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LIE ALGEBROID OF A PRINCIPAL FIBRE BUNDLE

Jan KUBARSKI
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INTRODUCTION

The notion of a Lie algebroid> introduced by J.Pradines [221,
123], was invented in connection with studying differential groupoids.
Lie algebroids of differential groupoids correspond to Lie algebras of
Lie groups. They consist of vector bundles equipped with some algebraic
structures (R-Lie algebras in moduli of sections). Since each principal

fibre bundle (pfb for short) P determines a differential groupoid ( the
so-called Lie groupoid PP~ ' of Ehresmann), therefore each pfb P defines

- in an indirect manner - a Lie algebroid A(P) . P.Libermann noticed

C12] that the vector bundle of this Lie algebroid A( P), P- P(M,G), is

canonically isomorphic to the vector bundle TP/Q. (investigated earlier
by M.Atiyah [2] in the context of the problem of the existence of a con-

nection in a complex p fb ) . The problem:
- How to define the structure of the Lie algebroid in TP>G without

using Pradines* construction,
is systematically elaborated in this work (chapt. 1).

The Lie algebroid of a pfb can also be obtained in the third man-
ner as an associated vector bundle with some pfb.

To sum up, three natural constructions of the Lie algebroid A(P)

for a given pfb P= P ( M , G ) are made (chapters 1 and 2) :

( 1 ) A ( P ) « TP,n » the idea of this construction could be found in
M.Atiyah [21 and P.Liberrnann [123, see also C16), [173 > C191, C201.

(2 ) A ( P ) = A(PP~1):=* the Lie algebroid of the Ehresmann Lie grou-
poid PP~1, see [31, £91, 122],[231.

(3) A ( P ) * W 1 (P)x G l ( f i n X<p where <£« «j t (G)° is the Lie algebra of
n 1

G- defined by right-'invariant vector fields, W (P) is the 1-st order

prolongation of P and G - • the n-dim. 1-st order prolongation of G,
"t n

, [43,171^ via acme le f t action of GR on IRnx<f.



In the theory of Lie groups it is well known that two Lie groups

are locally isomorphic if and only if (iff) their Lie algebras are

isoraorphic . The question : '

-What this problem looks like for pfb's?

is answered in this work. A suitable notion of a local horaomorphism

(and a local isomorphism) between pfb's is found (chapt.3).

ŷ a l°ca-l horoomorphism C isomorphism 3 9̂ 2(14,0) - * PX(M,G )

we shall mean each family

of "partial horaornorphisme" C isomorphisms II ( F^, J4, ) :P

provided some compatibility axioms are satisfied (def , 3,1),

Every local homomorphism ̂  defines an homomorphism of the Lie al-

gebroids d3r:A(P)- — *A(P') (prop. 3. 2) and, conversely, every homomor*

phism of the Lie algebroids comes from some local homomorphism of the

pfb's (th. 3.4).

Two pfb' s are locally isoraorphic iff their Lie algebroids are iso°

morphic ( th. 3.5).

Some invariants of isomorphisms of pfb's are invariants of local

isomorphisms so they are then de facto some notions of Lie algebroids.

For example :

( 1 ) the Ad-associated Lie algebra bundle P/Q^,

(?) the flatness (chapt,4)f

( 3 ) the Chern-Weil homomorphism ( for some local isomorphisms )

( chapt. 5 ).

One can ask the question :



- 'How much information about pfb P is carried by the associated

Lie algebra bundle PXQ<£ ?

It turns out that sometimes none:

- If G is abelian, then PxG<£ is trivial (see corollary 1.11),

and sometimes much, and most if G is seraisimple:

- Two pfb's with semisimple structural Lie groups are locally

isomorphic iff their associated Lie algebra bundles are isoroor-

phic (corollary 7.2.6).

Let A-= ( A, £• , *J , r) be an arbitrary Lie algebroid on a manifold

M. A connection in A, ie a splitting of Atiyah sequence

0 — *<£(A) ̂  A - > TM — >• 0 where ̂ (A)« Ker

determines a covariant derivative V in the Lie algebra bundle

and a tensor £iM€£^ (M#(£(A)) by the formulae:

(a) Vx^= OX ,61,

( b ) & M ( X , Y ) = Jt [X, Yl - Q A X , jiYJ ( the curvature tensor of a ) .

Now, let Cft be an arbitrary Lie algebra bundle, V - a covariant

derivative in at and £^£,0, (M;(jj). The necessary and sufficient condi-

tions for the existence of a Lie algebroid which realizes Oj£ f57»£^M)
via some connection are (see chapt.s):

( 1 ) RX y6"«- Ci2M(X, Y ) , € ] , R being the curvature tensor of V,

(2) VxCM]" C V X M ] + C6»

(3 ) y ^ « o .
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The results of chapter 6 are used to give a classification of Lie
algebroids in two cases (chapt.7):

( 1 ) all flat Lie algebroids with abelian isotropy Lie algebras,

(2 ) all Lie algebroids with semisiraple isotropy Lie algebras.

The second looks as follows (th. 7.2.3):

- For any Lie algebra bundle (J whose fibres are semisimple there
exists exactly one (up to an isomorphism) Lie algebroid A for
which <£(A) » <J[,

In consequence, two arbitrary pfb's with semisimple structural Lie
groups and isomorphic associated Lie algebra bundles have isoraorphic
Lie algebroids, so they are then locally isoraorphic.

- Are they globally isomorphic (in our sense, see p»15) provided
their structural Lie groups are, in addition, isomorphic ?

It turns out that they are not, even if these Lie groups are as-

sumed to be connected (ex. 8.3).

Some results contained in this work were obtained independently

by K.Mackenzie [141, "but, in general, using different methods. This
concerns some parts of chapters 1, 4 and 6 only (in the text there
are more detailed references). The main results of this work /all

chap. 2, theorems 3.4, 3.5, 3.6, 5.2, 5.8, 7 - 1 * 1 > 7-2.3, 8.1 and ex.
8.3 / are included in the remains chapters.

J. K.
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CHAPTER 1

LIE ALGEBROID A(P) OF A PRINCIPAL FIBRE BUNDLE P(M,G)

All the differential manifolds considered in the present paper

are assumed to be smooth ( ie C00) and Hausdorf f .

Take any pfb

P » P(K,G)

with the projection JT:£ — » M and the action R:PXG — * P, and define

the action

RT:TP*G — TP, (v,a) *-*• (Ra)̂ v,

R being the right action of a on F. Denote by
a

Tthe space of all orbits of R with the quotient topology. Let [v] de

note the orbit through v and

7t A:TP -* A(P), v I-Ĥ  [vl,

the natural projection. In the end, we define the projection

p:A(P) —*• M, [y] *-*• TCz, if veT^P.
— i

For each point x€M, in the fibre p (x) there exists exactly

one vector space structure (over fR ) such that

[v] + [w] = Cv+w] if Kp(v)« irp(w),

ltp:TP — * P being the projection.

is then an isoraorphisra of vector spaces, z*P.

The pfb F(MfG) determines another pfb

TP(TM,TG)

with the projection Jl' :TP —> TK and the action
*W

R :TP*TG — * TP



[53. We can treat G as a closed Lie subgroup of TG ( G 3 J B ; aeGh 0
a a

being the null tangent vector at a). The restriction of R^ to G is then

equal to RT t5J. By [6], we see that the structure of a Hausdorff Ĉ -raa-

nifold, such that n is a submersion, exists in A(P) (this result is

obtained by K.Mackenzie [14, p. 282] in another way). We also obtain a pfb

TP(A(P),G) with the projection rtA and the action RT.

PROPOSITION 1,1. (cf CH, pp. 282, 2833). For each local trivialization

» P of P(M,G), the mapping

(1) < ? A : T U x < -> p"1[UJ C A ( P ) ,

is a diff eomorphism, where <£ » ^eG .

APROOF. It is easy to see that y is a bisection. Besides, the following

diagram
D

TP — ±—> A(P)

R
commutes where @ denotes the canonical right-invariant 1-forra on G.

Indeed, if we put

* : = <?( • , e), and A :G — > P, a i — »- za,z

e being the unit of G, then we have, for xeU, veT U, a€G and w€T G,-X- a

f a ) ( v ) + cp(Xf * ) ( w ) J

Because of the fact that 7U and id*0 are submersions, we assert

that <f̂  and (<fA)"1 are of the C00- class. D

REMARK 1.2. Using the bisections opAf we can define the differential

structure of A(P) in a more elementary manner than above ae the one for
A

which cy. are diff ermorphisms. For this purpose, we must only notice that,



for arbitrary local trivializations < ? , : U . X G —* P, i=1,2, we have:

(a) (<?^)~ 1 Cp~ 1 tl^in p"1 [U2]) is open in TU^^ ,

(b) (q»-j )~ o < ? p -^8 a cLiff^oroo^phisra.

* (a) is trivial. To see (b) , we shall calculate that

0^r1°<?2 (v»w)= (v ,8 R ( g i t (v) )+ A d ( g ( x ) ) ( w ) )

for v€T U, xeU, we<t> where^t

g : U 1 O U 2 —* G

is a transition function, ie q>?(x, e) - ̂ -(x, e)»g(x), xeU.nUo, and Ad

denotes the adjoint representation of G. Put

and let 1 , r denote the left and the right translation by a on G. tfea a
have

- ( v , 9 ( g # ( v ) ) H - A d ( g ( x ) ) ( w ) ) . D

PROPOSITION 1.3. (see tH,p.283X> The system

r 2 ) ( A ( P ) , p , M )

is a vector bundle and ( 1 ) is a ( strong) isomorphism of the vector

bundles ( over the manifold U c M) .

PROOF. It is sufficient to notice that



— A ( P ) | x

is an isomorphism of vector spaces, xeU. O

EXAMPLE 1 . 4 • (a) For an arbitrary Lie group G (treated as a trivial pfb
over a. point), we have:

A ( G ) = T < y G « < t » tw] *-»0R(w).

More generally, for P = M x G - , we have:

A(P) - T ( M X G ) / G S TM*<t;, C(v ,w) l

(b) A C L ^ M ) ) = ATM), see [11].

Let

Sec A(P)

denote the C^M) - module of all a00 global cross-sections of the vector

bundle A(P), and

- of all C right-invariant vector fields on P. Each vector field•p
X€]£ (P) deternines a cross-section

XQe Sec A(P)

in such a way that X (x)» [X(z)l for zeP
O .

tion because locally X IU= 11 «X°A where

cross-section of P, The mapping

(3) 36R(P) — > SecA(P), X

is a homomorphism of C^M) - modules.

xeM. X is a C00 cross-sec-
U

— * P is an arbitrary local

XQ ,

PROPOSITION 1 >^. (cf [14,pp.281, 2853) For each cross-section -rj€SecA(P)

there exists exactly one C right-invariant vector field

(4)

(5)

such that

The mapping

SecA(P)-* 3ER(P),



is an isomorphism of C^M)-raodules, inverse to (3).

PROOF* Formula (4) defines in a unique manner some vector field t)/ on

P. TJ' is, of course, right-invariant. To show the smooth-less of or]' , we

take an arbitrary local trivialization <f :UxG —* P and define the map-

pings <]' and T] in such a way that the following diagram commutes:

• ** M

A Jft
U X G —'—* TUxTG ±i£2 TU X r -• '; U

T(U*G)'/G V =

We read rf out as a right-invariant vector field on the trivial

pfb UXG, induced by 77:

Therefore, the problem of the smoothness of ̂  reduces to that

for the trivial pfb's form UxG. An arbitrary C^ cross-section

«j :U —*TU*<£is of the form ̂  = (X,tf) where Xe36(U) and 6:U —* <£ . The
r-' /

right-invariant vector field ^ on U>^G is then defined by

"̂  /
but this formula asserts the smoothness of

(f.iy) = fo'X-^/>

( 5) is a homomorphism of C^K)-modules being inverse to (3). Q

Now, we define some R-Lie algebra structure in the R-vector space

SecA(P) by demanding that (5) be an isomorphism of (R-Lie algebras.

The bracket in 3ecA(P), denoted by tt- , "3 , must be defined by

- 9 -



We also take the mapping

r :A(P) -*> TM, [v] >-» jf fv.

Of course

DEFINITION 1.6. The object

(6) A(P)«

is called the Lie algebroid of a pfb P(M,G).

The fundamental properties of (6) are described in the following
proposition.

PROPOSITION 1.7* (see CH,p.2851).
(a) (3ecA(P), I- , * J ) is an R-Lie algebra,

(b) Sec r :Sec A(P) — * £ (M), ^ i— ̂ ro ̂  , is a homomorphism of Lie
algebras,

(c) r is an epimorphism of vector bundles,

(d) l$ff'i)J- f- tt^tjj + (r*^)(f)-tj for feC^M), ^,ij€SecA(Pi

(e) the vector bundle

<£(P):- Ker rcA(P)

is a Lie algebra bundle (see C5>p*3771), where the structure of a

Lie algebra in a fibre o;(P). , xeM, is defined as follows:
I -A.

(7) Cv,w] :- n f7j(x)

where £ ,>)6Sec A( P), ̂ (x)=v? t)(x)«w, v, we <[ ( P) |x.

The mapping

(8) T ^ - C ^ ' (X'W)

is a local trivialization of the Lie algebra bundle for an arbitra-

ry local trivialization q> of P, where <£ * T G is the Lie algebra

of G defined by right-invariant vector fields.

COROLLARY 1 .8.. By properties (a) 7 (d), (6) is a Lie algebroid in the

sense of J.Pradines [22], [23].

- 10 -



PROOF OF PROP. 1.7. (a)f(d) see C14,p.285J .

(e) To prove that (7) is a correct definition, we must show that

the right-hand side of (7) does not depend on the choice of | and YJ .

For this purpose, we take £./ ^?6SecA(P) such that £ (x) = ̂ ?(x), x being

an arbitrary but fixed point. We prove that

for >]6SecA(P) provided *)(x)e<[(P)|x. Put A'- ̂  - $2 ; f (x) - 0. The fact

that A(P) is a vector bundle implies the existence of sections ̂ ,...

A(P) , functions f f . . . , fmeC°^M) and a nbh TJcM of x, such that
j j *j

f (x)»0, i$m, and ̂ IU= ̂  IU where ̂  = £ f ĵ . Making use of (d) and ta

king a function separating an arbitrary point yeU in D, we see that

E J IU = l ,̂ ]1 IU. Consequently,

» 0.

The correctness now follows from the antisymmetry of

It remains to show that

is an isomorphism of Lie algebras, xeU. Thanks to the equality

we need to show that

(9) z:<r ~>cr(p),xJ
is an isomorphism of Lie algebras, where zeP. .i .x.

Take v^ , v0e^-and the right-invariant vector fields X.,X e36(G) de-

termined by v,,v0, respectively. Let £., \~ denote arbitrary but fixed

crods-sections of A(P) taking at x the values z( v. ) , z(v?), respectively

To get the equality

- 11 -



it is sufficient to see that

First, we notice that X. is A -related to \~. :i TJ ^ i

AM(X±(a)). Az#((ra)<(vi))- (VV*<vi>- (RaVU(z))

-fiC^O-^Ca)).

Therefore [X̂ X̂ ] is Az-related to t£f$'23» which implies the asser-

tion. D

EXAMPLE 1.9* ( C21J) As the Lie algebroid of a trivial pfb MxG we take

with the structures

(a) r= pr1 :TMX<r -̂  TO,

(b) l(X,6),(YrT)l = ( CX,Y)

(an arbitrary cross-section of TM xc[ is of the form (X,o*) where XC3f(

PROPOSITION 1 .10. ( cf [1] and C1 4, p. 11 93 J . q;(P) is canonically isomor-

phic to the Ad-associated Lie algebra bundle P*p<£ •

PROOF. The mapping

T:PxGct-^q;(p), [z,v] ̂  tA2<(v)],

is an isomorphism of Lie algebra bundles. D

COROLLARY 1 ,11 . If the structural Lie group G is abelian, then£(P)

is trivial.

PROOF.

C —— f) .—.. {")• T—. /.-v .̂ —̂ 0

12



DEFINITION 1,12, ( cf J.Pradines [23]). By a Lie algebroid (on a mani
fold M) we shall mean a system

(10) , A - (A, I*, «J,r)

consisting of a vector bundle A ( over M) and mappings

l», •! :Sec AxSec A — * Sec A and f :A —*> TM

such that
(a) (SecA, I-,*!) is an IR-Lie algebra,

(b) Yt called by K.Mackenzie [143 an anchor, is an epimorphisin
of vector bundles,
(c) S e c n S f f c A — * 36 (M) is a homoniorphism of Lie algebras,
(d) t t fJ - f - l - n J + ( « X f ) * i for f€ C°°(M) and

LT.Pradines [231 does not require for the anchor f to be an epimorphism
The reason is the fact that J.Pradines associates such an object with
a differential groupoid, much more general than a Lie groupoidl

With each Lie algebroid (10) we associate a short exact sequence
of vector bundles

(11) 0 — » < £ ( A ) < ^ * A - T M —* 0

where

< t ( A ) - Kerr ,

called the Atiyah sequence assigned to (10) (see [H,p.2881).

In each fibre <£( A) ̂ t some Lie algebra structure is defined by

[v,w] :-tt^tjl(z) where ^eSecA, ^(x)«v, ^(x)-w f v,we<[(A) |x.

ff(A). is called the isotropy Lie algebra of (10) at x.

THEOREM 1.13. (see [14,p.189] and C18rp.50j). For any Lie algebroid
(10) on a connected manifold M, the vector bundle <fc(A) is a Lie

algebra bundle.

- 13 -



— p 1
PROOF . Let [•,*] denote here the cross-section of ([(A) ' such that

[•,•],„ is the Lie algebra structure of <t(A). . We must prove that
I -A- ^ IX

is the so-called £-bundle (see L5,p*3733).

Let Jl :TM — »> A "be any splitting of the Atiyah sequence (11 ) , ie
T<> A - id holds:

(13) 0 — »» <£(A) c-> A — j-»> TM

It is easy to see that the formula

f l , 5€Secq;(A),

defines some covariant derivative in the vector bundle <f(A). Prom the

Jacobi identity in Sec A we trivially assert that

Vx( [tf,7|] ) = tV^^tf,^] + 16, Vx̂ ), ie

This implies that V is a £ -connection in (12), see [5fp«373J, By

Theorem II ibidem, the assertion is proved, Q

DEFINITION 1.14* ( [9, p. 273] , [1 4, p. 101 j ) . Let (A, a-,-J,r) and

(A', E«, •J'' , yx) be two Lie algebroids on the same manifold M. B

a homomorphism between them we mean a strong homomorphism

H:A — ̂A^

of vector bundles, such that

(a) Y'°H= r>
(b) SecH: Sec A — >SecA is a homomorphism of Lie algebras.

H determines some homomorphism of the associated Atiyah sequen

ces

0 —»£(A) c » A —-* TM —+ 0

JH° |H M
0 —» i ( A') c * A" -̂* TM -+ 0

where^H0- HI^(A)

- 14 -



If H is a bisection, then H ' is also a homomorphism of Lie alge-

broids; then H is called an isomorphism of Lie algebroids,

Each Lie algebroid isOmorphic to TMx<{; (defined in Example 1.9)

is called trivial*

REMARK 1,15, A pfb P with a discrete structural Lie group has a trivial

Lie algebroid, more exactly, A(P)«TM. D

REMARK 1,16. (of C1 4, p. 101 1). Let (10) be any Lie algebroid on K and

let U be an open submanifold of M. Take the restricted vector bundle

A.,j and TITJ* fK AITJ) :AITT — * 5TO- In the space Sec(A.y) there exists

exactly one Lie algebra structure &',*J,j such that tt^lU^IUJ * Q.$,T)]I IU,

, and the system

is a Lie algebroid called restricted to U.

Let 2:U — * P be any cross-section of P, then

(c?A)A:TUx^— > A(F)|U?

where «fA:Uxa — > P „, (x,a) »— >>(z)*a, is an isomorphism of Lie alge-

broids; therefore A(P).U is trivial.

Besides, if H:A — » A^ is any homomorphism of Lie algebroids, then

is such a homomorphism, too. D

Each (strong) homomorphism C isomorphism 3

(F,̂ ):F(K,G) -* PX(M,G")

of pfb's / F:P — > P' , ^u:G — *> G' such that 7toF=jr, ̂  is a homomorphism

- 15 -



C isomorphism ] of Lie groups, and E(za)* F(z )» /* (a ) / determines a
mapping (see [1 4, p. 2891)

dP:A(^) -+A(P'), tv] ~ CF,(v)].

PROPOSITION 1 .1?.( C14,p.289] ). dF is a homomorphism C isomorphism ]
of Lie algebroids. D

The covariant functor

P(M,G) i— » A ( P ) , ( F , n ) H-* dF

defined above is called the Lie functor for pfb* s«

As we have said in the Introduction, the Lie algebroid of a pfb P

can also be defined as the Lie algebroid A(PP" ) of the Ehresmann Lie

groupoid PP~ , via the construction of J.Pradines (see [31, [23]).

tfe recall these constructions.

(a) Let $ be any Lie groupoid C20J . We define

u -where T $ « Ker <x (c< • ̂ — * M - the source, u:M — * $ 9 x t— *• u ,
* -A. \.

the unit over x*)* The right-invariant vector fields on $ correspond 1-1

to the cross-sections of A($). The bracket Î B of ^»TeSecA($) is

defined in such a way that the right-invariant vector field correspon-

ding to £t y"1]]) equals the Lie bracket of the corresponding right- inva-

riant vector fields. The mapping f:A($) — » TM is defined by f(v)« &̂ (v

(6 - the target). The system obtained

is a Lie algebroid (for details see for example [93,[143)«

— 1(b) The Ehresmann Lie groupoid PP ' is defined as follows:



Its space equals the space of orbits of the action

(PxP)xG -

the source and the target are defined byr.

« ( Cz1 , z2] ) - ̂ Tz1 , B( [

by:
being the orbit through (z.jZ)), the partial multiplication

, z0]

THEOREM 1.18. (cf £12,p.63] and [14,p. 1191 ). A(P) * A(PP~1 ).

PROOF. For an arbitrary point x^M, we define an isomorphism

P :A(P), —* A(PT~ ). , [v] >—> CO O), v^T P. z€P. ,> x x / l x v Ix* z * z x / f z ' |x'

where

2 p —„ CPP"1

The definition of 9 is correct which follows from the commutati-

vity of the diagram

A(PP"1) A(P)

Now, we establish the smoothness of the mapping

f> :A(P) -> A(PP"1)

defined by ^)IA(P). m f> . What we need to prove is the smoothness of

A(PP"1)

but ^°7U tt r oc where r:PXP — > (PxP)/G is the canonical projection and



c:TP —»> T(P*P), v i—>- ( 0 w , v ) if veT P, and r* and c are, of course,
Z Z "

smooth.

It remains to show that p is an isomorphism of Lie algebroids.

The equality f o p = y is easy to see. The fact that SecP is a horaoraor-
P

phism of Lie algebras is the last thing to consider. Take any Xcjfc (P).
^ s — 1

X is to -related to the right-invariant vector field (c* X ) on PP
2 > 0

Indeed, for the right translation by [z,z']

we have

Thus, for x: = #z', we have

Although co :P —» PP" ! is not a surjective mapping, each right-in-
Z ^ ' Ĵ

variant vector field on P is co -related to exactly one right-invariant
-1 2

vector field on PP , By this remark and the fact that, for £-j»^n

<ESecA(P), the vector field tf,,̂ 1 ^^\^\f ^ is ̂ -related to

,, o* t pi' and to (o° IL»5--J )' simultaneously, we obtain the equality



CHAPTER 2

ATP) - W1C
Gn

Now, we give the third manner of a natural construction of the Lie

algebroid for a pfb P(M,G), in the form of the associated vector bundle

(H)

with some suitable structures.

n

We recall C4], t?l that W1(P) is the smooth fibre bundle of all

1-jets with source (0,e) of the so-called allowable charts on P(M,G),

ie of pfb isomorphisms

(15) $ :VXG —» P IU

of a trivial pfb VxG onto P,̂  where V is open in (Rn and such that

OeV and U io open in M, n^dimM,

W (P) is a pfb over M with structural Lie group

*1 *1 v\ :» \v'(R xG) ( - the fiber over 0),

n u

provided that both the multiplication in G and the right action of
1 1G on W (P) are defined by means of the composition of jets, ie if

•\ ^ 1 1 1 1
~- r t (, then uh« n/A >,(>!>« Z)eW (P).

Each allowable chart (15) is uniquely determined by a couple
of a chart X'TJ -£-*> VcRn (OeV) on M and a cross-section

* P.ry such that

From the identification

- 19 -



1 1we deduce that any element jrn \Y€W (P) can be identified with a cou-j j j ^ i \j * e)
pie ( 30(x" )ii)x?-)f x-a 3C~ (°)> thus with a couple of linear mappings

A v* *v

;TXM)X Horn

where xiY:Rn —*• T_M, t e-*- 7 t -̂ r. , and, for arbitrary x^M and^ ix x *- ixi|x

by Hom(TĴ ;T P) we mean the set of all linear homomorphisms

such that TCrf _

Therefore, we can identify

17) w1(p)

According to 18], the group G can be naturally written as

and the explicit formula for the multiplication in G is then of the

form

X±eGI(ntR)f

The action

W1(P)XG^ —^ W1(P)

can be written as follows:

for (Xx>^2)'

and (X,a,tf) 6 GL(nrlR) XGK

- 20 -



(18)

Via identification (17), any allowable chart (16) determines a

local cross-section of W (P):

A.̂ ), i*1|2, be two allowable charts on P, X. being

with domain U Let

denote the transition function for A^ and A£> ie A2(x) =

The transition function for " and 4» is equal to

X2|X).

Really, by (18) for zr^A^x) we get

)̂-8̂ «)-(i1lx,̂ «)-(x;;x.̂ lx,g(x̂ ^

Now, we see that we can define the pfb wr (F), independently of the
1 W

above, as the G -pfb for which g are transition functions.

To finish with, what we need to notice is that (2) is a G -vector
1 Tl

bundle via some linear action G on R *<£. By Prop. 1*3, we aee that any

allowable chart ( 16 ),x. being with a domain U, determines a local tri-

- 21 -



vialization of (2) by

where ̂  :UxG — *• P, (x,a)i— *}(x)-a, and x,:U*(Rn — * TU, (x, t) H-* x|x( t

According to remark 1.2, for two allowable charts .̂ = (X-.,A,), 1*1.2,

(x.4 with a domain U, ), we have

(x,tfw)

Take

T :

((X,a,6),(t,w)) i — » (X(t) , Ad(a)(w+6(t))).

It is easy to see that T is a left smooth action. It remains to

notice that

From the general theory we obtain an isomorphism correctly defined

by the local formula

(ie the independence of the choice of an allowable chart (16) holds).

One can easily show that it is globally defined by (see (14))

- 22 -



H :
(19)

Via (19) we introduce on A(P) some structure of a Lie algebroid

Now, we describe this structure without the help of (19)

(a) f(

(b) Each allowable chart (16) (x, with a domain U) defines some

linear isomorphism of vector bundles

— * A(P)|TJ, (v,w)

and we have the commuting diagram

in which (q>̂ ) and H.^ are isomorphisms of Lie algebroids (see remark

1,16), So ̂  must also be an isomorphism of Lie algebroids. Each cross

section <T of A(P).Tj is of the form

(20) § - Ĉ W,(t,6)]

** n
for some (uniquely determined) mappings t:U — ̂R and 6:U — > <̂  ,

(20) determines a vector field X on U by the formula

X(x)-*|x(t(x.)) (

- 23 -



Thereby,

«* w ** ** .
Let s. =* [ij> f(t,,6j)l, i=1,2, be two cross-sections of A(P).rj and {

let X, be the vector field on U determined by .̂ . Then we calculate \y

1 2 -̂2

- 24 -



CHAPTER 3

THE NOTION OF A LOCAL HQMOMORPHISM BETWEEN PFB'S

In the theory of Lie groups the following theorems hold:

THEOREM A» If &1 and G2 are two Lie groups with Lie algebras ̂  and

respectively, then, for each homomorphism

of Lie algebras, there exists a local homomorphism

(.Q, is open in G^ and contains the unit of ff- ) of Lie groups

such that

dH- h. D

THEOREM B. Two Lie groups G1 and G2 are locally isomorphic iff <£ and

at* axe isomorphic. D

What does this look like for pfb's?

First of all, we know 110], [21] that the theorems similar to the

above ones hold for Lie groupoids and algebroids, as well. Thus, we

have only to discover how to define a suitable notion of a local homo-

morphism between pfb's in order that it correspond to the notion of a

local homomorphisra between Lie groupoids.

Here is an answer to this problem.

DEFINITION 3, 1 • By a local homomorphism from a pfb P(M,G) into a second

one P^(M,GX) we shall mean a family

such that



Ft:PDr>t - + Pxf Dt open in P,

- * G'' U open in G'

provided the following properties hold:

( 1 ) JA . is a local homoraorphism of Lie groups,

(2) \JtfltDtJ- M,

(3) Jt'»Pt = TtlD^ CJCandTt' denote the projections),

(4) Pt(z.a)a Ft(z).pt(a) for zeD^ and aeU^ such that z

(5) If t,t'€T, 2€Dt, a€G, z-aeDtx, â e G' , z^P^ and

P^CZ)" z^f P,>(z»a)3 z^*a^f then

(a) P. x = RQ^°F,*R=-i in some nbh of z»a,
l> d 0 d

(b) Htx ° Tax.i0̂ t«ra in some nbh of e£G (Ta(x)« a»x*a""1,

If P. and (j , are dif f eomorphisras, then

is a local horaomorphism, and ̂  is then called a local isomorphism.

PROPOSITION 3.2. Let

^ = {(Ft̂ t); t€T^ :P(MfG) — > Px(BfG^)

be a local homomorphism between pfb's. Then

d<J:A(P> - ̂A(P')f [v] ̂ -> rFt<(v)]f veT^P, z€Dt, teT,

is a correctly defined homoraorphism of Lie algebroids.

PROOF • We start with proving the correctness of the definition of the

linear mapping

(d90|x:A(P)|x - »A(P')|X, tv3 -* [Ft4(v)J,

ie its independence of the choice of z and t. Let t^eT and acG be arbi-

trary elements such that z • aeD. ̂ . The independence follows easily from

the commutativity of the diagram
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A(P) Ix A(P')

Ix

/• sz awhere zx«F,(z), F,x(za
V \l

Now, we prove the sought-for properties of

(a) d? is a G -homomorphism of vector bundles* Indeed, for a point

x6Mf take an arbitrary t€T such that xeJfKKJ . The smoothness of d^ in

some nbh of x follows from the commutativity of the diagram

TP z>

A(P)

-1 CD+]

" A(P')

where

(b)

(c)

M is the projection.

= T is evident,

;SecA(P) >-SecA(Px) is a homomorphism of Lie alge-

bras. Indeed, for X€36 (P), the cross-section

the right-invariant vector field Y:«=(

for an arbitrary index teT, the field

of A(PX) induces

the right-invariant vector field Y:«=(d*3r«X ) on Px. It turns out that,

is F^-related to Y:

The above remark yields ( by a standard calculation) that

The free choice of t€T ends the proof. Q



REMARK 3,3 . (1) It is easily seen that d*?is an isomorphism if ^r is

a local isomorphism. (2) tf£ have

and we get the commuting diagram

for t€T, seDt (see (9)).

THEOREM 3.4, Let

h:A(P) - » A(P')

be any homomorphism of Lie algebroids. Then there exists a local

homomorphism S'rPCM^G) — * P'(M,'G') such that d?** h.

PROOF* Take the Ehresmann Lie groupoids

$:«PP"1 and ̂ '̂ P'p'"1

corresponding to the pfb's P(M,G) and PX(M, G ), respectively. Let

h:A($) — > A(f')

be the homomorphism of Lie algebroids for which the diagram

A(P) JU A(PX)

commutes, where P and ox are natural isomorphisms described in the

proof of theorem 1.18, By theorem A, for Lie groupoids, there exists

some local homomorphism

(21) F:

- 28



So being open in $ and covering all units, of Lie groupoids such that
*•/

dF « h. Now, we are able to construct some local homomorphism of pfb's.

It will be the family

(P®p'-{(zfz')ePXP'#z-7CV̂  ) where ID ,

and -1 -1
' and

GL. is the isotropy Lie group at x, {-1 :G — ̂ Gv_, a ^—^ [z,sa],
JL Z Z Jl /i

are defined in a similar manner), see the figure:

D

We have to prove that 9- is a local homomorphism and dB-^h. Proper-

ties ( 1 ) and (2) of a local homomorphisra (see definition 3.1) are e-

vident.

(3 ) : Jt °F X z) = 7t'(o)",\J ( z ) ) ) ) • & X ( F ( [z,z3 ))

= B[z,z] «7Tz.

( 4 ) : Take zeD , aeU such that z -aeD . For z^eP^, we havez z z

= Co",(P( tza, zal * [z, za] ) )z

z ^* zz



To prove (5), take (z,zx), ( z.. , z')£l-<£P", aeG and ztD such that, ' > z
zaeD . Let z =F x(z) and Fz -j zz ;

,
** *

(z-a)= z *ax, see the figure:

First of all, we prove that

(i) F x-F~>~x in some nbh of z,zz zz
(ii) in some nbh of the unit of G

We see that, for zeD H D^

Whereas, for
z « a e D n D^ andz z

, x:»#z), we have

— '(a).

This yields the equality Mrrf_^(a) = P^^'z z z z

Analogously , we prove
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(iii) F x » F~ ?,• , in some nbh of za,£t*9z* 2/ct j z a.

(iv) ̂ r/' = ^5a SV in some nbh of the unit of G.* £*^ } 4l -4 &Cij 6 d

From (i)-r(iv) it follows that it is sufficient to show that

(v) Pza,za' a Ra''PgreRa-i (on the set D2aa Ra-lCDz^'

(vi) ̂ za,zV B V-l'̂ 2'°ra (on the set U~ - r .t[D̂ ).
Zd S. Z

(v): From the equalities

^za = ^g'V1 and WSV " ^g'^a'-1

we obtain

p2atSV<^-wra"1^wSaCS)» - H^C^VPC^CR^C z ) ) ) ) )

a V°pg2xORa^5)'

(vi): From the equalities

- = u «, of and M~' ̂ = ̂ /̂ • tza r z a "z a rz a

we get

It remains to show that

d j — h •

Take arbitrary xeM and z€P. . For veT P, we have (see theorem 1.18)

__1 . _ 'i
•px(v)

As a corollary we obtain

THEOREM 3«g_« Two pfb's P(M,G) and P"(M,QX) are locally isomorphic iff

their Lie algebroids are isomorphic. D
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Take now two p f b ' s

F = P(M,G) and P x - P X ( M , G )

over M, with the same structural Lie group G. Let

{(Ut>Cpt); tell, l(Ut,?t'); t«T}

be two families of local trivializations of P and P', respectively,

(over the same covering lU,; tell of K) with the transition functions
u

equal to

respectively. Put

t̂ - n-^t1' teT
•When is the family

a local homomorphism between pfb's ?

THEOREM 5 ,6> The following conditions are equivalent

(1) ? is a local homomorphism,

(2) for any t,t'eT, the transition functions

differ locally by an element from the subgroup

eG: A(Ta(a)€Z
aeG a "o

where Zn is the centralizer of G and G is the connected compo-
U-Q O 0 *

nent of the unit of G.

COROLLARY 3 »7« Under the assumption of the connectedness of G, condi-

tion (2) is equivalent to
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(2 ) for any t, t'eT, the transition functions e-f-t' ' 6tt ' dif:rer

locally by an element from the centre Z« of G. n
' IT

COROLLARY 3,8. Under the assumption that G is abelian, condition (2)

is equivalent to

(2/x) for any t,txeT, the transition functions gtt', g t̂' differ

locally by a constant. Q

PROOF OF THEOREM 3.6. The family <$• always fulfils conditions 1r4 from

definition 3.1. Therefore 9- is a local homomorphism (so it is a local

isomorphism because $+, teT, are dif f eomorphisms) iff it fulfils con

dition 5.

Take arbitrary t€T, z eD, i-Ttf1 CU, ] , aeG and let z a*D, » ;*TC ' [U ,
O X t O b X

Then x^ :=7tz^€U. n U, , . Let ̂ , ( ẑ  ) » zx and ̂ .xC 2^a) = z âX • ''e prove
O O u L T O O T * O O

that a necessary and sufficient condition for

(a) ^,x =« R x°4v R0-l in some nbh of z a,o SL x a o
(b) id=T .nor in some nbh of eeGa. "* a

to hold is that the transition functions E-̂ ' > S4-^ should fulfil in

some nbh of x the condition:

for some aeG such that T (a)eZpr for all aeG
a • ^o

Let

» = <?( •, e) and '̂

for a eG such that z ^^-•'(x )-a f we have
O O \t O U

Indeed,
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on the other hand,

s o x ) . ' x . a . a - x . x . a . a whence

which proves ( * ).

What does condition (b) say? It turns out that

id=T /_i«T0 in some nbh of the unit of G iff
9- ci

id= T /-l on G^ iffa • a o

(O ay~1«aeZG -
o

Now, we explain condition (a). Because of the fact that each nbh

of z a contains the nbh consisting of all points of the form

for x from some nbh of x and g from some nbh of the unit of G, we see

that condition ( a) is equivalent to

( a' ) for x and g as above , the equality

holds.

But its left-hand side is equal to

while the right-hand side to

R» R , c ' o C 1
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therefore (a') is equivalent to

(a' ) for x and g as above, we have

~ .a'.

In particular, for g = e, we get

tt'(x)'gtt/(x)*Va3= ao*a'*

This means that

ĝ t'(x)'gt't/(x) = aQ»a' -a"1-a"1 ( = const),

which proves that the function

( ^ _i ,

is locally constant. Let

(* *) g++ ' (x ) = g , , / ( x ) - a for x from some nbh of x .

Then we can observe that (a) is (by ( * ) and (* # ) ) equivalent to

(a ) for geG , we have a « ( a a ) . g = (a a ) . g « a ~ *a~ - a * ( a a).

Hut we liave the following equiva lences :

C/ (_J f^. \ Cl i /̂ *O ^ o ' 0

Thereby, the system of conditions (a) and (b) is equivalent to

the following fact:

— the transition functions gA' and §++' differ locally by a
U L L U v "

constant a such that, for arbitrary a ,a, we have TV \4(a)€Zn ,
^ o °

which means that, for an arbitrary aeG, we have T (a)tZn . Oa GQ
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tfl 4

CONNECTIONS IN LIE ALGEBROIDS [

DEFINITION 4.1. ( [2, p. 188], CH,p.140J). By a connection in Lie algebroid

(10) we mean a splitting of Atiyah sequence (13), ie a mapping

(22) ^:TM — » A

such that p>^« idip«, or, equivalently, a subbundle Be A such that

A = <{<A)<$B.

We define its connection form (called by K.Mackenzie CH,p«HO]

a back connection )

COA:A -+ ([(A)

as a unique form such that

(a)<oA«£(A)- id,

(b) Ker OA= Im^.

Let (22) be an arbitrary but fixed connection in (10) and let

A - A(P)

for some pfb P« P(M,G). For each point zeP, we define a subspace

PROPOSITION 4.2. (see [1 4, p.292] ) . z H-> H * , ztP, is a connection
— ' ------- • - - I Z

in P.

PROOF. The equality

implies

A
H . = (R ) [H *Iza v ay-)t-z iz



On the other hand, ^'HjVH»z "* TJTzM is a linear isomorphism, thus

It remains to show the smoothness of the distribution H*. Let X.,

icn, be a local basis of ~£ (M) on U^x, x being an arbitrary point of M.

Then (?»Xi)x, i*n, forma a local basis of H^ on 7t"1tU3. Q

PROPOSITION 4*3. (CH, p. 2921). The correspondence

(24) * h-> H*

sets up a bisection between connections in (6) and in P(M,G).

PROOF. Let H be any connection in P(M,G). Put

where zcP. , x«M* By (23), we see that B is independent of the choice
IX I -A.

of z € P * Evidently,

because fi....'-**. :B — *• T M is an isomorphism as a superposition
I X I X I X X ~~

B:. \J B|xCA(P)
X

is a vector subbundle. Indeed, take a basis of the distribution H on a
— 1set ft [U] , U?x, x being an arbitrary point of M, consisting of right-

invariant vector fields Ŷ ,...,! and take a local cross-section
- n A

tf:D — » P. Then the system of smooth cross-sections It oT.etf, i *n, forms

a basis of B on U, which proves that B is a vector subbundle* B defines
H ~ H — 1

a connection A :TM — *A(P) by ^ . » (t,vls,v) • The correspondence
TT I X ' X. I X

H >-* A is inverse to (24). D

Fix a connection H in a pfb P. It determines the connection form
r^\) and the curvature form Qe Q, (P;<£), ̂  is Ad-equivariant
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and horizontal at the same time [5»p.2571, ie is a basic ([-valued form

on P. Via the classical manner (see for example [5, p. 4061) the space

of all basic <£ -valued forms on P(M,G) is naturally isomorphic to the

apace of all forms on M with values in the associated Lie algebra bun-

dle

© »-> 0,

where z€P. , while vz denotes a lifting of v«T M to T P (for example
IX X Z

with respect to some connection in P). «

Considering the canonical isomorphism ?*«<[= <£(P) (see prop. 1*10),

we obtain an isomorphism (see (9))

f 25 )

Via isomorphism (25) we define the so-called curvature base form

(or the curvature tensor) Q^ of H. Now, let A:TM — * A(P) be the con-

nection in (6) corresponding to H with connection f orm <xT . Of course,

the following diagram commutes

TZP
M

Ix
H

A(P)lx

PROPOSITION 4 « 4 «

( 2 6 )

PROOF. By the equality Tt A z (v z ) = A ( v ) , v£TxM, we see that, for XO6(M),
the right-invariant vector field ( > « X ) ' on P is equal to the horizontal



lifting X of X. 3y the classical equality

we obtain (
I -A.

Y)' J(sO))

). D

Prop. 4.4 asserts that the curvature tensor *Q/M of a connection H

in a pfb P(M,G) corresponding to a connection ^ in the Lie algebroid

A( P) depends on ^ only,

COROLLARY 4*5.*

PROOF, ^o [ X , Y ] - t ^ X f > o Yl€Secq ; (P ) , therefore

D

Equation (26) or (26̂ ) can be taken (see C14,p*2953) as a defini-

tion of a curvature tensor of a connection > in Lie algebroid (1C).

COROLLARY 4*6* The following properties are equivalent to one another:

( 1 ) H is flat (ie ̂  = 0),

(2) ̂ M« 0,

(3) Sec A:36(M) — *SecA(P) is a homoraorphism of Lie algebras. Q
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Any connection (22) in Lie algebroid (10) is called flat iff

Sec A is a homomorphism of Lie algebras or, equivalently, if its curva-

ture tensor £ defined by (26) or by (26X) vanishes.

Lie algebroid (10) is called flat iff it possesses a flat connec
tion.

A pfb P(M,G) is flat iff its Lie algebroid (6) is flat.

By theorem 3.5, we obtain ( as a corollary)

THEOREM 4* ?. If both pfb's P(M,G) and P'(M,G') are locally isomorphic

and one of them is flat, then the second one is flat, too. Con-

sequently, flatness is an invariant of, local isomorphisms. P

EXAMPLE 4.8. Every trivial Lie algebroid is flat. The canonical flat

connection in the trivial Lie algebroid TMx<£ is defined by

:TM —> TM*<, v .-»- v0). D

GORCLLAKY 4*9* If Lie algebroid (6) of a pfb P(M,G) is trivial, then

P(M,G) is flat. Q



CHAPTER 5

THE CHERN-WEIL HOMOHORPHISM

We prove that the Chern-Weil horaomorphisms of pfb's (over an arbi-

trary but fixed connected manifold M) are invariants of some local iso-

morphisms between them and, in the case of pfb's with connected struc-

tural Lie groups, these horaomorphisms are invariants of all local iso-

morphisms .

Let P- P(M,G) be any pfb with a Lie algebroid A(P). Let

and i* *

be the k-symmetric power of the vector space <£ and the vector bundle

<£( P) , respectively;

k k

In the sequel any element of V<t (analogously of V (<£(P). ) )is

treated as a symmetric k-linear homomorphism ^X«..^ — * (R via the iso-

morphism

Define the mapping (see (9)

6"

k
> (S

k k
for fe( V^^)j where 26P,X, xeM. From the Ad-invaxiance of

and the fact that

(za) = z°Ad a, zeP,

we see the correctness of this definition, ie the independence of

®(r)v °f ^̂ e choice of zePlv. To prove the smoothness of 8(f), we take*



a local section A :U — * P of P. A determines a local trivialization
k/ *

of %/<£(#) of the form

, (X,U)

of course, <P -9(r)IU is a constant cross-section x •— *• (x,f), thus
v jr k

a smooth one. Denote the image Im® (8 ;=@l( Vf )T) by

k
(Sec

Of coiirse,

9k:(

is an isomorphism of vector spaces.

vk/ * Vk/ *
PROPOSITION 5.1. Let TeSec \/c£(p) » then f6(Sec V<£(P) )1 i f f , for any

z1 , Zp€P, we have

k

THEOREM The mapping

\ -r\.

for which the diagram

( V**)

A(P)

p

H(M)

commutes is defined by

k- tmes

for
k
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where S^^ is the curvature base form of any connection in P and

* * • M

£ 6-

VI, X€M.

PROOF. We must only prove that

(27)

where ac™ and ̂  are the curvature base form and the curvature form of

the same connection in P. Both aides of (2?) are horizontal forms, so,

to show the theorem, we must notice the equality on the horizontal vec

tors only. Let zeP . and v^ , . . . fVpfcCT M, then we have (see (25))

^

. f
c tf"

v . . . V . D

Now, we describe the relationship between the Chern-Weil homomorp

hisms for local isomorphic pfb's*

Let 7= |(Ft,pt); t€T]:P(M,G) - *P'(M,G') be a local homoraorphisra

between pfb's P(M,G) and P^(M,GX) and let

/

be a connection form on P where <£ :
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PROPOSITION 5»3. There exists exactly one connection form

on P such that for each tcT

PROOF. Correctness of the definition of cj : Let z elLnD.x. If F,x(z
• " - ' ' ' -. — -.— — — — — — — — — — — — — —. O u u T O
= Ft(zo)»ax (a'€Gx), then Ft^=RaX*Ft in some nbh of ZQ, and P-tx*Ta/"i *

in some nbh of the unit of ff. That is why, for z from some nbh of z

and for veT P. we obtainz

^ is a connection form: (a)cJ(z;(A ) (v))=v; indeed, let z€D,? then— — — — — — — — — — — z T^e T

)/v)))

= V,

"
(b) RoJa(Ada" )cj; indeed, let zeL) z'eP'', a€G, a'€Gx, za€D./f

ci L U

Ft(z)= zxf FtXza)= z'.a' . Then Ft^ = R^, '̂ 'R̂ i in some nbh of za, and

W+x - *t/_i •/•*+• f_ in some nbh of the unit of G. So
L ci U ci

;v)=a)(za;(R)(v))= (M . )~( P*. o/)( za;( R)( v ) )
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t

= Ad(a" )(j( z; v). a

The connection form co obtained in proposition 5.3 is called

induced by ̂  from GO'. cJ and cox induce some connections A and /*' in

A(P) and A(PX), respectively, which next determine connection forms
A " /AU) and OJ ' in them. The following diagram commutes

(28)

TM

II
/.i t -̂

A(p-) ̂L TK

Indeed, the commutativity of the left-hand side of (28) follows from

the comrnutativity of all the remaining squares in the diagram

T P

A(P)

A
IxI

IX

IX

^>A(PO

©
o
Ix

\x

,A

Ix

The commutativity of the right-hand side of ( 23) follows easily from

the above because, for each veT M, the vector (d̂ ). ((v) is hori-
J\.

zontal and its projection on TM is v. Q
X

FROrCSITION _5.4. The relationship between the curi^ature base form <



and i f ^ T of cJ and u/* C the curvature forms iQ, and Q> of <x; and

x 3 , respectively, is described by the equality

IJt~1 CDt] = (H t)*eFt

PROOF. For X, Ye^I'i), we have

= -cj!d (J( '>X),d9 :(>Y)]3= -

The equality in the square brackets is classical t5,p.278] but we

may obtain it immediately in the following way: by (25), for zt'D,,
U

veT P, we have

PROPOSITION 5.5. If M is connected, then, for any t,f<sT, there exist

aeG and ax€Gx such that p. , = t ,_i»H+.°X, in some nbh of"

PROOF, Let t,t'eT. Take arbitrary xcTUD.J, x'eTCCD^^J and let

T:<0,1) — >• M be any path such thatT(0)«x, T(1)=x. We can choose some

sequence of indices t.,...tt eT such that t=t-, t =t ,

, ] D l m T and It [D, ]O7CtD. ] ^ f f ,
i Ti Ti Ti+1

and some sequence of elements z,, . . . ,z eP such that

zi€Dt , xi:«3Ezi€7i:CJ)t JniflDt K

Let a4€Q and a^eG-x be elements such thati i

; z. •a.eD, ^ P. ( z . } •• z' and F, ( z . «a . ) » zx-a..
1 x ti4t ti x x Ti4l 1 x x x
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Then u. x-l*/u+
i i

in some nbh of eeG, Therebv,

D

is said to have a property Ch-WDEFINITION 5_.6. A local isomorphism
if for all tgT

(29)

C or, equivalently, if there existsteT such that (29) holds (by

prop.5.5) provided M is connected 3.

EXAMPLE 3*7* °? has the property Ch-W if it satisfies one of the follo-

wing properties:

(a) G is connected,

(b) there exists teT such that ^4, can be extended to some globallyi/ " *•*
defined horaomorphism G —»> G^ (provided M is connected),

(c) there exists t€T such that for each acG, there exists a'eG'

such that fi, °Ada= Ad ax<?^l, (provided M is connected).

First, we easily show that each local isomorphism fulfilling pro-

perty (c) has the property Ch-W. Now, we trivially notice that

(a) (c) and (b) * (c). Q

THEOREM 5.8. If <£ has the property Ch-W, then

(30)

and the following diagram commutes:

^T _JL^(Sec^(PY)
A(P')

PROOF. To prove the left-hand side of the above diagram, and the in-
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elusion (30), we need to show the commutativity of

Sec

V :J *

— 1 — 1

To end the proof, we notice that (by prop.5.4)

D

COROLLARY 5.9. The Chern-v/eil homomorphisms of pfb's are invariants of

local isomorphisms having the property Ch-W. In the case of pfb's

with connected structural Lie groups, the Chern-Weil homomorphisms

are invariants of all local isomorphisms. D
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CHAPTER 6i

A STRUCTURAL THEOREM

Here we prove that any Lie algebroid A is uniquely determined (up

to an isomorphism) by its Lie algebra bundle <£(A), a covariant deriva-

tive V in<£(A) and a 2-tensor SitSl* (M̂ (A)), fulfilling some condi-

tions. Cf C1; chapt. 7III1 and C14,p.2243«

Let (10) ba any Lie algebroid on a manifold M with the Lie algebra

bundle <£. Let A:TM —** A be any connection in this Lie algebroid,

(31) 0 » %c—» A —̂ > TM 0,

with the curvature base form

Corollary 4.5 states that

/IX: = JI«X. The connection A determines a covariant derivative V in ̂  by

the formula

(ii) ^X6"" fAX,ffBf XeX(M), ^Secqi,

(see the proof of theorem 1.13). V is called corresponding to ̂  or after

K. Mackenzie CH,p.2953 the adjoint connection of ^ »

We notice that the bracket tt» , *D in the Lie algebra Sec A is uniqu-

ely determined by the system (<{[>̂  *££»,•) and ̂ t namely

(iii)

determines the so-called exterior covariant derivative in

classical formula:

for f e ^ M ) , we have ̂ 7 Ve q+ V M f ) t and
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7¥<X0 V'lo'

. , . f 1 f . , . n .
«* ^ 4 J

PROPOSITION 6.1 . The elements S7 and & M fulfil the following as&tions

(1°) RX y*-- C M̂(X,Y),«5], X,Y£36(M), S"eSecq[, where R denotes

the curvature tensor of V , ie

,O» *€Sec<tt, (the Ricci identity).

(2) VXC<M3« r7x*,l3 + C*. Vx*|], X€X(M), 6-,t]6Sec<H , ie is

a Z -connection in (•£, { C* , * 1\ ( see the proof of theorem 1.13)

(called in the sequel a 2. -connection in <| or after C1 4, p. 14-3] a

Lie connection in qj, ) .

(3°) VQK 0 (the Bianchi identity).

PROOF. Trivial calculations. D

THEOREM 6.2. ( cf Ql,p.3723 and C14,p.223]). (a) Let a system

be given, consisting of

(i) a Lie algebra bundle <£ on a manifold M,

(ii) a covariant derivative V in <J,

(iii) a 2-form &Me£i2(M,-q[),

fulfilling conditions (1°)T(3°) (from proposition 6.1).

Then, for a vector bundle A o <# and mappings f , ̂  , such that

(#) in the diagram (31) the row is exact and T0^* id^t

there exists in the vector space Sec A exactly one Lie algebra!

structure !• , *J fulfilling conditions :

— (A, t»,-l,7') is a Lie algebroid with the Lie algebra bundle

equal to <fl,

— equalities (i) and (ii) hold,



The bracket K«, * J is defined by formula (iii).

(b) For another vector bundle A'D<fl (on M) and mappings Y't

X, fulfilling the analogous properties, there exists exactly one

isomorphism F:AX —*• A of Lie algebroids such that the diagram

r
N,

F TM

commutes. F is defined by the formula F( >'( v) .+ w) « ̂  (v) -f w,
wefl.

(c) If i&jvr* 0, then the Lie algebroid constructed in (a) is
flat.

PROOF, (a) The -uniqueness of ff«,«J is evident. To prove the existence

of the sought-for structure, we need to demonstrate that (iii) defines
it. The bilinearity and antisymmetry of t* , *J and properties (i) and

( ii) are very easy to see.
The Jacobi identity:

HEJIX + 6",2Y + TD,aZ + SB + cycl

YJ - f t M C X f r ) + Vx^ - VY^ + C^^] ,^Z+Sl + cycl

Y3,Z] - ,Q,( t X , Y ) , Z ) + V S ^ ( 6 i ( X , Y) ) - V V

S] + [t«,^],] + cycl
= 0.

The last equality is obtained from the Jacobi identity in 3E(M) and in

and from assumptions (1 ) 7 (3 ).

The equality IH +5 ,f •(̂ Y + '*J )J « f • I&X + 6", ̂Y+^ D + X( f )*( ̂Y +

is easy to obtain.

(b) To prove the second part of our theorem, we notice that



- r<>? = T (trivial), ,
- SecF;3ec A x — * 3 e c A is a homomorphisra of Lie algebras,

indeed :
^'Y+T]! ) = F( ^[X,Y] - ^ ( X , r ) +

x X + € ) , F( >" Y

(c) Trivial because then 3ec^:#(M) — * Sec A is a horaomorphiara of

Lie algebras. D



CHAPTER 7

CLASSIFICATIONS-OF LIE ALGEBRQISS OP SOME TYPES

Let >, >l^:TM — »• A be two connections In a Lie algebroid (10).

Then

has its values in the bundle <f(A) of course.
•

PROPOSITION 7.1. If V, V1 are two covariant derivatives in t(A) cor-

responding to >, >,, respectively, then V = V-i iff c:TM — *<t(A)

is a central homoinorphism, ie such that c(v) belongs to the centre

of the Lie algebra q*(A). p for veT K, xeM.
•* I X jrL

PROOF, By the definition we have: VV*B C*(v),ei, ( V1 )y* = IJLjCv),*!,

v€TM, <s"eSecc£(A). Therefore V* ̂  iff, for all veTM and tfcSec^CA),

O(v)- A-jCv)^! » 0, thus iff [c(v),wl = 0 for all (v, w)€TxM*<t( A) |x, xeM. D

COROLLARY 7.2. If the isotropy Lie algebras are abelian, then to all

connections there corresponds the same covariant derivative. Q

COROLLARY 7*3. If the isotropy Lie algebras are without the centre, then

to different connections there correspond different covariant deri-

vatives. Q

7.1. A CLASSIFICATION OF FLAT LIE ALGEBRQIDS WITH ABELIAN I30TRQPY LIE

ALGEBRAS •

THEOREM 7» 1 • 1 . Let (̂  be an arbitrary vector bundle on a manifold M,

considered as a bundle of abelian Lie algebras. Then there exists

a bisection between the set of all classes of ieomorphic flat Lie

algebroids with the Lie algebra bundle <J, and the set of all equi-

valent flat covariant derivatives in Of , where by the equivalent

covariant derivatives we mean both V and \ such that there exi-

sts a vector bundle isomorphism f : — +< for which V6^ V( f *^)>
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Xe3f(M), e

PROOF, Fix any vector "bundle A z?ĉ  and mappings T,̂  , 3uch that the con

dition ( * ) (see theorem 6*2) holds. With each flat covariant derivati

ve V in of we associate the system

and with the latter - according to theorem 6.2 - some flat Lie algebro-

id AV « (A, £•, .]|y ,r ) (for the bundle A taken above). Lie algebroids ob-

tained in this manner are - for different A,r»* - isomorphic (see theo-
rem 6.2). Of course, by prop.6.1 and theorem 6.2, each flat Lie algebro-
id with the Lie algebra bundle <ty can be obtained (up to an isomorphism)

with the help of some flat covariant derivative in <fc. .:

Let V and V be two covariant derivatives in Of such that the Lie ;
H 1

algebroids A:=A and A :=A are isomorphic (via some isomorphism F); :

o JT? N

r1

Let A:TM + A be any connection in A; then F<>/\s a connection

in A . According to corollary 7.2, we have VY^= t>UC,$"J, ^7Y€- ".A. A.
= lF«A(X) ,6 l , X€3f(K) , <5"€Sec^. Thereby, since F is an isomorphism of Lie \, \;

which means that V and 7̂ are equivalent. Q t
\

7.2. A CLASSIFICATION OF LIE ALGEBRQ1DS WITH SEKlSIFiPLE ISOTRQPY J

LIE ALGEBRAS. \

Let Of be any bundle of scroisimple Lie algebras- on a manifold. M«
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PROPOSITION 7.2.1. For any Z -connection V in t£, there exists exactly

one 2-form

fulfilling condition (1°) from prop. 6.1,

identity (3°).
fulfils the Bianchi

PROOF. It is easy to check that

X

for v,weT M is a derivation of the Lie algebra <£f , R being the curva

ture tensor of V . Prom the assumption that <V is semisimple we have
I X "~

the existence and the uniqueness of an element

such that

Of course, we have thus defined a 2-form Q^tj (M;<$).

By a standard calculation and the fact that Of , x6M, are without*̂ I x
the centre, we obtain the equality V,QM= 0:

~ R
[X,Z],Y

0. D

By the above, we see that any £. -connection in

tly one Lie algebroid (see theorem 6 .2 ) .
determines exac-
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PROPOSITION 7*2,2, If C£ is the Lie algebra bundle assigned to a Lie al-

gebroid A, and a covariant derivative V in <£ corresponds to a con

nection ̂  in A, then the 2- form î M6̂ 2(M;̂ ) defined by (1°) is

exactly the curvature tensor of ̂ .

PROOF » We need to notice that

RX Y**- t>[X,Y3- 1>X,^YT1,C3

knowing that Vv^ = dAX,O ; but this is a standard calculation. O

THEOREM 7*2*3. For a given Lie algebra bundle ty whose fibres are serni^

simple, there exists exactly one ( up to an isomorphism) Lie alge^

broid A for which c£(A)=(£.

PROOF. The existence: According to L5,p«380], there exists in ty a

Y -connection. Let A,y,A be elements as before (see (31) and (*) in

theorem 6.2). Give any £ -connection V in q£ and th.e 2-form £&^

6.Q, (M;<̂ ) fulfilling (1°). For this homomorphisra J\ we define in A some

structure of a Lie algebroid according to theorem 6,2.

The uniqueness. Let A be any Lie algebroid for which <£( A) = qf.

Let V* denote the covariant derivative in (̂  corresponding to a connec-

tion ̂  :TM — > A.

TjflKMA 7» 2»4« The correspondence

A H-> V^

establishes a bisection between the set of all connections in A

and the set of all £ -connections in (K.

PROOF, By corollary 7-3 , this correspondence is an injection.

Let V be an arbitrary 21 -connection in or. Of course,

T-V-V0

is a tensor



where v is a £ -connection corresponding to an arbitrary but fixed
connection V .

Besides

•f
I

We want to find a homomorphism

c:TM

such that

^vff" t(

which will mean that

v-
First, we notice that

is a derivation of the Lie algebra (£ . Because of the fact that

(f is semisimple, we see that the derivation T(v,») is inner
'x

which means that there is an uniquely determined element c(v) such that

T(v,O- [c(v),O.

It remains to show that the mapping

c(v),

is a C°°-vector bundle homoraorphism. Of course, it is a vector bundle

homomorphism, so we must prove the smoothness of c only. Since <tf ia a

locally trivial Lie algebra bundle, the smoothness of c is obtained lo

l cally by the following assertion:

— For a Lie algebra K without the centre, a manifold N and a

C^-linear representation T:N*1v—*K, such that T(v,Ora Cc(v),»]

v£N, for some c:N —* a, we have; c is C

This assertion is easy to show, see the diagram

,V - 59 -
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N

in which T(v)(w) = T(v,w), D

1 2The continuation_of the groof of_the_theorenn Let A , A be two Lie al

gebroids for which

Take an arbitrary £ -connection V inQ(, and denote by X , A9, the cor-
ft f* ^ ^r

responding c<

above). Then

1 2responding connections in A , A , respectively (according to the lemma

F:A1 — * A2 ,

is an isomorphism of Lie algebroids. Indeed

P( tt?iX + ff f^Y + 'n i ) - PCA [ X f Y ] - ^ ( X f

D

COROLLARY 7*^>^« Two Lie algebroids with semisimple isotropy Lie alge-

bras are isomorphic iff their Lie algebra bundles are isoraorphic. O

Theorem 3 . 5 and the last corollary give the following

COROLLARY 7,2,6, Two pfb' s with seraisimple structxiral Lie groups are lo-

cally isomorphic iff their associated Lie algebra bundles are iso-

morphic, D
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CHAPTER 8

SOME EXAMPLES

A/ We ask two questions:

1°) Does, for any pfb P«= P(M, G) and a Lie group G' locally isomor-

phic to G, there exist5a pfb P'- P'(M,GX) such that A(P)- A(P') ?

2°) Are pfb's P- P(M,G), P'« P'(M,G') globally isomorphic provided

their structural Lie groups G and Gx and their Lie algebroids A(P) and

A(P') are isomorphic ?

It turns out that the answers for both these questions are negati-

ve (even the Lie groups G and G ' are assumed to be connected).

1°: Consider the Hopf bundle

fc /-c3 ^ -2^§ * (S - > o )

(being an S -pfb) and the universal covering (R — »• S .

THEOREM 8.1, There exists no R-pfb with the Lie algebroid isomorphic to

PROOP, Suppose P(S2,IR) is such a pfb. According to [6, p. 58], this pfb

has a global section, thus is trivial. Therefore its Lie algebroid is

trivial; consequently, A($) is trivial, so (by corollary 4.9) is flat.
2

But S is simply connected, so, by Atiyah-tfilnor' s theorem [2, prop. 141,

[15, lemma 11, \s trivial, which yields the contradiction because £

has no global section. Q

2°; Without the assumption of the connectedness of G and G ', the

negative answer to 2°) is easy to obtain.

EXAMPLE. 8, 2, Let M — * M be the universal covering of M and let It^M) 4 0
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Then ^(K^-pfV B M —> M and Mxit^M) —*M are not isomorphic alt-

hough its Lie algebroids are isomorphic (see remark 1.15).

It turns out that the assumption of connectedness and even, in
addition, the semisimplicity of G and Gx are not sufficient for a po-
sitive answer.

EXAMPLE 8.3. (The idea of this example was suggested to me by Th.Frie-

drich). Because of the fact that H1((RP( 5);Z2) = Z2, there exist [251

two distinct Spin(3)-structures of the trivial pfb (RP(5)xSO(3) . One
of them, say P1, is of course trivial: P1 *» RP( 5 )XSpin(3), but the se-

o -i
cond one, say P , according to [241 is not trivial! Thus, between P^ "•'•
and P there exists no global fibre isomorphism (so, no global pfb's

1 2isomorphism in any sense). However, Lie algebroids A(P ) and A( P )
are isomorphic. Indeed, there exist (by the definition of spin struc-
tures) horaomorphisms

(P1,*):?1 *IRP(5)XSO(3), i«1,2,

where ̂ :Spin(3) —>SO(3) is the standard homomorphisra from Spin(3)

to 30(3). ;\g a covering is a local isomorphism, which implies

that the homoraorphisms of Lie algebroids

d?1: A(Pi) * A((RP(5)XSO(3)), i«1,2,

1 *?are isomorphisms, and then A(P ) and A( P ) are isomorphic (and, of

course, are trivial).

B/ Both, R.Almeida and P.Molino [1?1,L181 constructed a Lie alge-
broid which cannot be realized as the Lie algebroid of any pfb. Now,

we give a simple example of a Lie algebroid which cannot be realized

as the Lie algebroid of any pfb with abelian structural Lie group.

Namely, we construct a Lie algebroid A= (A,tt*,»l,T) such that the
vector bundle ̂ (A) is not trivial but all isotropy Lie algebras ̂ (A)jx
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are abelian. Then, according to corollary 1.11, there exists no pfb

with an abelian structural Lie group and with the Lie algebroid A.

EXAMPLE 8 .4. Let <# be any vector bundle on a manifold M which is not

trivial but admits of a flat covariant derivative V. Put

A » (f® TM and T* pr2 : tyflmi — > TM.

Let JcTK — * A be any splitting of the following exact sequence

0 - > < — *

In the CatM)-module Sec(qj0TM) we introduce a structure of a Lie alge-

bra !• f •! (see th. 6. 2) by the formula:

We obtain a Lie algebroid (A, (T-,«]l,r) in which the isotropy Lie

algebras <£(A)|X are abelian.
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