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ENDOMORPHISMS OF THE LIE ALGEBROIDS TM × g

UP TO HOMOTOPY

by Bogdan Balcerzak, Jan Kubarski and Witold Walas

Abstract. The notion of a homotopy joining two homomorphisms of Lie
algebroids comes from J.Kubarski [5] and the definition of the fundamen-
tal group π (A) of a Lie algebroid A (which consists of homotopy classes of
strong automorphisms of A), from B.Balcerzak [1]. A homotopic classifica-
tion of strong homomorphisms of the trivial Lie algebroid TM × g is given
and the fundamental group of the algebroid TM ×R is computed with the
aid of H1

dR (M).

1. Introduction. The notion of homotopic homomorphisms between vec-
tor bundles or principal bundles and the problem of classification of homo-
morphisms up to homotopy are important in all classical parts of geometry
and differential topology where we have to deal with problems of homotopy in-
variance (classification of bundles, characteristic classes). Vector bundles and
principal bundles have their infinitesimal objects – transitive Lie algebroids –
which contain most of information interesting from the topological point of
view. For example, homotopy of mappings can be expressed by these infinites-
imal invariants, moreover, characteristic homomorphisms of principal bundles
(primary and secondary [5], [7], [8]) can also be expressed in terms of these
invariants. We add that the characteristic homomorphisms can also be defined
in the category of Lie algebroids or more generally, in the geometry (commu-
tative) of Lie-Rinehart algebras, see [10], [11], [3], (Lie-Rinehart algebras are
called sometimes Lie modules or Lie pseudoalgebras).

A homotopy joining two homomorphisms H0, H1 : A′ → A of Lie algebroids
is defined in J.Kubarski [6]; it is a homomorphism of Lie algebroids H : TR×
A′ → A with H (θ0, ·) = H0, H2 (θ1, ·) = H1, where θ0 ∈ T0R and θ1 ∈ T1R,
are null vectors (TR × A′ denotes the product of the trivial Lie algebroid TR
and A′). The reader can find the definition of a product of Lie algebroids and
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a homomorphism (not necessarily strong) in [2], [6], [5]. If A′ and A are two
algebroids on a manifold M , H0 and H1 are strong homomorphisms between
them, then the homotopy H is called strong if H is defined over projection
pr2 : R ×M → M. This definition would be better understood if we consider
the following case: let h0 and h1 : P ′ → P be two homomorphisms of G-
principal bundles and ht – a familly of homomorphisms (a homotopy) joining
h0 and h1. This family gives a homomorphism of G-principal bundles h :
R × P ′ → P. If we consider infinitesimal mappings between the algebroids of
these bundles (see [9], [4]), h∗ : A (R× P ′) → A (P ), and indentify R × P ′

with the cartesian product of the trivial {e}-principal bundle R and G-bundle
P ′ we obtain (after identification A (R× P ′) ∼= TR×A (P ′)) a homomorphism
h∗ : TR×A (P ′) → A (P ) which is a homotopy joining h0∗ and h1∗, in the terms
above. We can interpret a homotopy joining linear homomorphisms of vector
bundles (assuming isomorphism on each fibre) in the category of algebroids
(by principal bundles of frames or directly), using (1) the algebroid of a vector
bundle (see [9], [5]) which is isomorphic to the algebroid of a frame bundle; (2)
the homomophism of algebroids induced by a homomorphism of vector bundles
[6].

The problem of the classification up to homotopy of endomorphisms for a
given Lie algebroid had been initiated by B.Balcerzak in [1], where the notion
of the fundamental group π (A) of a Lie algebroid A was introduced (π (A)
is the set of homotopy classes of strong automorphisms in the Lie algebroid
A). In [1] the author gave an effective classification of endomorphisms of the
trivial Lie algebroid TRn × R (on Rn with the 1-dimensional abelian isotropy
Lie algebra R) and proved that π (TRn × R) ∼= GL (R) . The aim of this paper
is the homotopic classification of endomorphisms of the trivial Lie algebroid
TM × g on a manifold M with an isotropy algebra g and the computation of
π (TM × R) using the first de Rham cohomology group H1

dR (M). The problem
of the computation of π (TM × g) and more generally, of π (A) for any Lie
algebroid A, is still open.

2. Endomorphisms of trivial algebroids.
2.1. The case of TM × g.
Let M be a connected smooth manifold and g a finite dimensional real Lie

algebra. Then (TM × g, [[·, ·]], pr1) is a transitive Lie algebroid with the anchor
pr1 : TM × g → TM and the Lie algebra structure [[·, ·]] in the module of
cross-sections Sec (TM × g) = {(X, σ) ;X ∈ X(M), σ ∈ C∞ (M ; g)} defined by

[[(X, σ), (Y, τ)]] = ([X, Y ],LX(η)− LY (σ) + [σ, τ ]),

where X, Y ∈ X(M) and σ, τ ∈ C∞ (M ; g). An endomorphism of vector bun-
dles H : TM×g → TM×g is a homomorphism of Lie algebroids if pr1◦H = pr1

and SecH : Sec (TM × g) → Sec (TM × g) is a homomorphism of Lie algebras.
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Let

πR : R×M −→ R, πM : R×M −→ M, π : TM −→ M

be canonical projections and

jt : M −→ R×M, x 7−→ (t, x) , jx : R −→ R×M, t 7−→ (t, x) ,

injections.

Theorem 2.1. Each endomorphism H : TM × g → TM × g of the Lie
algebroid TM × g is given by

H (u, r) =
(
u, ωπ(u) (u) + φπ(u) (r)

)
for some smooth function φ : M → End (g) and 1–form ω ∈ Ω1 (M ; g) such
that
W1 δω (X, Y ) + [ω (X) , ω (Y )] = 0,
W2 ((dφ) X) (η) = [φ (η) , ω (X)] , X, Y ∈ X (M) , η ∈ C∞ (M ; g) , φ (η) :

M → g, x 7→ φx (ηx).
φ and ω are uniquely determined. H is an automorphism if and only if φx

is a linear automorphism of g for all x ∈ M . Under this condition there is H−1

given by H−1 (u, r) =
(
u,−φ−1 (ω (u)) + φ−1 (r)

)
.

Proof. Let H be an endomorphism of the Lie algebroid TM × g. Since
pr1 ◦H = pr1, we obtain H (u, r) = (u, λ (u, r)) , u ∈ TM, r ∈ g for a smooth
function λ : TM × g → g. Each function λx : TxM × g → g is linear and hence
λx (u, r) = ωx (u) + φx (r) for ωx ∈ Hom (TxM ; g) and φx ∈ Hom (g; g). Thus

H (u, r) =
(
u, ωπ(u) (u) + φπ(u) (r)

)
for some 1–form ω ∈ Ω1 (M ; g) and smooth function φ : M → Hom (g; g).

SecH : Sec (TM × g) → Sec (TM × g), ξ 7→ H ◦ ξ is a homomorphism
of Lie algebras, so it satisfies H ◦ [[(X, σ) , (Y, η)]] = [[H ◦ (X, σ) ,H ◦ (Y, η)]]
for all X, Y ∈ X (M), σ, η ∈ C∞ (M ; g). If σ = η = 0, then we easily obtain
ω ([X, Y ]) = X (ω (Y ))−Y (ω (X))+[ω (X) , ω (Y )] , i.e. W1. If X = Y = 0, we
have [φ (σ) , φ (η)] = φ ([σ, η]) , so linear endomorphisms φx are endomorphisms
of the Lie algebra g for all x ∈ M . Finally, for any X ∈ X (M), η ∈ C∞ (M, g)
and Y = 0, σ = 0 we obtain X (φ (η)) + [ω (X) , φ (η)] = φ (X (η)), hence W2
holds.

Conversely, define a linear endomorphism H : TM × g → TM × g by

H (u, r) =
(
u, ωπ(u) (u) + φπ(u) (r)

)
for given φ : M → End (g) and ω ∈ Ω1 (M ; g) which satisfy W1 and W2. This
endomorphism is a homomorphism of Lie algebroids because: (a) condition
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pr1 ◦ H = pr1 holds evidently, (b) SecH is a homomorphism of Lie algebras.
In fact, for X, Y ∈ X (M) , σ, η ∈ C∞ (M ; g) we compute

[[H ◦ (X, σ) ,H ◦ (Y, η)]]
= [[(X, ω (X) + φ (σ)) , (Y, ω (Y ) + φ (η))]]
= ([X, Y ] , δω (X, Y ) + [ω (X) , ω (Y )]

+ ((dφ) X) (η)− [φ (η) , ω (X)]
− ((dφ) Y ) (σ) + [φ (σ) , ω (Y )])
+φ ((X (σ))− φ (Y (η)) + φ [σ, η] + ω ([X, Y ]))

= ([X, Y ] , ω ([X, Y ]) + φ (X (η))− φ (Y (σ)) + φ ([σ, η]))
= H ◦ ([X, Y ] , X (η)− Y (σ) + [σ, η])
= H ◦ [[(X, σ) , (Y, η)]].

The rest is obvious.

We can easily generalize the above theorem to the case of strong homomor-
phisms of trivial Lie algebroids with the different isotropy algebras.

Theorem 2.2. Each homomorphism H : TM × g → TM × g
′ of Lie

algebroids is given by

H (u, r) =
(
u, ωπ(u) (u) + φπ(u) (r)

)
for some smooth function φ : M → Hom

(
g; g

′
)

and 1–form ω ∈ Ω1
(
M ; g

′
)

such that
W1’ δω (X, Y ) + [ω (X) , ω (Y )] = 0,
W2’ ((dφ) X) (η) = [φ (η) , ω (X)] , X, Y ∈ X (M) , η ∈ C∞ (M ; g) ,

φ (η) : M → g, φ (η) (x) = φx (ηx).

2.2. The case of TM × R.
Consider the 1-dimensional abelian Lie algebra g = R. It follows from

Theorem 2.1 that each strong endomorphism H of the Lie algebroid TM × R
is given by

H (u, r) =
(
u, ωπ(u) (u) + φπ(u) (r)

)
, (u, r) ∈ TM × R

for the uniquely determined function φ : M → End (R) and closed 1–form
ω ∈ Ω1 (M) such that ((dφ) X) (η) = 0 for X ∈ X (M) , η ∈ C∞ (M). Since
φx (r) = B (x)·r, r ∈ R, B ∈ C∞ (M), we see that ((dφ) X) (η) = X (B)·η = 0.
In particular, if we take a non-zero η, then X (B) = 0, which means that B is
constant. Hence we have
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Corollary 2.3. Each strong endomorphism H of the Lie algebroid TM×R
is given by

H (u, r) =
(
u, ωπ(u) (u) + B · r

)
,

where B is a real number and ω is a closed 1–form on M. H is an automorphism
if and only if B 6= 0; then H−1 (u, r) =

(
u,− 1

B ω (u) + 1
B r
)
.

Example 2.4. [1, Theorem. 2.1] Consider the special case M = Rn. Since

the fact that the 1–form ω =
n∑

i=1
Aidxi ∈ Ω1 (Rn), Ai ∈ C∞ (Rn) , is closed is

equivalent to

(2.1)
∂ Ai

∂ xj
=

∂ Aj

∂ xi
, i, j = 1, ..., n,

an endomorphism H of the trivial Lie algebroid T Rn × R has the following
form

H (u, r) =

(
u,

n∑
i=1

Ai (x) · ui + B · r

)
(ui are coordinates of the vector u with respect to the basis ∂

∂ xi ), where B ∈ R,
and Ai ∈ C∞ (Rn) satisfy condition (2.1).

3. Homotopic classification of endomorphisms of trivial alge-
broids.

3.1. The case of TM × g.
Consider the trivial Lie algebroids TM ×g, T (R×M)×g and the product

of algebroids TR× (TM × g) . Mappings

K : T (R×M)× g −→ TR× (TM × g) , (u, r) 7−→ (dπR (u) , (dπM (u) , r)) ,

L : T (R×M)× g −→ π ∧
M (TM × g) , (u, r) 7−→ (u, (dπM (u) , r)) ,

are isomorphisms of Lie algebroids, where π ∧
M (TM × g) denotes the inverse-

image of TM × g by πM , see [5].
Let H0, H1 be strong endomorpisms of the Lie algebroid TM × g. They

are given by

(3.1) Hi (u, r) =
(
u, ωi

π(u) (u) + φi
π(u) (r)

)
, i = 0, 1,

where φi : M → End (g), ωi ∈ Ω1 (M ; g) and
(a) δωi (X, Y ) +

[
ωi (X) , ωi (Y )

]
= 0,

(b)
((

dφi
)
X
)
(η) =

[
φi (η) , ωi (X)

]
, X, Y ∈ X (M), η ∈ C∞ (M ; g).

The theorem below gives the characterization of the homotpy joining these
two endomorphisms.
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Theorem 3.1. Endomorphisms H0 and H1 of the trivial Lie algebroid
TM × g given by (3.1), are homotopic if and only if there exists a mapping
φ : R×M → End (g) and a 1–form ω ∈ Ω1 (R×M ; g) such that

φ (0, ·) = φ0, φ (1, ·) = φ1, ω0 = j∗0ω , ω1 = j∗1ω,

and

(3.2) δω (X, Y ) + [ω (X) , ω (Y )] = 0, ((dφ) X) (η) = [φ (η) , ω (X)] ,

for X, Y ∈ X (R×M) , η ∈ C∞ (R×M ; g).

Proof. Suppose that H : TR × (TM × g) −→ TM × g is a homotopy
(over πM ) joining endomorphisms H0 i H1, that is

(3.3) H (θ0, ·) = H0, H (θ1, ·) = H1,

(θ0 ∈ T0R and θ1 ∈ T1R are null vectors). H is canonically represented as
the superposition H = χ ◦ H of the homomorphisms H : TR × (TM × g) →
π ∧

M (TM × g) and χ : π ∧
M (TM × g) → TM × g, [5], see [6]. Hence the

mapping L−1 ◦H ◦K is an endomorphism of the Lie algebroid T (R×M)× g.
It follows from Theorem 2.1 that there exist a mapping φ : R×M → End (g)
and a 1–form ω ∈ Ω1 (R×M ; g) which satisfy (3.2) and(

L−1 ◦H ◦K
)
(w, r) =

(
w,ωπ(w) (w) + φπ(w) (r)

)
, w ∈ T (R×M) , r ∈ R.

Therefore
(
H ◦K

)
(w, r) =

(
w,
(
dπM (w) , ωπ(w) (w) + φπ(w) (r)

))
, whence we

have H(t,x) (v, (u, r)) =
(
H ◦K

)
(w, r) for v ∈ TtR, u ∈ TxM and w = djx (v)+

djt (u) . Since π ∧
M (TM × g) ⊂ T (R×M)

⊕
π∗M (TM × g) and χ is defined as

the projection on the second term,

(3.4) H(t,x) (v, (u, r)) =
(
u, ω(t,x) (djx (v) + djt (u)) + φ(t,x) (r)

)
,

because H (v, (u, r)) = (u, H (v, (u, r))). By (3.3),(
u, ω(0,x) (dj0 (u)) + φ(0,x) (r)

)
=

(
u, ω0

x (u) + φ0
x (r)

)
,(

u, ω(1,x) (dj1 (u)) + φ(1,x) (r)
)

=
(
u, ω1

x (u) + φ1
x (r)

)
,

hence we have

φ0
x (r) = φ(0,x) (r) ,

φ1
x (r) = φ(1,x) (r) ,

ω0
x (u) = ω(0,x) (dj0 (u)) = (j∗0ω)x (u) ,

ω1
x (u) = ω(1,x) (dj1 (u)) = (j∗1ω)x (u) .

Conversely, let φ : R ×M → End (g) and ω ∈ Ω1 (R×M ; g) satisfy (3.2).
Then we see that H : TR × (TM × g) −→ TM × g defined by (3.4) is a
homotopy joining endomorphisms H0 and H1.
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3.2. The case of TM × R.
The general form of strong endomorphisms of the trivial Lie algebroid TM×

R gives Corollary (2.3).

Theorem 3.2. Let H0, H1 be two endomorphisms of the Lie algebroid
TM × R given by

(3.5) Hi (u, r) =
(
u, ωi

π(u) (u) + Bi · r
)

,

where Bi are real numbers and ωi are closed 1–forms on M . The endomor-
phisms H0 and H1 are homotopic if and only if B0 = B1 and the forms ω0 and
ω1 are homologous,

[
ω0
]

=
[
ω1
]
∈ H1

dR (M).

Proof. Suppose that endomorphisms H0 and H1 are homotopic. By
Theorem 3.1, there are some closed 1–form ω ∈ Ω1 (R×M) and mapping
φ : R × M → End (R) such that ω0 = j∗0ω, ω1 = j∗1ω and dφ = 0 with
φ(0,·) = φ0 and φ(1,·) = φ1, where φ0

x (r) = B0 · r, φ1
x (r) = B1 · r for all x ∈ M .

Whence φ(t,x) (r) = B · r for some B ∈ R and thus B0 = B = B1. Since j0 and
j1 are homotopic,

[
ω0
]

= j#
0 [ω] = j#

1 [ω] =
[
ω1
]
.

Conversely, suppose that B0 = B1 and there is a function f ∈ C∞ (M), with
ω1−ω0 = δf. Define a closed 1–form on R×M by ω = π∗Mω0+δ (πR · (f ◦ πM )) .
Since (πR · (f ◦ πM )) ◦ j0 ≡ 0 and (πR · (f ◦ πM )) ◦ j1 = f , we obtain j∗0ω = ω0

and j∗1ω = ω1.
Next, let φ : R × M → End (R) be defined by φ(t,x) (r) = B · r, where

B = B0 = B1. Then φ(0,·) = φ0 = φ1 = φ(1,·) and dφ = 0 which means that H0

and H1 are homotopic (by Theorem 3.1).

Corollary 3.3. If H1
dR (M) = 0 (e.g. M is contractible, in particular if

M = Rn – see [1]), any two endomorphisms H0 and H1 of the Lie algebroid
TM × R given by (3.5) are homotopic if and only if B0 = B1.

4. The fundamental group of TM ×R. Let A be a transitive Lie alge-
broid on a manifold M . Consider the set π (A) of homotopy classes [H], where
H : A → A is a strong automorphism of A. π (A) under the binary operation
[H] · [G] = [H ◦G] forms a group (the unity element is the class of the identity
on A and the inverse of [H] is

[
H−1

]
, see [1]). The group π (A) is called the

fundamental group of A.

Theorem 4.1. The fundamental group π (TM × R) is isomorphic to the
group (

H1
dR (M)× (R \ {0}) , ◦

)
,

where
([Φ] , a) ◦ ([Ψ] , b) = ([Φ] + a [Ψ] , ab) ,

Φ, Ψ ∈ Ω1 (M) , a, b ∈ R \ {0}.
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Proof. Let G and H be automorphisms of the algebroid TM × R,

G (u, r) =
(
u, ωG

π(u) (u) + BG · r
)

, H (u, r) =
(
u, ωH

π(u) (u) + BH · r
)

,

where BG, BH are non-zero real numbers and ωG, ωH are closed 1–forms on
M . Then

(G ◦H) (u, r) =
(
u, ωG

π(u) (u) + BG · ωH
π(u) (u) , BG ·BH · r

)
,

(u, r) ∈ TM × R. Hence we see that the mapping

∆ : π (TM × R) −→ H1
dR (M)× (R \ {0}) , [H] 7−→

([
ωH
]
, BH

)
,

is an isomorphism of the groups π (TM × R) and
(
H1

dR (M)× (R \ {0}) , ◦
)
.

Elements of the group H1
dR (M)× (R \ {0}) can be represented by the ma-

trices
∣∣∣∣ a ϕ

0 1

∣∣∣∣ , a ∈ R \ {0} , ϕ ∈ H1
dR (M) , with the standard multiplication

of matrices.

Corollary 4.2. If H1
dR (M) = 0 then

π (TM × R) ∼= (R \ {0} , ·) ∼= GL (R) .

It is a generalization of the result from [1].
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