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LIE ALGEBROID OF A PRINCIPAIL FIBRE BUNDLE

Jan KUBARSKI



INTRODUCTION

The notion of a Lie algebroid, introduced by J.Pradines [221,
t23), was invented in connection with studying differential groupoids.
ILie algebroids of differential groupoids correspond to Lie algebras of
Lie groups. They consist of vector bundles equipped with some algebraic
structures (R-ILie algebras in moduli of sections). Since each principal
fibre bundle (pfb for short) P determines a differential groupoid ( the
so-called Lie groupoid PP—1 of Ehresmann), therefore each pfb P defines
- in an indirect manner - a ILie algebroid A(P). P.Libermann noticed
[12] that the vector bundle of this ILie algebroid A(P), P= P(M,G), 1is
canonically isomorphic to the vector bundle T%G» (investigated earlier
by M.Atiyah (2] in the context of the problem of the existence of a con-

nection in a complex pfb). The problem:
- How to define the structure of the Lie algebroid in T%G— without

using Pradines’ construction,
is systematically elaborated in this work (chapt. 1)
The Lie algebroid of a pfb can also be obtained in the third man-

ner as an associated vector bundle with some pfb.
To sum up, three natural constructions of the Lie algebroid A(P)
for a given pfb P= P(M,G) are made (chapters 1 and 2):

(1) A(P) = T%G,, the idea of this construction could be found in
M.Atiyah (21 and P.Libermann (12], see also (16}, (173, [19]1, €201.

(2) A(P)= A(PP-1):m the Lie algebroid of the Ehresmann Lie grou-
poid PP~!, see (31,191, [22], (231,

(3) A(P)= chp)sz(R“x@) where § = QT(G)O is the Lie algebra of
n

G defined by right~invariant vector fields, w1(P) is the 1~st order
prolongation of P and G; -~ the n-dim. 1-st order prolongation of G,

n=dimM, [4],(71; via some Jefi action of Ggron RDX{.



‘ In the theory of Lie groups it is well known that two Lie groups
are locally isomorphic if and only if (iff) their Lie algebras are
isomorphic. The question:

-What this problem looks like for pfb’s ?

is answered in this work. A suitable notion of a local homomorphism
(and a local isomorphism) between pfb’s is found (chapt.3).

By a local homomorphism ( isomorphism J &:P(M,G) —» P (M, G )
we shall mean each family

q={(Ft’“t)" tGT.S

of "partial homomorphisms" [ isomorphisms 1 (Ft,pt):I’DDt — T
provided some compatibility axioms are satisfied (def.3.1).

Every local homomorphism < defines an homomorphism of the Lie al-
gebroids dF:A(P) — A(P") (prop.3.2) and, conversely, every homomor-
phismvof the Lie algebroids comes from some local homomorphism of the
pfb’s (th. 3.4).

Two pfb’s are locally isomorphic iff their Lie algebroids are iso-
morphic (th. 3.5).

Some invariants of isomorphisms of pfb’s are invariants of local
isomorphisms so they are then de facto some notions of Lie algebroids.
For example:

(1) the Ad-associated Lie algebra bundle PXsq,

(2) the flatness (chapt. 4),

(3) the Chern-Weil homomorphism ( for some local isomorphisms)
(chapt. 5).

One can ask the question:



- ‘How much information about pfb I is carried by the associated
‘Lie algebra bundle Px.q 7

It turns out that sometimes none:
- If G is abelian, then Pqu: is trivial (see corollary 1.11),
and sometimes much, and most if G is semisimple:

- Two pfb’s with semisimple structural Lie groups are locally
isomorphic iff their associated Lie algebra bundles are isomor-
phic (corollary 7.2.6).

Let A= (A, E,+},T) be an arbitrary Lie algebroid on a manifold
M. A connection in A, ie a splitting of Atiyah sequence

0 —q¢(A) <> 4 5 T — 0 where q(A)= Ker T,
g

determines a covariant derivative V in the Lie algebra bundle ([’(A)
and a tensor .QMELQ (M;¢(A)) by the formulae:

(a) Vy6= [AX,67,
(b) QM(X,Y)=?‘ (X,Y] - 02X, 2YD (the curvature tensor of ).

Now, let be an arbitrary Lie algebra bundle, V - a covariant
derivative in ¢ and \QMGQZ(M,‘(K). The necessary and sufficient condi-
tions for the existence of a Lie algebroid which realizes (({[,V,._QM)
via some connection are (see chapt.6):

(1) RX Y5=- [QM(X,Y),GL R being the curvature tensor of V,

(2) VX(G’”?]: [VX y'q]"' [.6 vx"]]’
(3) VR y=o.



The results of chapter 6 are used to give a classification of Lie
algebroids in two cases (chapt. ?):

(1°) all flat Lie algebroids with abelian isotropy Lie algebras,

(2°) all Lie algebroids with semisimple isotropy Lie algebras.
The second looks as follows (ths 7:2.3) 1

- For any Lie algebra bundle @ whose fibres are semisimple there
exists exactly one (up to an isomorphism) Lie algebroid A for
which Q(A)=q.

In consequence, two arbitrary pfb’s with semisimple structural Lie
groups and isomorphic associated Lie algebra bundles have isomorphic
Lie algebroids, so they are then locally isomorphic,

= Are they globally isomorphic (in our sense, see p.15) provided
their structural Lie groups are, in addition, isomorphic ?

It turns out that they are not, even if these Lie groups are as-
sumed to be connected (ex. 8.3).

Some results contained in this work were obtained independently
by K.Mackenzie [14]1, dbut, in general, using different methods. This
conzerns some parts of chapters 1, 4 and 6 only (in the text there
are more detailed references). The main results of this work /all
chap. 2, theorems 3.4, 3.5, 3.6, 5.2, 5.8, 7.1.1, 7.2.3, 8.1 and ex.
8.3 / are included in the remains chapters.



CHAFTER 1

LIE ALGEBROID A(P) OF A PRINCIPAL FIBRE BUNDLE P(M,G)

All the differential manifolds considered in the present paper
are assumed to be smooth (ie C®) and Hausdorff.

Take any pfb
P = P(M,G)

with the projection X:P —= M and the action R:PXG —~ P, and define

the action
RT:TPXG — TP, (v,a) r¢~(Ra)*v,
Ra being the right aetion of a on F. Denote by

A(P)

T

the space of all orbits of R with the quotient topology. Let [v] de-

note the orbit through v and

AP = A(P), v > [v1,
the natural projection. In the end, we define the projection
p:A(P) —= M, [v] >z, if VeTZP.

For each point xe€M, in the fibre p_1(x) there exists exactly

one vector space structure (over R) such that

vl + twl= [v+wl if KP(V)m‘Ké(w),
ﬁP:TP ~» P being the projection.
7 ir P A(P)
Vg "8 iz’
is then an isomorphism of vector spaces, ze¢P.
The pfb F(M,G) determines another pfd
TP( TM, TG )

with the projection TQQTP —+ TM and the action

R, :TEXTG —s TP



[51. We can treat G as a closed Lie subgroup of TG (G'“[B ; aeGl, 0,

. being the null tangent vector at a). The restriction of R, to G is then
equal to RT (51. By (6], we see that the structure of a Hausdorff c®-ma-
nifold, such that n# is z submersion, exists in A(P) (this result is
obtained by K.Mackenzie (14,p.282) in another way). We also obtain a pfb
TP(A(P),G) with the projection x*  and the action R1

PROPOSITION 1.1. (cf [14,pp.282,263)). For each local trivialization
9:U%xG — P of P(M,G), the mapping

(1) q’A:Tqu: -—,~p_1rU]CA(P), (u,w) — tqf*(v,w)],

is a diffeomorphism, where gqa= TG ,

PROOF. It is easy to see that qA is a bijection. Besides, the following
diagram

R
tuxre 2428, mxg
Y

A

TP ——=—— A(P)
commutes where @R denotes the canonical right-invariant 1-form on G.
Indeed, if we put
A:=q(-,e), and A,:G — P, a > za, z€P,

e being the unit of G, then we have, for xeU, veTXU, a€G and weTaG,

“A"q’*(v,‘v)"= (v, w)T = [e(e,a), (v) +@(x, + ), (W)

(R A0 (V) + (A 5y), (W)

I(Ra-1)*((R Ay(v)+ (Az(x)) (w))]

CALY)+ CAy i)y (6"(w))1 = 94y, 8R(w))
o(idxe (v,w).

Because of the fact that HA and idx@R are submersions, we assert
that ?A and (WAJ-1 are of the C®- class. O

REMARK 1.2. Using the bijections qA we can define the differential
structure of A(P) in a more elementary manner than above as the one for
which q are diffepmorphisms., For this purpose, we must only notice that,

- G =



for arbitrary local trivializations q’i:UixG —» P, i=1,2, we have:

1[p'-1[.U1]ﬂ p-1[U2]] is open in TU,x¢q ,

(a) (@)~
(b) (q;‘:‘)-uq)é is a diffeomorphism.
(a) is trivial. To see (b), we shall calculate that
A\=1 A
(@) 95w W)= (v,8%(g, (7)) * Rd(&(x))(w))
for veTxU, xeU, weq, where
g:U1n U2 — G

is a transition function, ie cpz(x,e)- 471(x,e)-g(x), er1r\U2, and Ad
denotes the adjoint representation of G. Put

311"{’1( «,€)

and let la’ T, denote the left and the right translation by a on G. We

have

(@) g h(v, W)= <cp‘}>'1< (9, (Vs %)1)
(?1) ([12*(‘7) 22()())*(‘”)])

-1
2 (CP1) ([()1'8;)*(‘7)* (AM(X),g(X))*(w)])

= @D 7TCUR ) k(R ) ) (A4 (7))
+ (AA (x)) (g (V)>+ (AA (X)°lg(x)>*<w»])

n

(@7 CEA() * (Ay () Tgt(x Py (B4 (7))

+ (A () (gt ) ) (L 2y), (D)

A1(X) % g(x
(cy1)'1([21,.(V)+ (A, (x) 2 (88, 7)) + 8aCE(x))(W))D)
- (7, 8R(g, (7)) + Ad(E()I(W). O

n

PROPOSITION 1.3. (see [14,p.283]) The system
(.2) (A(P>’va>

is a vector bundle and (1) is a (strong) isomorphism of the vector
bundles (over the manifold UcM).

PROOF., It is sufficient to notice that

._.’/...



A
?ix:T, 0% ¢ — ACP) 4
is an isomorphism of vector spaces, xeU. O
EXAMPLE 1.4. (a) For an arbltrary Lie group G (treated as a trivial pfb

over a point), we have:
A(G) = T(}/G'éq: , [w] b——»GR(w).

More generally, for P= MxG, we have:
ACP)
(b) A(TH(m))

T(MXG)e & Mixg, [(v,w)] > (v,0%(w)).
Jq(TM), see ([111.

1

Let
Sec A(P)

denote the Cm(M)—module of all ¢c® global cross-gsections of the vector
bundle A(P), and

¥R p)
- of all C® right-invariant vector fields on P. Each vector field
XeX (P) determines a cross-section
Xoe Sec A(P)

in such a way that Xo(x)= (X(z)l for zeP'X, x€M. XO is a ¢® cross-sec-
tion because locally XOIU-—- KA°X°A where 2:U — P is an arbitrary local
cross-section of P, The mapping

(3) ¥R(p) — seca(p), X X,

is a homomorphism of Cm(M)- modules.

PROPOSITION 1.5. (cf (14,pp.281, 285)) For each cross-section meSecA( P)
there exists exactly one C® right-invariant vector field

n'eX"(p)
such that
(4) (' (2)1=9(z2).
The mapping
(5) Sec A(P) — ¥R(P), 7 7,



is an isomorphism of Cm(lV})-modules, inverse to (3).

PROOF. Formula (4) defines in a unique manner some vector field n’ on
P, n’ is, of course, right-invariant. To show the smoothiess of m’ , we
take an arbitrary local trivialization ¢:UxG — P and define the map-
pings 7)’ and "f)' in such a way that the following diagram commutes:
s A '
P __"I__) TP L + A(P) ._ﬂ__ M
Q(I I‘?* ‘YA J
7’ idxef g
UXG—— TUXTG —~ TUA q +—— U
)

(p;:;Z\\\\\\* ~

(UxG)g (= ACUXG))

We read ;r out as a right-invariant vector field on the trivial
pfb UXG, induced by ﬁ:

(1dx8™)(F (x,2)) = (@) bt et g (x,2) = (1) hmare g(x,2) =7 ().

Therefore, the problem of the smoothness of 'ﬂ,reduces to that
for the trivial pfb’s form UxG. An arbitrary c® cross-section
M:U —» TUXq is of the form % = (X,6) where Xe¥(U) and 6:U —sq . The
right-invariant vector field :ﬁlon UxG is then defined by

1 (x,2) = (X(x),(r,) (6(x))),

but this formula asserts the smoothness of %/.

j: *..L.E _:_::' we :..‘:s'.-',;_ 43+ -4 e 4 ‘:—‘“—-;'LT

- - = R I | - - - PR = ~._.4;.'._._.

(£em) = £X. 7,

(5) is a homomorphism of C™ M)-modules being inverse to (3). O

Now, we define some R-Lie algebra structure in the R-vector space
Sec A(P) by demanding that (5) be an isomorphism of R-Lie algebras,

The bracket in Sec A(F), denoted by («,*3, must be defined by

ED = (LY, 3),.



We also take the mapping
r :A(CP) — T, (vl — TV,
Of course

- X (A )1
le ﬂ;zo(nlz) for ZePlx'

DEFINITION 1.6. The object

(6) A(P)‘(A(P)v l‘w],T)
is called the Lie algebroid of a pfb P(M,G).

The fundamental properties of (6) are described in the following
proposition. '

PROPOSITION 1.7. (see (14,p.2851).
(a) (Sec A(P), @-,+3) is an R-Lie algebra,
(b) Sec r:Sec A(P) — ¥ (M), §—>yot , is a homomorphism of Lie
algebras,

(c¢) r is an epimorphism of vector bundles,
(d) £, £l = f°ﬂ§,~q]+(ro§)(f)~v) for fEC(D(M), t,meSec A(P),
(e) the vector bundle

¢(P):= Ker ycA(P)

is a Lie algebra bundle (see (5,p.3771), where the structure of a
Lie algebra in a fibre %(P)Ixﬂ xeM, 1s defined as follows:

(7) Cv,wl := Qg,M3(x)

where §,meSec A(P), t(x)=v, N(x)=w, v,weq(P)lx.
The mapping

(8) o URE =g (B) g, (xw) > qh0,, W),

is a local trivialization of the Lie algebra bundle for an arbitra-

ry local trivialization ¢ of P, where q = T,G is the Lie algebra
of G defined by right-invariant vector fields.

COROLLARY 1.8. By properties (a) = (d), (6) is a Lie algebroid in the
sense of J.Pradines (22], (23].

= 10 =



PROOF OF PROP. 1.7. (a)<(d) see [14,p.285]1 .

(e) To prove that (7) is a correct definition, we must show that
the right-hand side of (7) does not depend on the choice of t and 7 .
For this purpose, we take §1; EzeSecA(P) such that 51(x)= 32(x), x being
an arbitrary but fixed point. We prove that

[51,"]l(1)- [SZ’T'](X)

for meSec A(P) provided 1 (x)eg(P), . Put V= g, - ¥, 5 (x)= 0. The fact
that A(P) is a vector bundle implies the existence of sections IFTERE
.,EmeSec A(P), functions f1,...,fmeCatH) and a nbh UcM of x, such that

fi(x)ao, i¢m, and »1U= v, 1U where vy = 2 figi. Making use of (d) and ta-

king a function separating an arbitrary point yeU in U, we see that
Ev,m21U= 0/,,mM31U. Consequently,

L8, 3(x) - £,,MD(x) = £v,,73 (x)
= 200110 - I (rem)(x)(eh)F,(x)

= O.

The correctness now follows from the antisymmetry of Efe,.].

It remains to show that
A
qo,x'q'_’q(P)lx
1s an isomorphism of Lie algebras, xeU. Thanks to the equality
A
CPO,X<V)= [AA(X)*(V)]’ veq,
we need to show that
(9) 2:¢ = q(P), ., v o (A, (V)]

is an isomorphism of Lie algebras, where zePlx.

Take vy, v,€q-and the right-invariant vector fields X1,X2€?£(G) de-
termined by V41V,, respectively. Let §1, §2 denote arbitrary but fixed
crods-sections of A(P) taking at x the values §(v1), E(vz), respectively.
To get the equality

200y, v,)) = Dy, §,0(x)



it is sufficient to see that
‘Az*< [v1,v2])= [§1,§2](z).
First, we notice that Xy is A -related to g'l

A(Xg(a)) = A, (7,0, (vy)) = (Rymity), (v;) = (Ry), (¥;(2))
= t(za)=¢5(A,(a)).

Therefore [X1,X2] is A -related to [;;,3’2], which implies the asser-
tion. 0O

EXAMPLE 1.3. ([21]1) As the Lie algebroid of a trivial pfb MxG we take

TM %¢

with the structures

(a)r= pry :TMX¢ —> TM,

(0) T(X, 60, (Lm0 = (0, Y), Lyq-Ry6+ [,M1), X, TeX(M), &,m:H —
(an arbitrary cross-section of TMxq is of the form (X,6) where XeX (M)
§:M —eq).

FROPOSITION 1.10. (cf [1] and (14,p.119)). ¢(F) is canonically isomor-
phic to the Ad-associated Lie algebra bundle Pquj .

PROOF. The mapping
T:PXoq —»q(P), [(z,v] s (A, (v)],

is an isomorphism of Lie algebra bundles. O

COROLLARY 1.11. If the structural Lie group G is abelian, then ¢(P)

is trivial.

PROOF. ¢(P)= PxX,q = (qu)/G TH LK My 0

e - I R il



DEFINITION 1.12. (ef J.Pradines (231). By a Lie algebroid (on a mani-
fold M) we shall mean a system

(10) , A= (A9 l'p'],r)
consisting of a vector bundle A (over M) and mappings
Be,el:SecAxSecA —s SecA and Y:A — TM

such that

(a) (SecA, [+,*])) is an R-ILie algebra,

(b) v, called by K.Mackenzie [14] an anchor, is an epimorphism
of vector dbundles,

(c) Secr:SecA— ¥ (M) is a homomorphism of ILie algebras,

(d) Cf, fond = £ Lg,m1 + (yo§)(f)en for £eC®(M) and t)meSec A,

LJ.Pradines [23]1 does not require for the anchor v to be an epimorphism.
The reason is the fact that J.Pradines associates such an object with
a differential groupoid, much more general than a ILie groupoidl

With each Lie algebroid (10) we associate a short exact sequence
of vector bundles

(11) 0 —¢q(A) s a1 —0
g where
q(A) = Kerry,

called the Atiyah sequence assigned to (10) (see (14,p.2881).

In each fibrec{(A)lx, some Lie algebra structure is defined by

[v,w):=0tmA(x) where tmeSec A, Y (x)=v, M(x)=w, v,weq(A)u.

s

q(A)lx is called the isotropy Lie algebra of (10) at x.

THEOREM 1.13. (see (14,p.1891 and (18,p.501). For any Lie algebroid
(10) on a connected manifold M, the vector bundle q¢(A) 18 a Lie
algebra bundle.

&= I8 =



FROOF. Let [*,°*] denote here the cross-section of qj(A)Z’1 such that
C-,-1 4 1s the Lie algebra structure of ¢(A) ,. We must prove that

(12) (Q(A)v i['nn)

is the so-called } -bundle (see [5,p.3731).
Let 2:TM — A be any splitting of the Atiyah sequence (11), ie
YoA= idTM holds:

(13) 0 — q(4) <> A —L—TM —0
€ = -

It is easy to see that the formula
VXF- (X, 0, seSecq(A), XeX(M),

defines some covariant derivative in the vector bundle ¢(A). From the
Jacobil identity in SecA we trivially assert that

VX( 6,m1) = [NVySm1+ (6, Vym), de V(I.,+))=0.

This implies that V is a ) -connection in (12), see [5,p.373). By
Theorem II ibidem, the assertion is proved. O

DEFINITION 1.14. (([9,p.2731, [14,p.101)). Let (A, &+, -¥,y) and
(A7, 0-,°07,77) be two Lie algebroids on the same manifold M. By
a homomorphism between them we mean a strong homomorphism

H:A —» A~

of vector bundles, such that

!
(a) Y °H=7,
(b) SecH: SecA —> SecA 1s a homomorphism of Lie algebras.

H determines some homomorphism of the associated Atiyah sequen-

ces

0 —q(a)—s A —X > ™ —0

1}10 1}{ .o

0 —q(A)c > A —L 5 TM = O

0=
where.H Hig(A).
= 14 =



If H is a bijection, then il is also a homomorphism of Iie alge-
broids; then H is called an isomorphism of Lie algebroids,

Each Lie algebroid isomorphic to TMx¢ (defined in Example 1.9)
is called trivial.

REMARK 1.15. A pfb P with a discrete structural Lie group has a trivial
Lie algebroid, more exactly, A(P)% TM, El

REMARK 1,16. (cf (14,p.1011). Let (10) be any Lie algebroid on M and
let U be an open submanifold of M. Take the restricted vector bundle
Ay and Ny = r'(AlU):AlU — TU. In the space Sec(A|U) there exista
exactly one Lie algebra structure ﬁ-,-]U such that HglU,qu%]=u§;Un|U,
g,neSecA, and the system

(AIU' t., 'nuv TIU)
is a Lie algebroid called restricted to U
Let 2:U — P be any cross-section of P, then
)A

:TUxq — A(P)

(¢, 1u?

where ?,:UxG — PIU’ (x,a) > 2(x)+a, is an isomorphism of Lie alge-
broids; therefore A(P)lU is trivial. '

Besides, if H:A — A7 is any homomorphism of Lie algebroids, then

H _ :A — A7

1U°"71u U
is such a homomorphism, too. a
— 0 —e¢ —0 — 0 — 0 —

Each (strong) homomorphism [ isomorphism )

(F,M):P(},G) — P(M,67)

of pfb’s / F:P — P’, u:6 — G’ such that XoF=x, u is a homomorphism

= 15 =



( isomorphism ] of Lie groups, and F(za)= F(z)*u(a) / determines a
mapping ( see (14,p.289]))

dF:A(?) — A(P7), [v] = [F,(V)I.

FROPOSITION 1.17.((14,p.289)). dF is a homomorphism [ isomorphism ]
of Lie algebroids. O

The covariant functor
P(M,G) — A(P), (F,mn) +—dF

defined above is called the Lie functor for pfb’s.

As we have said in the Introduction, the Lie algebroid of a pfb F
can also be defined as the Llie algebroid A(PP—1) of the Ehresmann Lie

groupoid PP'1, via the construction of J.Pradines (see (31, [23]).

we recall these constructions.

(a) Let ® be any Lie groupoid (20]. We define
A(P)=u"179

where T“CIH Keroy, (x: — M - the source, u:M — , x —ug, ou -

the unit over x). The right-invariant vector fields on ® correspond 1-1
to the cross-sections of A($). The bracket £t,mD of gpqueclxé) is
defined in such a way that the right-invariant vector field correspon-
ding to Kf,m] equals the Lie bracket of the corresponding right-inva-
riant vector fields. The mapping 7:A($) — TN is defined by ¥(v)=B,(v)

(B - the target). The system obtained
(A(Q)v E’v'n v?)

is a Lie algebroid (for details see for example (91, [14)).

(b) The Ehresmann Lie groupoid PP~ is defined as follows:
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Its space equals the space of orbits of the action
(PxP)xG —» PxP, ((z1,zz),a)v—»(z1a,22a),
the source and the target are defined by:
«([21,22])-Nz1, B( [z1,z2])-ﬂ‘22

([21,22] being the orbit through (z1,22)), the partial multiplication
by :
[zz,zsl'[z1,22]= [z1,z3].

THEOREM 1.18. (cf [12,p.63) and [14,p.1191). A(P) = A(PP™1).

PROOF. For an arbitrary point xeM, we define an isomorphism

vl —mw__ (v), veTZP, z€P

-1
Px:A(P)Ix'_» ACFP )Ix’ Z%Z Ix?

where
wz:P —s (PP_1)X, z” — [2,27].

The definition of o, is correct which follows from the commutati-

vity of the diagram

s T P 4
‘M 28 \
A
‘k P 1-(\1_
VA

Now, we establish the smoothness of the mapping

-1
ACEP )Ix

P :A(P) — A(PP_1)

defined by ?IA(P)lxﬂ ?xf What we need to prove is the smoothness of

poh:imp — a(rr!) s T((PXB)g),

but QGJIA= Ty where r:PxF —a»(PxP%G.is the canonical projection and
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c:TP — T(PxP), v > (@Z,v) if veTzP, and ry and ¢ are, of course,
smooth,

It remains to show that ¢ 1s an isomorphism of Lie algebroids.
The equality YeP =T 1is easy to see. The fact that Sec g is a homomor-
phism of Lie algebras is the last thing to consider. Take any XG}R(P).
X 1s w, -related to the right-invariant vector field (?oxo)’ on PP,
Indeed, for the right translation by [z,z”]

Dig, gy (PE )y — (27 ) (2,27 — (2,277,

Xz’
we have

= ’ ocl) L]
ot D[z,z l] "z’

Thus, for x1=xz’, we have

(Uz)* Z'( Xz/> . (D[Z,Z‘]"C‘JZ' )i Z'( er) = <D[Z, Z’]>* [Z, ZIJ<?X,[XZ'J )
h <D[z,z3)r<?°xo(x/))‘ (Q'XO),(wz(z')) .

Although w, :P —» PP"' is not a surjective mapping, each right-in-
variant vector field on P iscoz—related to exactly one right-invariant
vector field on PP™'. By this remark and the fact that, for 510 b,
€Sec A(P), the vector field [g’1,g’2] (=u§1,g2r) is w,-related to
E?o§1,gc§2]' and to (Qo Eg1,§2])’ simultaneously, we obtain the equality

€ Lkqs g0 = Lok, 0o%5.0. O

S e
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CHAFTER 2

ACP) W1(P)xG1£iRnx¢)

n

Now, we give the third manner of a natural construction of the Lie
algebroid for a pfb P(M,G), in the form of the assoclated vector bundle

(14) K(P):=w1(P)xg1(Rnx{)
n

with some suitable structures.

We recall (41, [71 that w1(P) is the smooth fibre bundle of all
1-Jets with source (0,e) of the so-called allowable charts on P(M,G),

ie of pfb isomorphisms

(15) Y :VxG — PIU

of a trivial pfb VxG onto PIU’ where V is open in R™ and such that
OeV and U is open in M, n=dimM.

W1(P) is a pfb over M with structural ILie group
G;:- wé(mnxc) ( = the fiber over 0),

provided that both the multiplication in G1 and the right action of
G; on W (P) are defined by means of the composition of jets, ie if

1 1. . 1 N 1
e 3(0,8)¢e WAE) emd e J(0,e)%€0y»  then uh= J(0,e)¥be2)eW ().
Each allowable chart (15) is uniquely determined by a couple
(3, A) of a chart »:U —=» VcR™ (0eV) on M and a cross-section
A:U — PIU such that

Y(x,a) =20 (x))a, xeV, aeG.

From the identification



(16) 4’"(7(’))

we deduce that any element j(o 6) ¢ew (P) can be identified with a cou-
ple (jo(vc ) Jx,)o X:i= 2C (O), thus with a couple of linear mappings

({c,x,z*x) € Iso(R";T_M)x Hom( TMT) )R ),

where )‘E| R — 1 2t e ) ti_anc’ and, for arbitrary xeM and z€P |,

by Hom(TxM,T P) we mean the set of all linear homomorphisms

AgiTM — T P such that X, e} = ideM.

Therefore, we can identify

1 ,
(17) Wie), = ZLeJP|xlso(Rn,-TxM)xHom(TXM,-TZP).

According to 8], the group G; can be naturally written as
6l = 6K n,R)xG x Hom(R",q ),

and the explicit formula for the miltiplication in G1 is then of the

form
-1
° 6 = . L o
(403158004 (X5,25,5,) = (X,*X,,a,08,,4d(a3 ") 610Xy 5,),
X;€6Ln,R), a,eG, s eHom(R",q).
The action

1 1 1

W (P)XGn — W '(P)
can be written as follows:

for (xx,)z) éIso(Rn;TxM)xfkaTxM;TzP)

and (X,a,6) € GI{(n,R) xGx Hom(R™, ¢)

- G =



(18) Otyr,)0(X02,6) = (30 X, (R, ), oA, + (8,0), 26X ox )

n T :
€ Iso(R ,-TXM))‘ Hom(TxM,-TZaP).

Via identification (17), any allowable chart (16) determines a
local cross-section of w1(P):

Vo = w'(R), x s (0, )

Let Y, = (x4,2;), 1=1,2, be two allowable charts on P, %, being
with domain Ui' Let

g:U1f\ 02 — G
denote the transition function for ;\1 and 32, ie Ay(x)= 21(x)-g(x).
The transition function for \HJ and 4"; is equal to
W n
g :UyNU, ————— GL(n,R)xGx Hom(R ' q)

am ] P -
L S s T W2 1xr B (Lot ) g By X ) -

Really, by (18) for z:=;\1(x) we get

am1

‘I’Y(x)'gw(x)“ (130X 10+ O14 1x" X210 800 (Lt 3y ) e R 1)
* G (Rerx) dxz Moy xt Cogx) ke lg e x P Box)
= G R ) e et (A5 ) g )" Bex)
= oy Aopx)

=W2’<x>.

Now, we see that we can define the pfb w’1(P), independently of the
above, as the G;l-pfb for which gw are transition functions.

To finish with, what we need to notice is that (2) is a G -vector
bundle via some linear action G; on anXf{. By Prop.1.3, we see that any
allowable chart (16),» being with a domain U, determines a local tri-
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vialization of (2) by

~ ’ A -
v =(3,) o(x x1d) :UrxR"xq — Ay

where q;) :UxG — P, (x,a) — )(X)'&, and ';(_:UHRn — TU, (X,t) — 'RIX( t,

According to remark 1.2, for two allowable charts ?i==(xi,ki), i=1,2,
(xi with a domain Ui)’ we have

A—1 -~ i n
¥ e 1;2.U1nU2Xanxq_ sy U,NU xR,

(Ko tyw) = (X, 5 ot (8D 5 87Ce, Gy (1)) + 4d(g(x))(w)).
Take

T: (GL(n,R)XxGxX Hom(R",q))x(R"xq) —  ®R'xq

((%X,a,6),{t,w)) —> (X(t), ad(a)(w+6(t))).

It is easy to see that T is a left smooth action. It remains to
notice that

2 g"(x),(t,w)) = T<i71x°5‘2|xv8<x),(1g“*(x)>*°g*x"722|x'<t’w)>

1o R0y (B) s AdCe(x) ) w+ (140 2) " B %11 E)))

- (&5
= (7 g (1) » AdCE(X))(W) + 8"(g, %5, (D))
= (749,) ,(t,w).

From the general theory we obtain an isomorphism correctly defined
by the local formula

Wl(E)x {(B"xq) — ACP)
Gn
Gy o A )1 (BT > €@, Dy () (£)))

(ie the independence of the choice of an allowable chart (16) holds).
One can easily show that it is globally defined by (see (14))

|
Ny
(A}
I



£920 H: A(F) S A(P)
(02, ), (L, W)l —s Do (£)+ (a,), (w1,

Via (19) we introduce on K(P) some structure of a Lie algebroid

(A(P)) [', 'n~ v?)-
Now, we describe this structure without the help of (19):

(2) FOUxy 2,0, (t,w)1) = reoH( [Ogs 2,0, (t,w)1)
=T x () + (4,) (w)1)
= xx(t).

(b) Each allowable chart (16) (2t with a domain U) defines some
linear isomorphism of vector bundles

1I:TUXI{'_" Z(P>|Ur (v,w) +—> K;C'x)}\*x)r()?;;{(v)’w)]) VETXU,

and we have the commuting diagram

TU X q i vX(P)m
(WZZ\\\‘ H
2 ACE) o U

in which (g,)%
1.16). So ¥ must also be an isomorphism of ILie algebroids. Each cross-—

section & of A(P)|U is of the form

and HIU are isomorphisms of Lie algebroids (see remark

(20) § = ¥, (%,6)1

for some (uniquely determined) mappings t:U — RD and 6:U — ¢,
(20) determines a vector field X on U by the formula

X(x)= 3, (F(x)) -2ty



Thereby,
\PO(X, 6)= g‘

Let Ein [¢w,(%i,61)], i=1,2, be two cross-sections of K(P)|U and

let Xi be the vector field on U determined by 31. Then we calculate

ﬂ§1,§2] L Ib ([(X1,61),(X2,62)])
= ‘\’ ( [X17X2]pﬁx162'ﬁx2‘1 + [61162])

o 09, (5T 0y X1 6 = g, B L 8100
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CHAPTER 3

THE NOTION OF A ILOCAL HOMOMORPHISM BETWEEN PFB’S

£y

In the theory of Lie groups the following theorems hold:

THEOREM A, If G1 and G2 are two Lie groups with Lie algebras ¢, and {é,
respectively, then, for each homomorphism

h:qy —q,
of Lie algebras, there exists a local homomorphism
H:G1:D§E  — G2

(§2 is open in G1 and contains the unit of G1) of Lie groups
such that

dH= h, O

THEOREM B. Two Lie groups G, and G2 are locally isomorphic iffq:1 and
q, are isomorphic. ]

#hat does this look like for pfb’s?

First of all, we know [101, [21] that the theorems similar to the
above ones hold for Lie groupoids and algebroids, as well. Thus, we
have only to discover how to define a suitable notion of a local homo-
morphism between pfb’s in order that it correspond to the notion of a
local homomorphism between Lie groupoids.

Here is an answer to this problem.

DEFINITION 3.1. By a local homomorphism from a pfb F(M,G) into a second
one P7(1,G”) we shall mean a family

Cj: = [(Ft’H‘t)’. tET\

such that
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F :PDDy —> P, D, open in P,

M, :G DU, — G7, Uy open in G, eeU,;

provided the following properties hold:
(1) uy is a local homomorphism of Lie groups,
(2) \JxDy1=M
(3) ReF, =JID, (X and " denote the projections),
(4) Ft(z-a)= Ft(z)-yt(a) for zeD; and aelUy such that z-aeD,,
(5) If t,t"€T, z€D,, a€G, z-aeD,., a’eG, z€P and
Ft(z)= z”, Ft,(z-a)= z”+a”, then
(a) Ft’z‘Ra’oFtoRa‘i in some nbh of z-a,
(b) My, =T, -4, in some nbh of e€G (T (x)= aexea” !, x€G)

If Fy and uy are diffeomorphisms, then
-1 -1 =1
C]: = {(Ft r“t )3 teT

is a local homomorphism, and “F is then called a local isomorphism.

PROPOSITION 3.2. Let

F = {(Fyouy )i t€TY (1, G) —> P7(N,G")
be a local homomorphism between pfb’s. Then
d¥:a(P) — ACF), 1 ~— [F, (v)], VeI P, zeD;, teT,

is a correctly defined homomorphism of Lie algebroids.

PROOF. We start with proving the correctness of the definition of the
linear mapping

(AF) | ACR) | — A(P7) 0y [v1 = [P (V)],

ie its independence of the choice of z and t. Let t’eT and aeG be arbi-
trary elements such that z-aeD,-. The independence follows easily from
the commutativity of the diagram

= o -



’
‘\a Twar ACE >|X
(1‘\ ‘2 /
A t gza . P
/(a TzaP e Tzla/P ’X‘. \1 >
<dq)lx

where z = Fi(z), F,.(za)= z’a’.
Now, we prove the sought-for properties of d9.

(a) dF is a CaLhomomorphism of vector bundles. Indeed, for a point
x€M, take an arbitrary teT such that xeﬁ[Dt]. The smoothness of d¥ in
some nbh of x follows from the commutativity of the diagram

1 > W', ]—ﬂ»w’
b , I'J(A
ACP) D p‘1[th31 —— A(P’)
where m}:TP — M is the projection.
(b) y2dF=7 is evident,

(c) Sec(d%): SecA(P)-——+ Sec A(P”) 1is a homomorphism of Iie alge-
bras. Indeed, for xe xR (P), the cross-section d?3X of A(P7) induces
the right-invariant vector field Y: =(d?°X ) on P It turns out that,
for an arbitrary index teT, the field XID,c is Ft-related to Y:

(Fy (%50 = )5 ()" " (49) g @A(X,))
' A -1
=(x|Ft(z)) (dFex (z))
= (a%X ) (Fy(2))
= Y(Ft(z)).

The above remark yields (by a standard calculation) that

(dFeLy;,§,0 ) INID,T = qdFe §,,dFe§,DIX(D, ).

The free choice of t€T ends the proof. (O



REMARK 3.3. (1) It is easily seen that d ¥is an isomorphism if F is
a local isomorphism. (2) Weé have

d¥g(P)1cq(P)

and we get the commuting diagram

(Pt)*el " l<d?}£{(Pxx
o P3LE) !
g ———q (P,

for teT, z€D, (see (9)).

THEOREM 3.4. Let

h:A(P) — A(P7)

be any homomorphism of Lie algebroids. Then there exists a local
homomorphism % :P(M,G) — P°(M,G”) such that d¥= h.

PROOF. Take the Ehresmann Lie groupoids
$:=pP"" and & :=p P
corresponding to the pfb’s P(M,G) and P'(M,G’), reapectively. Let
(@) — A(37)

be the homomorphism of Lie algebroids for which the diagram

ACP) B a(p?)

ol . 9]
Ag) e a3

commutes, where 0 and Q’ are natural isomorphisms described in the
proof of theorem 1,18, By theorem A, for Lie groupoids, there exists
gsome local homomorphism

(21) P 350 — ¢,
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82 being open in ® and covering all units, of Lie groupoids such that
dF= T, Now, we are able to construct some local homomorphism of pfb’s
It will be the family

F :={(Fzz,,}lzz )i(z,2” )eP®P”

(POP={(z,2z" )ePxp” sXz=aX"2"y ) where Fopr=w, 1oFoc-.) ID, Dznw;1[.§),n§]tz]

-1 -1 .
and {,,,=H,  oFept IU_, U,=#, [N G, 1, and w,:P—23, z— [z,2°],

GTC Z

are defined in a similar manner), see the figure:

P/ : P’

is the isotropy Lie group at x, u,:G — G g0 @ > [z,za], (wz,,Py,

We have to prove that F is a local homomorphism and d%=h. Proper-
ties (1) and (2) of a local homomorphism (see definition 3.1) are e-
vident.

(3): OF,, ()= W (@ X F@,(%)))) = 87(F( (z,5))
=B[z,2) =N Z,

(4): Take %eDZ, anZ such that Z-aeDz. For z’eP', we have

Fop(Bea)= 0 (R (5.2))) = 0 X P( tz,3-2)))

w;J( F( [za,Zal-[z,2zal))
W XBCtz,50) 0, (u (a)))
FZZ,<E)'pZZ/<a)-

1]



To prove {5), take (z,z7), (21,21’)61’@}’: aeG and EEDZ such that

~7 ~

o B il L4 AL e : .
zaeDz1. Let = =FZZ,(z) and FZ1,Z,1(z-a)= z +«a’, see the figure:

First of all, we prove that

(i) P ,+=Fzx- in some nbh of Z,
(ii) My, =Wz 1n some nbh of the unit of G.

We see that, for EeDZﬂDz,
v "'1 v -— v
Fyp(E)= 0, (Fw, (3))) = o] J(F( 1z,51))
=w (K (Z,21+ (2,21)) = & /(F([Z,21) - F(w_(5)))
= w> (K (5,51) 1255 = w7 (D, 0 2 (FC 15,51)))

Wz (Fwy(3))) = Fyy ().

whereas, for aeps [z N D[Z,z] (52,11 (Qy::@yn\Q, x:=Xz), we have
E-aeDanE and

Fop(Bea)= P, (B)e,  (a)=§ wu_(a),

FZZ/<5'8)= F-é‘ZV'(E‘a>= ng»:(i)-yzzl(a)
-1 ~ _ - .
=03 (Fy(2))) gy (a) = 3 opizzt (2),

This yields the equality sz’<a>=P'iZ'(a)'

Analogously, we prove
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(iii) Fz1’z{ = Féa,iéf in some nbh of Za,

(iv) Fz1,z§ = Hﬁa,ﬁ%f in some nbh of the unit of G.

From (1) + (iv) it follows that it is sufficient to show that

(v) Fy 547 = Ra’oFEE’oRa'1 (on the set Dg, = Ra:itDé])'

a’
(vi) ms = V1o lzx. o, .
za,za’ a ZZ-°"a (on the set Usy 754[053).
(v): From the equalities
w'z'a = (A)‘;Z"Ra_& and wi’a/ L] wg/"Ral-i
we obtain
~ ~, (z) ww’/ (F(w- (z))) = R ,(wfu (F(UE(R _1(2)))))
= Ra,°F§§/°Ra_1(Z).

(vi): From the equalities

we get
H3a, Z%§a) FE¥;1(F(HEa(é))) - raj1(H5'(H2(?a<é))))
= 1,7 (g (T, ().
It remains to show that
dF= h.

Take arbitrary x€éM and zePIX. For veTzP, we have (see theorem 1.18)

<dq)lx[ﬂ = [F,, *é<v)J n [wz *z OF*uX nz( v)l= ?x Feu °?x(v)

1_1 _
= 9x °hlx°?x(v)_ h(v). O
As a corollary we obtain

THEOREM 3.5. Two pfb’s P(M,G) and P/(M,G/) are locally isomorphic iff
their Lie algebroids are isomorphic. a
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Take now two pfb’s
F=P(M,G) and P”a P’(I1,G)
over M, with the same structural Lie group G. Let
{(Ugry)i teTd,  {(Uy,9f); teT)

be two families of local trivializations of P and P, respectively,
(over the same covering iUt; teéT} of M) with the transition functions
equal to

gtt"gi,:t" t,t’eT,
respectively. Put
Yy = P97, ter.
‘When is the family

F - {(by,1d); teT)

a local homomorphism between pfb’s ?

THEOREM 3.6. The following conditions are equivalent:

(1) Fis a local homomorphism,

(2) for any t,t"€T, the transition functions

Bty 184t U NUyr — G

differ locally by an element from the subgroup

{eG: !E\Gma(a)ez%ﬂ

where ZGO is the centralizer of GO and Go is the connected compo-
nent of the unit of G.

COROLIARY 3,7. Under the assumption of the connectedness of G, condi-
tion (2) is equivalent to




(27) for any t,t’€eT, the transition functions gtt”g{t’ differ
locally by an element from the centre ZG of G. 0O

COROWLARY 3.8. Under the assumption that G is abelian, condition (2)
is equivalent to

(27) for any t,t”€T, the transition functions Byt gét/ differ
locally by a constant. d

FROOF OF THEOREM 3.6. The family F always fulfils conditions 1+4 from
definition 3.1. Therefore ¥ is a local homomorphism (so it is a local
isomorphism because ¢t, teT, are diffeomorphisms) 1iff it fulfils con-
dition 5.

1

. ~1 o
Take arbitrary teT, zoeDt.-K [Ut], a€G and let zoaeDt,. x [Ut’]‘

Then xozzﬂzertr1Ut,. Let ¢t(zo)- zé and ¢t,(zoa)= zéa’. We prove
that a necessary and sufficient condition for

(a) ¢t'= Ra’°¢t’Ra‘1 in some nbh of zZ.8,
(b) id= T,--4°Y, 1in some nbh of eeG

to hold is that the transition functions gtt"g%t’ should fulfil in
some nbh of X, the condition:

8Ly (X) = gyyr(X) 2

for some a€G such that Ta(a)EZGO for all aeG.
Let

s /
;\t=08t(-,e) and )tzc?t(-,e).
for aOeG guch that Z, = At»(xo).ao, we have

7z —1 -1 7/
(%) a’= a, -gttf(xo)-gtt/(xo)-ao-a.

Indeed,
2o Vy(2,) = Fiofy (Mg (x5)7a)= Vprdy (Ay(%g) Byy (x5)+a,)

= @L(X y 87 (%) a )= 25 (x ) gy (X )y s
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~on the other hand,

'd
.

Zo

a’= ¢t(zo~a)= ?é/(qzj(2t4(xo)-ao-a))= ?;,(xo-ao.a)
= Réf(xo)'ao~a==Rg(xo)-gét/(xo)-ao-a,
80 A (x,)eglr (x )ea_-a= 2;(xo).gtt/(xo).ao.a’, whence
g‘;t'(xo)'ao°az gtt'(xo)'ao'a,'
which proves ( % ),

What does condition (b) say? It turns out that [
|

id='Tah1-Té in some nbh of the unit of G iff

id=‘ra“1oa. on Go iff

(v") a"1.aezGO.

Now, we explain condition (a). Because of the fact that each nbh
of z a contains the nbh consisting of all points of the form

Ay (x)ea-ang

for x from some nbh of X, and g from some nbh of the unit of G, we see
that condition (a) is equivalent to

(a”) for x and g as above, the equality
\pt/(Rt/(X)an.a‘g): Ra’o‘ptoRa'j(xt'(x)'ao.a.g> {

holds.
But its left-hand side is equal to
e _1 7
L= qt,oqt,(xtz(X)-ao-a-g)==?t/(X.ao~a'g)
=)’t,(x).ao.a.g= )’t(x).g%t,(x).ao.aog’
while the right-hand side to !
r =1 -1
R= Ra,@yto?t (){(x)-ao-aog‘a ))
= -1
= Ha’<c?-t(?t (At(x>'gtt/<x>'ao’a°g'a ))
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a -1
=Ra°qt(x)gtt’<x)'ao'a'g'a )

-1‘8,

=2y (X) gy s(x)-a +a.g-a ‘
therefore (a”) is equivalent to
(a”) for x and g as above, we have
gips(X)ea caeg= gtt/(x)-ao-a-g-a-1-a'.
In particular, for g=-e, we get
g;l:(x)‘g%t:(x).ao-a= ao-a'.
This means that

-1 / ‘ = -
gtt'(x)-gtt/(x)= a -a -a -ao1 (=const),
which proves that the function
-1 ’
X — g-t-t’(x>‘g.tt’(x)
is locally constant. Let
(% %) g%t/(x)= gtt,(x)-é for x from some nbh of x .
Then we can observe that (a) is (by ( # ) and (% #)) equivalent to
1244 - -1 -1 =
(a ) for geG_, we have a.(aoa)-g= (aoa)-g-a a oa-(aoa).
But we have the following equivalences:
4 -1 = -1 - w
(b") = (ao .a.ao.a) .anGO & 'r<aoa>4(a)e ZGo & (a™).
Thereby, the system of conditions (a) and (b) is equivalent to

the following fact:

— the transition functions g{%z and Bt differ 1locally by a
constant a such that, for arbitrary a ,a, we have ¥ 41(a)ezg ,
o} (aoa) o}

which means that, for an arbitrary aeG, we have’fa(é)eZG . 0O
0
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CHAFTxR 4

CONNECTIONS IN LIE ALGEBROIDS

DEFINITION 4.1. ([2,p.188], [14,p.140]). By a connection in ILie algebroid

(22)

(10) we mean a splitting of Atiyah sequence (13), ie a mapping
A:TM — A
such thak roA= idqy, or, equivalently, a subbundle BC A such that
A =¢(A)PB.

We define its connection form (called by K.Mackenzie [14,p.140]

a back connection )

wAﬁA — q(4)

as a unique form such that
(a) w™ig(a) = id,
(b) Ker wh= Im}.

Let (22) be an arbitrary but fixed connection in (10) and let

A= A(P)

for some pfb P= P(M,G). For each point zeP, we define a subspace

1

2 A .
le" Im[(yrln,z) ozn,Z]cTzP.

FROPOSITION 4.2. (see (14,p.292]). zr—eflav zeP, 1is a connection
in P.

PROCF. The equality

A A
(23) Jr|za°<Ra)*z ==']rlz
implies

A )

Hjpa = (Rl (H,T.



A A
On the other hand, jrﬁz'le:le — Tp,M 1is a linear isomorphism, thus

——— !
TZP H|Z@Ker(']&z).

It remains to show the smoothness of the distribution H*. Let Xy,
i€n, be a local basis of ¥ (M) on Usx, x being an arbitrary point of M,
Then (;\-Xi)’, i¢n, forms a local basis of H* on =~ (U], O

PROPOSITION 4.3. ((14,p.2921). The correspondence

(24) A s B

sets up a bijection between connections in (6) and in P(M,G),

PROOF, Let H be any connection in P(M,G). Put
A
Blx =T, tH) ;)

where ze€P, , xeM. By (23), we see that B,x 18 independent of the choice

of zeP'x. Evidently,

ME) 5 = By e3’{(P>lx

lx:le — TxM is an isomorphism as a superposition

-1

because rlxlB
1H, o(r® 11, )
I&z |z 1z Iz

B := UXle C A(P)

is a vector subbundle. Indeed, take a basis of the distribution H on a
set *™'[U1, Usx, x being an arbitrary point of M, consisting of right-
invariant vector fields Y1""’Yn and take a local cioss-—section

6:0 — P, Then the system of smooth cross-sections T OYioU, i€n, forms
a basis of B on U, which proves that B is a vector subbundle. B defines
a connection AR:mM —> A(P) by )ﬁix- (1’lxlB'x)'1
H b-—)AH is inverse to (24). O

. The correspondence

Fix a connection H in a pfb P, It determines the connection form
coe,Qﬂ(P,-q:) and the curvature form \Q,GSE,Z( P;q). §) is Ad-equivariant
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and horizontal at the same time [5,p.2571, ie is a basic g¢-valued form
on P, Via the classical manner (see for example [5,p.4061) the space

QB( P;Qj)

of all basic ¢-valued forms on P(M,G) is naturally isomorphic to the
apace of all forms on M with values in the assocliated Lie algebra bun-
dle PX q:

Q5(P;g) =+ Q(M;PxgE), © > B,

=~ z z
@(x;v1,...,vq)= [z,G(z;v1,...,vq)J,_ v,eT M,

where z€P|x, while vZ denotes a lifting of veTXM to TZP (for example
with respect to some connection in P). .

Considering the canonical isomorphism PXG{Et{(P) (see prop.1.10),
we obtain an isomorphism (see (9))

Rp(B Q) = QHg(R)), © — 8y

(25) SR
QM(X;V1,...,Vq)= z(@(z;v1,...,vq)), 7z €P

.

Ix

Via isomorphism (25) we define the so-called curvature base form
(or the curvature tensor) gzM of H. Now, let A:TM —e A(P) be the con-

nection in (6) corresponding to H with connection form w™. 0f course,

the following diagram commutes

Nz
q 2
21 J,'
A Z
W

q(B),, —2 a(P),

PROPOSITION 4.4.

(26) QX 1) = = (EaX, YD), X, YeX(M).

FROOF. By the equality X} (v2)= A(¥), veD M, we see that, for XeX(M),
the right-invariant vector field ()ox)’ on P is equal to the horizontal

- 30 =



lifting X of X. By the classical equality
Q(x,1)= -o(1x,11),
we obtain (zePIX)

S2 (X, )(x) = 2(82(2;%(2), 7(2))) = 5(~w(z; (£, T1(2)))
e (1), (e 1) 1(2)))

-, 03k, 20 Y3 (2)))

—wt(x; [aeX, 20 YD(x))
—oh 00X, a0 YD)(x). O

Prop. 4.4 asserts that the curvature tensor SE of a connection H
in a pfb P(M,G) corresponding to a connection A in the Lie algebroid
A(P) depends on A only.

COROLIARY 4.5,

(267) §2 (X, ¥) = 2¢[X, Y] - QaeX,2° YT,

PROOF. 2o [X,Y] - CreX,20 YReSecqg(P), therefore

200, ] = 02eX,20 YT = -0™( DX, 2e YT)
= 82 (X,Y). a

Equation (26) or (267) can be taken (see [14,p.295)) as a defini-
tion of a curvature tensor of a connection 2 in Lie algebroid (1C).

COROLLARY 4.6. The following properties are equivalent to one another:
(1) H is flat (ie $ =0),

(2) R,
(3) Sec A:X (M) — SecA(P) is a homomorphism of Lie algebras. [
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Any connection (22) in Lie algebroid (10) is called flat iff
SecA is a homomorphism of Lie algebras or, equivalently, if its curva-
ture tensor S}M defined by (26) or by (26”) vanishes.

Lie algebroid (10) is called flat iff it possesses a flat connec-
tion,

A pfb P(M,G) is flat iff its Lie algebroid (6) is flat.

By theorem 3,5, we obtain (as a corollary)

THEOREM 4.7.1f both pfb’s P(M,G) and P’(M,G”) are locally isomorphic
and one of them is flat, then the second one is flat, too. Con-

sequently, flatness is an invariant of local isomorphisms. []

EXAMPLE 4.8. Every trivial ILie algebroid is flat., The canonical flat
connection in the trivial Lie algebroid TMxq is defined by

A:TM — TNX¢, v — (v,0). O

CORCLLARY 4.9. If Lie algebroid (6) of a pfb P(M,G) is trivial, then
P(M,G) is flat. O
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CHAPTER 5

THE CHERN-WEIL HOMONMORPHISM

We prove that the Chern-Weil homomorphisms of pfb’s (over an arbi-
trary but fixed connected manifold M) are invariants of some local iso-
morphisms between them and, in the case of pfb’s with connected struc-
tural Lie groups, these homomorphisms are invariants of all local iso-

morphisms.

Let P= P(M,G) be any pfb with a Lie algebroid A(P)., Let

k k
Ve* ana Ve (p)*

be the k-symmetric power of the vector space {*eum the vector bundle
q(P)*, respectively;

k k
Ve*s @ Vgh.
k k
Tn the sequel any element of \/q* (analogously of \/(q(Ilejp)is

treated as a symmetric k-linear homomorphism ¢ X...¢ — R via the iso-

morphism
k
* ~ Nk
Vg™ 205 )
1
tyve v ((v1,...,vk) el Z; t€(1)<v1)""'t6(k)(vk))'
Derfine the mapping (see (9))
k k
* *
e:(Vg™)y — @ (sec \g(2)*)
o(F), = VGO
- k - k
for [e( \/q[*)l where zeP|x, xéM. From the Ad-invariance of FG(‘\/I*)I
and the fact that
(za)"= zoAda, zeF, aeG,

we see the correctness of this definition, ie the independence of
@(f)x of the choice of zeP|x. To prove the smoothness of 8(F), we take



a local section 4:U — P of P. A determines a local trivialization

k *
of \/T(Iﬁ of the form

s

k k K aed
g7 ux Vet — Ve, qu) — V)™ W ;

of course, ?v—1-8(f)lU is a constant cross-secﬁion x v (x,I), thus
a smooth one, Denote the image Im 6% (@k:=®l(\JQ*)I) by

k
(sec Vg (2)");.
Of course,
N k&
8:( Vg™, — (Sec \g(®) )

is an isomorphism of vector spaces.

k ¥* K *
FPROPOSITION 5.1. Let leSec \/g(2)¥, then re(sec Vq(P)*); iff, for any
z1,226P, we have

K k
MCRG-SL \/<22>*<r5,22>. O

THEOREN 5.2. The mapping

k k
n P @D (sec \/(t(P)*)I —> H(M)

for which the diagram

K k ACE)
& (sec Vg (), 2" B(M)

3e

(Vg™
k #
M (R -+ 21 for Te(See N q(R) )y

k-times

commutes is defined by
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where SEM 153 the curvature base form of any connection in P and
I;(QM’ R ,QM)(X,‘V1 y oo ’VZK)
1

VieTXM, X€lM.

PROOF. We must only prove that
(27) T F) (e s 0D = T2 e s )

where JEM and §2 are the curvature base form and the curvature form of

the same connection in P, Both sides of (27) are horizontal forms, so,

to show the theorem, we must notice the equality on the horizontal vec-
tors only. Let zePIx and v1,...,v2keTxM, then we have (see (25))

kK=
MO T (s v e o» ) 2575, 1 on v )
= (@RF)*(QM,...,QM)(HZ;V1,...,V2K)
k..
Z sgné(® r>x<‘QM<X"V6(1) 1Vecn))r o SOV op ay Voo ))

o sl
sgné. [ (2~ (52 IVI(X;Vg(1) ,Vﬂ,z)))» ceeaz (S X’.VSCZI(A)’VQ‘(H)>>>

SR TRE
O AP aP @

sgn6ﬁrQ§L(z;vz

(1)
,...ugl)(z;v?,...,vgk). O

zZ s V4
’V€(2))’ see r&( Z’VG(UO” ’Vs(‘zk)))

1]
X I

(

Now, we describe the relationship between the Chern-Weil homomorp-

‘hisms for local isomorphic pfb’s,

Let 9;={(Ft,yt);‘teT}:P(M,G) ——»-P'(M,G/) be a local homomorphism
between pfb’s P(M,G) and P(M,G”) and let

(A), €Q1(P/"{/>

be a connection form on P  where ¢ = ql(a")°.
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FROPOSITION 5.3, There exists exactly one connection form

weR(r;q)

on P such that for each teT

-1 —10 g% .
WIXp DT = (Mg ) (Fro).

PROOF. Correctness of the definition of w: Let ZOEDtnDt" 1f Ft'(zo)

=Ft(zo)-a’ (a"€G”), then Ft’=Ra"Ft in some nbh of z,, and Bpr=Tyrtoby

in some nbh of the unit of G. That is why, for z from some nbh of 2,

and for veTZP, we obtain

(B Dgal Frow N 2iv) = (T gt ) J((Ry o B Yo" ) 25v)
= ((py)]end(a”))(FER o) (2iv)
= ((By)5 load(a”))(Fy(ad(a’ "N )w'))(z4v)
*

= ()5 JFew (25v).

___________ 19 then

W(zi(8,), (V) = ()7 (P F)(2i(A,), (V)
= (Mg )y (@ (Fe(2)5( R (A, (¥))))

-1 s
= (U ) o( (R ()5 g (5)), (K (7))

= Ve

p X —1>._ ’ 4 s s

(b) R W= (ada Jw; indeed, let zeD,, z €P, aeG, a’eG’, za€D,,,
Ft(z)a z”, Fy.(za)= z”+.a”. Then F,»=R_,°Fi*R .4 in some nbh of za, and
Ht’='ta“1'yt'té in some nbh of the unit of G. So

(RE0)(2iv) =0(2a;(Ry), (V)= (Mg )g (Pl o) (za;(R,), (V)
= (M g o (Fyr(22)5(Fy ), ((RY) (V)

= My )f (@ (27 a" j(R,  Fy ((v))))
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-1 * /7 -,
= (ra/.1°Ft°Ta)*e(Ra/w )(Z ;Ft*<v)>

"‘1 -1 z L "
= (Ada” Do(pe ) (W (2737, (v)))
=Ad(a-1)a)(z; v). a
The connection form ® obtained in proposition 5.3 ig called

induced by F from w’. w and w’ induce some connections A and A’ in

ACP) and A(P7), respectively, which next determine connection forms
wh and W in them. The following diagram commutes

A
U(P) 2 A(F) =2 p

(28) (d‘?)ol © ld? T
P\ &
(P) 4-‘*’——-—A(£’)<—2-TM .

Indeed, the commutativity of the left-hand side of (28) follows from
the commutativity of all the remaining squares in the diagram

. (Ft)*z s
TZE —> TFt(Z)P
T(lz ‘A
(d%) X
A(P)' I x A(k/)lx ‘Ft(l)
A A -
“iz wlxl @ J,c") 1 x wlFt(z)

F (:N 1

» f’
>

i / (e e

The commutativity of the right-hand side of (28) follows easily from
the above because, for each VET M, the vector (d(?‘)lx(g(v)) is hori-

zontal and its projection on TXM is v.

a

I'ROPCSITION 5,4, The relationship between the curvature base form "QM
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, 7o ’
and SZH of W and T [ the curvature forms & and §2 of «w and
w’ 1,respectively, is described by the equality

+*

. -1 -1 .
(AF)0R =82y LI D1 = (M) Py 73
FROOF., For X,YeEX(l), we have
(AP QK1) = (dH°(-w I, 3YD) = - (dFEIX, A YD)
- ~wR¥( 2 X),dF(2Y)D= -wI¥X, Y]
= 'JQ%(X’Y)‘

The equality in the square brackets is classical [5,p.278] but we
may obtain it immediately in the following way: by (25), for cht,

veTZP, we have

A ~=1
‘Q(Z;V?,Vg)’-‘ pt*ez 1SZ,M(X7°V17V2)= Ft<z) (d%?XQM(X;V1)V2)

F(2) 0 (v v, ) = QU (F (2w e v

Ht*e

(FLs(ziv5,vE). O

PROPOSITION 5.5. If M is connected, then, for any t,t’eT, there exist
aeG and a’€G” such that Mi-=T,,4°¥°T, in some nbh of e€G,

PROOF. Let t,t’€T. Take arbitrary xeN(D.J, x“€XCD; ) and let
Y:¢0,1y — M be any path such that T(O)=x, T(1)=x. We can choose some
sequence of indices t1,...,tneT such that t=t1, t'=tn,

nd, 102107 and WD, INTID, 1 ¥ ¥,
i 1 i i+

and some sequence of elements 21,...,zneP such that

z €D, Xi‘=7fzi€thimth 1.

.

T, i+1

i §

Let a;€G and ageG’ be elements such that

Pe /7 rd
z;+a,€D, ; Fti<zi)= z; and Fg 1(zioai)= L

1+

i+1
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Then My ='ra"”Pt.°Ta in some nbh of eeG. Thereby,
i+ 1 i i

1

“t"“t; T(al’lz...-a’ e T, U

1 1'-quan)

DEFINITION 5.6. A local isomorphism F is said to have a property Ch-w
if for all teT

(29) Vg, UV g ™ )11¢ (Vg*);

C or, equivalently, if there existsteT such that (29) holds (by
prop.5.5) provided M is connected J.

EXAMPLE 5.7. F has the property Ch-W if it satisfies one of the follo-

wing properties:

(a) G is connected,

(b) there exists teT such that U, can be extended to some globally
defined homomorphism G — G~ (provided M is connected),

(c) there exists teT such that for each a2¢G, there exists a’eG”
such that Ht*e°Adza= Adefoyt*e (provided M is connected).

First, we easily show that eaoh local isomorphism fulfilling pro-
perty (c) has the property Ch-W. Now, we trivially notice that

(a) & (c) and (b) 2 (c). 0O

THEOREM 5.8. If F has the property Ch-W, then

K K k
(30) V (a$° wsee Ve (r) )pac (sec Ve (2)"),

and the following diagram commutes:

'k

k k
( \/C{ i )I -—@—-’ (Sec\/(t(P/)*)I\A(P’)‘
K, 4 k
\4%*e l\/<de)* H(M)
M

PROOF. To prove the left-hand side of the above diagram, and the in-

k k k *
(Vg™); & (sec Vq(2)*);
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clusion (3C), we need to show the commutativity of

k -k k
( \/9:’*)I —C . sec Vee)*
k k :
Vg, o V(an©*

k k
( \/q_* )1 -2 . 390\17 ¢ (P)%.

k
¢V (dq)o*-@’k<F))X= ® "(F)Xo(d?ox. L XA%O)

= Fo((Fy2)"'x.. .x(th)"Uo(d?,"xx.. Xd%F0 )

Ix

= Fo(WyyoXe e XM, )o(5 kL x5 1)
k s
IS TSR O

k
= (8% Vpi (P,

zeP|xﬂ D X €N(D

£ t
To end the proof, we notice that (by Prop.5.4)
k
n PN (a9)°%(r ) = nACB)( 1, (a3 0x, . xaF0))
(e) (o]
Cro(d¥%. .. xd%F D3 (82 e e oy 81
0 (e}
C(dF82ys et ,dF Sy N
UGSy« o s Q)3
. hA(P’), ad

COROLLARY 5.9. The Chern-weil homomorphisms of pfb’s are invariants of
local isomorphisms having the property Ch-W, In the case of pfb’s

with connected structural Lie groups, the Chern-Weil homomorphisms
are invariants of all local isomorphisms. O
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CHAPTER 6

A STRUCTURAL THEOREM

Here we prove that any Lie algebroid A is uniquely determiised (up
to an isomorphism) by its Lie algebra bundle ¢(A), a covariant deriva-
tive V inq@(A) and a 2-tensor SBGSL2CM;q(A)), fulfilling some condi-
tions. Cf C1; chapt. VIII] and [14,p.224).

Let (10) ba any Lie algebroid on a manifold M with the Lie algebra
bundle q. Let A:TM — A be any connection in this Lie algebroid,

(31) 0 —> @< 4 L5 M — O,
W

with the curvature base form
8, € 24 ).
Corollary 4.5 states that
(i) [2,2Y3= ?\[X,Y]-.Q,M(X,Y), X)YGX<M)’

AX:=3eX. The connection A determines a covariant derivative V in g by

the formula »
(11) Vy®= EaX,60, XeX (1), ceSecq,

(see the proof of theorem 1.13). Y is called corresponding to A or after
K.Mackenzie [14,p.295) the adjoint connection of A .

We notice that the bracket 0-,.] in the Lie algebra Sec A is uniqu-
ely determined by the system Gq,‘J,SZM) and A, namely

(iii) QX+6, A0+ = ALK, Y] =82 (X, Y) + V- Vy S+ (5,1,
X,YeX(M), &,m€Secq .

V determines the so-called exterior covariant derivative in
§2,(M;q) by the classical formula:

for li’e‘_Q,q(I‘G;q), we have Vlfe‘Q,qH(M,-q(), and



q -
(iv) vzf(rxov --'9Xq)= j‘éo(—“)quj(Lf(xot -":va'°-,Xq))

_4yi+] 4 2 ~
+i};j( 1) ‘f([Xi.XjJ.....xi,...,xj,...,xq), xjeJE(M).

PROPOSITION 6.1. The elements VY and ‘Q’M fulfil the following asdrtions
{4%) RX’YO'-:- [SZM(X,Y),sl, X,Ye X(M), seSecq , where R denotes

the curvature tensor of ¥V, ie

A -[82,,5), €€Secq, (the Riccl identity).

(2°) Vxloml= LVys,m1+ (s, VM1, X€X (M), smeSecq, ie V is
a 2 -connection in (q, {L+,+-1}) ( see the proof of theorem 1.13)

(called in the sequel a JZ -connection inq or after (14,p.143] a
Lie connection in q ).

(3°) V&y=0 (the Bianchi identity).

PROOF. Trivial calculations. a

THEOREM 6.2. (cf (1,p.3721 and (14,p.223]). (a) Let a system

(q, V,8,)

be given, consisting of
(1) a Lie algebra bundle q on a manifold M,
(ii) a covariant derivative V in 9,
(1iii) a 2-form SZ,MELQ?(M;q[),

fulfilling conditions (10) - (30) (from proposition 6.1).

Then, for a vector bundle ADq and mappings y, A, such that

(%) in the diagram (31) the row is exact and 7YoA= idTM,

there exists in the vector space 3ecA exactly one ILie algebra:
structure [+,+Y fulfilling conditions:

— (A, L+,-},y) is a Lie algebroid with the Lie algebra bundle
equal to q,

— equalities (i) and (ii) hold.
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The bracket O-,+d is defined by formula (iii).

(b) For another vector bundle A“Dq (on M) and mappings y”,
A7, fulfilling the analogous properties, there exists exactly one
isomorphism F:A” — A of Lie algebroids such that the diagram

commutes. F is defined by the formula F()’(v)+-w)-=)(v)-+w, veTM,
we‘l.
(e) If SLM= O, then the Lie algebroid constructed in (a) is

flat.

FROOF. (a) The uniqueness of €.,+] is evident. To prove the existence
of the sought-for structure, we need to demonstrate that (iii) defines
it. The bilinearity and antisymmetry of [-,.1 and properties (i) and

(11) are very easy to see.
The Jacobi identity:

TEAX +6,AY+7MD,a%+ 81D + cycl

= [aLX,Y] -\Q»M(X,Y)* VX*) ..VYG + [6,M1,22+8 D + cycl

(ALK, 3,21 - 82y (1X,10,2)+ Wiy 18 + V(80 (X, 1)) AN
+V, Vy6 -V, 06,93 - t8,(%,1),81 + (V1,83
= [Vy$,81+ (06,M1,81 + cycl

O.

The last equality is obtained from the Jacobi identity in ¥(M) and in

Secq and from assumptions (10) = (30).

The equality EAX+6,f(AY+M )k = f-EAX+6,%7+7] + X(£)s(2Y +m)

is easy to obtain,

(b) To prove the second part of our theorem, we notice that
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-yoP=171 (trivial),,
— Sec F:Sec A" —» Sec A is a homomorphism of Lie algebras,
indeed: '
F(EAX+6,2"Y +mD )

(ALK, Y1 - (X, 1)+ Vym =V 6 4 (5,m)
ALK, Y1 =8 (X, 1) + Ny =V 6+ 16,7]

LAX +6,2 Y +11
EF(X"X+6), F(2"Y+7)D.

n

(c) Trivial because then Sec?:¥ M) — SecA is a homomorphism of
lie algebras. O

B Ll S i
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CHAPTER 7

CLASSIFICATIONS OF LIE ALGEBROIDS OF SOME TYPES

Let ), )1:TM — A be two connections in a Lie algebroid (10),
Then

C:=)1-A

has its values in the bundle ¢(A) of course.

PROPOSITION 7.1. If V, 'Vn are two covariant derivatives in ¢(A) cor-
responding to A, 1., respectively, then V= Y71 iff c:TM —» q(4A)
is a central homomorphism, ie such that c(v) belongs to the centre
of the Lie algebra q(A)'x for veT M, xel,

PROOF. By the definition we have: V,6= Ix(v),61, (’i71 ), 6= (A (v),61,
VETM, 6€Secq(A). Therefore V= V, iff, for all veTM and 6eSecq(4),
[m(v)-z1(v),61= O, thus iff [c(v),wl=0 for all (v,w)eTxqu(A)|x, xeM. O

COROLLARY 7.2. If the isotropy Lie algebras are abelian, then to all
connections there corresponds the same covariant derivative. a

COROLLARY 7.3, If the isotropy Lie algebras are without the centre, then
to different connections there correspond different covariant deri-

vatives. 0O

Z:1. A CLASSIFICATION OF FLAT LIE ALGEBROIDS WITH ABELIAN ISOTROPY LIE
ALGEBRAS.

THEOREM 7.1.,1. Let g be an arbitrary vector bundle on a manifold M,
consldered as a bundle of abelian Lie algebras. Then there exists

a bijection between the set of all classes of isomorphic flat Lie
algebroids with the Lie algebra bundle § and the set of all eQui-
valent flat covariant derivatives ink%, where by the equivalent
covariant derivatives we mean both WV and §71 such that there exi-

sts a vector bundle isomorphism f:q——ﬂﬁ for which V;(6= VX( fe6),
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Xe¥(M), 6€3ecq .

PROOF. Fix any vector bundle A D¢ and mappings T,? , such that the con-
dition ( % ) (see theorem 6.2) holds. With each flat covariant derivati-
ve V in q we associate the system

q,V,0), 0€Q°(Mq),

and with the latter - according to theorem 6.< - some flat Lie algebro-
id &% = (A, -,2°,7) (for the bundle A taken above). Lie algebroids ob-
tained in this manner are - for different A,7T,A = isomorphic (see theo-
rem 6.2). Of course, bY prop.6.1 and theorem 6.2, each flat Lie algebro-
ijd with the Lie algebra bundle g can be obtained (up to an isomorphism)
with the help of some flat covariant derivative in 9.

Lot V and V' be two covariant derivatives in g such that the Lie
1

9

algebroids A:=AY and A1 =AY are isomorphic (via some isomorphism F):

O > g C—» A — e T™M —> O

leo glp I
T,
0 ——*%uc;—’ Al — M —> O

Let A:TM —> A be any connection in A; then FeA is a connection
in A1. According to corollary 7.2, we have VX6= X539, V;{6=
={FA(X),61, XeX(M), ceSecq. Thereby, since F is an isomorphism of Lie
algebroids,

V;{(FO"G )“ [F"A(x)’FO"GH = U_F"(}X),F'Sn = [)X’GJ =VX€ )

which means that V and V' are equivalent. O

7.2, A CLASSIFICATICON CF LIE ALGEBROIDS WITH SEMISINMPLE ISOTROFY
LIE ALGEBRAS.

Let ¢qf be any bundle of semisimple Lie algebras on a manifold M.
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FROFPOSITION 7.2.1. For any Z:—connection Vv in ¢, there exists exactly
one 2-form

A

QM€Q2( M,‘C[)

fulfilling condition (10) from prop.6.1..§LM fulfils the Bianchi
identity (3°).

- PROOF. It is easy to check that

Rv,w:qux (tlx

for v,weTxM is a derivation of the Iie algebra q'x, R being the curva-
ture tensor of V. From the assumption that qlx is semisimple we have
the existence and the uniqueness of an element

SZM(x;v,w)eqnx
such that

Rv,w(u>= -ESZM(x;v,w),u], uefﬂ,lX .

Of course, we have thus defined a 2-form §ZM6§ZZ(M;q).
By a standard calculation and the fact that %Ix' X€M, are without
the centre, we obtain the equality <7£2D1= 0:
[V (X, Y,2),6 1= LV (Q (¥, 2)),61 - CV (83 (X, 2)),61
+[VZ(Qm(Xy Y))yﬁl = [Qm( [X,Y],Z),GJ
+ L82,((X,21,Y),61 -~ (Qy( [Y,21,X),6]
== Vy(Ry g O+ By ,(Vy6)+ Vy(Ry 7€)
" Ry, 2(Vy®) = Vg(Ry y&)+ Ry (Y, 6)

(S 5} S
YR, 2t Rex, 2,y T Ry, 2, x
= Oc D

By the above, we see that any Zj—connection in q determines exac-
tly one Lie algebroid (see theorem 6.2).



"T’ROPOSITION 7.2.2. If q is the Iie algebra bundle assigned to a Lie al-
gebroid A, and a covariant derivative V in § corresponds to a con-
nection A in ., then the 2-form LQ,MG.Q,‘?(M,%K) defined by (1°) is
exactly the curvature tensor of A.

PROOF. We need to notice that

RX, Y6 8= [_)[X, Y] ~ [%X’ }Y],CJ
knowing that VX6= IM,63; but this is a standard calculation. [
THEOREM 7.2.3. For a given Lie algebra bundle ¢ whose fibres are semi-

simple, there exists exactly one (up to an isomorphism) Lie alge-
broid A for which qj( A)=q1.

PROOF. The existence: Accordi.ng to [5,p.380), there exists in g a
Z -connection. Let A,Y,A be elements as before (see (31) and (%) in
theorem 6.2). Give any Z-—connection V in ¢ and the 2-form ‘Q’M
E.Q,?(M,-q[) fulfilling (19). For this homomorphism A, we define in A some

structure of a Lie algebroid according to theorem 6.2.

The uniqueness. Let A be any Lie algebroid for which ¢(A)=q.

Let Vz denote the covariant derivative in q corresponding to a connec-

tion A :TM —> ds

LENMMA 7.2.4. The correspondence

?\r——bv)

establishes a bijection between the set of all connections in A
and the set of all 2 -connections in .

PROOF. By corollary 7.3, this correspondence is an injection.
Let V be an arbitrary 2 -connection ing. Of course,

VARV

is a tensor

T:TNX%———) CE
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where vo is a Z -connection corresponding to an arbitrary but fixed
connection )o‘
Besides

va. VOVG + (v,6(x)), veT M, 6eSecq , xeM.
We want to find a homomorphism
c:TM —-»(ﬁ
such that
V8= 1A, + e)(v),6D

which will mean that

First, we notice that

T(v,o):(mx — qux’ veTxM,

is a derivation of the Lie algebra q}x. Because of the fact that
qlx is semisimple, we see that the derivation T(v,+) is. inner
which means that there is an uniquely determined element c(v) such that

T<Vr')' [C(V),'J.
It remains to show that the mapping
c:TM —sq, v c(v),

is a C®vector bundle homomorphism. Of course, it is a vector bundle
homomorphism, so we must prove the smoothness of ¢ only. Since q is a
locally trivial ILie algebra bundle, the Smoothness of ¢ is obtained lo-
cally by the following assertion:

— For a Lie algebra h without the centre, a manifold N and a
c®linear representation T:Nxh—s W, such that T(v,s)= (c(v),-1,
veN, for some c:N —h, we have: ¢ is ¢®

This assertion is easy to show, see the diagram
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NS k24, 000, h)
- i) )

in which T(v)(w)= T(v,w). )

1 2 be two Lie al-

gebroids for which
qa)=qa®)=q .

Take an arbitrary Z:—connection \Y, in f, and denote by 31, )2, the cor-

2

responding connections in A1, A, respectively (according to the lemma

above), Then

Fia| — A%, (ag(v)4w > A(V)+w), VeTH, wey,

is an isomorphism of Lie algebroids. Indeed

FOOAX+6,A Y ¥ M1 )= F(A, [, Y1 - Qu(X,Y)+ Vyn = V6 +(6,11)
= A, X, Y1 - Qu(X,Y)+ Vyn= Vys+ (6,1]
= LAX+6,Av+0. O

COROLLARY 7.2.5. Two Lie algebroids with semisimple isotropy Lie alge-
bras are isomorphic iff their Lie algebra bundles are isomorphic. O

Theorem 3.5 and the last corollary give the following

COROLLARY 7.2.6. Two pfb’s with semisimple structural Iie groups are lo-
cally isomorphic iff their associated Lie algebra bundles are iso-

morphic, a
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et meoever

CHAPTER 8

SOME EXAMPLES

A/ We ask two questions:

19) Does, for any pfb P= ¥(M,G) and a Lie group G~ locally isomor-
phic to G, there existsa pfb P’a P’(M,G”) such that AC(P)S A(P7) 2

20) Are pfb’s Pa= P(M,G), P = P'(M,G’) globally isomorphic provided
their structural Lie groups G and G’ and their Lie algebroids A(P) and
A(P”) are isomorphic ?

It turns out that the answers for both these questions are negati-
ve (even the Lie groups G and G’ are assumed to be connected),

19, Consider the Hopf bundle
£ = (55 — 59

(being an S1-pfb) and the universal covering R —»-81.

THEOREM 8.1. There exists no R-pfb with the ILie algebroid isomorphic to
ACY).

PROOF. Suppose P(Sz,m) is such a pfb. According to 6,p.581, this pfd
has a global section, thus is trivial. Therefore its Lie algebroid is
trivial; consequently, ACY ) is trivial, so (by corollary 4.9) t is flat.
But 82 is simply connected, so, by Atiyah-Milnor’s theorem (2, prop. 141,
[(15,1lemma 11, t is trivial, which yields the contradiction because ¢
has no glcbal section. 0O

2°: Without the assumption of the connectedness of G and G', the
negative answer to 20) is easy to obtain.

EXAMPLE 8.2, Let M —» M be the universal covering of M and let T,(M)¥ 0.
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Then X,(M)-pfb’s M — M and MxT, (M) — M are not isomorphic alt-
hough its Lie algebroids are isomorphic (see remark 1.15).

It turns out that the assumption of connectedness and even, in
addition, the semisimplicity of G and G’ are not sufficient for a po-
gsitive answer.

EXAMPIE 8.3. (The idea of this example was suggested to me by Th.Frie-
drich). Because of the fact that H'(RE(5);%,)= Z,, there exist [253
two distinct Spin(3)-structures of the trivial pfb RP(5)XS0(3) . One
of them, say P1, is of course trivial: plu RP(5)xSpin(3), but the se-
cond one, say‘PZ, according to [241 is not trivial! Thus, between p’

and P2 there exists no global fibre isomorphism (so, no global pfb’s

isomorphism in any sense). However, Lie algebroids A(P1) and A(P2)
are isomorphic. Indeed, there exist (by the definition of spin struc-
tures) homomorphisms

(FY,A):PT — RP(5)XS0(3), i=1,2,

where A:Spin(3) —> 50(3) is the standard homomorphism from Spin(3)
to SO(3). A being a covering is a local isomorphism, which implies
that the homomorphisms of Lie algebroids

art: acpl) — a(RE(5)x50(3)), i=1,2,

are isomorphisms, and then A(P1) and A(Pz) are isomorphic (and, of

course, are trivial).

B/ Both, R.Almeida and P.Molino [171, [18] constructed a Lie alge-
broid which cannot be realized as the Lie algebroid of any pfb. Now,
we give a simple example of a Lie algebroid which cannot be realized
as the Lie algebroid of any pfb with abelian structural Lie group.

Namely, we construct a Lie algebroid A= (A, 0-,+1,7) such that the
vector bundle (A) is not trivial but all isotropy Lie algebras ({(A)|x
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are abelian. Then, according to corollary 1.11, there exists no pfb
with an abelian structural Lie group and with the Lie algebroid A.

EXAMPLE 8.,4. Let q be any vector bundle on a manifold M which is not
trivial but admits of a flat covariant derivative V. Put

A-q@TM and Y= prgzq[_@TM — TM.
Let A:TM — A be any splitting of the following exact sequence

0 —_— ¢ — qEBﬂmI—l;vTM - 0
w

In the C® M)-module Sec&uGBTM) we introduce a structure of a Lie alge-
bra €.,.) (see th.6.2) by the formula:

I2X +6, AY+M] = ALX, Y]+ VM - VY‘ :

We obtain a Lie algebroid (A, (-,+3,7) in which the isotropy ILie
algebras q:(A)|X are abelian.
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