential mapping on the L.g. 0 defined by (0.1) (see [11],
[27], and [28]).
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For a cross-section £ e <7~ (**(TQ0)) and a number s 6 R the equality
Exp(l,s£) = Exp(s, f) holds.

THEOREM 3.1. Let J*: <£| .£->•<£' &e a local homomorphism from
0 info $' defined by (1.2). Assume that %0 is an arbitrary point in ilf,
£ e G'^(t*(Ta0)) a cross-section, and e > 0 a number such that the relation

Zcfe /or every /eI1+e, T/&en tAere ewist a number e' (0 < e' < e) and a
neighbourhood U o/a?0 such that

(i) (Exp^£)(#) e Q for at e U and \t\ 1 + e',

(ii) pbqMjfVof))(0) - ^((ExPjfflW) for xzV.
Proof. Since /5io(^*o^)(a?) = p*o|(a»), we have

^oleC^'*^^)).
Put

^S'"1 [fi] is an open subset of MX It containing {#0} x J1+t. It is easily
seen that there exist a neighbourhood U of a?0 and a number e (0 < e' < B)
such that

• . . . 'ncp1 . . ' !( . ' .>: ' .; ?'

For an arbitrary point ( x , t ) e Uxll+e> we have\ • < ; = V5VV,'V -i > - - T -
' : . - . . - .? i f

Hence the mapping

8' = (Il+, 3 / ̂  ^((Exp.ifll 17) e ratloo( Jf ,

is nn l.s.o-p.s. of railoc(Mj 0) over U, which is generated by (.F*o£)j Z7.
Therefore, equality (ii) holds.

Let us take the cross-sections £1? ..., |m e CJ°(**(Ta0)) which are
a basis of i*(Ta0) over Z7 c Jf. The r-i vector fields fIl<Px , ..., fJ<Px

are a basis of ̂ (^x) over 0X n/3"1 [f7] for an arbitrary point a? e Jf. A basic
property of the exponential mapping is given in the sequel.

THEOREM 3.2. For each point x0 e U there e$ist open neighbourhoods
Um c Rm of 0 and U' c. U of oJ0 such that the mapping

,

0 = l /7 m x Ur3(al, .,., am,a>)
"

is a (liffeomorphism onto its open image.
For the proof we need the following lemma which is known from

theory of differential equations:
17

8 — Colloquium Mathematician 47.2
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LEMMA. If Zlt *..,Zm are some vector fields on the manifold M, then for
any point ij0 e M there exist a neighbourhood W of yQ and a cube

OK = {(al> "-jO eJSm: |aT'i <K, i = 1, ..\,w}, 0 < K < oo,

such that for each point y e W and a e Pg there exists an integral curve

of the vector field £ ^Ztt ««# the mapping
[1=1

is smooth.
Proof of Theorem 3.2. From the above lemma it follows that for any

point a?0 e U there exist neighbourhoods Um c .R"1 of 0 and U' <= D" of #0

such that the mapping Exp# is smooth. To prove the theorem it suffices to
show that the differential (Exp0)#(0 - } is an isomorphism. First, we shall
prove that the differential at the point a = 0 of the mapping

is an isomorphism. Denote this mapping by x and identify the tangent
spaces T0(Km) and Tl (0Xn) with Rm by means of the following isomor-

XQ 0

phism:

i=l

Then x+e = idRm- Indeed, if 6 = (ft1 , . . . , *m) e .R"1 is an arbitrary
point and ^ = (J2 a s h^ 5 •& e .R"*), then

because xo ̂ 6 is an integral curve of the vector field 2 &1 ^ll ̂ x6 ail(i
1=1

= a?e. Now, the theorem is implied by the following fact:
If p: P -> N, q\' -> N are coregular mappings and /: P -*P' is

a mapping such that go/ = ^, and ^)0 eP, XQ =

and (/i)*j, is an isomorphism, then /#p is also an isomorphism.
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The mapping inverse to Exp0 is called the exponential coordinate
system determined by the cross-sections £l? ..., fm eC™(i*(Ta0)) which are
a basis in a neighbourhood of # e M.

COROLLAKY. There exists an open set Q c 0 which contains all units
and is contained in the set

THEOREM 3.3. Jta m awd n &e any subbundles of i*(Ta<&) such that
m®n. Let £„ ..., |m e C~(m) and £m+l9 ..., fw+n e 00°°(n) fce

cross-sections which are a basis ofm and n, respectively, over a non-empty
subset U c Jf. T/i^ //^ cross-sections £x , . . . , ^m , ^m+1 , . . . , fm+ft are a
o/ i*(£M0) over Z7. ief Exp0 be defined for these sections. Then for each
point no e U there exist neighbourhoods U' c U of a?, ?7m c .R™ <?/ 0,
?7n c Rn of Q such that the mapping

defined by

A(a, b, y) = E x p a , 0), /?pExp*({0, 6), y))-Exp,((0, W, y)

w a diffeomorphism onto its open image.
Proof. Let Erp0: WxUj^-^0 be the diffeomorphism onto its

open image Q, where W c jem+n = MmxRn and ^ c Z7 are open sets
such that 0 e TT and & e Z7j.

Since A is smooth, we can take neighbourhoods Um e J2m of 0, Un e J2n

of 0, and Z7' c ^ of » such that ^[?7m x Z7ft x 17'] c J2. We denote by
), a(z)) the exponential coordinates of z e .Q. Then

= a*, e = 1, ...,»»-f w, y eU, aeW.

Let us tflko the mapping

which is of the form

t(a,b,y) = (*„(<!, 6), y).

To prove the theorem it suffices to show that the differential (y*(0,0)
is an isomorphism. For i = 1, ..., w-f w we have

7

771i 771 n n \ (Brp,j;«'f4) /JolExp,^6'*-*')^) HE*P*Ji>' *«+«)(»)

' i=J t=l ' 1=1 /
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Put

. - I 9 * h * f * 0 . . M 0 , 8 0 . . . 0 6 J B for

- 6j and
«- Tnen T<,j(s) = *'^- Therefore, £„((), 0)

t, j< w + »] = 1 =£ 0,

which completes the proof.
THEOREM 3.4r. J.« injective Jiomomorpliism F: <£ -> $' o/tfte £,</.'$ (1.2)

& <m immersion.
Proof. It is easy to prove that a homomorphism F = 0 -> <£'

is an immersion if and only if JF* : f (Ta 0) -> i'*(Ta 0') is a monomorphism
of the vector bundles. Let F be injective. We shall prove that F* is a mono-
morphism. Let us take a vector v ei*(Ta$) such that F*(v) = 0. Assume
that |eC^(t*(2Ta0)) is a cross-section for which £(#) = v. Then (Theo-
rem 3.1)

Since j?*o|(i») =#*(«) — 0 , we have (£*o£)'(U = °- Hence the
integral curve of (j?*o|)' passing through Ix is constant, and since
t H>(Exp^t(F*o £))(#) is such a curve, we obtain

Consequently, f((Exptf *£)(»)) = Zx, and from the injectivity of
F we get (Exp^£)(#) = lx. Since 1 1~> (Exp(p/|)(i») is an integral curve
of I' we have v = £(a?) = |'( = 0.
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