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Foreword

This eighth conference of a cycle, which was initiated in 1998 with a meeting in
Konopnica (see http://im0.p.lodz.pl/konferencje/), took place in two cities;
the first part was held in Przemyśl, Poland, at the State High School of East
Europe, the second part in L’viv, Ukraine, at the Ivan Franko National University
of L’viv.

The main aim of the conference series is to present and discuss new results on
geometry and topology of manifolds with particular attention paid to applications
of algebraic methods. The topics that are usually discussed include:

• Dynamical systems on manifolds and applications

• Lie groups (including infinite dimensional ones), Lie algebroids and their
generalizations, Lie groupoids

• Characteristic classes, index theory, K-theory, Fredholm operators

• Singular foliations, cohomology theories for foliated manifolds and their quo-
tients

• Symplectic, Poisson, Jacobi and special Riemannian manifolds

• Topology of infinite-dimensional manifolds

• Applications to mathematical physics

Jan Kubarski

Robert Wolak
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Jet bundles on projective space1

by Helge Maakestad

Abstract
In this paper we state and prove some results on the structure of the

jet bundles as left and right module over the structure sheaf O on the
projective line and projective space using elementary techniques involving
diagonalization of matrices, multilinear algebra and sheaf cohomology.

1 Introduction

In this paper a complete classification of the structure of the jet bundles on the
projective line and projective space PN = SL(V )/P as left and right P -module is
given. In the first section explicit techniques and known results on the splitting
type of the jet bundles as left and right module over the structure sheaf O are
recalled. In the final section the classification of the structure of the jet bundles
on projective space as left and right P -module is done using sheaf cohomology,
multilinear algebra and representations of SL(V ).

2 On the left and right structure and matrix di-

agonalization

In this section we recall results obtained in previous papers ([9], [10], [13], [14] and
[15]) where the jets are studied as left and right module using explicit calculations
involving diagonalization of matrices.

Notation. Let X/S be a separated scheme, and let p, q be the two projection
maps p, q : X ×X → X. There is a closed immersion

∆ : X → X ×X

and an exact sequence of sheaves

(2.1) 0 → Ik+1 → OX×X → O∆k → 0.

The sheaf I is the sheaf defining the diagonal in X ×X.

1Received: September 26, 2007
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Definition 2.1. Let E be a locally free OX-module. We define the k’th order jets
of E , to be

Pk
X(E) = p∗(O∆k ⊗X×X q∗E).

Let Pk
X denote the module Pk

X(OX).

There is the following result:

Proposition 2.2. Let X/S be smooth and let E be a locally free OX-module.
There exists an exact sequence

0 → Sk(Ω1
X)⊗ E → Pk

X(E) → Pk−1
X (E) → 0

of left OX-modules, where k = 1, 2, . . . .

Proof. For a proof see [11], section 4.

It follows that for a smooth morphism X → S of relative dimension n, and E
a locally free sheaf on X of rank e, the jets Pk(E) is locally free of rank e

(
n+k

n

)
.

Given locally free sheaves F and G there exist the sheaf of polynomial dif-
ferential operators of order k from F to G (following [3] section 16.8), denoted
Diffk

X(F ,G). There is an isomorphism

(2.2) HomX(Pk
X(F),G) ∼= Diffk

X(F ,G)

of sheaves of abelian groups. Hence the sheaf of jets Pk
X(F) is in a natural way

a left and right OX-module. We write Pk(E)L (resp. Pk(E)R) to indicate we are
considering the left (resp. right) structure. Note that for X smooth over S and
E locally free of finite rank, it follows that Pk

X(E) is locally free of finite rank as
left and right OX-module separately.

By [4] Theorem 2.1 and [5] Theorem 3.1 we know that any finite rank locally
free sheaf on P1 over any field splits into a direct sum of invertible sheaves. The
formation of jets commutes with direct sums, hence if we can decompose the jet
Pk(O(d)) into line bundles for any line bundle O(d) with d an integer it follows
we have given an complete classification of the jet Pk(F) for any locally free finite
rank sheaf F on the projective line. In the paper [10] the decomposition of the
sheaf of jets is studied and the following structure theorem is obtained:

Theorem 2.3. Let k ≥ 1, and consider Pk(O(d)) as left OP-module. If k ≤ d or
d < 0, there is an isomorphism

(2.3) Pk(O(d))L ∼= ⊕k+1O(d− k)

of O-modules. If 0 ≤ d < k there is an isomorphism

(2.4) Pk(O(d))L ∼= Od+1 ⊕O(d− k − 1)k

as left O-modules. Let b ∈ Z and k ≥ 1. There is an isomorphism

(2.5) Pk(O(d))R ∼= O(d)⊕O(d− k − 1)k

as right O-modules.
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Proof. See [10].

The proof of this result is done by calculating and diagonalizing the transition
matrix of the jet bundle. The result gives a complete classification of the jets of
an arbitrary locally free sheaf on the projective line as left and right module over
the structure sheaf.

3 On the left and right P -module structure on

the projective line

In this section we give a complete classification of the left and right P -module
structure of the jets on the projective line over a field of characteristic zero using
the same techniques as in [8].

Let in general V be a finite dimensional vector space over a field F of char-
acteristic zero. Any affine algebraic group G is a closed subgroup of GL(V ) for
some V , and given any closed subgroup H ⊆ G, there exists a quotient map
G → G/H with nice properties. The variety G/H is smooth and quasi projec-
tive, and the quotient map is universal with respect to H-invariant morphisms
of varieties. F -rational points of the quotient G/H correspond to orbits of H
in G (see [7], section I.5). Moreover: any finite-dimensional H-module ρ gives
rise to a finite rank G-homogeneous vector bundle E = E(ρ) and by [1], chapter
4 this correspondence sets up an equivalence of categories between the category
of linear finite dimensional representations of H and the category of finite rank
G-homogeneous vector bundles on G/H. There exists an equivalence of categories
between the category of finite rank G-homogeneous vector bundles and the cat-
egory of finite rank locally free sheaves with a G-linearization, hence we will use
these two notions interchangeably.

Fix a line L in V , and let P be the closed subgroup of SL(V ) stabilizing L.
The quotient SL(V )/P is naturally isomorphic to projective space P parametrizing
lines in V , and if we choose a basis e0, · · · , en for V , the quotient map

π : SL(V ) → P

can be chosen to be defined as follows: map any matrix A to its first column-vector.
It follows that π is locally trivial in the Zariski topology, in fact it trivializes over
the basic open subsets Ui of projective space. One also checks that any SL(V )-
homogeneous vectorbundle on P trivializes over the basic open subsets Ui. Any
line bundle O(d) on projective space is SL(V )-homogeneous coming from a unique
character of P since SL(V ) has no characters. The sheaf of jets Pk(O(d)) is a
sheaf of bi-modules, locally free as left and right O-module separately. It has a
left and right SL(V )-linearization, hence we may classify the P -module structure
of Pk(O(d)) corresponding to the left and right structure, and that is the aim of
this section.
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The calculation of the representations corresponding to Pk(O(d)) as left and
right P -module is contained in Theorems 3.4 and 3.6. As a byproduct we obtain
the classification of the splitting type of the jet bundles obtained in [10]: this is
Corollaries 3.5 and 3.7.

Let, in the following section V be a vector space over F of dimension two.
P = SL(V )/P is the projective line parametrizing lines in V . There exists two
exact sequences of P -modules.

0 → L → V → Q → 0

and
0 → m → V ∗ → L∗ → 0,

and one easily sees that m ∼= L as P -module.
Let p, q : P×P → P be the canonical projection maps, and let I ⊆ OP×P be

the ideal of the diagonal. Let O∆k = OP×P/Ik+1 be the k′th order infinitesimal
neighborhood of the diagonal. Recall the definition of the sheaf of jets:

Definition 3.1. Let E be an OP-module. Let k ≥ 1 and let

Pk(E) = p∗(O∆k ⊗ q∗E)

be the k’th order sheaf of jets of E .

If E is a sheaf with an SL(V )-linearization, it follows that Pk(E) has a canonical
SL(V )-linearization. There is an exact sequence:

(3.1) 0 → Ik+1 → OP×P → O∆k → 0.

Apply the functor R p∗(− ⊗ q∗O(d)) to the sequence 3.1 to obtain a long exact
sequence of SL(V )-linearized sheaves

(3.2) 0 → p∗(Ik+1 ⊗ q∗O(d)) → p∗q∗O(d) → Pk(O(d))L →

R1 p∗(Ik+1 ⊗ q∗O(d)) → R1 p∗q∗O(d) → R1 p∗(O∆k ⊗ q∗O(d)) → · · ·
of OP-modules. We write Pk(O(d))L to indicate that we use the left structure
of the jets. We write Pk(O(d))R to indicate right structure. The terms in the
sequence 3.2 are locally free since they are coherent and any coherent sheaf with
an SL(V )-linearization is locally free.

Proposition 3.2. Let E be an SL(V )-linearized sheaf with support in ∆ ⊆ P×P.
For all i ≥ 1 the following holds:

Ri p∗(E) = Ri q∗(E) = 0.
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Proof. Let x ∈ P be the distinguished point and consider the fiber diagram

P
j //

p̃,q̃
²²

P×P

p,q

²²
Spec(κ(x)) i // P

Since Ri p∗(E) and Ri q∗(E) have an SL(V )-linearization it is enough to check the
statement of the lemma on the fiber at x. We get by [6], Proposition III.9.3
isomorphisms

Ri p∗(E)(x) ∼= Ri p̃∗(j∗E)

and
Ri q∗(E)(x) ∼= Ri q̃∗(j∗E),

and since j∗E is supported on a zero-dimensional scheme, the lemma follows.

It follows from the Lemma that R1 p∗(O∆k⊗q∗O(d)) = R1 q∗(O∆k⊗q∗O(d)) =
0 sinceO∆k⊗q∗O(d) is supported on the diagonal. Hence we get an exact sequence
of P -modules when we pass to the fiber of 3.2 at the distinguished point x ∈ P.
Let m ⊆ OP be the sheaf of ideals of x. By [6] Theorem III.12.9 and Lemma 3.2
we get the following exact sequence of P -modules:

(3.3) 0 → H0(P,mk+1 ⊗O(d)) → H0(P,O(d)) → Pk(O(d))(x) →

H1(P, mk+1 ⊗O(d)) → H1(P,O(d)) → 0.

Proposition 3.3. Let k ≥ 1 and d < k. Then there is an isomorphism

H1(P, mk+1 ⊗O(d)) ∼= Symk+1(L)⊗ Symk−d−1(V )

of P -modules.

Proof. There is an isomorphism of sheaves O(−k − 1) ∼= mk+1 defined as follows:

x−k−1
0 → tk+1

on the open set D(x0) where t = x1/x0. On the open set D(x1) it is defined as
follows:

x−k−1
1 → 1.

We get an isomorphism O(d − k − 1) ∼= mk+1 ⊗ O(d) of sheaves, but the corre-
sponding inclusion of sheaves

O(d− k − 1) → O(d)



16 Helge Maakestad

is not a map of P -linearized sheaves, since it is zero on the fiber at x. Hence we
must twist by the character of mk+1 = O(−k− 1) when we use Serre-duality. We
get

H1(P,mk+1 ⊗O(d)) ∼= Symk+1(L)⊗ H0(P,O(k − d− 1))∗ ∼=
Symk+1(L)⊗ Symk−d−1(V ),

and the proposition follows.

We first give a complete classification of the left P -module structure of the
jets. The result is the following.

Theorem 3.4. Let k ≥ 1, and consider Pk(O(d)) as left OP-module. If k ≤ d,
there exists an isomorphism

(3.4) Pk(O(d))L(x) ∼= Symk−d(L∗)⊗ Symk(V ∗)

of P -modules. If d ≥ 0 there exist an isomorphism

(3.5) Pk(O(−d))L(x) ∼= Symk+d(L)⊗ Symk(V )

of P -modules. If 0 ≤ d < k there exist an isomorphism

(3.6) Pk(O(d))L(x) ∼= Symd(V ∗)⊕ Symk+1(L)⊗ Symk−d−1(V )

of P -modules.

Proof. The isomorphism from 3.4 follows from Theorem 2.4 in [8]. We prove the
isomorphism 3.5: Since −d < 0 we get an exact sequence

0 → Pk(O(−d))(x) → H1(P,mk+1 ⊗O(−d)) → H1(P,O(−d)) → 0

of P -modules. By proposition 3.3 we get the exact sequence of P -modules

0 → Pk(O(−d))L(x) → Symk+1(L)⊗ Symd+k−1(V ) → Symd−2(V ) → 0.

The map on the right is described as follows: dualize to get the following:

Symd−2(V ∗) ∼= Symk+1(L∗)⊗ Symk+1(L)⊗ Symd−2(V ∗) ∼=
Symk+1(L∗)⊗ Symk+1(m)⊗ Symd−2(V ∗) → Symk+1(L∗)⊗ Symd+k−1(V ∗).

The map is described explicitly as follows:

f(x0, x1) → xk+1
0 ⊗ xk+1

1 f(x0, x1).

If we dualize this map we get a map

Symk+1(L)⊗ Symd+k−1(V ) → Symd−2(V ),
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given explicitly as follows:

ek+1
0 ⊗ f(e0, e1) → φ(f(e0, e1)),

where φ is k + 1 times partial derivative with respect to the e1-variable. There
exists a natural map

Symk+d(L)⊗ Symk(V ) → Symk+1(L)⊗ Symd+k−1(V )

given by
ek+d
0 ⊗ f(e0, e1) → ek+1

0 ⊗ ed−1
0 f(e0, e1)

and one checks that this gives an exact sequence

0 → Symk+d(L)⊗ Symk(V ) → Symk+1(L)⊗ Symd+k−1(V ) →
Symd−2(V ) → 0,

hence we get an isomorphism

Pk(O(−d))L(x) ∼= Symk+d(L)⊗ Symk(V ),

and the isomorphism from 3.5 is proved. We next prove isomorphism 3.6: By
vanishing of cohomology on the projective line we get the following exact sequence:

0 → H0(P,O(d)) → Pk(O(d))L(x) → H1(P, mk+1 ⊗O(d)) → 0.

We get by Proposition 3.3 an exact sequence of P -modules

0 → Symd(V ∗) → Pk(O(d))L(x) → Symk+1(L)⊗ Symk−d−1(V ) → 0.

It splits because of the following:

Ext1
P (Symk+1(L)⊗ Symk−d−1(V ), Symd(V ∗)) =

Ext1
P (ρ, Symk+1(L∗)⊗ Symk−d−1(V ∗)⊗ Symk−1(V ∗)).

Here ρ is the trivial character of P . Since there is an equivalence of categories
between the category of P -modules and SL(V )-linearized sheaves we get again by
equivariant Serre-duality

Ext1
P (ρ, Symk+1(L∗)⊗ Symk−d−1(V ∗)⊗ Symk−1(V ∗)) = H1(P,O(k + 1)⊗ E1) =

⊕r1 H1(P,O(k + 1)) = ⊕r1 H0(P,O(−k − 3))∗ = 0.

Here E1 is the SL(V )-linearized sheaf corresponding to Symk−d−1(V ∗)⊗Symk−1(V ∗)
and r1 is the rank of E1. Hence we get

Pk(O(d))L(x) ∼= Symd(V ∗)⊕ Symk+1(L)⊗ Symk−d−1(V ),

and the isomorphism from 3.6 is proved hence the theorem follows.
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As a corollary we get a result on the splitting type of the jets as left module
on the projective line.

Corollary 3.5. The splitting type of Pk(O(d)) as left OP-module is as follows:
If k ≥ 1 and d < 0 or d ≥ k there exist an isomorphism

(3.7) Pk(O(d))L ∼= ⊕k+1O(d− k)

of left O-modules. If 0 ≤ d < k there exist an isomorphism

(3.8) Pk(O(d))L ∼= Od+1 ⊕O(−k − 1)k−d

of left O-modules.

Proof. This follows directly from Theorem 3.4.

We next give a complete classification of the right P -module structure of the
jets. The result is the following.

Theorem 3.6. Let k ≥ 1 and consider Pk(O(d)) as right module. If d > 0 there
exist an isomorphism

(3.9) Pk(O(−d))R(x) ∼= Symd(L)⊕ Symk+d+1(L)⊗ Symk−1(V )

of P -modules. If d ≥ 0 there exist an isomorphism

(3.10) Pk(O(d))R(x) ∼= Symd(L∗)⊕ Symd−k−1(L∗)⊗ Symk−1(V )

as P -modules.

Proof. We prove the isomorphism 3.9: Using the functor Ri q∗(−⊗ q∗O(−d)) we
get a long exact sequence of SL(V )-linearized sheaves

0 → q∗(Ik+1)⊗O(−d) → q∗q∗O(−d) → Pk(O(−d))R → R1 q∗(Ik+1)⊗O(−d) →

R1 q∗(OP×P)⊗O(−d) → 0.

It is exact on the right because of Proposition 3.2. Here we write Pk(O(d))R to
indicate we use the right structure of the jets. We take the fiber at x ∈ P and
using Cech-calculations for coherent sheaves on the projective line, we obtain the
following exact sequence of P -modules:

0 → H0(P,OP)⊗O(−d)(x) → Pk(O(−d))R(x) → H1(P,mk+1)⊗O(−d)(x) → 0

Hence we get by Proposition 3.3 the following exact sequence of P -modules:

0 → Symd(L) → Pk(O(−d))R(x) → Symd(L)⊗ Symk+1(L)⊗ Symk−1(V ) → 0
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It is split exact because of the following argument using Ext’s and equivariant
Serre-duality:

Ext1
P (Symd+k+1(L)⊗ Symk−1(V ), Symd(L)) = Ext1

P (ρ, Symk+1(L∗)⊗ Symk(V ∗)),

where ρ is the trivial character of P . By equivariant Serre duality we get

Ext1
P (ρ, Symk+1(L∗)⊗ Symk(V ∗)) = H1(P,O(k + 1)⊗ E2) =

= ⊕r2 H0(P,O(−k − 3))∗ = 0.

Here E2 is the abstract vector bundle corresponding to Symk(V ∗) and r2 is the
rank of E2. Hence we get the desired isomorphism

Pk(O(−d))R(x) ∼= Symd(L)⊕ Symd+k+1(L)⊗ Symk−1(V ),

and isomorphism 3.9 is proved.
We next prove the isomorphism 3.10: Using the functor Ri q∗(−⊗ q∗O(d)) we

get a long exact sequence of SL(V )-linearized sheaves

0 → q∗(Ik+1)⊗O(d) → q∗q∗O(d) → Pk(O(d))R → R1 q∗(Ik+1)⊗O(d) →
R1 q∗(OP×P)⊗O(d) → 0.

We take the fiber at x ∈ P and using Cech-calculations for coherent sheaves on
the projective line, we obtain the following exact sequence of P -modules:

0 → H0(P,OP)⊗O(d)(x) → Pk(O(d))R(x) → H1(P,mk+1)⊗O(d)(x) → 0.

Proposition 3.3 gives the following sequence of P -modules

0 → Symd(L∗) → Pk(O(d))R(e) → Symd(L∗)⊗ Symk+1(L)⊗ Symk−1(V ) → 0

It splits because of the following Ext and equivariant Serre-duality argument:

Ext1
P (Symd(L∗)⊗ Symk+1(L)⊗ Symk−1(V ), Symd(L∗)) =

Ext1
P (ρ, Symk+1(L∗)⊗ Symk−1(V ∗)).

Let E3 be the vector bundle corresponding to Symk−1(V ∗) and let r3 be its rank.
We get

Ext1
P (ρ, Symk+1(L∗)⊗ Symk−1(V ∗)) = H1(P,O(k + 1)⊗ E3) =

= ⊕r3 H0(P,O(−k − 3))∗ = 0,

hence we get the isomorphism

Pk(O(d))R(x) ∼= Symd(L∗)⊕ Symd−k−1(L∗)⊗ Symk−1(V ),

and isomorphism 3.10 follows.
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As a corollary we get a result on the splitting type of the jets as right module.

Corollary 3.7. Let k ≥ 1 and d ∈ Z. There exist an isomorphism

(3.11) Pk(O(d))R ∼= O(d)⊕O(d− k − 1)k

of right OP-modules.

Proof. This follows directly from Theorem 3.6.

Note that Corollary 3.5 and 3.7 recover Theorem 3.4, hence we have used
elementary properties of representations of SL(V ) to classify sheaves of left and
right modules on the projective line over any field of characteristic zero.

On projective space of higher dimension there is the following result: Let
PN = SL(V )/P where P is the subgroup fixing a line, and let O(d) be the line
bundle with d ∈ Z. It follows O(d) has a canonical SL(V )-linearization.

Theorem 3.8. For all 1 ≤ k < d, the representation corresponding to Pk(O(d))L

is Symd−k(L∗)⊗ Symk(V ∗).

Proof. See [8].

Note that the result in Theorem 3.8 is true over any field F if char(F ) > n.

Corollary 3.9. For all 1 ≤ k < d, Pk(O(d)) decompose as left O-module as

⊕(N+k
N )O(d− k).

Proof. See [8].

Note. Theorem 3.4 and 3.6 give a complete classification of the structure of
the jets as left and right P -module for any line bundle O(d).

Acknowledgements. Thanks to Michel Brion and Dan Laksov for comments.
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Around Birkhoff Theorem1

by O.Petrenko and I.V.Protasov

Abstract

Let X be a topological space, f : X → X be a mapping (not necessarily
continuous). A point x ∈ X is recurrent if x is a limit point of the orbit
(fn(x))n∈N. We prove that, for a Hausdorff space X, every bijection has a
recurrent point if and only if X is either finite or a one-point compactifica-
tion of an infinite discrete space.

1 Introduction

Let X be a topological space, f : X → X be an arbitrary mapping. A point
x ∈ X is said to be recurrent if for every neighbourhood U of x and every n ∈ ω,
there exists m > n such that fm(x) ∈ U (in other words, x is a limit point of
the orbit (fn(x))n∈N). By Birkhoff Theorem ([1],[2]), every continuous mapping
f : X → X of a compact space X has a recurrent point. We are going to prove
the following ”discontinuous” version of Birkhoff Theorem.

Theorem 1.1. For a Hausdorff space X, the following statements are equivalent:
(i) every mapping f : X → X has a recurrent point;
(ii) every bijection f : X → X has a recurrent point;
(iii) X is either finite or a one-point compactification of an infinite discrete

space.

2 Auxiliary lemmas

For proof of Theorem, we need two lemmas. Remind that a subspace Y of a topo-
logical space X is discrete in itself if, for every y ∈ Y there exists a neighbourhood
U of y, such that U ∩ Y = {y}.
Lemma 2.1. For every infinite Hausdorff space X, there exists a disjoint family of
countable discrete in itself subspaces {Xα : α ∈ A} such that either X\ ⋃

α∈A
Xα = ∅

or X \ ⋃
α∈A

Xα is a singleton {x} and x is a limit point of every subspace Xα.

1Received: October 7, 2007
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Proof. We use the following auxiliary statement: every infinite Hausdorff space S
has a countable subspace D discrete in itself. Indeed, if S is discrete, it is clear.
Otherwise, we fix some non-isolated point s ∈ S, choose an arbitrary element
d0 ∈ S, d0 6= s and the disjoint open neighbourhoods U0, V0 of d0 and s. Then
we pick an arbitrary element d1 ∈ V0 and disjoint open neighbourhoods U1, V1

of d1 and s such that U1 ⊆ V0, V1 ⊆ V0. After N steps we get the sequence
(dn)n∈N of elements of S and the sequence (Un)n∈N of its neighbourhoods such
that Ui ∩ Uj = ∅ for all distinct i, j ∈ N. Then D = {dn : n ∈ N} is discrete in
itself.

By Zorn Lemma, there exists a maximal disjoint family {Xα : α ∈ A} of
countable discrete in itself subspaces of X. By the auxiliary statement, applying
to S = X \ ⋃

α∈A
Xα, we conclude that X \ ⋃

α∈A
Xα is finite.

We assume that X \ ⋃
α∈A

Xα 6= ∅ and take an arbitrary element y ∈ X \ ⋃
α∈A

Xα.

If y is not a limit point of some subspace Xβ, we put X ′
β = Xβ∪{y} and X ′

α = Xα

for all α 6= β. Then {X ′
α : α ∈ A} is a disjoint family of countable discrete in itself

subspaces of X and |X \ ⋃
α∈A

Xα| > |X \ ⋃
α∈A

X ′
α|. Repeating this arguments, we

may suppose that every element y ∈ X \ ⋃
α∈A

Xα is a limit point of each subspace

Xα.
If |X \ ⋃

α∈A
Xα| > 1, we fix two arbitrary points y, z ∈ X \ ⋃

α∈A
Xα and its

disjoint neighbourhoods U and V . For one fixed α0 ∈ A we put

X ′
α0

= (Xα0 ∩ U) ∪ {z}, X ′′
α0

= (Xα0 \ U) ∪ {y}

For every α ∈ A \ {α0}, we put

X ′
α = (Xα ∩ U), X ′′

α = (Xα \ U)

Then {X ′
α, X ′′

α : α ∈ A} is a disjoint family of countable subspaces discrete in
itself, and |X \ ⋃

α∈A
(X ′

α ∪ X ′′
α)| < |X \ ⋃

α∈A
Xα|. Repeating the arguments of

above and this paragraphs, after finite number of steps we get a desired family of
subspaces of X.

Lemma 2.2. An infinite Hausdorff space X is a one-point compactification of a
discrete space if and only if, for every partition X =

⊔
α∈A

Xα of X to countable

subspaces, at least one subspace of the partition is not discrete in itself.

Proof. Let X be a one-point compactification of discrete subspace D, {x} = X\D.
Given any partition X =

⊔
α∈A

Xα of X to countable subspaces, we take β ∈ A
such that x ∈ Xβ. Then x is non-isolated point of Xβ, so Xβ is not discrete in
itself.
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On the other hand, let X satisfy the partition condition of lemma. We take the
family {Xα : α ∈ A} given by Lemma 1. If X\ ⋃

α∈A
Xα = ∅, we get a contradiction

to the partition condition, so X \ ⋃
α∈A

Xα = {x}. We assume that X \V is infinite

for some neighbourhood V of x, and choose a countable discrete in itself subspace
D of X \V , put Y = D∪{x} and Yα = Xα\D. Since x is a limit point of each Xα,
every subspace Yα is countable. Then X = Y ∪ ⋃

α∈A
Yα, each subspace Y, Yα, α ∈ A

is countable and discrete in itself, so we again arrive on the contradiction with the
partition condition. Hence, X \ V is finite for every neighbourhood V of x, so X
is a one-point compactification of discrete space X \ {x}.

3 Proof of main result

Proof of Theorem 1. The implication (i)⇒(ii) is trivial.
To show (ii)⇒(iii), we assume that X is infinite, but X is not a one-point

compactification of a discrete space. By Lemma 2, there is a partition X =
⊔

α∈A
Xα

such that each cell Xα is countable and discrete in itself. For every α ∈ A, we fix
some bijection fα : Xα → Xα without periodic points. Put f =

⊔
α∈A fα. Then

f : X → X is a bijection without recurrent points.
If X is finite then every mapping f : X → X has a periodic point which is

recurrent. Let X be a one-point compactification of an infinite discrete space D,
{x} = X \D, f : X → X. If x is not a limit point of the orbit {fn(x) : n ∈ N},
then there exists a neighbourhood U of x and n ∈ N such that fm(x) /∈ U for
every m > n. Since X \ U is finite, at least one point from X \ U is periodic.
Hence, (iii)⇒(i).

¤
Problem 3.1. Detect all Hausdorff spaces such that every continuous mapping
f : X → X has a recurrent point. Does there exist non-countably compact space
with this property?
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Zero-emission surfaces of a moving electron1

by Yu. A. Aminov

Abstract

The motion of an electron in a constant magnetic field and its electro-
magnetic emission are presented. We consider a zero-emission ruled surface
of the electron. The theorem on existence and uniqueness of a second
electron with the same zero-emission surface is proved. The notion of ”con-
jugate” electron is introduced and the formula for distance between two
”conjugate” electrons is given.

Mathematics Subject Classification. Primary 53A05, 78A35, 78A40;
Secondary 53A25.

Keywords. Ruled surface, helix, electron, electromagnetic field.

“...Maxwell has developed a complete mathematical
theory to describe electromagnetism and showed that

charges moving with acceleration emit...”
Abdus Salam “Unification of forces”

1 Introduction

The classical problem about a motion of a charge in a constant magnetic field is
well investigated. It seems that impossible to discover something new here. But
geometrical point of view allows to add interesting knowledge to this old problem.
It is well known, that the motion of a charge with acceleration be accompanied
by emission of electromagnetic field. This emission is going from every point of
the trajectory of the charge at moment, when the charge passes this point. If the
charge is an electron, so this emission is considerable. For example, the motion
of the stream of electrons in a synchrotron gives the strong synchrotron emission.
For proton, which mass is at 2000 times larger than electron one, his emission is
not such important. Therefore we speak further about the electron motion.

1Received: October 23, 2007
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There exists physical theory to describe this emission, which we use in present
article. The formula for emission, represented in [3], gives two directions, starting
from the point of trajectory, for which the emission is equal to zero. We consider
the ruled surface in E3 with the trajectory as a directrix and a generatrix, going
in the direction with emission equal to zero. More precisely, we must take the
ray in this direction, but complete surface is more comfortable for consideration.
That’s the way ” zero- emission surface” arises.

As there exist two directions with emission equal to zero, so there are two
zero-emission surfaces.

This surface has some interesting geometrical properties. In the section 1 we
show that the trajectory is an asymptotic curve on it. It is natural to put the
following question: does determined zero-emission surface the electron, which its
generate. It is purely mathematical question about uniqueness. If to speak more
precisely so the talk is going about the trajectory and the law of motion along
this trajectory. We show that here the uniqueness does not have place. In the
section 2 the following theorem is been proving

Theorem 1.1. For an electron in a constant magnetic field every zero-emission
surface contains a unique second electron such that these electrons lie throughout
their motion in the common zero-emission line.

Denote the first electron Q1 and the second Q2. We indicate the place for Q2

and calculate the distance between Q1 and Q2, which is a constant.
In the section 2 the notion of geometrically consistent (coherent) motion of the

third electron Q3 with respect to the electrons Q1, Q2 is given. It is motion, when
Q3 lies on the straight -line Q1Q2 and distance q between Q1 and Q3 is constant.
We use the word ”geometrically” for emphasize that here we ignore influence by
Coulomb fields and emissions of every electrons each other. It have place

Theorem 1.2. There exists a motion of electron Q3 along helix q = const on the
zero-emission surface geometrically consistent (coherent) with the motions of Q1

and Q2.

2 The trajectory of an electron as the asymp-

totic line on the zero-emission surface

Let us consider the motion of a point charge ( for example, an electron) in a
constant magnetic field H = H0 = const within the bounds of classical electro-
dynamics. If the motion is with acceleration then there exists an emission of
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electromagnetic field. In the classical electrodynamics the emission is described
by two vector fields - electric Eemit and magnetic Bemit. The fields Eemit and Bemit

at different points have different intensities and vectors. We have found some cor-
relation between emission and some ruled surfaces (see [1], [2]) and present it here
with some new details.

If x(t) is a vector position of a point of the electron trajectory, then the equa-
tion of motion is the following

d2x

dt2
= − e

mc
[
dx

dt
H0], (1)

where t is the time, e is the electric charge, m is its mass and c is the light velocity.
It is well known that the charge moves along a straight line or a circle or a helix.
Denote

µ0 = − e

mc
.

By integration of (1) we obtain

dx

dt
= µ0[xH0] + q, (2)

where q = {qi} is the constant vector. Let e1, e2, e3 be an orthogonal frame in E3

and H0 = he3. We can rewrite Equation (2) in the form of a system of equations

dx1

dt
= µ0hx2 + q1,

dx2

dt
= −µ0hx1 + q2, (3)

dx3

dt
= q3.

Let the initial data for t = 0 be

x1(0) = x10, x2(0) = x20, x3(0) = 0,
dxi(0)

dt
= ai, i = 1, 2, 3.

Introduce new coordinates

x̄1 = x1 − q2

µ0h
, x̄2 = x2 +

q1

µ0h
, x̄3 = x3.

Then the Equations (3) will be as follows

dx̄1

dt
= µ0hx̄2,

dx̄2

dt
= −µ0hx̄1,
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dx̄3

dt
= q3,

from which we obtain x̄2
1 + x̄2

2 = const = R2.
Besides, we can write down

d2x̄i

dt2
= −(µ0h)2x̄i, i = 1, 2,

d2x̄3

dt2
= 0.

So the equations of electron trajectory have the forms

x̄1 = R cos µ0ht,

x̄2 = −R sin µ0ht,

x̄3 = q3t.

The radius R of a cylinder on which the electron trajectory lies is calculated by
the following formula

R =

√
a2

1 + a2
2

|µ0h| .

The electron motion along trajectory in the constant magnetic field has a constant
module of velocity. Let s be the arc length of trajectory with the initial point
corresponding to t = 0.Then

s = µt, µ =
√

a2
1 + a2

2 + a2
3.

Let ξ1, ξ2, ξ3 be the natural frame of the trajectory and k and κ are its curvature
and torsion. The velocity vector v = dx

dt
and the acceleration vector dv

dt
can be

given as follows

v = µξ1,
dv

dt
= µ2kξ2. (4)

Using the ordinary expressions for k and κ we can obtain

k =

√
a2

1 + a2
2|µ0h|

a2
1 + a2

2 + a2
3

. (5)

κ = − a3µ0h

a2
1 + a2

2 + a2
3

. (6)

Hence

k2 + κ2 = (
eh

mcµ
)2,

where µ is the velocity of the particle along its trajectory.
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Now we consider the emission of an electron moving along a helix. Since the
electron has a curvilinear trajectory, so its acceleration is non-zero and therefore it
radiates an electromagnetic field. Assume that the origin of coordinates coincides
with the current position of the electron. We denote this point by Q1.We suppose
that electron lies at this point at time t.

Let r be the vector position of a point in space. Then the electric and magnetic
emission at a point with the vector position r can be given by the following
expressions (see [3](19.17), [4](14.35))

Eemit(r, t
′) =

e

4πε0c2l3
[r, [r − v|r|

c
,
dv

dt
]], (7)

Bemit(r, t
′) =

[r, Eemit]

|r|c ,

where the right sides are taken for t, t′ = t + |r|
c
, l = |r| − (vr)/c and ε0 is some

physical constant.
Two natural ruled surfaces appear which are constructed using the directions

with zero emission.
According to Equation (7) for the direction r with zero-emission the vector

product [r − v|r|
c

, ξ2] is proportional to r. Let ν be the unit vector along r.Taking
into consideration the formula (4), we obtain

[ν − µ

c
ξ1, ξ2] = λν, (9)

where λ is an unknown coefficient. Let us suppose that λ 6= 0. Then we conclude
that ν lies in the plane of ξ1, ξ3. We have

ν = ν1ξ1 + ν3ξ3, (ν1)2 + (ν3)2 = 1.

Equation (9) can be rewritten as follows

ν1ξ3 − ν3ξ1 − µ

c
ξ3 = λ(ν1ξ1 + ν3ξ3).

Therefore we have two equations

−ν3 = λν1,

ν1 − µ

c
= λν3,

from which we obtain
(ν1)2 + (ν3)2 − µ

c
ν1 = 0,

and 1 = µ
c
ν1. But the velocity of an electron is less than c. The latter equality

is impossible. Hence λ = 0. The equation for zero-emission direction is of the
following form

[ν − µ

c
ξ1, ξ2] = 0. (10)
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This equation is given in [ 3], [4] . From (10) we can conclude that the zero-
emission direction lies in the osculation plane of trajectory

ν =
µ

c
ξ1 + λ̄ξ2,

where λ̄ is the coefficient. As ν is the unit vector, λ̄ can be given by two expressions

λ̄ = ±
√

1− (
µ

c
)2.

So, there are two zero-emission directions ν1 and ν2, which lie symmetrically with
respect to ξ1. Let φ > 0 be the angle between ν1 and ξ1. Evidently cos φ = µ

c
. We

call φ the angle of zero emission. We have

ν1 = cos φξ1 + sin φξ2,

ν2 = cos φξ1 − sin φξ2

Drawing through every point of the helix a straight line in the direction ν1 we
obtain a ruled surface Ψ1(Q1), see Fig.1. It is natural to call it a zero-emission
surface.

Therefore, zero-emission surface of a moving electron is the regular ruled
surface with the trajectory of the electron as a directrix and a generatrix, going
in the direction with the electron emission from the point of trajectory equal to
zero.

By analogy, we obtain a ruled surface Ψ2(Q1).
Since the principal normal to the trajectory lies in the tangent plane to surface

Ψi(Q1), this curve is an asymptotic line.

Remark. One can also construct a ruled zero-emission surface for the general
case of a radiating electron ( not necessarily in a constant magnetic field). Then
the trajectory of the particle will be an asymptotic line on this surface.

Consider now the following question:

Does there exist another electron Q2 in the zero-emission straight
line of Q1 such that its zero-emission straight line at every moment t
coincides with that of the first electron Q1?
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Fig. 1

Now we can prove Theorem 1.1.

Proof. By the existence of a second electron we mean the existence of a trajectory
and the existence of a motion of the electron along this trajectory.

We shall say that electrons Q1 and Q2 are ”conjugate” on the surface Ψ1(Q1).

Fig. 2

The place of electron Q2 can be indicated in a simple way. The point Q2 is the
intersection point of the ray from Q1 in the direction ν1 with the cylinder carrying
the trajectory of Q1. It is obvious that this intersection point describes a helix
parallel to the helix of the point Q1. The uniqueness of this second electron is a
consequence of the following lemmas. Let us write down the equation of surface
Ψ1(Q1)

r(p, q) = x(p) + q(cos φξ1 + sin φξ2),
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where x(p) is the vector position of the trajectory of Q1 and the parameter p is
its arc length. Denote

T = 2k sin φ− q(k2 + κ2 sin2 φ).

Lemma 2.1. Asymptotic lines distinct from straight line generators have the the
following form except when q = 0 or T = 0

dp +
2 sin2 φ

qT cos φ
dq = 0.

Lemma 2.2. An asymptotic line on the surface in question has a constant geodesic
curvature only when q = 0 or q = 2k sin φ/(k2 + κ2 sin2 φ).

The proofs of these lemmas are given in [1]. From geometrical consideration
we have found that Ψ1(Q1) = Ψ2(Q2). The zero-emission ray of Q2 with the origin
at Q2 lies on the zero-emission ray of Q1. The trajectory of the second electron
is given by the Equation

q =
2k sin φ

k2 + κ2 sin2 φ
.

The expression in the right side is a constant. It is equal to the distance between
two ”conjugate” electrons Q1 and Q2. With the help of expressions (5) and
(6) we can calculate this distance in terms of the initial data and the value of
magnetic field, h.

Note the following interesting property of the zero-emission surface: its stric-
tion curve takes a medial position between the trajectories of the electrons Q1 and
Q2. The striction curve consists of central points Qc (see Fig.2) and lies on the
cylinder co-axial with the one carrying the first two helices. But the radius of this
cylinder is less than R. At points of the striction line the zero-emission surface
Ψ1(Q1) has a common tangent plane with this interior cylinder. The striction
line is a helix too. The principal normal of the striction line is orthogonal to the
tangent plane of Ψ1(Q1). Therefore the striction line is a geodesic on the zero
-emission surface.

3 Geometrically consistent motions.

We consider now the question of stability of configuration consisting of three
electrons Q1, Qc and Q2, without regard for their mutual influence. More precisely:
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will Qc lie during their motions at the straight line Q1, Q2 and will the distance
between Q3 and Q1 be a constant ?

More general question: is it possible that electron Q3 moves along helix q =
const by such way, that at all time Q3 lies on the straight line Q1, Q2 ? Such
a motion of Q3 could be named as geometrically consistent (coherent) with the
motions of Q1 and Q2.

Let us consider the proof of Theorem 1.2.

Proof. We reformulate the question in the following manner: what kind of a
particle can move along given helix under the influence of constant magnetic field
H0, if its motion is geometrically consistent with the motions of Q1 and Q2 ?

Let k̄ and κ̄ be the curvature and the torsion of the helix q = const, which is
the trajectory of the particle Q3, ē and m̄ be its electric charge and mass. We put
µ̄0 = − ē

m̄c
and denote the module of the velocity of Q3 by µ̄.

From (5) and (6) we obtain

k2 + κ2 = (
µ0h

µ
)2, k̄2 + κ̄2 = (

µ̄0h

µ̄
)2. (11)

The trajectory of Q3 is given in the following form

r(p, q) = x(p) + q(cos φξ1 + sin φξ2),

where q = const and the parameter p is the arc length of the basic curve q = 0.
Denote derivatives with respect to p by ′. By using the Frenet formulas we obtain

r′ = (1− qk sin φ)ξ1 + qk cos φξ2 + qκ sin φξ3,

r′′ = −qk2 cos φξ1 + (k − q(k2 + κ2) sin φ)ξ2 + qkκ cos φξ3,

r(3) = −k(k − q(k2 + κ2) sin φ)ξ1 − qk(k2 + κ2) cos φξ2 + κ(k − q(k2 + κ2) sin φ)ξ3.

Let s̄ be the arc length of the trajectory q = const. Then

|r′|2 = (
ds̄

dp
)2 = 1− 2qk sin φ + q2(k2 + κ2 sin2 φ). (12)

As ( ds̄
dp

)2 is a constant, (r′r′′) = 0. Therefore we have the following expressions for

k̄2 and κ̄

k̄2 = |r′′|2(dp

ds̄
)4, κ =

(r′r′′r(3))

k̄2
(
dp

ds̄
)6. (13)

By simple calculations we obtain

k̄2 =
k2 − 2qk(k2 + κ2) sin φ + q2(k2 + κ2)(k2 + κ2 sin2 φ)

[1− 2qk sin φ + q2(k2 + κ2 sin2 φ)]2
. (14)
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It is not difficult to calculate

(r′r′′r(3)) = κ[k2 − 2qk(k2 + κ2) sin φ + q2(k2 + κ2)(k2 + κ2 sin2 φ)]. (15)

Hence from (13) and (15) we obtain

κ̄ =
κ

1− 2qk sin φ + q2(k2 + κ2 sin2 φ)
. (16)

With the help of (14) and (16) we obtain

k2 + κ2

k̄2 + κ̄2
= 1− 2qk sin φ + q2(k2 + κ2 sin2 φ). (17)

Taking into account the relations (11) and (17), we can write down the second
expression as follows

k2 + κ2

k̄2 + κ̄2
= (

µ0µ̄

µ̄0µ
)2. (18)

For the velocities of Q1 and Q3 along their trajectories we have

µ =
dp

dt
, µ̄ =

ds̄

dt
= µ

ds̄

dp
.

Hence

(
µ̄

µ
)2 = (

ds̄

dp
)2 = 1− 2qk sin φ + q2(k2 + κ2 sin2 φ). (19)

Substitute this expression into (18) and compare the result with (17). We obtain
µ̄0 = µ0.

Hence, if the motion of charge Q3 is geometrically consistent with motions of
Q1 and Q2, the ratio ē

m̄
is the same as for Q1 and Q2.

Hence the particle Q3 can be an electron. If at the initial moment its velocity
vector is tangent to helix q = const and

µ̄ = µ(1− 2qk sin φ + q2(k2 + κ2 sin2 φ))
1
2 ,

then the motions of Q1, Q2 and Q3 will be geometrically consistent (coherent).

References

[1] Yu.A.Aminov, Physical interpretation of certain ruled surfaces in E3 in terms
of the motion of a point charge, Sbornik: Mathematics, 197:12, 1713-1721.

[2] Yu.Aminov,Electron motion and ruled surfaces, Abstracts of the 8th Confer-
ence on Geometry and Topology of Manifolds, Luxemburg-Poland-Ukraine
conference, Przemysl(Poland)-L’viv(Ukraine)30.04.07-6.05.2007, p.29-30.



Zero-emission surfaces of a moving electron 37

[3] W.K.H.Panofsky and M.Phyllips, Classical electricity and magnetism,
Addison- Wesley, Cambridge , MA, 1955.

[4] J.D.Jackson, Classical electrodynamics, John Wiley and Sons, INC, New
York- London, 1962.

[5] Y.A.Aminov,On the motion of an electron in constant magnetic field, Ab-
stracts of the VI Conference on Physics of High Energy, Nuclear Physics and
Accelerators, Kharkiv, 25.02.08-29.02.08, p.84-85.

Yuriy Aminov
B.Verkin Institute for Low Temperature Physics and Engineering of the NAS of
Ukraine, 47 Lenin Ave., Kharkiv, 61103, Ukraine
38 Gagarin Ave.,ap. 26, Kharkov, 61140, Ukraine
aminov@ilt.kharkov.ua
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Homotopy dimension of orbits of Morse functions on surfaces1

by Sergiy Maksymenko

Abstract

Let M be a compact surface, P be either the real line R or the circle
S1, and f : M → P be a C∞ Morse map. The identity component Did(M)
of the group of diffeomorphisms of M acts on the space C∞(M,P ) by the
following formula: h · f = f ◦ h−1 for h ∈ Did(M) and f ∈ C∞(M, P ).
Let O(f) be the orbit of f with respect to this action and n be the total
number of critical points of f . In this note we show that O(f) is homotopy
equivalent to a certain covering space of the n-th configuration space of
the interior IntM . This in particular implies that the (co-)homology of
O(f) vanish in dimensions greater than 2n− 1, and the fundamental group
π1O(f) is a subgroup of the n-th braid group Bn(M).

Mathematics Subject Classification. 14F35, 46T10.

Keywords. Morse function, orbits, classifying spaces, homotopy dimension,
geometric dimension.

1 Introduction

Let M be a compact surface, P be either the real line R or the circle S1. Then
the group D(M) of C∞ diffeomorphisms of M acts on the space C∞(M, P ) by
the following formula:

(1.1) h · f = f ◦ h−1

for h ∈ D(M) and f ∈ C∞(M, P ).
We say that a smooth (C∞) map f : M → P is Morse if

(i) critical points of f are non-degenerate and belong to the interior of M ;

(ii) f is constant on every connected component of ∂M .

1Received: October 24, 2007
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Let f ∈ C∞(M, P ), Σf be the set of critical points of f , and D(f, Σf ) be the
subgroup of D(M) consisting of diffeomorphisms h such that h(Σf ) = (Σf ).

Then we can define the stabilizers S(f) and S(f, Σf ), and orbits O(f) and
O(f, Σf ) with respect to the actions of the groups D(M) and D(f, Σf ). Thus

S(f) = {h ∈ D(M) : f ◦ h−1 = f}, O(f) = {f ◦ h−1 : h ∈ D(M)},

S(f, Σf ) = S(f) ∩ D(f, Σf ).

We endow the spaces D(M) and C∞(M,P ) with the corresponding C∞ Whit-
ney topologies. They induce certain topologies on the stabilizers and orbits.

Let Did(M) and Did(f, Σf ) be the identity path components of the groups
D(M) and D(f, Σf ), Sid(f) and Sid(f, Σf ) be the identity path components of the
corresponding stabilizers, and Of (f) and Of (f, Σf ) be the path-components of f
in the corresponding orbits with respect to the induced topologies.

Lemma 1. If Σf is discrete set, e.g. when f is Morse, then Sid(f, Σf ) = Sid(f).

Proof. Since S(f, Σf ) ⊂ S(f), we have that Sid(f, Σf ) ⊂ Sid(f). Conversely, let
ht : M → M be an isotopy such that h0 = idM and ht ∈ S(f) for all t ∈ I.,
i.e. f ◦ ht = f . We have to show that ht ∈ S(f, Σf ) for all t ∈ I. Notice that
d(f ◦ ht) = h∗t df = df , whence ht(Σf ) = Σf . Since Σf is discrete and h0 = idM

fixes Σf , we see that so does every ht, i.e. ht ∈ S(f, Σf ).

Let f : M → P be a Morse map. Denote by ci, (i = 0, 1, 2), the total numbers
of critical points of f of index i and let n = c0 + c1 + c2 be the total number of
critical points of f .

Notice that for every Morse map f its orbits O(f) and O(f, Σf ) are Fréchet
submanifolds of C∞(M,P ) of finite codimension, see [4, 5]. Therefore, e.g. [3],
these orbits have the homotopy types of CW-complexes. But in general these
complexes may have infinite dimensions.

Let X be a topological space which is homotopy equivalent to some CW-
complex. Then a homotopy dimension h.d. X of X is the minimal dimension of
a CW-complex homotopy equivalent to X. In particular h.d. X can be equal to
∞. It is also evident that if h.d. X < ∞, then (co-)homology of X vanish in
dimensions greater that h.d. X.

If π is a finitely presented group π, then the geometric dimension of π, denoted
g.d. π, is the homotopy dimension of its Eilenberg-Mac Lane space K(π, 1):

g.d. π := h.d. K(π, 1).

In [2, Theorems 1.3, 1.5, 1.9] the author described the homotopy types of
Sid(f), Of (f), and Of (f, Σf ). It follows from these results that

h.d.Sid(f), h.d.Of (f, Σf ) ≤ 1.
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In fact, Sid(f) is contractible provided either f has at least one critical point of
index 1, i.e., c1 ≥ 1 or M is non-orientable. Otherwise Sid(f) ' S1.

Also, Of (f) ' S1 for Morse mappings T 2 → S1 and K2 → S1 without critical
points, and Of (f) is contractible in all other cases, where K stands for the Klein
bottle.

For Of (f) the description is not so complete. But if f is generic, i.e., it takes
distinct values at distinct critical points, then

h.d.Of (f) ≤ max{c0 + c2 + 1, c1 + 2} < ∞.

Actually, in this case Of (f) is either contractible or homotopy equivalent to T k

or to RP 3 × T k for some k ≥ 0, where T k is a k-dimensional torus.
Thus the upper bound for h.d.Of (f) (at least in generic case) depends only

on the number of critical points of f at each index.
In this note we will show that h.d.Of (f) ≤ 2n−1 for arbitrary Morse mapping

f : M → P having exactly n ≥ 1 critical points. Notice that if n = 0, then f is
generic, and in fact h.d.Of (f) ≤ 1, see [2, Table 1.10].

Theorem 2. Let f : M → P be a Morse map and n be the total number of critical
points of f . Assume that n ≥ 1. Denote by Fn(IntM) the configuration space of n
points of the interior IntM of M . Then Of (f) is homotopy equivalent to a certain
covering space F(f) of Fn(IntM).

Corollary 3. h.d.Of (f) ≤ 2n − 1, whence (co-)homology of Of (f) vanish in
dimensions ≥ 2n.

Proof. Since Fn(IntM) and its connected covering spaces are open manifolds of
dimension 2n, they are homotopy equivalent to CW-complexes of dimensions not
greater than 2n− 1.

For simplicity denote π = π1Of (f). Since the covering map F(f) → Fn(IntM)
yields a monomorphisms of fundamental groups, we obtain the following:

Corollary 4. The fundamental group π of Of (f) is a subgroup of the n-th braid
group Bn(M) = π1(Fn(IntM)) of M .

Corollary 5. Suppose that M is aspherical, i.e., M 6= S2,RP 2. Then Of (f) is
aspherical as well, i.e., K(π, 1)-space, whence g.d. π ≤ 2n− 1.

Proof. Actually the aspherity of Of (f) for the case M 6= S2,RP 2 is proved in [2,
Theorems 1.5, 1.9].

But it can be shown by another arguments. It is well known and can easily
be deduced from [1] that for an aspherical surface M every of its configuration
spaces Fn(IntM) and thus every covering space of Fn(IntM) are aspherical as
well. Hence so is F(f) and thus Of (f) itself.

A presentation for π will be given in another paper.
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2 Orbits of the actions of Did(M) and Did(f, Σf)

Proposition 6. Let f : M → P be a Morse map and

(2.1) p : D(M) 7→ O(f), p(h) = f ◦ h−1

be the natural projection. Then Of (f) is the orbit of f with respect to Did(M) and
Of (f, Σf ) is the orbit of f with respect to Did(f, Σf ). In other words,

p(Did(M)) = Of (f) and p(Did(f, Σf )) = Of (f, Σf ).

Proof. The proof is based on the following general statement. Let G be a topo-
logical group transitively acting on a topological space O and f ∈ O. Denote by
Ge the path-component of the unit e in G and let Of be the path-component of f
in O.

Lemma 7. Suppose that the mapping p : G → O defined by

p(γ) = γ · f, ∀γ ∈ G

satisfies a covering path axiom (in particular, this holds when p is a locally trivial
fibration). Then Of is the orbit of f with respect to the induced action of Ge on
O, i.e., p(Ge) = Of .

Proof. Evidently, p(Ge) ⊂ Of . Conversely, let g ∈ Of . Then there exists a path
ω : I → Of between f and g, i.e., ω(0) = f and ω(1) = g. Since p satisfies
the covering path axiom, ω lifts to the path ω̃ : I → G such that ω̃(0) = e and
ω = p ◦ ω̃. Then g = ω(1) = p ◦ ω̃(1) ∈ p(Ge). Thus p(Ge) = Of .

It remains to note that the mapping (2.1) is a locally trivial fibration, see
e.g. [4, 5], and D(M) (resp. D(f, Σf )) transitively acts on the orbit O(f) (resp.
O(f, Σf )). Therefore the conditions of Lemma 7 are satisfied.

3 Proof of Theorem 2

Let Fn(IntM) be the configuration space of n points of the interior IntM of M .
Thus

(3.1) Fn(IntM) = Pn(IntM)/Sn,

where
Pn(IntM) = {(x1, . . . xn) | xi ∈ IntM and xi 6= xj for i 6= j}

is called the pure n-th configuration space of IntM , and Sn is the symmetric group
of n symbols freely acting on Pn(IntM) by permutations of coordinates.



Homotopy dimension of orbits of Morse functions on surfaces 43

We can regard Fn(IntM) as the space of n-tuples of mutually distinct points
of IntM .

Denote by Σf = {x1, . . . , xn} the set of critical points of f . Then for every
g ∈ Of (f) the set Σg of its critical points is a point in Fn(IntM). Hence the
correspondence g 7→ Σg is a well-defined mapping

k : Of (f) → Fn(IntM), k(g) = Σg.

Lemma 8. (i) The mapping k is a locally trivial fibration. The connected compo-
nent of the fiber containing f is homeomorphic to Of (f, Σf ).

(ii) Let ki : πi(Of (f), f) → πi(Fn(IntM), Σf ), (i ≥ 1), be the corresponding
homomorphism of homotopy groups induced by k. Then k1 is a monomorphism
and all other ki for i ≥ 2 are isomorphisms.

Assuming that Lemma 8 is proved we will now complete our theorem. Let
F(f) be the covering space of Fn(IntM) corresponding to the subgroup

π1Of (f) ≈ k1(π1Of (f)) ⊂ π1Fn(IntM).

Then k lifts to the mapping k̂ : Of (f) → F(f) which induces isomorphism of
all homotopy groups. Since Of (f) and F(f) are connected, we obtain from (2)

that k̂ is a desired homotopy equivalence. Theorem 2 is proved modulo Lemma 8.

Proof of Lemma 8. (i) Recall, [1], that the following evaluation map

e : Did(M) → Fn(IntM), e(h) = h(Σf )

is a locally trivial principal fibration with fiber

D̂(f) = Did(M) ∩ D(f, Σf ).

Let p : Did(M) → Of (f) be the projection defined by p(h) = f ◦ h−1. Then
the set of critical points of the function f ◦ h−1 ∈ Of (f) is h(Σf ). Therefore e
coincides with the following composition:

e = k ◦ p : Did(M)
p−−−→ Of (f)

k−−−→ Fn(IntM).

Since e and (by Proposition 6) the mapping p are principal locally trivial fibrations,
we obtain that k is also a locally trivial fibration with fiber Ô(f) being the orbit
of f with respect to the group D̂(f).

It is easy to see that the identity component of the group D̂(f) coincides with
Did(f, Σf ), whence by Proposition 6, the connected component of Ô(f) containing
f is Of (f, Σf ).

(ii) As noted above since n ≥ 1, it follows from [2, Theorems 1.5(i), 1.9] that
Of (f, Σf ) is contractible. Then from the exact sequence of homotopy groups of
the fibration k we obtain that for i ≥ 2 every ki is an isomorphism, and k1 is a
monomorphism. Lemma 8 is proved.
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Remark 9. In general the covering map F(f) → Fn(IntM) is not regular, i.e.,
π1Of (f) ≈ π1F(f) is not a normal subgroup of Bn(M) = π1Fn(IntM).

Remark 10. Theorem 2 does not answer the question whether Of (f) has the
homotopy type of a finite CW-complex. Indeed, since M is compact, it follows
from (3.1) that Bn(M) can be regarded as an open cellular (i.e. consisting of full
cells) subset of a finite CW-complex

∏
n M/Sn. Therefore if the covering map

F(f) → Fn(IntM) is an infinite sheet covering, i.e., π1Of (f) has an infinite index
in Bn(M), then we obtain a priori an infinite cellular subdivision of F(f). On the
other hand, as noted above, for a generic Morse map f : M → P a finiteness of
the homotopy type of Of (f) follows from [2].
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Fréchet et quelques applications, Ann. scient. éc. norm. sup., 4-e serie, 5
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On surgery inside a manifold 1

by Yuri V. Muranov and Rolando Jimenez

Abstract

To study surgery on a submanifold inside an ambient manifold Wall con-
structed the theory of splitting of a simple homotopy equivalence along a
submanifold. The results and methods of splitting theory are very efficient
in the classification of manifolds, in the investigation of group actions, and
in many others geometric problems. In this paper we compare the meth-
ods and results of the abstract surgery with the corresponding methods
and results of the surgery inside an ambient manifold. We consider only
higher dimensions. We describe some relations between abstract surgery
and surgery inside the ambient manifold for a filtered manifold. We ob-
tain new relations between various structure sets and obstruction groups
for filtered manifolds and describe some applications of the obtained results
to the problem of realizing surgery and splitting obstructions by maps of
closed manifolds.

1 Introduction

In surgery theory, one sometimes looks at submanifolds to get additional informa-
tion about surgery obstruction groups and natural maps (see [2], [5], [7], [9], [13],
[14], [15], [16], [17], [18], [19], [24], and [27])). To study surgery on manifold pairs,
in [27] Wall introduced the concept of splitting of a simple homotopy equivalence
along a submanifold in the case of piecewise linear and smooth manifolds and
applied this approach to various geometric problems. For topological manifolds
this approach was developed by Ranicki in [23], [24], and [25]. The advantage of
topological category is exhibited by the possibility of realizing various obstruction
groups, structure sets, and natural maps on the spectra level (see [1], [22], [23],
[24], [27], and [28]).

In the present paper, we compare the abstract surgery with the surgery inside
an ambient manifold. We consider only topological manifolds and topological
normal maps. All manifolds pairs X ⊂ Y will be topological manifold pairs
in the sense of Ranicki [24]; in particular, X will be a locally flat submanifold.
We consider the case of higher dimensions, that is the dimensions of all closed

1Received: October 29, 2007
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manifolds will be ≥ 5, and the dimensions of all manifolds with boundary will be
≥ 6.

In section 2 we recall necessary definitions of surgery theory for manifold pairs.
Afterwards, we describe various natural maps between exact sequences containing
surgery obstruction groups and structure sets. Then we give an example of exact
computations.

In section 3 we consider manifolds with filtration. At first, we describe the
surgery and splitting problem in this case and give a short summary of results
on this subject. Afterwards, we obtain new relations between various obstruction
groups and describe some geometric applications of the obtained results.

2 Pairs of manifolds

Let Xn be a connected closed n-dimensional manifold. We suppose that the
fundamental group π = π1(X) of the manifold is equipped with an orientation
homomorphism w : π → {±1} which coincides with the first Stiefel-Whitney class.
In what follow, we do not indicate this homomorphism if this doesn’t lead to
confusion, and we suppose that all homomorphisms of groups preserve orientation.

Consider a degree-one topological normal map (t-triangulation)

(f, b) : (Mn, νM) → (Xn, νX),

of closed topological manifolds, where b : νM → νX is a map of topological bundles
covering f , and νM is the stable normal bundle of M in an Euclidean space. Two
normal maps (fi, bi), (i = 0, 1) are said to be normally bordant (concordant) if
there exists a topological normal map

(F, B) : (W n+1; ∂0W,∂1W ) → (X × I; X × {0}, X × {1})
of manifolds with boundary, whose restrictions to the bottom boundary ∂0W =
M0 and to the top boundary ∂1W = M1 coincide with the normal maps (f0, b0)
and (f1, b1), respectively (see [23] and [24]). The set of concordance classes of
normal maps to the manifold X is denoted T TOP (X) and coincides with the set
[X, G/TOP ], where TOP is the group of stable homeomorphisms of n-dimensional
Euclidean spaces with a base point, and G is the monoid of stable homotopy
equivalences of spheres.

A simple homotopy equivalence f : M → X is called a homotopy triangulation
(s-triangulation) of the manifold X. Two such maps fi : Mi → X(i = 0, 1) are
said to be equivalent (concordant) if there exists a topological manifold W n+1

with boundary ∂W = M0 ∪M1 and a simple homotopy equivalence of triads

(F ; f0, f1) : (W ; M0,M1) → (X × I; X × {0}, X × {1}).
The topological manifold structure set STOP (X) consists of the concordance classes
of s-triangulations of the manifold X.
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The structure sets T TOP (X) and STOP (X) fit into the surgery exact sequence

(2.1) · · · → Ln+1(π) → STOP (X) → T TOP (X)
σ→ Ln(π)

where Ln(π) is the surgery obstruction group and the map σ provides a surgery
obstruction, that is an obstruction for the existence of a simple homotopy equiv-
alence in the class of the normal bordisms (see [4], [24], [25], and [27]). Note that
any element of the group Ln(π) is represented by a normal map of closed mani-
folds with boundary [27], and there is a very small number of elements x ∈ Ln(π)
which are obstructions to surgery on closed manifolds. Denote by Cn(π) ⊂ Ln(π)
a subgroup generated by elements which can be realized as obstructions to surgery
of normal maps of closed manifolds.

The surgery exact sequence (2.1) is realized on the spectra level [23]. For every
group π, the 4-periodic Ω-spectrum L(π) is defined (see [23], [24], and [25]) with

πn(L(π)) = Ln(π).

For any topological space X equipped with an orientation homomorphism

w : π1(X) → {±1},
there exists a cofibration

(2.2) X+ ∧ L• → L(π1(X))

of spectra, where L• is the 1-connected cover of the spectrum L(1) [23]. The
algebraic surgery exact sequence of Ranicki [23]

(2.3) · · · → Ln+1(π1(X)) → Sn+1(X) → Hn(Bπ;L•) → Ln(π1(X)) → · · ·
is the homotopy long exact sequence of the cofibration (2.2). Denote by S(X) the
homotopical cofiber of the map (2.2). Then πi(S(X)) = Si(X) and Sn+1(X) =
STOP (X).

For a topological manifold X, the surgery exact sequence (2.1) is isomorphic
to the corresponding part of exact sequence (2.3). For X = Bπ we obtain the
algebraic surgery exact sequence containing the Assembly map

(2.4) A : Hn(Bπ;L•) → Ln(π)

for the group π. The image of the Assembly map coincides with the group Cn(π)
[27].

Now let Xn ⊂ Y n+q be a closed topological manifold pair of codimension q [24].
An s-triangulation f : N → Y splits along the submanifold X if it is homotopic
to a map g, transversal to X with M = g−1(X), and the restrictions

(2.5) g|M : M → X and g|(N\M) : N \M → Y \X
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are simple homotopy equivalences (see [1], [13], [20], [24], and [27]).
An s-triangulation g : N → Y , which satisfies conditions (2.5), is called an

s-triangulation of the manifold pair (Y, X). Denote by ξ the topological nor-
mal block bundle of the submanifold X in Y [24]. Following [24], denote by
STOP (Y, X, ξ) the set of the concordance classes of s-triangulations of the mani-
fold pair (Y,X).

For a simple homotopy equivalence f : M → Y , a splitting obstruction lies in
the splitting obstruction group LSn(F ), which depends only on n mod 4 and on
the square

(2.6) F =




π1(∂U) → π1(Y \X)
↓ ↓

π1(U) → π1(Y )




of fundamental groups, where U is a tubular neighborhood of the submanifold X
in Y . In fact, to find a map with properties (2.5) in the homotopy class of the
simple homotopy equivalence f means to do surgery on the transversal preimage
of the submanifold X inside the manifold N (see [24] and [27]). We have the
following exact sequence [24]

(2.7) · · · → LSn+1(F ) → STOP (Y, X, ξ) → STOP (Y ) → LSn(F ).

Surgery exact sequence (2.1) algebraically describes the situation when we would
like to do abstract surgery starting from a normal map (f, b) ∈ T (Y ). Exact
sequence (2.7) is similar to surgery exact sequence (2.1) and algebraically describes
the situation when we start from a simple homotopy equivalence f : N → Y and
would like to do surgery of the normal map

f |f−1(X) : f−1(X) = M → X

inside an ambient manifold N . For a manifold pair (Y n+q, Xn), the exact se-
quences (2.1) and (2.7) fit into the commutative diagram
(2.8)

· · · → LSn+1(F ) → STOP (Y,X, ξ) → STOP (Y ) → LSn(F )
↓ ↓ ↓ ↓

· · · → Ln+1(π1(X)) → STOP (X) → T TOP (X) → Ln(π1(X)),

where vertical maps correspond to pass from surgery inside the ambient manifold
Y to abstract surgery.

We have a cofibration (see [1], [2], [11], [23], and [24])

(2.9) S(Y ) → Σq+1LS(F ),

where Σq is the q-iterated suspension functor [26], and LS(F ) is the 4-periodic
Ω-spectrum realizing the groups LS∗(F ). Denote by S(Y, X, ξ) the homotopical
fiber of the map in (2.9) with homotopy groups

πi(S(Y, X, ξ)) = Si(Y, X, ξ).
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Note that exact sequence (2.7) is isomorphic to the corresponding part of the
homotopy long exact sequence

(2.10) · · · → LSn+1(F ) → Sn+q+1(Y,X, ξ) → Sn+q+1(Y ) → LSn(F ) → . . .

of cofibration (2.9) (see [1], [24], and [25]). In particular, Sn+q+1(Y, X, ξ) =
STOP (Y, X, ξ). Commutative diagram (2.8) also is realized on the spectra level.

Exact sequences (2.1) and (2.10) fits in many various diagrams and braids of
exact sequences (see [1], [2], [3], [9], [11], [22], [23], and [24]).

For a manifold pair Xn ⊂ Y n+q, we can consider an opposite situation [2].
Consider a normal map f : N → Y which is transversal to the submanifold X with
M = f−1(X), and for which the restriction f |M : M → X is a simple homotopy
equivalence. We define the set NSTOP (Y, X) as the set of equivalence classes of
such maps under the following equivalence relation [2].

Two maps fi : Ni → Y (i = 0, 1), with Mi = f−1
i (X), are equivalent if there

exists a normal bordism F : W → X such that:

i) ∂W = N0 ∪N1 and F |Ni
= fi (i = 0, 1),

ii) F is transversal to X with F−1(X) = V and ∂V = M0 ∪M1,

iii) the restriction F |V is an s-cobordism between F |Mi
= fi (i = 0, 1).

Evidently, we have the following natural forgetful maps [2]

(2.11) NSTOP (Y, X) → T TOP (Y ) and STOP (Y, X, ξ) → NSTOP (Y, X).

The maps in (2.11) are realized on the spectra level by means of the following
cofibrations of spectra [2]

(2.12) NS(Y, X) → Y+ ∧ L• and ΩS(Y, X, ξ) → NS(Y, X).

Denote πi(NS(Y, X)) = NSi(Y,X). Then we haveNSn+q(Y,X) = NSTOP (Y, X).
The following theorem can be found in [2].

Theorem 2.1. The homotopy long exact sequences of cofibrations in (2.12) fit in
the following commutative diagram of exact sequences
(2.13)

...
...

...
↓ ↓ ↓

· · · → Sn+q+1(Y,X, ξ) → NSn+q(Y,X) → Ln+q(π1(Y \X)) → · · ·
↓ ↓ ↓

· · · → Sn+q+1(Y ) → Hn+q(Y ;L•) → Ln+q(π1(Y )) → · · ·
↓ ↓ ↓

· · · → LSn(F ) → Ln(π1(X)) → Ln+q(π1(Y \X) → π1(Y )) → · · · ,
↓ ↓ ↓
...

...
...

in which all rows and columns are exact, and which is realized on the spectra level.
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Consider the following maps

(2.14)

φ1 : STOP (Y ) = Sn+q+1(Y ) → Ln(π1(X)),

φ2 : NSTOP (Y,X) = NSn+q(Y,X) → Ln+q(π1(Y )),

φ3 : Ln+q+1(π1(Y \X) → π1(Y )) → Sn+q(Y,X, ξ),

which are obtained as compositions of the maps from diagram (2.13) (see also
(2.8)). The maps in (2.14) have very clear geometrical description. For example,
for any homotopy triangulation (f : N → Y ) ∈ STOP (Y ), the element φ1(f) ∈
Ln(π1(X)) is the obstruction to surgery of the normal map

f |f−1(X) : f−1(X) → X.

We describe now the relations between the maps in (2.14).

Theorem 2.2. The maps in (2.14) are realized on the spectra level by the following
maps of spectra

(2.15)

Ωn+q+1S(Y ) → L(π1(X)),

Ωn+qNS(Y, X) → Ωn+qL(π1(Y )),

Ωn+q+1L(π1(Y \X) → π1(Y )) → Ωn+qS(Y, X, ξ).

The homotopy cofibers of the maps in (2.15) are naturally homotopy equivalent.

Proof. The realization of the maps on the spectra level follows from the realization
of diagram (2.13) on spectra level. Now the equivalence of cofibers follows from
[20, Lemma 2].

Consider a pair of real projective spaces RP 2k ⊂ RP 2k+1 (k ≥ 3). The group
π1(RP 2k) is isomorphic to Z/2 and has a nontrivial orientation.

Proposition 2.3. For k odd, the nontrivial element of the group L2k(Z/2−) = Z/2
does not lie in the image of the map

φ1 : STOP (RP 2k+1) → L2k(Z/2−).

For k even, the nontrivial element of the group L2k(Z/2−) lies in the image of the
map φ1.

Proof. In the considered case, the group LSn(F ) is the Browder-Livesay group
LNn(1 → Z/2+) (see [1], [5], [6], and [13]). The map LSn(F ) → Ln(Z/2−) is an
isomorphism for n = 4k and is trivial for n = 4k + 2 (see, for example, [10], [17],
[18], [19], and [27]). Now the result follows easily from diagram (2.8) and from
[19] (see also [17]).
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In fact, Proposition 2.3 states that for any simple homotopy equivalence

f : N4n+3 → RP 4n+3

the surgery obstruction of the restriction

f |f−1(RP 4n+2) : f−1(RP 4n+2) → RP 4n+2

is trivial. There exists a simple homotopy equivalence

f : N4n+1 → RP 4n+1,

for which the surgery obstruction of the restriction

f |f−1(RP 4n) : f−1(RP 4n) → RP 4n

is nontrivial. In a similar way, it is possible to compute the maps in (2.14) for
various manifold pairs using the results of [10], [14], [17], and [18].

Note that we exclude from our consideration the case of bordered manifolds.
There are a lot of results about surgery on manifold pairs with boundary in papers
[9], [11], [24], and [27]. We would like to point out only that the consideration of
the structure sets NS(Y, X) is similar to the consideration of the mixed structures
on a manifold with boundary (the submanifold X plays the role of the boundary
∂Y ) (see [2], [9], and [27, page 116]).

3 Filtered manifolds

In this section we describe surgery on closed filtered manifolds. At first, we give
necessary known results (see [3], [6], [10], [16], [17], [22], and [28]). Then we obtain
new relations between various obstruction groups and structure sets for filtered
manifolds. We describe also applications of the obtained results to the problem of
realizing elements of various surgery and splitting obstruction groups by normal
maps of closed manifolds.

Denote by X a filtration

(3.1) Xk ⊂ Xk−1 ⊂ · · · ⊂ X2 ⊂ X1 ⊂ X0 = X

of a closed manifold X by closed submanifolds. We assume that every pair of
manifolds of X is a closed manifold pair [24, page 570]. Let nj (n0 = n) be the
dimension of the manifold Xj, and qj = nj−1−nj (1 ≤ j ≤ k) be the codimension
of Xj in Xj−1. Let si = qi + qi−1 be the codimension Xi in Xi−2. Recall that we
are working in higher dimensions, and nk ≥ 5.

Let Fi (0 ≤ i ≤ k − 1) be the square of fundamental groups in the splitting
problem for the manifold pair (Xi, Xi+1).
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Denote by ξi (1 ≤ i ≤ k) the normal block bundle of Xi in Xi−1 and by
νi (2 ≤ i ≤ k) the normal bundle of Xi in Xi−2. We have the associated spherical
bundles [24]

(Dqi , Sqi−1) → (E(ξi), S(ξi)) → Xi

and
(Dsi , Ssi−1) → (E(νi), S(νi)) → Xi.

For 2 ≤ i ≤ k, we assume that the space E(νi) of the normal bundle νi is identified
with the space E(ξi−1|E(ξi)) of the restriction of the bundle ξi−1 to the space E(ξi)
in such a way that (see [3], [6], [10], [22], and [28])

(3.2) S(νi) = S(ξi−1|E(ξi)) ∪ E(ξi−1|S(ξi)).

We assume also that every triple of manifolds from the filtration X satisfies the
conditions on normal bundles that are similar to conditions in (3.2). Thus the
filtration X is a stratified manifold in the sense of Browder-Quinn (see [6] and
[28]).

Let X i
j (0 ≤ i ≤ j ≤ k) be a subfiltration

(3.3) Xj ⊂ Xj−1 ⊂ · · · ⊂ Xi

of the filtration X . Denote X i
k by X i and X 0

j by Xj. In particular, we have

(3.4) X 1 = X 1
k and X j

j = Xj.

A topological normal map f : M → X defines a t-triangulation of the filtration
X (see [6], [22], [24], and [28]). Thus we can suppose that the map f is topolog-
ically transversal to the submanifolds Xi with f−1(Xi) = Mi, and we have the
filtration M:

(3.5) Mk ⊂ Mk−1 ⊂ · · · ⊂ M1 ⊂ M0 = M.

Denote by T TOP (X ) the set of concordance classes (classes of normal bordisms)
of such maps. Note that the natural forgetful map T TOP (X ) → T TOP (X) is an
isomorphism (see [22] and [24]).

A t-triangulation (f, b) : M → X is called an s-triangulation of the filtration
X if all constituent normal maps of pairs

(Mj,Ml) → (Xj, Xl), 0 ≤ j < l ≤ k

are s-triangulations. Denote by STOP (X ) the set of concordance classes of s-
triangulations of the filtration X (see [3], [6], [22], and [28]).

The Browder-Quinn group LBQ
nk

(X ) is the group of obstructions to find an
s-triangulation of the filtration X in the concordance class of a t-triangulation
of this filtration (see [3], [6], [22], and [28]). The surgery theory for stratified
manifolds is similar to the classical surgery theory. The following result (see [6]
and [28]) provides an exact sequence that is similar to surgery exact sequence
(2.1).
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Theorem 3.1. For a filtration X , there exists an exact sequence

(3.6) · · · → LBQ
nk+1(X ) → STOP (X ) → T TOP (X) → LBQ

nk
(X ),

which is realized by a cofibration of spectra

(3.7) X+ ∧ L• → Σn−nkLBQ(X ) → S(X ).

The corresponding part of the homotopy long exact sequence of cofibration (3.7)
coincides with exact sequence (3.6), and we have isomorphisms

πi(L
BQ(X )) = LBQ

i (X ) and STOP (X ) = Sn+1(X ),

where Si(X ) = πi(S(X )).

Note that for a filtration X that is given by a manifold pair X1 ⊂ X0, the
groups LBQ

∗ (X ) coincide with the surgery obstruction groups LP∗(F0) (see [3],
[10], [22], [24] and [27]).

Let X be a filtration (3.1). A simple homotopy equivalence f : M → X splits
along the subfiltration X 1 (see (3.4)) if it is homotopic to a map g for which
all restrictions to all pairs of submanifolds, fitting into the filtration M, are s-
triangulations (see [3], [10], and [28]). The obstructions groups LSFnk

(X ) to
splitting a simple homotopy equivalence

f : M → X

along the subfiltration X 1 is defined in [3] (see, also, [10]). The groups LSF∗(X )
are realized by the spectrum LSF(X ).

For a filtration X , that is given by a manifold pair X1 ⊂ X0, the groups
LSF∗(X ) coincide with the splitting obstruction groups LS∗(F0) (see [3], [10],
[24] and [27]).

For a filtration X , we have the following braid of exact sequences [3]

(3.8)

→ Sn+1(X ) −→ Hn(X,L•) → Ln(π1(X)) →
↗ ↘ ↗ ↘ ↗ ↘

Sn+1(X) LBQ
nk

(X )
↘ ↗ ↘Θk ↗ ↘ ↗

→ Ln+1(π1(X))
δ−→ LSFnk

(X ) −→ Sn(X ) → .

Note that for a manifold pair X1 ⊂ X0, the braid of exact sequences (3.8)
coincides with the braid of exact sequences of [24, Proposition 7.2.6, iv].

Recall that a codimension-one manifold pair Xn ⊂ Y n+1 is called a Browder-
Livesay pair if X is a one-sided submanifold, and the horizontal maps in the
square (2.6) are isomorphisms (see [1], [5], [7], [13], and [24]). Filtration X is
called a Browder-Livesay filtration if every pair Xi+1 ⊂ Xi of submanifolds of the
filtration is a Browder-Livesay pair. An application of LSF∗(X )-groups to study
the Assembly map is given by the following theorem (see [3], [10], [12], and [22]).
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Theorem 3.2. Let x ∈ Ln(π) be an element for which δ(x) 6= 0 for some Browder-
Livesay filtration X of a manifold X with π1(X) = π. Then x does not belong to
the image of the Assembly map A in (2.4).

Note that for projective surgery obstruction groups Lp
∗, the image of the As-

sembly map is described by means the invariant δ for filtrations that contains only
two or three manifolds (see [12], [13], and [21]). Others applications of surgery on
filtered manifolds are given in papers [3], [10], and [17].

The following theorem [3] gives a lot of relations between spectra for surgery
and splitting obstruction groups of a filtration X .

Theorem 3.3. Let X be a filtration (3.1). Denote by ci the codimension of
the submanifold Xi in the manifold X (1 ≤ i ≤ k). We have the homotopy
commutative diagram of spectra
(3.9)

ΩS(X) → ΣckLSF(X ) → Σck−1LSF(Xk−1) → · · · → Σc1LS(F0)
↓ ↓ ↓ ↓

X+ ∧ L• → ΣckLBQ(X ) → Σck−1LBQ(Xk−1) → · · · → Σc1LP(F0),

in which all squares are pullback, and the cofibers of all vertical maps are naturally
homotopy equivalent to the spectrum L(π1(X)).

The case of subfiltrations X i
j (0 ≤ i ≤ k) of the filtration X was considered

in papers [3], [10], and [22]. In this case, there are a lot of relations between
obstruction groups and structure sets. These results are given by commutative
diagrams and braids of exact sequences (see [3], [10], and [22]).

Consider the filtration in (3.1). Let Gi = π1(Xi) be the fundamental group of
the manifold Xi, and ρi = π1(Xi \Xi+1). For every pair of manifolds Xi+1 ⊂ Xi,
we have the following pullback square of spectra (see [1], [2], [8], [16], [24], and
[27])

(3.10)
Σqi+1LP(Fi) → L(Gi)

↓ ↓
Σqi+1L(Gi+1) → L(ρi → Gi).

Note that the homotopy long exact sequences of the maps from this pullback
square generate the braid of exact sequences [27, page 264], which is very helpful
for computing surgery obstruction groups and natural maps (see [1], [7], [8], [13],
[14], [18], and [27]).

Recall that LP(Fi) = LBQ(X i
i+1) and ci is the codimension of Xi in X0. Using

the suspension functor, we can join together the squares (3.10) for various manifold
pairs Xi+1 ⊂ Xi fitting into the filtration X . We obtain the following homotopy



Surgery inside manifold 55

commutative diagram of spectra

(3.11)

L(G0)
↗ ↘

Σc1LP(F0) L(ρ0 → G0)
↘ ↗

Σc1L(G1)
↗ ↘

Σc2LP(F1) ∗ Σc1L(ρ1 → G1)
↘ ↗

Σc2L(G2)
↗ ↘

Σc3LP(F2) Σc2L(ρ2 → G2)
↘ ↗

Σc3L(G3)

...

Σck−1L(Gk−1)
↗ ↘

ΣckLP(Fk−1) Σck−1L(ρk−1 → Gk−1).
↘ ↗

ΣckL(Gk)

We can extend diagram (3.11) to the left direction by means of the pullback
construction (see [1], [10], [16], and [22]). Thus we obtain the diagram consisting
of the pullback squares of spectra for all Browder-Quinn groups LBQ

∗ (X i
j ) (0 ≤

i ≤ j ≤ k) (see [3], [10], and [22]). More precisely, the left part of the extended
diagram consists of the suspensions of the pullback squares

(3.12)
LBQ(X i

j ) −→ ΩqjLBQ(X i
j−1)

↓ ↓
LBQ(X i+1

j ) −→ ΩqjLBQ(X i+1
j−1),

where 0 ≤ i < i + 1 < j ≤ k. Note that the homotopical cofiber of horizontal
maps in (3.12) is Ω−1LS(Fj−1), and the homotopical cofiber of the vertical maps
is Ωsj−1L(ρi) [22]. Every diagram (3.12) generates the braid of exact sequences
containing the groups LS∗(Fj), L∗(ρi), and the corresponding Browder-Quinn
surgery obstruction groups (see [1], [2], [3], [8], [10], and [22]).

The map from the spectrum X+ ∧ L• to the spectrum of the extended dia-
gram (3.11) is defined. The obtained diagram has a form of a pyramid and it is
homotopy commutative. The constituent maps of spectra

X+ ∧ L• → ΣcjLBQ(X i
j )
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realize the maps
σi

j : Hn(X;L•) → LBQ
n−cj

(X i
j )

which have very clear geometric sense. For a normal map (f, b) : M → X, the last
map gives an obstruction

σi
j(f, b) ∈ LBQ

n−cj
(X i

j )

to surgery of the normal map of filtered manifolds

f |f−1(Xi) : Mi
j → X i

j .

The map in Proposition 2.3 is a particular case of this one.
For the case of a Browder-Livesay filtration, the extended diagram (3.11) pro-

vides a filtration for the surgery exact sequence of Hambleton and Kharshiladze
(see [1], [10], [16], and [22]).

To understand similarity and difference between ”abstract surgery theory” and
”surgery theory inside an ambient manifold” we need to study more exotic subfil-
trations of the filtration X . Now we describe relations between various obstruction
groups and structure sets in this case.

Let A ⊂ {0, 1, . . . , k} be a nonempty subset. Denote by ZA the subfiltration
of the filtration X consisting only of the manifolds that are indexed by A. For
example, Zi = X i

i = Xi,
Z0,i is Xi ⊂ X0,

and
Z0,i,i+1 is Xi+1 ⊂ Xi ⊂ X0.

Note that in [12] the spectrum LSF(Zi,j,m) is denoted by LSP(Xi, Xj, Xm).
Denote by Ψi, (1 ≤ i ≤ k) the square of fundamental groups in the splitting
problem for the manifold pair Xi ⊂ X0. Note that Ψ1 = F0.

The triple of manifolds X2 ⊂ X1 ⊂ X defines a commutative diagram of
inclusions

(3.13)
(X1 \X2) ⊂ (X \X2)

∩ ∩
X1 ⊂ X.

Denote by F ′
0 the square of fundamental groups in the splitting problem for the

pair (X1 \X2) ⊂ (X \X2) (see [23] and [24]).
The horizontal inclusions in (3.13) are inclusions of codimensions q1, and dia-

gram (3.13) generates the homotopy commutative diagram of spectra

(3.14)

L(π1(X1 \X2)) → Ωq1L(π1(X \X1) → π1(X \X2))
↓ ↓

L(π1(X1)) → Ωq1L(π1(X \X1) → π1(X))
↓ ↓

L(π1(X1 \X2) → (π1(X1))
trrel−→ Ωq1L(π1(X \X2) → π1(X)),
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in which all horizontal maps are the transfer maps, and the upper vertical maps
are induced by the vertical maps from (3.13). The cofiber of the bottom horizontal
map is the spectrum Ω−1−q2LNS(X, X1, X2) of the relative transfer map trrel (see
[21]) with homotopy groups

LNSn(X,X1, X2) = πn(LNS(X, X1, X2)).

The spectrum LNS(X, X1, X2) closely relates with the spectrum

LSP(X,X1, X2) = LSF(Z0,1,2)

(see [12] and [21]). In particular, we have the homotopy pullback square of spectra

(3.15)
LSP(X, X1, X2) → Ωq2LS(F0)

↓ ↓
LS(Ψ2) → LNS(X, X1, X2),

where F0 is the square in the splitting problem for the pair (X, X1), and Ψ2 is
the similar square for the pair (X,X2) (see [12]). The homotopy cofiber of the
horizontal maps in (3.15) is Ω−1LS(F1), where F1 is the square of fundamental
groups in the splitting problem for the manifold pair (X1, X2). The homotopy
cofiber of the vertical maps in (3.15) is Ωq2−1LS(F ′

0) (see [12] and [21]).

Proposition 3.4. There exists a homotopy commutative diagram of spectra

(3.16)

Σc1LS(Ψ1)
↗ ↘

Σc2LSF(Z0,1,2) ∗ Σc2LNS(Z0,1,2)
↘ ↗

Σc2LS(Ψ2)
↗ ↘

Σc3LSF(Z0,2,3) Σc3LNS(Z0,2,3)
↘ ↗

Σc3LS(Ψ3)
↗ ↘

Σc4LSF(Z0,3,4) Σc4LNS(Z0,3,4)
↘ ↗

Σc4LS(Ψ4)

...

Σck−1LS(Ψk−1)
↗ ↘

ΣckLSF(Z0,k−1,k) ΣckLNS(Z0,k−1,k),
↘ ↗

ΣckLS(Ψk)
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in which all squares are pullback. We have a map from the spectrum ΩS(X)
to diagram (3.16) such that the obtained diagram, in the form of a pyramid, is
homotopy commutative. The constituent maps of spectra

ΩS(X) → ΣciLS(Ψi), 1 ≤ i ≤ k

and
ΩS(X) → ΣciLSF(Z0,i−1,i), 2 ≤ i ≤ k

have very clear geometrical sense. The first map is the realization of the splitting
obstruction map

STOP (X) → LSn−ci
(Ψi)

for the manifold pair (X,Xi). The second map is the realization of the map

STOP (X) → LSPn−ci
(X, Xi−1, Xi)

which takes an obstruction to splitting along the submanifold pair (Xi, Xi−1) ⊂ X.

Proof. All squares in diagram (3.16) are similar to the square in (3.15), and hence
they are pullback. The upper horizontal row in diagram (3.9) is defined for any
filtration X of the manifold X. Hence this row provides the existence of the map
from ΩS(X) to diagram (3.16).

Remark. For a filtration X of the manifold X, diagram (3.16) describes relations
between spectra of various splitting obstruction groups. These groups are the
groups of obstruction to ”surgery inside the ambient manifold X”. Diagram (3.16)
corresponds to diagram (3.11), which describes relations between abstract surgery
obstruction groups for a filtered manifold.

Remark 3.5. If the codimension ci ≥ 3, we have homotopy equivalences

LS(Ψi) ' L(π1(Xi)), LSF(Z0,i,i+1) = LP(Fi), LNS(Z0,i,i+1) ' Ωqi+1L(ρi → Gi),

where Fi is the square of fundamental groups in the splitting problem for the
manifold pair (Xi, Xi+1) ( see [12] and [24]).

Theorem 3.6. For 1 ≤ i < i+1 < j ≤ k, we have the homotopy pullback squares
of spectra

(3.17)
ΣcjLSF(Z0,i,...,j) → Σcj−1LSF(Z0,i,...,j−1)

↓ ↓
ΣcjLSF(Z0,i+1,...,j) → Σcj−1LSF(Z0,i+1,...,j−1).

The homotopy cofiber of the horizontal maps in (3.17) is Σcj+1LS(Fj−1). The
homotopy cofiber of the vertical maps in (3.17) is Σci+1LS(Ψ′

i), where Ψ′
i is the

square of fundamental groups for the codimension ci manifold pair (X \Xi+1, Xi \
Xi+1).
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Proof. Similarly to diagram (3.11) we can extend diagram (3.16) to the left di-
rection by using the pullback construction. In particular, after the first step we
obtain the additional column of spectra X0,i−2,i−1,i (3 ≤ i ≤ k) fitting into the
pullback squares

(3.18)
X0,i−2,i−1,i → Σci−1LSF(Z0,i−2,i−1)

↓ ↓
ΣciLSF(Z0,i−1,i) → Σci−1LS(Ψi−1),

where the cofiber of horizontal maps is Σcj+1LS(Fj−1). Consider diagram (3.9)
and squares (3.12) for the filtration Z0,i−2,i−1,i. It follows now that the map

(3.19) ΣciLSF(Z0,i−2,i−1,i) → Σci−1LSF(Z0,i−2,i−1),

is defined, and the cofiber of the map in (3.19) is Σcj+1LS(Fj−1). By the unique
property of the pullback square, the spectrum X0,i−2,i−1,i coincides with the spec-
trum ΣciLSF(Z0,i−2,i−1,i) (3 ≤ i ≤ k). The diagram similar to (3.9) takes place
for any subfiltration Z0,i,i+1,...,j−1,j of the filtration X . Hence, we can iterate our
construction. The description of the cofiber of the vertical maps in (3.17) follows
from diagram (3.15).

The extended diagram (3.16) describes natural relations between spectra for
the splitting problems along various filtered submanifolds of the given filtration
X . The left upper slanting row in this diagram coincides with the part of upper
row in diagram (3.9).

Consider the diagram of maps of filtrations

(3.20)
Z0,i,i+1,...,j−1,j → Z0,i,i+1,...,j−1

↓ ↓
Z0,i+1,...,j−1,j → Z0,i+1,...,j−1,

in which all maps are the ”forgetful” maps. For example, the left vertical map is
the map of forgetting of the submanifold Xi. The maps in homotopy commutative
square (3.17) are induced by maps from diagram (3.20).

The following result follows from Theorem 3.6.

Corollary 3.7. The homotopy long exact sequences of the pullback square (3.17)
provide the braid of exact sequences, which contains the following sequences

· · · → LSFn(Z0,i,i+1,...,j−1,j) → LSFn+qj
(Z0,i,i+1,...,j−1) → LSn−1(Fj−1) → . . .

and

· · · → LSFn(Z0,i,i+1,...,j−1,j) → LSFn(Z0,i+1,...,j−1,j) → LSn+ni−nj−1(Ψ
′
i) → . . . .
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Corollary 3.8. Diagram (3.20) induces the pullback square of spectra

S(Z0,i,i+1,...,j−1,j) → S(Z0,i,i+1,...,j−1)
↓ ↓

S(Z0,i+1,...,j−1,j) → S(Z0,i+1,...,j−1).

The homotopy cofiber of the horizontal maps is Σcj+1LS(Fj−1), and the homotopy
cofiber of the vertical maps is Σci+1LS(Ψ′

i).

Proof. The pullback construction for spectra LSF(Z0,i,...,j) and Proposition 3.4
provide the maps of the spectra ΩS(X ) to all spectra of the pullback square (3.17)
in such a way, that we obtain a homotopy commutative diagram in the form
of a pyramid. The homotopy cofibers of these maps give the pullback squares
of spectra of structure sets. Now the result follows from Theorem 3.6 and the
properties of the maps between pullback squares.

Consider the triple X2 ⊂ X1 ⊂ X0 of manifolds, which is the subfiltration Z0,1,2

of the filtration X . This triple generates the upper square of diagram (3.16).
Forgetting the ambient manifold X0 of the triple X2 ⊂ X1 ⊂ X0, we obtain a
natural map of this square to the pullback square marked by ”star” in diagram
(3.11) (see [3], [10], [12], and [28]). By a similar way, we can construct the natural
forgetful map Υ of diagram (3.16) to the subdiagram of diagram (3.11). The map
Υ is given by the maps of spectra

(3.21)
ΣciLS(Ψi) → ΣciL(Gi) (1 ≤ i ≤ k),
ΣciLSF(Z0,i−1,i) → ΣciLP(Fi−1) (2 ≤ i ≤ k),
ΣciLNS(Z0,i−1,i) → Σci−1L(ρi−1 → Gi−1) (2 ≤ i ≤ k).

Theorem 3.9. For a subfiltration Z0,i,i+1,...,j−1,j of the filtration X , the natural
forgetful map

(3.22) LSF(Z0,i,i+1,...,j−1,j) → LBQ(Zi,i+1,...,j−1,j)

is defined. The homotopy cofiber of the map in (3.22) is ΩciL(π1(X0 \Xi) → G0).

Proof. See [3]. The pullback construction provides a map Υleft of the extended to
the left direction diagram (3.16) to the corresponding subdiagram of the extended
diagram (3.11). This map extends the map Υ. From now the result follows using
the natural properties of the maps of pullback squares.

The compositions of the maps from extended diagram (3.16) (see also diagram
(3.9)) provide a map

(3.23) ΣckLSF(Xk) → Σc1LS(F0)

of spectra, which induces the map

γ : LSFnk
(X ) → LSn1(F0)
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of splitting obstruction groups.
The following result is a natural generalization of results from [3] and [22], and

it is similar to Theorem 3.2.

Theorem 3.10. Let F be a square of fundamental groups in a splitting problem.
Let X be a filtration of a closed manifold X such that F0 = F , and the subfiltration
X 1 of X is a Browder-Livesay filtration. If an element x ∈ LSn1(F ) does not
belong to the image of the map

γ : LSFnk
(X ) → LSn1(F ),

then the element x cannot be realized as an obstruction to splitting of a simple
homotopy equivalence of closed manifolds.

Proof. The proof is similar to the one given in [3] (see also [10] and [22]).

In fact, in higher codimensions (≥ 3) the bottom part of diagram (3.16) coin-
cides with the corresponding part of diagram (3.11), as follows easily from Remark
3.5, Theorem 3.8 and properties of maps in (3.21). Recall that q1 is the codimen-
sion of the submanifold X1 in the manifold X. If q1 ≥ 3, then the map Υ provides
an isomorphism of diagram (3.16) into the subdiagram of diagram (3.11).

If q1 = 2, then the upper square of diagram (3.16) has the following form

(3.24)

Σc1LS(Ψ1)
↗ ↘

Σc2LSF(Z0,1,2) ∗ Σc2LNS(Z0,1,2),
↘ ↗

Σc2L(G2)

and the other bottom part of the diagram coincides with the corresponding part
of diagram (3.11).

The most interesting case is q1 = q2 = 1. In this case, the upper part of
diagram (3.16) has the following form

(3.25)

Σc1LS(Ψ1)
↗ ↘

Σc2LSF(Z0,1,2) ∗ Σc2LNS(Z0,1,2)
↘ ↗

Σc2LS(Ψ2)
↗ ↘

Σc3LSF(Z0,2,3) Σc3LNS(Z0,2,3),
↘ ↗

Σc3L(G3)

and the other bottom part of the diagram coincides with the corresponding part
of diagram (3.11).
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In the cases q1 = 2 and q1 = q2 = 1, diagram (3.16) can be extended to the left,
as well, using the pullback construction. The obtained diagrams contain L-, LSF-,
LS-, and LBQ-spectra of various obstruction groups for the filtration X . Similarly
to Corollary 3.8 we can construct pullback squares of spectra of the corresponding
structure sets. Note that braids of homotopy long exact sequences of such pullback
squares are very effective for computing obstruction groups, structure sets, and
natural maps (see [8], [9], [10], [13], [14], and [17]). A lot of geometric applications
of Browder-Livesay filtrations are given in [3], [10], [17], and [22].
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Inönü–Wigner contraction to the truncated current Lie algebras1

by Paolo Casati and Giovanni Ortenzi

Abstract

We show how the truncated current Lie algebras can be constructed by
performing a generalized Inönü–Wigner contraction from a direct sum of
copies of the same Lie algebra g. Further we explain how the sometime
existing ad–invariant non degenerated bilinear form may be obtained using
the same procedure.

1 Introduction

The idea of Lie algebra contraction [7] has born in order to provide a rigorous
and appealing argument to justify the claim that the theory of special relativity
coincides with the classical mechanics if the light travels infinite velocity. Since
then it has found fertile ground in many fields of mathematics. In the applications,
this idea is manly used to deduce informations on one Lie algebra by regarding it
as contraction of an other better known one (see e.g. [1, 2]).
This will be also the case of the present paper. We shall use the tool of Lie
algebra contraction to study a class of in general non semisimple Lie algebras
widely investigated in the literature under different names, among which that of
truncated current Lie algebra [12, 11], which we shall keep thorough the whole
paper.

A truncated current Lie algebra can be associated to any Lie algebra and any
positive integer number as follows. Let g be a Lie algebra over a field K and let
n ∈ N be a positive integer number, then the Lie algebra

(1.1) g(n) = g⊗K K [λ] /Kλn+1.

with Lie bracket

(1.2)
[
X ⊗ λi, Y ⊗ λj

]
= [X, Y ]⊗ λi+j X, Y ∈ g, i, j ∈ N

is called a truncated current Lie algebra .
These Lie algebras are naturally graded by non–negative degrees in λ:

(1.3) gk = {x⊗ λk ∈ g(n)| 0 ≤ k ≤ n}
1Received: October 31, 2007
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and if n > 0 are not semisimple being gn in the radical of its Killing form. What
makes these the algebra interesting is that they appear in many different contest
like the theory of integrable systems [8], in algebraic geometry [9, 6] or finally
more recently in the theory of Lie algebra and their representations [4, 5, 10, 12].

Surprising enough, however, one of their maybe most important property,
namely the presence of a bilinear symmetric ad–invariant non degenerated form
even in many case when these Lie algebras are non reductive, has been discovered
only very recently [3]. The aim of this paper is to show how a generalized Inönü–
Wigner contraction could be useful to proceed in the investigations of such Lie
algebras. The starting point is the observation that, for a fixed n ∈ N, g(n) is, as
vector space, isomorph to the direct sum gn = ⊕n

i=0g. This suggests to obtain the
Lie algebra g(n) by contraction of the direct sum of n + 1 copies of g. This will
be indeed the case, as will be shown in the next section. Using this contraction
moreover we shall carry any bilinear ad–invariant form of gn+1 in an interesting
bilinear ad–invariant form of g(n), which turns out to be non degenerated if that
of g has this latter property. Further it seems fairly natural to hope that such
technique could be useful to study other aspects of the truncated current Lie
algebra as their cohomology groups or their Poisson cohomology just to mention
a few.

Acknowledgements The authors would like to thank the anonymous referee who
points out a mistake on the first version of the main theorem proof and suggests
a possible solution.
P.C. would like to thank Professor Jan-Erik Roos of the University of Stockholm
for giving us this latter reference during interesting discussion on this subject
moreover it is a pleasure to thank the organizers and all the participants to the
Luxembourg-Poland-Ukraine conference, Lie algebroids, dynamical systems and
applications for the pleasant days passed together. G.O. thanks the University of
Milano Bicocca for the kind hospitality.

2 Truncated current Lie algebras

The aim of this first section is to present the truncated current Lie algebras already
mentioned in the introduction.
Despite to the fact that our constructions can be straightforward generalized to
the infinite dimensional Lie algebras we restrict ourself to the maybe simpler finite
dimensional case.

Definition 2.1. For any Lie algebra g and any positive integer number n ∈ N let
us denote by g(n) the Lie algebra given by the tensor product

(2.1) g⊗ C(n)
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where C(n) = C[λ]/(λ)n+1, C[λ] is the ring of polynomials in λ and (λ)n+1 is the
principal ideal generated by λn+1.

This algebra may be identified with the Lie algebra of polynomial maps from
C[λ]/(λn+1) in g, hence an element X(λ) in g(n) can be viewed as the mapping
X : C→ g, X(λ) =

∑n
k=0 Xkλ

k where Xk ∈ g.
In this setting the Lie bracket of two elements in g(n), X(λ) =

∑n
k=0 Xkλ

k and
Y (λ) =

∑n
k=0 Ykλ

k can be written explicitly as

(2.2) [X(λ), Y (λ)] =
n∑

k=0

(
k∑

j=0

[Xj, Yk−j]g

)
λk

where [·, ·]g is the Lie bracket defined on g.
If on g is defined an ad–invariant bilinear form 〈·, ·〉 (for instance the Killing
form) then we can carry it to a bilinear form 〈·, ·〉λ on g(λ) by setting on C(λ) the
standard inner product

(2.3) (p(λ), q(λ)) =

(
n∑

i=0

piλ
i,

n∑
j=0

qjλ
j

)
=

∫

|λ|=1

λ−1p(λ)q(λ)dλ =
∞∑
i=0

piqi

(where z denotes the complex conjugate of z and one has to keep in mind that all
the sums are on a finite set and that on the unit circle both p(λ) and p(λ−1) are
well defined). More precisely on g(λ) will be defined the bilinear form:

〈X(λ), Y (λ)〉λ = 〈
n∑

i=0

Xiλ
i,

n∑
j=0

Yjλ
j〉λ(2.4)

=

∫

|λ|=1

λ−1〈X(λ), Y (λ−1)〉dλ =
n∑

i=0

〈Xi, Yi〉.

Unfortunately this bilinear form, while it is not degenerate if the bilinear form on
g is not degenerate, turns out to be in general not ad–invariant even if the form
chosen on g (like in the case of the Killing form) is ad–invariant. Suppose indeed
g = sl(2,C) endowed with the Killing form and set

X =

(
0 1
0 0

)
H =

(
1 0
0 −1

)
Y =

(
0 0
1 0

)

then
〈H, [Xλ, Y λ]〉λ = 〈H, Hλ2〉λ = 0

but
〈[H, Xλ], Y λ〉λ = 〈2Xλ, Y λ〉λ = 2 6= 0.

On the other hand there exist on g(n) non trivial symmetric ad–invariant forms,
which are surely more exotic than that previously considered but non–degenerated.
As proved in [3] it holds indeed
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Theorem 2.2. Suppose that on g is defined symmetric ad–invariant non–degenerated
bilinear form 〈·, ·〉g then for any set of complex numbers A = {aj}j=0,...n, the bi-
linear form

(2.5)
g(n) × g(n) → C
(X(λ), Y (λ)) 7→ 〈X(λ), Y (λ)〉(n)

A =
∑n

j=0 aj

∑j
i=0〈Xi, Yj−i〉g.

is a symmetric bilinear, ad–invariant and, if an 6= 0, non degenerate form.

3 Lie Algebras Contraction

This section is devote to construct the Lie algebra g(n) as contraction of the direct
sum gn = ⊕n

i=0g. To begin with let us observe that the formula (2.2) suggests an
alternative but obviously equivalent definition of the same truncated current Lie
algebras:

Definition 3.1. Let g be a Lie algebra over the field K and n be a positive integer
number, the truncated current Lie algebra g(n) associated to the pair (g, n) is the
Lie algebra given as vector space by the direct sum gn = ⊕n

i=0g of n + 1 copies of
the Lie algebra g and with Lie bracket given by:

[(X0, X1, . . . , Xn), (Y0, Y1, . . . Yn)] = (Z0, Z1, . . . , Zn)

Zk =
∑k

j=0 [Xj, Yk−j] k = 0, . . . n .

On behalf of this definition one can regard to the truncated current Lie algebra
g(n) as the space gn = ⊕n

i=0gi endowed with modified Lie bracket with respect
to that corresponding to the direct sum of Lie algebras. It is therefore quite
natural to wonder if such modified brackets may be obtained from the usual one
by performing a suitable Lie algebra contraction. For example in the first non
trivial case namely that corresponding to the truncated current Lie algebra g(1),
with g finite dimensional, is indeed the case. In this particular case we can choose
a basis for the direct sum g1 of the type X

(k)
j , k = 0, 1 j = 1, . . . , r = dim(g)

X
(k)
j ∈ gk k = 0, 1, j = 1, . . . , r, with respect to which the canonical Lie bracket

are written in the form

(3.1)

[
X

(k)
j , X

(k)
i

]
=

∑r
l=1 cl

jiX
(k)
l k = 0, 1 i, j = 1, . . . r

[
X

(0)
j , X

(1)
i

]
= 0 i, j = 1, . . . r

i.e., with the same structure constants for each copy of g. Then by performing
the parameter depending change of basis

Y
(0)
j = X

(0)
i + X

(1)
i i = 1, . . . r

Y
(1)
j = ζX

(1)
i i = 1, . . . r
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the equations (3.1) become
[
Y

(0)
j , Y

(0)
i

]
=

∑r
l=1 cl

jiY
(0)
l i, j = 1, . . . r

[
Y

(0)
j , Y

(1)
i

]
=

∑r
l=1 cl

jiY
(1)
l i, j = 1, . . . r

[
Y

(1)
j , Y

(1)
i

]
= ζ

∑r
l=1 cl

jiY
(1)
l i, j = 1, . . . r.

Now computing the limit for ζ → 0 in these latter equations one obtains exactly
the Lie bracket previously defined on g(1). Unfortunately this procedure, which
coincides with the canonical Inönü–Wigner contraction, cannot be directly and
straightforward extended to the general case. In this case one has to move much
more carefully choosing an appropriate parameter dependence of the new basis as
explained in the

Theorem 3.2. Let g be Lie algebra of dimension r and let us denote by gn = ⊕n
i=0g

the direct sum of n + 1 copies of g. Let us moreover choose X
(k)
i , i = 1, . . . r,

k = 0, . . . n a basis for gn such that X
(k)
i ∈ gk for all i = 1, . . . r, so that with

respect to this basis the canonical bracket of gn will have the form
(3.2)[

X
(k)
i , X

(k)
j

]
=

∑r
l=1 cl

ijX
(k)
l k = 0, . . . n i, j = 1, . . . r

[
X

(k)
i , X

(m)
j

]
= 0 k, m = 0, . . . n, k 6= m i, j = 1, . . . r.

Then if we write equations (3.2) with respect to the basis

(3.3) Y
(k)
i =

n−k∑

l=0

ζk2l

X
(l)
i k = 0, . . . , n i = 1, . . . r,

and then perform the limit ζ → 0 we end up with the Lie bracket for the Lie
algebra g(n):

(3.4)

[
Y

(l)
i , Y

(m)
j

]
=

∑r
l=1 cl

ijY
(l+m)
l l + m ≤ n i, j = 1, . . . r

[
Y

(l)
i , Y

(m)
j

]
= 0 l + m > n i, j = 1, . . . r.

Proof Let us first compute the Lie bracket of two elements of the new basis
say Y

(l)
i and Y

(m)
j (where we omit here and in what follows the explicit dependence

from ζ) in terms of the old ones:

(3.5)
[
Y (k)

p , Y (j)
q

]
=

r∑
t=1

Min(n−k,n−j)∑

l=0

ζ(k+j)2l

ct
pqX

(l)
t .
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If k + j < n + 1 we write them as

(3.6)
[
Y (k)

p , Y (j)
q

]
=

r∑
t=1

n−k−j∑

l=0

ζ(k+j)2l

ct
pqX

(l)
t +

Min(n−k,n−j)∑

l=n−k−j+1

ζ(k+j)2l

ct
pqX

(l)
t ,

which using the definition of the elements Y
(k)
p can be written as

(3.7)
[
Y (k)

p , Y (j)
q

]
=

r∑
t=1

ct
pqY

(j+k)
t +

Min(n−k,n−j)∑

l=n−k−j+1

ζ(k+j)2l

ct
pqX

(l)
t .

To prove our claim we need to show that if ζ goes to zero then for k + j > n the
whole right hand of equation (3.5) and for k + j ≤ n the second term in the right
hand of equation (3.7) vanish.

From equation (3.3) follows by induction over l that

(3.8) ζn2l

X
(l)
i =

n∑

k=n−l

pkl(ζ)Y
(k)
i

with pkl(ζ) a polynomial in ζ. Indeed in the case l = 0 this coincides with the
equation (3.3). Now if we set k = l +1 in equation (3.3) and multiply both hands
of it by ζ(l+1)2l+1

we get

ζ(l+1)2l+1

Y
(n−l−1)
i =

l∑

k=0

ζn2k+(l+1)(2l+1−2k)X
(k)
i + ζn2l+1

X
(l+1)
i

which using the induction hypothesis gives equation (3.8) for l + 1. Now substi-
tuting this in the expression (3.5) with k+j > n, one obtains only positive powers

of ζ on the right hand side of
[
Y

(k)
p , Y

(j)
q

]
. Hence taking the limit ζ → 0 gives

that
[
Y

(k)
p , Y

(j)
q

]
= 0.

In case of equations (3.7) (which correspond to the case k + j ≤ n) we need
the

Lemma 3.3. The elements ζ2k(n−k)
X(k) k = 0, . . . n can be written as

(3.9) ζ2k(n−k)X(k)
p =

k∑
j=0

qk
j (ζ−1)Y (n−j)

p

where qk
j is a polynomial of degree deg(qk

j ) = 2k − 2j.

Proof First we rewrite the formula (3.3)

Y
(n−k)
i =

k∑

l=0

ζ2l(n−k)X
(l)
i k = 0, . . . , n i = 1, . . . r
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and we proceed by induction on the index k. For k = 0 formula (3.9) is immedi-
ately true. For k = 1 we have ζ2(n−1)X(1) = Y (n−1) − ζ−1Y (n). So let us suppose
(3.9) is true for k and let us prove it for k + 1. We have

Y (n−k−1)
p =

k∑

l=0

ζ2l(n−k−1)X(l)
p + ζ2k+1(n−k−1)X(k+1)

p ,

which can be written in the form

ζ2k+1(n−k−1)X(k+1)
p = Y (n−k−1)

p −
k∑

l=0

ζ2l(l−k−1)ζ2l(n−l)X(l)
p

then by induction

ζ2k+1(n−k−1)X(k+1)
p = Y (n−k−1)

p −
k∑

l=0

l∑
j=0

ζ2l(l−k−1)ql
j(ζ

−1)Y (n−j)
p .

By commuting the two sums in the last term of this expression we have

ζ2k+1(n−k−1)X(k+1)
p = Y (n−k−1)

p −
k∑

j=0

k∑

l=j

ζ2l(l−k−1)ql
j(ζ

−1)Y (n−j)
p .

from which we have

qk+1
l (ζ−1) = −

k∑

l=j

ζ2l(l−k−1)ql
j(ζ

−1)

Since it is easily checked that the leading terms (in ζ−1) in this sum is that
corresponding to the index l = k, we have finally

deg(qk+1
j ) = 2k + deg(qk

j ) j = 0, . . . k.

Then again by induction

deg(qk+1
j ) = 2k + 2k − 2j = 2k+1 − 2j

which concludes the proof of our lemma.

¤
Now this lemma allows us to estimate ζ2l(k+j)X l

p, we have indeed that

ζ2l(k+j)X l
p = ζ2l(k+j)+2l(n−l−n+l)X l

p = ζ2l(k+j−n+l)ζ2l(n−l)X l
p

= ζ2l(k+j−n+l)
∑l

s=0 qk
j (ζ−1)Y

(n−s)
p

=
∑l

s=0 ζ2l(k+j−n+l)qk
j (ζ−1)Y

(n−s)
p .

Therefore being deg(ql
s) = 2l − 2s and j + k − n + l > 1:

limζ→0ζ
2l(k+j−n+l)qk

j (ζ−1) = 0 ∀l n− k − j + 1 ≤ l ≤ Min(n− k, n− j).

¤



72 P. Casati and G. Ortenzi

4 Bilinear form contraction

In this section we proceed further in the application of the Lie algebra contrac-
tion to the truncated current Lie algebras by showing how our generalized Inönü–
Wigner contraction allows us to obtain also the wanted ad–invariant symmetric
non degenerate bilinear forms on g(n) (2.5) as well. This result can be actually
achieved but unfortunately one has first to modify the canonical bilinear form
defined on the direct sum gn = ⊕n

k=0g by multiplying its entries by factors de-
pending in a quite complicate way from the parameter ζ. More precisely it holds
the

Theorem 4.1. Let us consider on the Lie algebra given by the direct sum gn =
⊕n

k=0g the canonical bilinear form induced from that defined on g 〈·, ·〉g:

(4.1)
〈·, ·〉n : gn × gn → K

((X0, . . . , Xn), (Y0, . . . , Yn)) 7→ 〈X, Y 〉n =
∑n

k=0〈Xk, Yk〉g .

Then there exist ζ–depending factors dk(ζ) such that the modified inner product
on gn given by

(4.2) 〈X, Y 〉n(ζ) =
n∑

k=0

dk(ζ)〈Xk, Yk〉g

has the following property

(4.3) limζ→0〈Y (j)
p (ζ), Y (k)

q (ζ)〉n(ζ) = 〈Y (j)
p , Y (k)

q 〉(n)
A

Proof. Let us first consider the relations (4.3) when j = 0 and k running be-
tween 0 and n. This relations form a system of n+1 independent linear equations

(4.4) 〈Y (0)
p (ζ), Y (k)

q (ζ)〉 = akωpq k = 0, . . . n, p, q = 1, . . . dim(g)

where {ωpq}p,q=1,...,dim g is the matrix form of the pairing 〈·, ·〉g.
We actually should simply verify the weaker assumption

〈Y (0)
p (ζ), Y (k)

q (ζ)〉 ∼ akωpq k = 0, . . . n, p, q = 1, . . . , dim(g)

but since this does not affect our proof, let us consider the equation (4.4) instead.
From this equation one can explicitly compute the coefficients dk(ζ), k = 0, . . . , n,
although their expression in terms of ζ turns out to be complicate. Likely enough
we need only to know that the dk(ζ) satisfy (4.4) and use it to to prove the
following technical

Lemma 4.2. The coefficients dk(ζ) have the following asymptotic expansion

(4.5) ζ(n−k)2k

dk(ζ) ∼ (−1)kanζ−2k+1.
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Proof. Let us proceed by induction from formula (4.4) we have immediately

ζnd0(ζ) = an

and similarly
ζ(n−1)2d1(ζ) ∼ −anζ−2+1.

Let us suppose (4.5) is true for k and let us prove it for k +1. Using (4.4) we have

ζ(n−k−1)2k+1

dk+1(ζ) = an−k−1 −
k∑

i=0

ζ(n−k−1)2i

di(ζ)

therefore using the induction hypothesis we obtain

ζ(n−k−1)2k+1
dk+1(ζ) = an−k−1 −

∑k
i=0 ζ(i−k−1)2i

ζ2i(n−i)di(ζ)

∼ an−k−1 −
∑k

i=0(−1)iζ(i−k−1)2i−2i+1an

∼ −∑k
i=0(−1)ianζ2i(i−k−2)+1 ∼ (−1)k+1anζ−2k+1+1

which is formula (4.5) for k + 1 proving the claim.

¤

We can complete our theorem. For j + k > n we have indeed

(4.6) 〈Y (j)
p (ζ), Y (k)

q (ζ)〉(ζ) =

Min{n−k,n−j}∑

l=0

dl(ζ)ζ(j+k)2l〈X(l)
p , X(l)

q 〉g.

Using lemma 4.2 we can estimate this equation as

∑Min{n−k,n−j}
l=0 ζ(j+k−n+l)2l

ζ(n−l)2l
dl(ζ)

∼ ∑Min{n−k,n−j}
l=0 (−1)lanζ

(j+k−n+l)2l−2l+1 =
∑Min{n−k,n−j}

l=0 (−1)lanζ2l(j+k−n+l−1)+1

and since j + k − n + l > 0 (being l ≥ 0) we have that

limζ→0〈Y (k)
p , Y (j)

q 〉 = 0 for j + k > n

as wanted. If vice versa j + k ≤ n, we have that as

〈Y (k)
p , Y

(j)
q 〉 =

∑Min{n−k,n−j}
l=0 ζ(j+k)2l

dl(ζ)ωpq

=
∑n−k−j

l=0 ζ(j+k)2l
dl(ζ)ωpq +

∑Min{n−k,n−j}
l=n−k−j+1 ζ(j+k)2l

dl(ζ)ωpq

using (4.4) we obtain immediately that

n−k−j∑

l=0

ζ(j+k)2l

dl(ζ) = ak+j,
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while for the second summand we have, using lemma 4.2

Min{n−k,n−j}∑

l=n−k−j+1

ζ(j+k)2l

dl(ζ) ∼
Min{n−k,n−j}∑

l=n−k−j+1

anζ(j+k−n+l−1)2l+1.

But this implies, because l > n−k− j and therefore j +k−n+ l−1 ≥ 0 that the
parameter ζ in the addends of the above written equation appears with powers
bigger then one, and therefore that

limζ→0




Min{n−k,n−j}∑

l=n−k−j+1

ζ(j+k)2l

dl(ζ)


 = 0

and then finally that

limζ→0〈Y (k)
p , Y (j)

q 〉 = ωpq for j + k ≤ n j, k ≥ 1 p, q = 1, . . . , dim(g)

which concludes the proof of our theorem.

¤

Remark 4.3. Of course the most interesting and more studied case in the lit-
erature is when the “source” algebra g is simple. In this case indeed the corre-
sponding truncated Lie algebras are metric and one may use such ad–invariant
non degenerated bilinear form to construct exactly as in the case of simple Lie al-
gebras their affinization. These latter Lie algebras may be obtained as generalized
Inönü–Wigner contraction from the direct sum of the corresponding Kac–Moody
Lie algebra as well.
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Reconstruction theorems for two remarkable groups

of diffeomorphisms1

by Agnieszka Kowalik, Ilona Michalik and Tomasz Rybicki

Abstract

The notion of modular group of diffeomorphisms is introduced. The group
of Hamiltonian diffeomorphisms of a Poisson manifold is considered. It is
shown that these groups determine uniquely the underlying manifolds and
the related geometric structures. In the proofs a general reconstruction
theorem of M. Rubin is applied.

1 Introduction

It is well known ([2], [11]) that the group of all Cr-diffeomorphisms (1 ≤ r ≤ ∞)
of a Cr-manifold defines uniquely the topological and smooth structure of the
manifold. Analogous results are true for the automorphism groups of some
geometric structures. In the present note we show reconstruction theorems in
case of some nontransitive geometric structures by making use of a very deep
and general reconstruction theorem concerning homeomorphism groups proved
by M. Rubin (Theorem 1.3).

Let us first recall some concepts and facts from papers of M. Rubin ( [11], [12],
[3]). For a topological space X let H(X) denote the group of all homeomorphisms
of X. Let G be a subgroup of H(X). For a subset U of X we define

GU = {g ∈ G| g|(X\U) = id}.

Definition 1.1. (Rubin) Group G is said to be factorizable if for every open cover
U of X, the set

⋃
U∈U GU generates G.

Observe that we may also express the condition of factorizability in a slightly
different way. For g ∈ G let supp(g) := {x ∈ X|g(x) 6= x} be the support of g.
For any open U ⊂ X let GU be the totality of g with supp(g) ⊂ U . Then G
is factorizable (in our sense) if for every open cover U of X, the set

⋃
U∈U GU

generates G. It is immediate that this condition is stronger than that in Definition
1.1.

1Received: October 31, 2007



78 Kowalik, Michalik, Rybicki

Definition 1.2. Group G is said to be non-fixing if G(x) 6= {x} for every x ∈ X,
where G(x) := {g(x)|g ∈ G}.
Theorem 1.3. Let X, Y be regular topological spaces (i.e they satisfy T3 condi-
tion) and let G and H be factorizable (in the sense of Definition 1.1), non-fixing
homeomorphism groups of X and Y , resp. Suppose that there is an isomorphism
ϕ : G ∼= H. Then there is a homeomorphism τ : X ∼= Y such that ϕ(g) = τ ◦g◦τ−1

for every g ∈ G.

In this note we will confine ourselves mainly to the C∞-smoothness category.
The main reason is that the notion of the regularity of a diffeomorphism group
(see [8]) can be expressed naturally in this category.

Finally, we would like to emphasize that the reconstruction problem is very
geometrical in its spirit. Namely, the fact that the automorphism group of a geo-
metric structure of a manifold determines uniquely the manifold and the structure
could be viewed as a modern counterpart of the Erlangen program of F. Klein [7]
(see also [2]).

Acknowledgements. We would like to thank Professor Mati Rubin for illu-
minating discussions which we had with him in Lvov during the 8th Conference
of Geometry and Topology of Manifolds.

2 Singular foliations and modular diffeomorphism

groups

Recently E. Ben Ami and M. Rubin showed in [3] very interesting reconstruction
theorems concerning homeomorphism and diffeomorphism groups related to a re-
gular foliation. Here we will deal with the case of singular foliations.

Let 1 ≤ r ≤ ∞ and let L be a subset of a Cr-manifold M endowed with
a Cr-differentiable structure which makes it an immersed submanifold. Then L is
weakly imbedded if for any locally connected topological space N and a continuous
map f : N → M satisfying f(N) ⊂ L, the map f : N → L is continuous as well.
It follows that in this case such a differentiable structure is unique .

Definition 2.1. A foliation of class Cr is a partition F of M into weakly
imbedded submanifolds, called leaves, such that the following condition holds.
If x belongs to a k-dimensional leaf, then there is a local chart (U, φ) with φ(x) = 0,
and φ(U) = V ×W , where V is open in Rk, and W is open in Rn−k, such that
if L ∈ F then φ(L ∩ U) = V × l, where l = {w ∈ W |φ−1(0, w) ∈ L}.

Foliation is called regular if all leaves have the same dimension and singular if
this condition is not satisfied. From now on by foliation we will mean a singular
foliation.
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Let (Mi,Fi), i = 1, 2, be foliated manifolds. A map f : M1 → M2 is called
foliation preserving if f(Lx) = Lf(x) for any x ∈ M1, where Lx is the leaf passing
through x. Next, if (M1,F1) = (M2,F2) then f is said to be leaf preserving
if f(Lx) = Lx for all x ∈ M1. Throughout the symbol Diffr(M,F) will stand for
the group of all leaf preserving Cr-diffeomorphisms of a foliated manifold (M,F).

In view of P. Stefan [15] foliations can be regarded as collections of accessible
sets in the following sense.

Definition 2.2. A smooth mapping φ of a open subset of R×M into M is said
to be a Cr-arrow, 1 ≤ r ≤ ∞, if
(1) φ(t, ·) = φt is a local Cr-diffeomorphism for each t, possibly with empty
domain,
(2) φ0 = id on its domain,
(3) dom(φt) ⊂ dom(φs) whenever 0 6 s < t.

Given an arbitrary set of arrows A, let A∗ be the totality of local diffeomor-
phisms ψ such that ψ = φ(t, ·) for some φ ∈ A, t ∈ R. Next Â denotes the set
consisting of all local diffeomorphisms being finite compositions of elements from
A∗ or (A∗)−1 = {ψ−1|ψ ∈ A∗}, and of the identity.

Definition 2.3. The orbits of Â are called accessible sets of A.

For x ∈ M let A(x), Ā(x) be the vector subspaces of TxM generated by

{φ̇(t, y)|φ ∈ A, φt(y) = x}, {dyψ(v)|ψ ∈ Â, ψ(y) = x, v ∈ A(y)},
respectively.

Theorem 2.4. Let A be an arbitrary set of Cr-arrows on M. Then:
(i) Every accessible set of A admits a (unique) Cr -differentiable structure of a con-
nected weakly imbedded submanifold of M .
(ii) The collection of accessible sets defines a foliation F .
(iii) {Ā(x)} is the tangent distribution of F (cf. [15], [16] for the notion of
tangent distribution to a foliation).

Let G(M) ⊂ Diff∞(M) be any diffeomorphism group. Throught out the sym-
bol Gc(M) will stand for the subgroup of all compactly supported elements. By
a smooth path (or isotopy) in G(M) we mean any family {ft}t∈R with ft ∈ G(M)
such that the map (t, x) 7→ ft(x) is smooth. Next, G(M)0 denotes the subgroup
of all f ∈ G(M) such that there is a smooth path {ft}t∈R with ft = id for t 6 0
and ft = f for t > 1, and such that each ft stabilizes outside a fixed compact set.

Given G(M) the totality of ft as above constitutes a set of arrows. This set
determines uniquely a foliation. Likewise, the flow of a Cr-vector field is an arrow.
Therefore any set of vector fields on M defines a foliation.

As usual, X(M) denotes the Lie algebra of vector fields on M , and X(M)c its
Lie subalgebra of compactly supported elements.



80 Kowalik, Michalik, Rybicki

Definition 2.5. Let G(M) ⊂ Diff∞c (M) be a group of compactly supported
diffeomorphisms of M . To any smooth path ft in G(M)0 one can attach a family
of vector fields given by

ḟt =
dft

dt
(f−1

t ).

G(M) is called regular (cf. [8]) if there exists a Lie subalgebra g of X(M)c

such that there is a one-to-one correspondence between isotopies ft in G(M)0 and
smooth paths Xt in g given by

(2.1)
dft

dt
= Xt ◦ ft with f0 = id,

that is ḟt = Xt. In particular, ft is a flow if and only if the corresponding Xt = X
is time-independent. g is then called the Lie algebra of G(M).

Definition 2.6. A Lie algebra of compactly supported vector fields g ⊂ X(M)c

is called modular if it is a C∞(M)-module. A regular group of diffeomorphisms
G(M) is said to be modular if its Lie algebra g is modular.

Example 2.7. Let F be a C∞-foliation on a manifold M . Then Diff∞(M,F) is
modular with the Lie algebra X(M,F)c, the Lie algebra of all compactly supported
vector fields tangent to F .

Problem 2.8. The following question seems to have a deep geometrical meaning:
given a modular group G(M), under what conditions one has the equality
G(M) = Diff∞(M,FG(M)), where FG(M) is the foliation induced by G(M)? Notice
that the inclusion G(M) ⊂ Diff∞(M,FG(M)) is always fulfilled.

Proposition 2.9. Suppose that G(M) is modular and let {Ui} be a finite family
of open balls of M . If ft is an isotopy in G(M) such that

⋃
t

supp(ft) ⊂
⋃

Ui,

then there are isotopies f j
t , supported in Ui(j), which satisfy ft = f s

t ◦ · · · ◦ f 1
t . In

particular, G(M) satisfies Definition 1.1.

Proof. Let ft be as above and let Xt be the corresponding family in XG(M).
By considering f(p/m)tf

−1
(p−1/m)t, p = 1, . . . ,m, instead of ft we may assume that ft

is close to the identity.
First we choose a new family of open balls, {Vj}s

j=1, satisfying supp(ft) ⊂
V1 ∪ · · · ∪ Vs for each t and which is starwise subordinate than {Ui}, that is

(∀j)(∃i) star(Vj) ⊂ Ui(j), where star(Vj) =
⋃

V j∩V k 6=∅
Vk.

Let (λj)
s
j=1 be a partition of unity subordinate to {Vj}, and let Y j

t = λjXt.
We set

Xj
t = Y 1

t + · · ·+ Y j
t , j = 1, . . . , s,
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and X0
t = 0. Each of the smooth families Xj

t integrates to an isotopy gj
t with

support in V1 ∪ · · · ∪ Vj. We get the partition

ft = gs
t = f s

t ◦ · · · ◦ f 1
t ,

where f j
t = gj

t ◦ (gj−1
t )−1, with the required inclusions

supp(f j
t ) = supp(gj

t ◦ (gj−1
t )−1) ⊂ star(Vj) ⊂ Ui(j)

which hold if ft is sufficiently small.

A Lie subalgebra g ⊂ X(M) is called non-fixing if gx = {X(x)|X ∈ g} 6= 0 for
all x ∈ M . An important result of I. Amemiya [1] yields the following fact.

Theorem 2.10. Let g(M) and g(N) be modular and non-fixing Lie algebras
of vector fields on manifolds M and N , resp. If there is a Lie algebra isomorphism
Ψ : g(M) → g(N) then there is a diffeomorphism ψ : M → N such that ψ∗ = Ψ.

Observe that the theorem of Amemiya is still true for non-compactly supported
vector fields. As a consequence of Theorems 1.3 and 2.10 we have

Theorem 2.11. Let G(M) and G(N) be modular and non-fixing groups of
diffeomorphisms of manifolds M and N , resp. If there is an isomorphism
ϕ : G(M)0 → G(N)0 then there is a unique foliation preserving diffeomorphism
τ : M → N such that ϕ(g) = τ ◦ g ◦ τ−1 for every g ∈ G(M). Here we refer
to the foliations FG(M) and FG(N).

Proof. In view of Theorem 1.3 it is clear the existence of a homeomorphism
τ : M → N such that ϕ(g) = τ ◦ g ◦ τ−1 for every g ∈ G(M). Moreover it follows
from the definition of the foliations FG(M) and FG(N) that τ is foliation preserving.

Next we prove the uniqueness of τ . Let τ̄ be another bijection such that
ϕ(g) = τ̄ gτ̄−1 for all g ∈ G(M). Assume that τ 6= τ̄ and put χ = τ̄−1τ 6= id.
We have χgχ−1 = g for any g ∈ G(M). There is an x ∈ M such that y = χ(x) 6= x.
Let z ∈ Lx, z 6= x, z 6= y, and let y, z lie in the same component of Lx − {x}
whenever dim(Lx) = 1. Then one can find f from the isotropy subgroup of G(M)
at x such that f(y) = z. Therefore χfχ−1(y) = χf(x) = χ(x) = y and f(y) =
z 6= y, a contradiction.

It remains to show that τ (and by symmetry τ−1) is smooth. To this end we
will apply Theorem 2.10.

We wish to define a Lie algebra isomorphism Ψ : g(M) → g(N), where g(M)
and g(N) are the Lie algebra of G(M) and G(N), resp. In fact, Ψ induces a dif-
feomorphism ψ : M → N satisfying ψ∗ = Ψ. On the other hand, the definition of
Ψ below implies τ∗ = Ψ. Thus τ = ψ and τ is a diffeomorphism.

Let X ∈ g(M) and let gt be its one parameter group of diffeomorphisms.
Consider ht = τgtτ

−1. Then the ht’s are C∞-diffeomorphisms and they obviously
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satisfy ht+s = hths and h0 = id. Since the action of R on N by (t, x) 7→ ht(x) is
continuous, in view of a well known theorem of Bochner and Montgomery [4], it
is C∞-smooth in both variables. Therefore, it is a one parameter transformation
group of an element of X(N), say Ψ(X).

Then we have the following equality

(2.2) (Ψ(X)u) ◦ τ = X(u ◦ τ) ∀u ∈ C∞(N), ∀X ∈ g(M).

This implies also that the right hand side of (2.2) is meaningful for any u and
X. In fact, let gt and ht = τgtτ

−1 be the one-parameter transformation groups
of X and Ψ(X), resp. Then (u ◦ τ ◦ gt)(x) = (u ◦ ht ◦ τ)(x) for any x ∈ M and
the derivative d

dt
(u ◦ τ ◦ gt)(x)|t=0 exists. Therefore

X(u ◦ τ) =
d

dt
(u ◦ τ ◦ gt)|t=0 =

d

dt
(u ◦ ht)|t=0 ◦ τ = (Ψ(X)u) ◦ τ.

By iterating the above we have also (Ψ(X1)Ψ(X2)u) ◦ τ = X1(X2(u ◦ τ)).
It follows easily from the above equalities that Ψ is a homomorphism. By

uniqueness, ϕ−1 must determine the homeomorphism τ−1. Consequently, the re-
spective mapping from g(N) to g(M) is the inverse of Ψ. Thus Ψ is a Lie algebra
isomorphism. This completes the proof.

Corollary 2.12. Let FM and FN be foliations on manifolds M and N , resp.
If there is an isomorphism ϕ : Diff∞(M,FM)0 → Diff∞(N,FN)0 then there is
a foliation preserving diffeomorphism τ : M → N such that ϕ(g) = τ ◦ g ◦ τ−1 for
every g ∈ Diff∞(M,FM)0.

Conjecture 2.13. By a standard argument using approximation theorems (cf. [6])
one has Diffr(Rn)0 = Diffr(Rn)c, where 1 ≤ r ≤ ∞. Now, let 0 < k < n and
let Fn−k be a foliation on Rn−k with L0 = {0}. Then F = {Rk × L}L∈Fn−k

is
a foliation on Rn. Note that in light of a splitting theorem by P. Dazord [5] every
foliation on a manifold assumes locally this form.

Now our conjecture is that Diffr(Rn,F)0 = Diffr(Rn,F)c in view of a possible
“foliated” adaptation of the proof of an approximation theorem (this is beyond the
scope of this note). As a consequence we would obtain the factorization property
and the reconstruction theorem for Diffr(Rn,F)c; that is, we could detect from the
algebraic structure of Diffr(Rn,F)c the dimension k and the foliation F .

3 Hamiltonian group of a Poisson manifold

The reconstruction problem in case of Poisson structures has been studied by
one of us in [14] but here we use a different definition of the Hamiltonian group
(by using regularity) and the resulting group is possibly larger and more natural
than that in [14].
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Poisson structures are nontransitive generalizations of symplectic structures.
A Poisson structure on a manifold M can be introduced by a 2-vector Λ on M
such that [Λ, Λ] = 0, where [., .] is the Schouten-Nijenhuis bracket (see [17]).
In general, the rank of Λx varies but it is even everywhere. The ring of the real
smooth functions on M , C∞(M), admits a Lie algebra structure by means of the
bracket

(3.1) {u, v} = Λ(du, dv) for any u, v ∈ C∞(M)

and every adjoint homomorphism of this bracket is a derivation of C∞(M), that
is the Leibniz rule is satisfied

(3.2) {u, vw} = v{u,w}+ w{u, v}.
Equivalently, any 2-linear bracket on C∞(M) verifying (3.2) and the Jacobi

rule defines uniquely a Poisson structure Λ by (3.1).
We have the ‘sharp’ bundle homomorphism associated with Λ

] : Ω1(M) → X(M), σ(ρ]) = Λ(ρ, σ),

for any 1-forms ρ, σ ∈ Ω1(M), where ρ] = ](ρ). In the case where Λ is nonde-
generate (i.e. rank(Λ) = dim(M)), ] is an isomorphism and we get a symplectic
structure. In general, the distribution ](T ∗

xM), x ∈ M , integrates to a generalized
foliation F(Λ) such that Λ restricted to any leaf induces a symplectic structure.
The symplectic form living on L ∈ F(Λ) will be denoted by ωΛ

L .
A smooth mapping f of (M, Λ) into itself is called a Poisson morphism if

{u ◦ f, v ◦ f} = {u, v} ◦ f for any u, v ∈ C∞(M). Let Diff∞(M, Λ) be the group
of all Poisson diffeomorphisms of (M, Λ) which are leaf preserving with respect
to F(Λ). We will show that Diff∞(M, Λ)c is a regular group.

Recall that a vector field X is an infinitesimal automorphism of (M, Λ) if
[Λ, X] = 0, that is if LXΛ = 0, where L is the Lie derivative. By X(M, Λ)c we
denote the Lie algebra of all infinitesimal automorphisms of (M, Λ) with com-
pact support and tangent to F(Λ). Next, let X∗(M, Λ) be the ideal of X(M, Λ)
of all Hamiltonian vector fields, i.e. X ∈ X∗(M, Λ) iff there exists a compactly
supported u ∈ C∞(M) such that X = [Λ, u] or, equivalently, X = (du)]. We have
the inclusion [X(M, Λ), X(M, Λ)] ⊂ X∗(M, Λ) as a consequence of the equality
[X1, X2] = [Λ, u], where u is defined by u(x) = ι(X1(x) ∧X2(x))ωΛ

Lx
(cf. [9]) .

Proposition 3.1. Let (M, Λ) be an arbitrary Poisson manifold. Suppose that ft

is a compactly supported smooth path with f0 = id and Xt is the corresponding
path in X(M)c given by (2.1). Then ft ∈ Diff∞(M, Λ)0 for each t if and only
if Xt ∈ X(M, Λ)c for each t.

Proof. By restricting ft to a leaf L and using the equality

∂

∂t
(f ∗t ωt) = f ∗t

(
Lḟt

ωt +
∂

∂t
ωt

)
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we have

d

dt
f ∗t ωΛ

L = f ∗t (LXtω
Λ
L) = f ∗t (ι(Xt)dωΛ

L + d(ι(Xt)ω
Λ
L)) = f ∗t d(ι(Xt)ω

Λ
L).

It follows that the claim is true on any leaf, and consequently so is on M .

A smooth path satisfying Proposition 3.1 is called a Poisson isotopy. A Pois-
son isotopy ft is Hamiltonian if the corresponding Xt ∈ X∗(M, Λ)c for each t.
A diffeomorphism f of (M, Λ) is called Hamiltonian if there exists a Hamilto-
nian isotopy ft such that f0 = id and f1 = f . The totality of all Hamiltonian
diffeomorphisms is denoted by H(M, Λ). It is obvious that H(M, Λ)0 = H(M, Λ).

Proposition 3.2. H(M, Λ) is a normal subgroup of Diff∞(M, Λ)c. Moreover,
H(M, Λ) is a regular group with Lie algebra X∗(M, Λ)c.

Proof. First we show that H(M, Λ) satisfies the group axioms. Let ft, gt be
Hamiltonian isotopies, that is ḟt = (dut)

], ġt = (dvt)
] for some smooth families

of C∞-functions ut and vt. Then ft ◦ gt is still a Hamiltonian isotopy with the
corresponding smooth path in X∗(M, Λ) being (d(ut + vt ◦ f−1

t ))], (cf. [8]). Fur-
thermore, we have that f−1

t is Hamiltonian as well with the corresponding smooth
path (d(−ut ◦ ft))

]. Therefore H(M, Λ) is a group.
Next, if ft is a Hamiltonian isotopy as above and g is a Poisson diffeomorphism

then g−1◦ft◦g is also Hamiltonian with the corresponding smooth path (d(ut◦g))].
This means that H(M, Λ) is a normal subgroup of Diff∞(M, Λ)c. The second
assertion is trivial.

Lemma 3.3. Let X ∈ X∗(M, Λ)c with supp(X) ⊂ ⋃k
i=1 Ui, where the Ui are

open. Then there is a decomposition X = X1 + · · ·+Xk such that Xi ∈ X∗(M, Λ)c

and supp(Xi) ⊂ Ui. The same is true for smooth curves in X∗(M, Λ)c instead
of elements of X∗(M, Λ)c.

The proof is a consequence of the definition of X∗(M, Λ). Although X∗(M, Λ)c

is not modular, Lemma 3.3 combined with [10], chapter X, enable us to prove the
following analogue of Theorem 2.10.

Theorem 3.4. Let (M, ΛM) and (N, ΛN) be Poisson manifolds with no leaves
of dimension zero. If there is a Lie algebra isomorphism Ψ : X∗(M, ΛM)c →
X∗(N, ΛN)c then there is a foliation preserving diffeomorphism ψ : M → N such
that ψ∗ = Ψ and ψ∗ΛM = µΛN for some nowhere vanishing function µ ∈ C∞(M)
which is constant on leaves.

Another consequence of Lemma 3.3 is the fragmentation property forH(M, Λ).

Proposition 3.5. Let f ∈ H(M, Λ) and M =
⋃k

i=1 Ui, where the Ui are open
balls. Then there exist fj ∈ H(M, Λ), j = 1, . . . , l, with f = f1 ◦ . . . ◦ fl such that
supp(fj) ⊂ Ui(j) for all j. The same is true for isotopies in H(M, Λ).
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The proof exploits the correspondence between isotopies in H(M, Λ) and
smooth curves in X∗(M, Λ)c given by (2.1) and is similar to that of Proposition
2.9.

Theorem 3.6. Let (M, ΛM) and (N, ΛN) be Poisson manifolds with no leaves
of dimension 0. If there is an isomorphism ϕ : H(M,FM) → H(N,FN) then
there is a unique foliation preserving diffeomorphism τ : M → N such that ϕ(g) =
τ ◦ g ◦ τ−1 for every g ∈ H(M,FM) and τ∗ΛM = µΛN for some nowhere vanishing
function µ ∈ C∞(M) which is constant on leaves.

Proof. The existence of τ is an immediate consequence of Theorem 1.3 and Propo-
sition 3.5. The proof of the uniqueness of τ is analogous to that in the proof
of Theorem 2.11. In the remaining part of the proof we follow the proof of Theo-
rem 2.11 and we use Theorem 3.4.

The following fact can be proved in a “traditional” way ([2], [13]), but here is
a consequence of the above results and Theorem 1.3 in [3].

Corollary 3.7. Let (M, ωM) and (N,ωN) be symplectic manifolds and let
Diff∞(M, ωM) and Diff∞(M, ωN) be the corresponding symplectomorphism groups.
If there is an isomorphism ϕ : Diff∞(M, ωM) → Diff∞(N, ωN) then there is a dif-
feomorphism τ : M → N such that ϕ(g) = τ ◦ g ◦ τ−1 for every g ∈ Diff∞(M, ωM)
and τ ∗ωN = CωM for some constant C.

A possible reconstruction theorem for the group of Poisson diffeomorphisms
(even if the Poisson structure is regular) is still an open and probably difficult
problem.
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118, Birkhäuser 1994.

Agnieszka Kowalik
e-mail: kowalik@wms.mat.agh.edu.pl
Ilona Michalik
e-mail: imichali@wms.mat.agh.edu.pl
Tomasz Rybicki
e-mail: tomasz@uci.agh.edu.pl

Faculty of Applied Mathematics
AGH University of Science and Technology
al. Mickiewicza 30
30-059 Krakow
Poland
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Bernoulli-Taylor formula in the case of Q-umbral Calculus 1

by Ewa Krot-Sieniawska

Abstract

In this note we derive the Q-difference Bernoulli-Taylor formula with
the rest term of the Cauchy form by the Viskov’s method [1]. This is
an extension of technique presented in [5, 6, 7] by the use of Q-extended
Kwaśniewski’s ∗ψ-product [3, 4]. The main theorems of Q-umbral cal-
culus were given by G. Markowsky in 1968 (see [2]) and extended by
A.K.Kwaśniewski [3, 4].

Mathematics Subject Classification. 17B01, 17B35, 33C45.

Keywords. Generalized differential operator, ∗Q-product, Q-integral.

1 Introduction - Q-umbral calculus

We shall denote by P the algebra of polynomials over the field F of characteristic
zero.

Let us consider a one parameter family F of sequences. Then a sequence ψ is
called admissible ([3, 4]) if ψ ∈ F . Where

F = {Ψ : R ⊃ [a, b]; q ∈ [a, b] : Ψ(q) : Z→ F; Ψ0(q) = 1, Ψn(q) 6= 0,

Ψ−n(q) = 0, n ∈ N}.
Now let us to introduce the Ψ-notation [3, 4]:

nψ = Ψn−1(q)Ψ
−1
n (q);

nψ! = nψ(n− 1)ψ · · · 2ψ1ψ = Ψ−1
n (q),

nk
ψ = nψ(n− 1)ψ · · · (n− k + 1)ψ,

(
n

k

)

ψ

=
nk

ψ

kψ!
,

expψ{y} =
∞∑

k=0

yk

kψ!
.

1Received: October 31, 2007
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Definition 1.1. [2, 3] Let Q be a linear map Q : P → P such that:

∀p∈P deg(Qp) = (deg p)− 1,

deg p=−1 means p=const=0. Then Q is called a generalized differential operator
[2].

Definition 1.2. [2] A normal sequence of polynomials {qn(x)}n≥0 has the follow-
ing properties:

(a) ∀n≥0 deg qn(x) = n;

(b) ∀x∈F q0(x) = 1 ;

(c) ∀n≥1 qn(0) = 0 .

Definition 1.3. [2, 3] Let {qn(x)}n≥0 be the normal sequence of polynomials.
Then we call it the ψ-basic sequence of the generalized differential operator Q (or
Q−ψ−basic sequence) if:

∀n≥0 Qqn(x) = nψqn−1(x).

In [2] it is shown that once a differential operator Q is given a unique ψ-basic
polynomial sequence is determined and the other way round: given a normal
sequence {qn(x)}n≥0 there exists a uniquely determined generalized differential
operator Q.

Definition 1.4. [2, 3] The x̂Q-operator (Q-multiplication operator, the operator
dual to Q ) is the linear map x̂Q : P → P such that:

∀n≥0 x̂Qqn(x) =
n + 1

(n + 1)ψ

qn+1(x).

Note that: [Q, x̂Q] = id.

Definition 1.5. [3] Let {qn(x)}n≥0 be a Q−ψ−basic sequence. Let

Ey
q (Q) = Ey(Q) = expQ, ψ{yQ} =

∞∑

k=0

qk(y)Qk

kψ!
.

Ey
q (Q) = Ey(Q) is called the Q−ψ−generalized translation operator.

As was announced in [5, 7], the notion of Kwaśniewski’s ∗ψ product and its
properties presented in [3] can be easily Q-extended as follows.
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Definition 1.6. [3]

x ∗Q qn(x) = x̂Q(qn(x)) =
n + 1

(n + 1)ψ

qn+1(x), n ≥ 0

xn ∗Q qn(x) = (x̂n
Q)(q1(x)) =

(n + 1)!

(n + 1)ψ!
qn+1(x), n ≥ 0

Therefore

x ∗Q α1 = x ∗Q αq0(x) = x̂Q(αq0(x)) = αx̂Q(q0(x)) = αx ∗Q 1

and
f(x) ∗Q qn(x) = f(x̂Q)qn(x)

for every formal series f (f ∈ F[[x]]).

Definition 1.7. According to definition above and [3] we can define Q-powers of
x by recurrence relation:

x0∗Q = 1 = q0(x)

xn∗Q = x ∗Q (x(n−1)∗Q) = x̂Q(x(n−1)∗Q).

It is easy to show that:

xn∗Q = x ∗Q x ∗Q . . . ∗Q 1 =
n!

nψ!
qn(x), n ≥ 0.

Also note that:

xn∗Q ∗Q xk∗Q =
n!

nψ!
qk+n(x)

and

xk∗Q ∗Q xn∗Q =
k!

kψ!
qk+n(x)

so in general i.e. for arbitrary admissible ψ and for every {qn(x)}n≥0 it is non-
commutative.

Due to definition above one can prove the following Q-extended properties of
Kwaśniewski’s ∗ψ product [3, 4].

Proposition 1.8. Let f, g be formal series, (f, g ∈ F[[x]]). Then for ∗Q defined
above holds:

(a) Qxn∗Q = nx(n−1)∗Q , n ≥ 0;

(b) expQ,ψ[αx] = exp{αx̂Q}1, where expQ, ψ{αx} =
∑

k≥0

qk(x)αk

kψ !
;

(c) Q(xk ∗Q xn∗Q) = (Dxk) ∗Q xn∗Q + xk ∗Q (Qxn∗Q);
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(d) Q(f ∗Q g) = (Df) ∗Q g + f ∗Q (Qg), (Q-Leibnitz rule);

(e) f(x̂Q)g(x̂Q)1 = f(x) ∗Q g̃; g̃(x) = g(x̂Q)1.

According to [2, 3], let us to define Q-integration operator which is a right
inverse operation to generalized differential operator Q i.e.:

Q ◦
∫

dQt = id.

Definition 1.9. We define Q-integral as a linear operator such that
∫

qn(x)dQx =
1

(n + 1)ψ

qn+1(x); n ≥ 0.

Proposition 1.10.

(a) Q ◦ ∫ x

α
f(t)dQt = f(x);

(b)
∫ x

α
(Qf)(t)dQt = f(x)− f(α);

(c) formula for integration ”per partes” :

∫ β

α

(f ∗Q Qg)(x)dQx = [(f ∗Q g)(x)]βα −
∫ β

α

((Df) ∗Q g)(x)dQx.

2 Q-umbral calculus Bernoulli-Taylor formula

In [1] O.V.Viskov establishes the following identity

(2.1) p̂

n∑

k=0

(−q̂)kp̂k

k!
=

(−q̂)np̂n+1

n!

what he calls the Bernoulli identity. Here p̂, q̂ stand for linear operators satisfying
condition:

(2.2) [p̂, q̂] = p̂q̂ − q̂p̂ = id.

Now let p̂ and q̂ be as below:

p̂ = Q, q̂ = x̂Q − y, y ∈ F.

From definition (1.4) we have [Q, x̂Q − y] = id. After substitution into (2.1) we
get:

Q

n∑

k=0

(y − x̂Q)kQk

k!
=

(y − x̂Q)nQn+1

n!
.
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Now let us apply it to any polynomial (formal series) f :

Q

n∑

k=0

(y − x̂Q)k(Qkf)(t)

k!
=

(y − x̂Q)n(Qn+1f)(t)

n!
.

Now using definitions (1.6) and (1.7) of ∗Q-product we get:

Q

n∑

k=0

(y − x)k∗Q ∗Q (Qkf)(t)

k!
=

(y − x)n∗Q ∗Q (Qn+1f)(t)

n!
.

After integration
∫ x

y
dQt using proposition (1.2) it gives Q-difference calculus

Bernoulli-Taylor formula of the form:

(2.3) f(x) =
n∑

k=0

1

k!
(x− y)k∗Q ∗Q (Qkf)(y) + Rn+1(x)

where Rn+1 stands for the rest term of the Cauchy type :

(2.4) Rn+1(x) =
1

n!

∫ x

y

(x− t)n∗Q ∗Q (Qn+1f)(t)dψt.

3 Special cases

1. An example of generalized differential operator is Q ≡ ∂ψ. Then qn = xn

and ∂ψxn = nψxn−1 for an admissible ψ. ∂ψ is called ψ-derivative. Then

also x̂Q ≡ x̂ψ and x̂ψxn = (n+1)
(n+1)ψ

xn+1 and [∂ψ, x̂ψ] = id. In this case we get

∂ψ -difference calculus Bernoulli-Taylor formula presented in [5, 6, 7] of the
form

f(x) =
n∑

k=0

1

k!
(x− α)k∗ψ ∗ψ (∂k

ψf)(α) + Rn+1(x)

with

Rn+1(x) =
1

n!

∫ x

α

(x− t)n∗ψ ∗ψ (∂n+1
ψ f)(t)dψt.

In [3] there is given a condition for the case Q = Q(∂ψ) for some admissible
ψ, (see Section 2, Observation 2.1).

2. For Q = ∂ψ, qn(x) = xn, n ≥ 0 the choice ψn(q) = 1
[R(qn)]!

, R(x) = 1−x
1−q

gives the well known q-factorial nq! = nq(n − 1)q . . . 2q1q, for nq = 1 + q +
q2 + . . . + qn−1. Then ∂ψ = ∂q becomes the well known Jackson’s derivative
∂q:

(∂qf)(x) =
f(x)− f(qx)

(1− q)x

The ∂q-difference version of the Bernoulli-Taylor formula was given in [5] by
the use of ∗q-product.
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3. By the choice Q ≡ D ≡ d
dx

, qn(x) = xn and ψn = 1
n!

after substitution to
(2.3), (2.4) we get the classical Bernoulli-Taylor formula of the form:

f(x) =
n∑

k=0

(x− α)k

k!
f (k)(α) +

∫ x

α

(x− t)n

n!
fn+1(t)dt

where f (k)(α) = (Dkf)(α).
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[7] A.K. Kwaśniewski, More on Bernoulli-Taylor formula for extended umbral
calculus, Advances in Applied Clifford Algebras, Vol. 16 (1) 2006, pp. 29-39.

Ewa Krot-Sieniawska
Institute of Computer Science, University in BiaÃlystok
PL-15-887 BiaÃlystok, ul.Sosnowa 64, POLAND
e-mail: ewakrot@wp.pl
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On the pseudoharmonic functions1

by Iryna Yurchuk

Abstract

We will obtain the conditions for pseudoharmonic functions defined on
a disk to be topologically equivalent in term of their invariant that is a
finite connected graph with a strict partial order on vertices. The inverse
problem of the realization of a graph as a combinatorial invariant of such
functions will be solved.

1 Introduction

In [1, 2, 3, 9] the conditions for a topological equivalence of functions, flows,
and other structures on manifolds were obtained. Almost all of such solutions
are formulated by using their invariants which are some combinatorial objects
(graphs, chord diagrams, shakes etc.) For example in [2] the authors constructed
spin graphs that were used for the classification of Morse-Smale flows on closed
surfaces. In this note we use the so called combinatorial diagrams (being graphs
with additional data) for the classification of pseudoharmonic functions on 2-disk.

Let D2 ⊂ C be a oriented closed 2−disk and f : D2 → R be a pseudoharmonic
function. Recall that a function f is pseudoharmonic if there is a preserving orien-
tation homeomorphism ϕ of a domain D2 onto itself such that f ◦ ϕ is harmonic.

Let us characterize all types of points of IntD2 and ∂D2.
A point z0 ∈ IntD2 is called a regular point of f if there is a U(z0) in which

f equals to f = Rez + f(z0), otherwise z0 is critical.
A point z0 ∈ ∂D2 is called a boundary regular point of f if there exist U(z0) ∈

D2 and a homeomorphism h : U → D2
+ of it onto a semidisk D2

+ = D2 ∩ (R ×
[0, +∞)) such that a function h ◦ f ◦ h−1 : D2

+ → R equals to Rez + f(z0).
Points of ∂D2 that are neither regular nor isolated points of their level curves

will be called boundary critical.
A value c of f is called critical (regular) if the connected components of level

curves of f−1(c) contain critical points (don’t contain critical points and are home-
omorphic to a disjoint union of segments that intersect the ∂D2 in their endpoints).

Definition 1.1. A value c of f is semiregular if it is neither regular nor critical.

1Received: October 31, 2007
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It is known that the level curves of a critical value of a pseudoharmonic function
are trees (in general, a disjoint union of trees) [4].

By f |∂D2 we denote a restriction of f on the boundary ∂D2. We will be
interested in a case when f |∂D2 has a finite number of local extrema. In other
words, the pseudoharmonic function defined on D2 ⊂ C is a continuous function
satisfying the following conditions [4, 5, 6, 8]:

• f |∂D2 is a continuous function with a finite number of local extrema;

• f has a finite number of critical points in the interior of a disk and each of
them is a saddle point (in the neighborhood of them the function f has a
representation like f = Rezn + const, n ≥ 2, where z = x + iy).

At first we will construct its combinatorial invariant (called a combinatorial dia-
gram) and formulate a necessary and sufficient condition of a topological equiva-
lence of such function. After that we will be interested in the converse problem.
Suppose we are given a graph, to which conditions it should satisfy to be a com-
binatorial invariant of a pseudoharmonic function.

Let us recall some definitions. We will say that f, g : D2 → R are topologically
equivalent if there exist preserving orientation homeomorphisms h1 : D2 → D2

and h2 : R→ R such that f = h−1
2 ◦ g ◦ h1.

By a graph G we mean a topological graph (i.e., a CW - complex with 0 and
1 – cells, where 0−cells are its vertices and 1− cells are its edges). Let T be a tree
(i.e., a CW−complex such that it does not contain cycles). Denote by V the set
of its vertices and by Vter(T ) the subset of V consisting of all terminal vertices.
A disjoint union of trees is called a forest and denoted by F =

⋃
i

Ψi, where every

Ψi is a tree. By a path P (vi, vk) which connects vertices vi and vk of G we mean
a sequence of edges ej such that each of them belongs to it once. It is known
that for any two vertices of a tree there is a unique path connecting them. Two
vertices of a graph are adjacent if they are the ends of the same edge. A graph G
is embedded into R2 if there exists a bijection φ : G → R2 such that two points
φ(x) and φ(y) are joined by a segment iff x and y are joined by an edge of G and
no two distinct open segments have a point in common.

2 Theorem of a topological equivalence

Since a disk is a manifold with a boundary and the problem of a construction of
a invariant of such manifolds is unsolved we need to obtain a special structure.

First construct the Kronrod-Reeb graph (ΓK−R) of f |∂D2 . ΓK−R(f |∂D2) is
isomorphic to a circle with even number of vertices. Then, we add to ΓK−R(f |∂D2)

collections of connected components f̂−1(ai) ⊆ f−1(ai) and f̂−1(ci) ⊆ f−1(ci)
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which contain only critical and boundary critical points, where every ai is a critical
value and every cj is a semiregular value. Put

P (f) = ΓK−R(f |∂D2)
⋃
i

f̂−1(ai)
⋃
j

f̂−1(cj),

where every ai (cj) is a critical value (a semiregular value). By using the values
of f , we can put a partial order on vertices of P (f) in the following way: v1 >
v2 ⇐⇒ f(x1) > f(x2), where v1, v2 ∈ P (f), and x1, x2 ∈ D2 are the corresponding
points of vertices v1, v2. If f(x1) = f(x2) then v1 and v2 are non comparable.

Since this partial order is irreflexive, asymmetric, and transitive, it is the strict
partial order.

The graph P (f) with a strict partial order will be called the combinatorial
diagram of f .

Definition 2.1. A subgraph q(f) of P (f) will be called a Cr – subgraph if it
satisfies the following conditions:

• q(f) is a simple cycle;

• every pair of adjacent vertices vi, vi+1 ∈ q(f) is comparable.

It is easy to show that P (f) has the following properties:

A1) there exists a Cr-subgraph q(f) ∈ P (f);

A2) P (f) \ q(f) is a disjoint union of finitely many subtrees Ψ1, Ψ2, . . . , Ψn such
that for every i any two vertices v′, v′′ ∈ Ψi are non comparable;

A3) there is an embedding ψ : P (f) → D2 such that ψ(P (f)) ⊂ D2, ψ(q(f)) =
∂D2, and ψ(P (f) \ q(f)) ⊂ IntD2;

A4) a set Θ = D2\ψ(P (f)) is a disjoint union of θi such that every θi is a simply
connected domain and ∂θi contains either one or two arcs of ∂D2.

By A1 and A2 a Cr-subgraph is unique. The following lemma holds true.

Lemma 2.2. If P (f) ⊂ R3 is a diagram of a pseudoharmonic function f then an
embedding ψ such that ψ(P (f)) ⊂ D2, ψ(q(f)) = ∂D2 and ψ(P (f)\q(f)) ⊂ IntD2

is unique up to homeomorphism of D2 onto itself.

Theorem 2.3. Two pseudoharmonic functions f and g are topologically equiv-
alent iff there exists a preserving order isomorphism between their combinatorial
diagrams ϕ : P (f) → P (g).
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Proof. Necessity. Suppose that two pseudoharmonic functions f : D2 → R and
g : D2 → R are topologically equivalent and let P (f), P (g) be their diagrams. By
Lemma 2.2 for P (f) (P (g)) there exists a unique embedding ψ1 (ψ2) such that
ψ1(P (f)) ⊂ D2 (ψ2(P (g)) ⊂ D2). Then we put ϕ = ψ−1

2 ◦ h1 ◦ ψ1.
Sufficiency. Let ϕ : P (f) → P (g) be a preserving order isomorphism. We will

construct a homeomorphism h1 : D2 → D2 such that f = g ◦ h1. Notice that
f |∂D2 = g ◦ ϕ|∂D2 , therefore we may define h1 on ∂D2 by ϕ|∂D2 .

By Lemma 2.2 let consider an embedding ψ1 (ψ2) of P (f) ∈ R3 (P (g) ∈ R3).
In accordance with A4 a homeomorphism h1 = ψ2 ◦ ϕ ◦ ψ−1

1 is defined on the
boundary of θi (θ′j). Then there exists an extension of h1 to the interior of D2

such that f = g ◦ h1.

Figure 1: Diagrams of two topologically nonequivalent pseudoharmonic functions.

In Figure 1 on the right a boundary critical point lies between 0 and 2 but on
the left between 0 and 1.

3 Realization of a graph as the diagram of a

pseudoharmonic function

At first we recall that a nonempty set X is called a cyclically ordered set if there
is a ternary relation C on the set X with the following propeties:

1) if C(x, y, z) then x 6= y 6= z 6= x;

2) if x 6= y 6= z 6= x then either C(x, y, z) or C(x, z, y) is true;

3) if C(x, y, z) then C(y, z, x);

4) if C(x, y, z) and C(x, z, t) then C(x, y, t).
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Two elements are neighboring with respect to a fixed cyclic order C if for any x 6=
x′, x′′ we have either C(x′, x′′, x) or C(x′′, x′, x). Let fix a subset V ∗ of vertices of a
tree T such that Vter(T ) ⊆ V ∗ ⊆ V and put a cyclic order on them. The notation
C(vj1 , vj2 , ..., vjk

) means that C(vj1 , vj2 , ..., vjk
) = C(vjk

, vj1 , vj2 , ..., vjk−1
) = . . . =

C(vj2 , ..., vjk
, vj1), where vji

6= vjk
, k 6= i, vji

∈ V ∗.

Definition 3.1. A tree T with a fixed cyclic order of vertices vi ∈ V ∗ is called a D-
planar if there exists an embedding ϕ such that ϕ(T ) ⊂ D2, ϕ(V ∗) ⊂ ∂D2, ϕ(T \
V ∗) ⊂ IntD2, C(vj1 , vj2 , ..., vjk

)= C(ϕ(vj1), ϕ(vj2), ..., ϕ(vjk
)), where a cyclic order

C(ϕ(vj1), ϕ(vj2), ..., ϕ(vjk
)) is generated by the orientation of ∂D2 and Vter(T ) ⊆

V ∗ ⊆ V .

The next theorem is a criteria of the D-planarity of a tree.

Theorem 3.2. If ]V ∗ = 2 then a tree T is a D-planar.
If ]V ∗ ≥ 3 then the D-planarity of a tree T is equivalent to the following

condition that has to be satisfied: for every edge e there are exactly two paths in
T such that they pass through an edge e and connect adjacent vertices of V ∗.

We leave the proof to the reader.
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Figure 2: On the right a tree is not a D– planar.

Let G be a finite connected graph with a strict partial order and every of its
vertex has a degree greater than 1.

Definition 3.3. A simple cycle γ ⊂ G will be called a Cr – cycle if every pair of
adjacent vertices of γ are comparable.
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Suppose that for a graph G the following conditions hold:

C1) a graph G has a unique Cr-cycle γ;;

C2) G \ γ = F =
k⋃

i=1

Ψi where F is a forest such that

• any two vertices vj and vk of every connected component Ψi ⊂ F are
non comparable;

• for any vertex v ∈ G \ γ it is true that deg(v) = 2s ≥ 4;

C3) Condition on a strict order for Cr – cycle γ:

for any vertex v of γ and its adjacent vertices v1 and v2 such that v1, v2 ∈ γ
one of the following conditions holds true:

• if deg(v) = 2 then deg(v1) > 2, deg(v2) > 2 and there exists a unique
index i such that v1, v2 ∈ Ψi;

• if deg(v) = 2s > 2 (deg(v) = 2s + 1) then v1 ≶ v ≷ v2 (v1 ≶ v ≶ v2);

C4) Condition on a strict order for G: if for some vertices of G we have that
v < v′ (v > v′) and v′, v′′ ∈ Ψi ⊆ G \ γ then v < v′′ (v > v′′);.

By C2 there exists a nonempty subset of vertices V ∗ of F such that V ∗ ∈ γ. It is
clear that a subset V ∗ of F is divided into subsets V ∗

i such that V ∗ =
⋃
i

V ∗
i and

V ∗
i ⊂ Ψi ⊂ F .

Definition 3.4. A graph G ⊂ R3 satisfying C1 and C2 is called a D−planar if
there exists an embedding ϕ : G → D2 such that ϕ(γ) = ∂D2, ϕ(G \ γ) ⊂ IntD2.

Theorem 3.5. A graph G satisfying C1 and C2 is a D – planar iff every tree Ψi

with a subset of vertices V ∗
i that has a cyclic order defined by γ is a D-planar and

for any index m 6= n a set V ∗
n belongs to a unique connected component of γ \V ∗

m.

Let v1 and v2 be any two vertices v1, v2 ∈ V ∗
i ⊆ Ψi ⊆ G satisfying C1 and C2.

A set γ \ (v1 ∪ v2) consists of a disjoint union of sets γ1 and γ2.

Definition 3.6. A pair of vertices v1, v2 ∈ V ∗
i is called boundary if there exists

an index k such that γk does not contain vertices of a set V ∗
i and at least one

vertex of V ∗ \ V ∗
i belongs to γk, k = 1, 2.

Denoted by ω(v1, v2) a boundary pair and by α a set γk from Definition 3.6.
It is clear that for every vertex vi of ω(v1, v2) there exists an adjacent vertex ṽi

such that ṽi ∈ α where i = 1, 2.

Definition 3.7. A graph G is called special if the following conditions hold:
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S1) G satisfies C1 and C2;

S2) G is a D – planar;

S3) for any boundary pair ω(v1, v2) ∈ V ∗
i the pair ṽ1, ṽ2 belongs to a unique set

V ∗
k , where V ∗

k ⊂ V ∗ \ V ∗
i .

Lemma 3.8. If a graph G is special then the set Θ = D2 \ φ(G) consists of a
disjoint union of domains θi such that every ∂θi contains either one or two arcs
of a boundary ∂D2, where φ : G → D2 is an embedding such that φ(γ) = ∂D2,
φ(G \ γ) ⊂ IntD2.

Definition 3.9. A special graph G is called a ∆ – graph if it satisfies C3.

Let us there are two partial order < and <′ on a set A. We will say that a par-
tial order < can be extended to <′ if a map Id : (A,<) → (A,<′) is monotonous.

Theorem 3.10. If graph is a combinatorial diagram of a pseudoharmonic function
f then G is a ∆ – graph.

If a graph G is a ∆ – graph, then a strict partial order on V (G) can be ex-
tended to one so that a graph G with new partial order on a set of vertices will be
isomorphic to the combinatorial diagram of some pseudoharmonic function f . A
strict partial order of a graph G coincides with a strict partial order of a combi-
natorial diagram P (f) of a pseudoharmonic function f iff G satisfies:

if vertices v′, v′′ are non comparable then from v > v′ follows v > v′′ where
v ∈ G, v 6= v′, v 6= v′′.

We briefly give main ideas of a proof.

Proof. Necessity. This follows from A1-A4.
Sufficiency. Let G be a ∆ – graph. By Definition 3.7 and Lemma 3.8 there

exists an embedding φ : G → D2 such that φ(γ) = ∂D2, φ(G \ γ) = IntD2, and
the set Θ = D2 \ φ(G) consists of a disjoint union of domains θi such that every
∂θi contains either one or two arcs of a boundary ∂D2. For every θi let us define
a foliation:

Case 1: Let θk1 ⊂ Θ and ∂θk1 contains one arc Si ⊂ ∂D2. We consider φ−1(Si).
Since γ is a Cr – cycle satisfying C3, the set φ−1(Si) consists of two edges e1 and
e1 such that they are adjacent to vertex v (its degree equals to 2) and another
their end vertices are non comparable. We define a foliation by curves Γi such that
for any index i it is true that Γi

⋂
Si = xi

1 ∪ xi
2, lim

i→n
Γi = ∂θk1 \ Si, and

⋂
i

Γi = ∅,

Γ0 = ∂ε(φ(v)), where xi
1 ∈ φ−1(e1), xi

2 ∈ φ−1(e2), ε(φ(v)) is a neighborhood of
φ(v) (Figure 3).

Case 2: Let θk2 ⊂ Θ be such that ∂θk2 contains two boundary arcs Sni
⊂ ∂D2

and Smi
⊂ ∂D2. We consider φ−1(Sni

) and φ−1(Smi
). Since γ is Cr – cycle

satisfying C3, the set φ−1(Sni
) (φ−1(Smi

)) consists of an edge e1 (e2) such that its
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Figure 3: A foliation of a domain with one boundary arc.

end vertices are comparable. It is clear that ∂θk1 \ (Sni
∪ Smi

) = λ1 ∪ λ2, where
φ−1(λ1) ∈ Ψl, φ−1(λ2) ∈ Ψk. We define a foliation by curves Γi such that for any
index i it is true that Γi

⋂
Sni

= xi
1, Γi

⋂
Smi

= xi
2 and lim

i→n
Γi = λ2,

⋂
i

Γi = ∅,

Γ0 = λ1, where xi
1 ∈ φ−1(e1), xi

2 ∈ φ−1(e2) (Figure 4).

Figure 4: A foliation of a domain with two boundary arcs.

A family of curves {Γj} is a regular and there exists a continuous function
such that this family is the level curves of it [7]. Therefore for every θi there is
a continuous function fi. Since θi ∩ θj 6= ∅ and fi(x) = fj(x), where x ∈ θi ∩ θj,
there exist a continuous function f such that f |θi

= fi. By C2 all critical points
of IntD2 are saddle.

Let consider the restriction of f onto ∂D2. The points φ(vi) corresponding to
vertices vi such that vi ∈ γ and deg(vi) = 2k are local extrema of it. It is obvious
that there is a finite number of them. By C3 it is easy to prove that after local
minima be next a local maxima on ∂D2.
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Corollary 3.11. Let G is a ∆ – graph. G satisfies C4 iff a strict partial order of
G coincides with a strict partial order of a combinatorial diagram P (f) of some
pseudoharmonic function f corresponding it.
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Hyperspaces of max-plus and max-min convex sets1

by Lydia Bazylevych

Abstract

It is proved that the hyperspace of max-plus convex compact subsets in
a domain U of Rn, n ≥ 2, is homeomorphic to the Q-manifold U×Q×[0, 1),
where Q denotes the Hilbert cube.

1 Introduction

The topology of hyperspaces of compact and closed convex sets was investigated
by many authors. The classical result by Nadler, Quinn and Stavrokas [9] asserts
that the hyperspace of convex compact subsets in Rn, n ≥ 2, (endowed with
the Hausdorff metric) is a contractible Q-manifold. Recall that a Q-manifold
is a manifold modeled on the Hilbert cube Q = [0, 1]ω. The mentioned result
found many applications in convex geometry, for example in the proof that the
hyperspace of all compact strictly convex bodies is homeomorphic to the separable
Hilbert space `2 (see [2]). L. Montejano [8] generalized the mentioned result of
Nadler, Quinn and Stavrokas and proved that, for every open subset U of Rn,
n ≥ 2, the hyperspace of compact convex subsets contained in U is homeomorphic
to the Q-manifold U ×Q× [0, 1).

Let Rmax = R ∪ {−∞}. Given x, y ∈ Rn and λ ∈ R, we denote by x ⊕ y the
coordinatewise maximum of x and y and by λ¯ x the vector obtained from x by
adding λ to every its coordinate. A subset A in Rn is said to be max-plus convex
if α ¯ a ⊕ β ¯ b ∈ A for all a, b ∈ A and α, β ∈ Rmax with α ⊕ β = 0 (see Fig.
1, which demonstrates that, even in the two-dimensional case, the geometry of
max-convex sets is reacher then that of convex sets; in particular, there are three
types of segments in this case).

The max-plus convexity (or tropical convexity, in another terminology) is a
natural counterpart of convexity in the so-called idempotent mathematics; see,
e.g., [7]. A related notion of B-convex set is considered in [3].

We denote by mpcc(Rn) the hyperspace of all nonempty max-plus convex
compact subsets in Rn. Note that every max-plus convex compact subset in
Rn is a subsemilattice of in Rn with respect to the operation ⊕. In particular,
max A ∈ A, for any max-plus convex compact subset A in Rn.

1Received: November 1, 2007
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Figure 1: A max-plus convex set and typical segments in the plane

The aim of this paper is to show that there exists a max-plus counterpart
of the Montejano theorem. We prove that the hyperspace of max-plus convex
compact sets in an open set U of Rn, n ≥ 2, is the Q-manifold U ×Q× [0, 1).

In order to keep a reasonable length of this publication we only outline the
proofs and omit technical details. They will appear elsewhere.

2 Preliminaries

If a ∈ Rn, we write a = (a1, . . . , an). We endow Rn with the L∞-metric d,
d(a, b) = maxi |ai − bi|. The set Rmax is endowed with the metric %, %(x, y) =
|ex − ey| (convention: e−∞ = 0).

By exp X we denote the set of all nonempty compact subsets of a metric space
(X, d). We endow exp X with the Hausdorff metric dH :

dH(A,B) = inf{ε > 0 | A ⊂ Oε(B), B ⊂ Oε(A)}
(hereafter, Or(C) denotes the r-neighborhood of C ∈ exp X; also, by Ōr(C)
we denote the closed r-neighborhood of C). We denote by max the maximum
operation in Rn. Note that, for any nonempty compact subset A in Rn, the
element max(A) is well-defined.

Lemma 2.1. The maximum map max: mpcc(Rn) → Rn is continuous.

Proof. Suppose that A,B ∈ mpcc(Rn) and dH(A,B) = ε ≥ 0. Let max(A) =
(p1, . . . , pn), max(B) = (q1, . . . , qn). Suppose that d(max(A), max(B)) > ε. With-
out loss of generality, we may assume that qi > pi + ε, for some i. Then
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Oqi−pi
(max(B)) does not intersect A, whence dH(A,B) ≥ qi − pi > ε. The

obtained contradiction demonstrates that d(max(A), max(B)) ≤ dH(A,B). Thus
dH is nonexpanding and therefore continuous.

Note also that max(A) ∈ A, for every A ∈ mpcc(Rn).
For any subset U of Rn, by mpcc(U) we denote the set

{A ∈ mpcc(Rn) | A ⊂ U}.

Recall that a map is said to be proper if the preimage of any compact subset
is compact.

By AR (respectively ANR) we denote the class of absolute (neighborhood)
retracts for the class of metrizable spaces.

The following notion is introduced in [6]. A c-structure on a topological space
X is an assignment to every nonempty finite subset A of X a contractible subspace
F (A) of X such that F (A) ⊂ F (A′) whenever A ⊂ A′. A pair (X,F ), where F
is a c-structure on X is called a c-space. A subset E of X is called an F -set if
F (A) ⊂ E for any finite A ⊂ E. A metric c-space (X, d) is said to be a metric
l.c.-space if all the open balls are F -sets and all open r-neighborhoods of F -sets
are also F -sets. It is known (see [6]) that any complete metric l.c.-space is an
absolute retract.

We say that a metric space X satisfies the disjoint approximation property
(DAP) if for every continuous function ε : X → (0,∞) there exist continuous
maps f1, f2 : X → X such that d(fi(x), x) < ε(x), for every x ∈ X, i = 1, 2, and
f1(X) ∩ f2(X) = ∅.

We will need the following characterization theorem for Q-manifolds.

Theorem 2.2 (Toruńczyk [10]). A locally compact ANR X is a Q-manifold if
and only if X satisfies the DAP.

A Q-manifold M is said to be [0, 1)-stable if M is homeomorphic to M ×
[0, 1) (see [5]). The following result of R.Y.T. Wong [11] is often used in infinite-
dimensional topology: a Q-manifold X is [0, 1)-stable if and only if there is a
proper homotopy H : X → [0, 1) → X such that H(x, 0) = x for every x ∈ X
(recall that a map is proper if the preimage of every compact set is compact).

We will use the following Classification theorem for [0, 1)-stable Q-manifolds;
see [5, Theorem 21.2].

Theorem 2.3. Two [0, 1)-stable Q-manifolds are homeomorphic if and only they
are homotopy equivalent.

3 Main result

The main result of this section is the following theorem.
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Theorem 3.1. Let U be an open subset of Rn, where n ≥ 2. Then the hyperspace
mpcc(U) is homeomorphic to U ×Q× [0, 1).

Proof. First we are going to prove that the hyperspace mpcc(Rn) is an absolute
retract. We introduce a c-structure on mpcc(Rn) as follows. First, if {A1, . . . , Ak}
is a finite subset of mpcc(Rn) and λ1, . . . , λk ∈ Rmax with λ1 ⊕ · · · ⊕ λk = 0, then
we let

k⊕
i=1

λi ¯ Ai = {⊕k
i=1λi ¯ ai | ai ∈ Ai, i = 1, . . . , k}.

Note that
⊕k

i=1 λi ¯ Ai ∈ mpcc(Rn).
Next, let

F ({A1, . . . , Ak}) = {⊕k
i=1λi ¯ Ai | λi ∈ Rmax, i = 1, . . . , k, ⊕k

i=1λi = 0}.
Note that every set of the form A = F ({A1, . . . , Ak}) is contractible. Indeed, let
A0 ∈ A. Define the map F : A× [−∞, 0] → A by the formula

F (A,α) = A⊕ α¯ A0, (A,α) ∈ A× [−∞, 0].

Also, we define the map G : A× [−∞, 0] → A by the formula

G(A,α) = α¯ A⊕ A0, (A,α) ∈ A× [−∞, 0].

Gluing the maps F and G, define the map H : A × [−∞,∞] → A by the
formula

H(A, t) =

{
F (A, t), if t ∈ [−∞, 0],

G(A,−t), if t ∈ [0,∞].

Then it can be easily proved that H is a homotopy that connects the identity map
and a constant map.

A direct verification that F determines a c-structure and that the space so
obtained is a metric l.c.-space is left to the reader.

We are going to demonstrate that the space mpcc(Rn) satisfies the DAP.
Let ε : mpcc(Rn) → (0,∞) be a continuous function. Define f1 : mpcc(Rn) →
mpcc(Rn) by the formula f1(A) = Ōε(A)/2(A). It is easy to see that the map f1 is
continuous and d(f1(A), A) ≤ ε(A)/2 < ε(A).

Let
f2(A) = A ∪ {λ¯max A | λ ∈ [0, ε(A)/3]}.

Then f2 is a continuous map, d(f1(A), A) < ε(A), and simple geometric arguments
show that

f1(mpcc(Rn)) ∩ f2(mpcc(Rn)) = ∅
(indeed, for any A ∈ f1(mpcc(Rn)), every neighborhood of the point max A is n-
dimensional, while, for any A ∈ f2(mpcc(Rn)), the point max A has 1-dimensional
neighborhoods).
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By Toruńczyk’s characterization theorem, the space mpcc(Rn) is a Q-manifold.
Note that the hyperspace mpcc(U) is an open subset of the hyperspace mpcc(Rn)

and therefore is also a Q-manifold.
In order to prove that the space mpcc(U) is [0, 1)-stable we have to construct

a proper homotopy

H : mpcc(U)× [1,∞) → mpcc(U)

such that H(A, 1) = A, for every A ∈ mpcc(U) (see, e.g. [4]). For any A ∈
mpcc(U), let

ϕ(A) = sup{t ∈ [1,∞) | hτ (A) ⊂ U for every τ ∈ [1, t)}

(note that ϕ(A) can be equal to ∞), where hτ (A) is the image of A under the
homothety map centered at max(A) with dilation coefficient τ (note also that
the homothety maps preserve the max-plus convexity). That the function ϕ is
lower-semicontinuous follows from the fact that U is open in Rn. In its turn, this
implies that the set

W = {(A, t) ∈ mpcc(U)× [1,∞) | t < ϕ(A)}

is open in mpcc(U) × [1,∞). There exists a map g : mpcc(U) × [1,∞) → [1,∞)
such that the map f : mpcc(U)×[1,∞) → W defined by f(A, t) = (A, g(A, t)), for
every A ∈ mpcc(U), is a homeomorphism. Indeed, the function ϕ being a lower-
semicontinuous is a pointwise limit of a sequence of continuous functions ϕ1 ≤
ϕ2 ≤ . . . . Without loss of generality, one may assume that 1 < ϕ1 < ϕ2 < . . . .
Given A ∈ mpcc(U), define a function ΦA : [1,∞) → [1, ϕ(A)) by the conditions:
ΦA(1) = 1; ΦA(n) = ϕn−1(A), for every n = 2, 3, . . . ; ΦA is linear on every segment
[1, ϕ1(A)] and [ϕn(A), ϕn+1(A)], n ∈ N. Finally, let g(A, t) = ΦA(t).

Then define a required homotopy H by the formula H(A, t) = hg(A,t)(A).
In order to finish the proof of the theorem, we have, according to the classifi-

cation theorem for the [0, 1)-stable Q-manifolds, to show that the space mpcc(U)
is homotopy equivalent to U . This can be demonstrated as follows. Let

G : mpcc(U)× [0, 1] → mpcc(U)

be the homotopy defined by the formula

G(A, t) = {ln t¯max(A)⊕ a | a ∈ A}, (A, t) ∈ mpcc(U)× [0, 1]

(convention: ln 0 = −∞). We see that the subspace G(mpcc(U)× {1}), which is
naturally homeomorphic to U is a deformation retract of mpcc(U).
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4 max-min-convex sets

For any x = (x1, . . . , xn) ∈ Rn and any λ ∈ (−∞,∞], let

λ⊗ x = (min{λ, x1}, . . . , min{λ, xn}).

A subset A of Rn is called max-min-convex if, for any x, y ∈ A and any λ, µ ∈
[−∞,∞] with λ ⊕ µ = ∞, we have (λ ⊗ x) ⊕ (µ ⊗ y) ∈ A. The geometry of the
max-min-convex sets is considerably more complicated than that of convex sets
and even max-plus convex sets.

We denote by mmcc(Rn) the hyperspace of nonempty compact max-min-
convex subsets in Rn.

The following result is a counterpart of Theorem 3.1 for the max-min convex
sets.

Theorem 4.1. Let U be an open subset of Rn, where n ≥ 2. Then the hyperspace
mmcc(U) is homeomorphic to U ×Q× [0, 1).

The proof of this theorem follows the line of that of Theorem 3.1. Here we only
note that a c-structure on the hyperspace mmcc(Rn) can be defined as follows:
given a finite subset {A1, . . . , Ak} is of mmcc(Rn) we let

F ({A1, . . . , Ak}) = {⊕k
i=1λi ⊗ Ai | λi ∈ [−∞,∞], i = 1, . . . , k, ⊕k

i=1λi = ∞},

where
k⊕

i=1

λi ⊗ Ai = {⊕k
i=1λi ⊗ ai | ai ∈ Ai, i = 1, . . . , k}.

5 Remarks and open questions

Recall that R∞ is the direct limit of the sequence

R ↪→ R2 ↪→ R3 ↪→ . . . ,

where every arrow denotes the natural embedding

(x1, . . . , xn) 7→ (x1, . . . , xn, 0) : Rn → Rn+1.

Define mpcc(R∞) is the direct limit of the sequence

mpcc(R) ↪→ mpcc(R2) ↪→ mpcc(R3) ↪→ . . . .

For any subset U of R∞, we let mpcc(U) = {A ∈ mpcc(R∞) | A ⊂ U}.
We conjecture that, for any open subset U of R∞, the spaces mpcc(U) and

mmcc(U) are homeomorphic to U .
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Let h denote one of the hyperspaces mpcc or mmcc. We denote by p-h(X) the
subspace of the space h(X) consisting of all subpolyhedra. Applying the technique
of absorbing sets in Q-manifolds (see, e.g. [1]) one can prove that the hyperspace
of compact convex polyhedra in an open set U of Rn is homeomorphic to the
σ-manifold U × σ, where

σ = {(xi) ∈ Q = [0, 1]ω | xi = 0 for all but finitely many i}.

We conjecture that the hyperspaces p-mpcc(U) or p-mmcc(U) are also homeomor-
phic to U × σ. Moreover, it looks plausible that the pairs (mpcc(U), p-mpcc(U))
and (mmcc(U), p-mmcc(U)) are homeomorphic to the pair

(U ×Q× [0, 1), U × σ × [0, 1)).

The following two questions are suggested by the referee.

Problem 5.1. The max-plus convex subsets can be naturally defined also for the
space (R∪{−∞})n. Does Theorem 3.1 still hold for open subsets in (R∪{−∞})n,
for n ≥ 2?

Also, max-min convex sets can be naturally defined in the space [−∞,∞]n.
Does Theorem 4.1 still hold for open subsets in [−∞,∞]n, for n ≥ 2?

Problem 5.2. Let C(X,R) denote the Banach lattice of continuous functions on
a compact metrizable space X. The notion of max-plus convexity can be naturally
defined for C(X,R). One can ask whether the hyperspace of compact max-plus
convex subsets in C(X,R) is homeomorphic to the separable Hilbert space `2, for
infinite X.

Acknowledgement. The author is indebted to the referee for his/her careful
reading of the manuscript and important remarks.
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Manifolds modeled on countable direct limits of absolute extensors1

by Oryslava Shabat and Michael Zarichnyi

Abstract

This is a survey of results on topology of manifolds modeled on countable
direct limits of absolute extensors. We also prove a characterization theorem
for manifolds modeled on countable direct limits of Tychonov cubes.

1 Introduction

We consider manifolds modeled on countable direct limits of absolute extensors.
A survey of some known theories of such manifolds is presented in Section 3.
In Section 4 we consider generalizations of manifolds modeled on the countable
direct limits of the Hilbert cubes and prove a characterization theorem for such
manifolds. Section 5 is devoted to universal maps of model spaces. Some applica-
tions are presented in Section 6 and in concluding Section 7 we formulate a short
collection of open problems.

2 Preliminaries

By the ANR-spaces we mean the absolute neighborhood retracts for metrizable
spaces.

By w(X) we denote the weight of a topological space X.
By MC (respectively MC(n)) we will denote the class of metrizable compacta

(respectively the class of metrizable compacta of dimension ≤ n). A space X is
said to be an absolute extensor for the class MC (respectively MC(n)) if, given
any map f : B → X defined on a closed subset B of a space Y ∈MC (respectively
Y ∈ MC(n)), there exists a continuous extension of f onto Y . Replacing, in the
last phrase, the words “onto Y ” by “onto a neighborhood of B in Y ” we obtain the
notion of absolute neighborhood extensor for the class MC (respectively MC(n)).

Given a class C of topological spaces, we denote by C∞ the class of spaces
which can be represented as countable direct limits of sequences of spaces X1 ↪→
X2 ↪→ . . . , where Xi ∈ C and Xi is a closed subset of Xi+1 for every i.

1Received: November 4, 2007
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By Q we will denote the Hilbert cube, Q =
∏∞

i=1[−1, 1]i. Let Q∞ denote the
direct limit of the sequence

Q → Q× {0} ↪→ Q×Q → Q×Q× {0} ↪→ Q×Q×Q → . . . .

By R∞ we denote the direct limit of the sequence

R→ R× {0} ↪→ R× R→ R× R× {0} ↪→ R× R× R→ . . . .

A closed set A in a space X is called a Z-set (respectively strong Z-set) if
there exist maps f : X → X arbitrarily close to the identity map of X and such
that the image f(X) (respectively the closure of f(X)) misses A. An embedding
is called a Z-embedding if its image is a Z-set.

3 Manifolds

3.1 R∞-manifolds and Q∞-manifolds

The manifolds modeled on the spaces R∞ and Q∞ (i.e. R∞-manifolds and Q∞-
manifolds) are investigated in many publications (most of the literature on the
list of references are devoted to these manifolds).

In particular, the topological characterization of these manifolds is very simple
(see [26]).

Theorem 3.1. Let X be a countable direct limit of a sequence of finite-dimensional
compact metrizable spaces. The following conditions are equivalent:

1. X is an R∞-manifold;

2. for every compact metrizable finite-dimensional pair (A,B) and every em-
bedding f : B → X there exists an embedding f̄ : U → X of a neighborhood
U of B in A.

Deleting the words “finite-dimensional” from the above theorem one obtains
a characterization of Q∞-manifolds.

The spaces R∞ and Q∞ admit a weaker metrizable topologies. Namely, identi-
fying every Rn with the subspace {(xi) ∈ `2 | xi = 0 for all i > n} of the separable
Hilbert space `2 one can regard the set R∞ as the subspace

σ = {(xi) ∈ `2 | xi = 0 for all but finitely many i}

of `2.
A characterization of the bitopological space (R∞, σ) and bitopological mani-

folds modeled on these spaces is obtained in [6].
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Theorem 3.2. A bitopological space (Mw,Mm) is an (R∞, σ)-manifold if and only
if Mw is an R∞-manifold, the identity map id : Mw → Mm is a fine homotopy
equivalence and every compact subset in Mm is a strong Z-set.

We can identify Q with the standard Hilbert cube
∏∞

i=1[−1/i; 1/i] in `2. Then
each nQ =

∏∞
i=1[−n/i; n/i] is a Z-set in (n + 1)Q =

∏∞
i=1[−(n + 1)/i; (n + 1)/i].

The subspace ∪∞n=1nQ ⊂ `2 is the linear hull of Q in `2, which is denoted by Σ.
By the characterization of Q∞, it can be shown that Q∞ is homeomorphic to the
direct limit of the sequence Q ↪→ 2Q ↪→ 3Q ↪→ . . . . Thus, the set Q∞ is identified
with Σ. The bitopological space (Q∞, Σ) and (Q∞, Σ)-manifolds are characterized
similarly to Theorem 3.2.

The following theorems can be proved for both R∞-manifolds and Q∞-manifolds
(note that we do not formulate these results in full generality; e.g., see [26, 27, 31,
32, 33, 15, 19]):

1. (Open Embedding) Every connected R∞-manifold (resp. Q∞-manifold) ad-
mits an open embedding into the model space;

2. (Closed Embedding) Every connected R∞-manifold (resp. Q∞-manifold)
admits a closed embedding into the model space;

3. (Stability) Let M be an R∞-manifold (resp. Q∞-manifold). Then M ×R∞
(resp. M ×Q∞) is homeomorphic to M ;

4. (Classification) Every homotopy equivalence between R∞-manifolds (resp.
Q∞-manifolds) is homotopic to a homeomorphism;

5. (Product) Let X ∈ MC∞ (resp. X ∈ C∞, where C = ∪∞n=1MC(n)) be
an absolute neighborhood extensor. Then X × Q∞ (resp. X × R∞) is a
Q∞-manifold (resp. R∞-manifold);

6. (Triangulation) For every R∞-manifold (resp. Q∞-manifold) X there exists
a locally finite simplicial complex K such that X is homeomorphic to |K|×
R∞ (resp. |K| ×Q∞).

3.2 Manifolds modeled on direct limits of Menger com-
pacta

The standard universal n-dimensional Menger compactum µn is defined as follows
(e.g., see [12]). Let Fi, i = 0, 1, 2, . . . , be the family of 3mi congruent cubes
obtained by means of partition of the unit m-dimensional cube Im, m ≥ n, by
(m − 1)-dimensional affine subspaces in Rm given by the equations xj = k/3i,
j = 1, 2, . . . , m and 0 ≤ k ≤ 3i. For a collection K of cubes, denote by Sn(K) the
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union of all faces of dimension ≤ n of the cubes in K. Taking F0 = {Im} and
F0 = ∪F0 and assuming that Fi and Fi are already defined for all i < k, set

Fk = {K ∈ Fk−1 | K ∩ (∪Sn(Fk−1)) 6= ∅}, Fk = ∪Fk.

Finally, let µm
n = ∩∞i=0Fi ⊂ Im.

For m ≥ 2n + 1 and n fixed, all spaces µm
n are homeomorphic [8]. Let µn =

µ2n+1
n .

Denote by µ∞n the direct limit of the sequence

(3.1) µ(1)
n ↪→ µ(2)

n ↪→ µ(3)
n ↪→ . . . ,

in which all spaces µ
(i)
n are topological copies of µn and all embeddings are Z-

embeddings.
A paracompact space X is called a µ∞n -manifold if X is locally homeomorphic

to open subsets in the space µ∞n . The theory of µ∞n -manifolds is developed in [25].
In particular, a characterization theorem in the spirit of Theorem 3.1 is proved.

Other theories of manifolds modeled on countable direct limits of absolute ex-
tensors related to transfinite and cohomological dimension theories are considered
in [23].

4 Manifolds modeled on countable direct limits

of Tychonov cubes

By I we denote the unit segment [0, 1]. Further, ω denotes the smallest infinite
ordinal number. The Tychonov product Iτ , where τ is a cardinal number, is called
a Tychonov cube.

In [30], we consider the space I(α), which is the countable direct limit

Iτ0 −→ Iτ0 × {0} ↪→ Iτ0 × Iτ1 ↪→ . . . ,

where α = (τ0, τ1, . . . ) is a sequence of ordinal numbers such that ω < τ0 ≤ τ1 ≤
. . . .

The space I(α) admits a topological characterization, in some sense analogical
to the characterization of the space Q∞ = lim−→Qn, given by K. Sakai [26]. It

is also proved in [30] that the space I(α) is topologically homogeneous and self-
similar. Therefore, the space I(α) can be considered as a model space for a class
of manifolds.

Let α = (τ0, τ1, . . . ) be a sequence described above. Denote τ(α) = sup
i

τ+
i .

Let us introduce the following classes:

C(∞) ={U | U ∼= lim−→ Ki, where Ki

are compact Hausdorff spaces and K1 ⊂ K2 ⊂ . . . }
C(α) ={U ∈ C(∞) | w(Ki) < τ(α) , i = 1, 2, . . . }.
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Definition 4.1. A paracompact space X is called an I(α)-manifold if there is an
open cover U of the space X such that:

1. U is either finite or countable locally finite;

2. every U ∈ U is homeomorphic to an open subset in I(α) and, moreover,
U ∈ C(∞).

Note that if the manifolds under consideration are connected then the first
condition from the definition can be dropped.

Theorem 4.2 (Characterization). Let X be a topological space, X ∈ C(α). The
following are equivalent:

1. X is an I(α)-manifold;

2. For every compact Hausdorff pair (A,B), where w(A) ≤ τ(α), and every
embedding f : B → X there exists a neighborhood U of the set B in A and
an embedding f : U → X such that f |B = f .

We first need the following statement.

Proposition 4.3. Let X be an I(α)-manifold. Then X ∈ C(α).

Proof. Since X is an I(α)-manifold, there exists a countable locally finite cover
{Ui} of the space X, where Ui is homeomorphic to some open set in I(α) for every
i and Ui = lim−→

j

Kij, where Kij are compact subspaces, Ki1 ⊂ Ki2 ⊂ . . . .

Let us define the compact subsets Li as follows:

L1 = K11, L2 = K12 ∪K22, . . . , Ln = K1n ∪K2n ∪ · · · ∪Knn, . . . .

Then, clearly, X =
⋃∞

k=1 Lk and L1 ⊂ L2 ⊂ . . . . It remains to prove that
X = lim−→Ki, i.e., for any subset W ⊂ X the following holds: W ⊂

op
X if and only

if W ∩ Lk ⊂
op

Lk for all k.

If n ≤ k, then the set W ∩Knk = (W ∩ Lk) ∩Knk is open in Knk, therefore
the set W ∩ Un is open in Un and hence in X, for all n. Thus, W is open.

Proof of Theorem. 1) ⇒ 2). Consider a compact Hausdorff pair (A,B), where
w(A) < τ and let f : B → X be an embedding. Again we assume that {Ui} is
a countable locally finite cover of X, where Ui is homeomorphic to some open
subset of the space I(α) for every i and Ui = lim−→

j

Kij, where Kij are compact

subsets, Ki1 ⊂ Ki2 ⊂ . . . .; denote by hi : Ui → h(Ui) ⊂
op
I(α) the corresponding
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homeomorphism. There exists n < ω such that f(B) ⊂
n⋃

i=1

Ui. One may assume

that B =
n⋃

i=1

Bi, where Bi are closed subsets of B and f(Bi) ⊂ Ui.

By induction, define compact neighborhoods Vi of the sets B1 ∪ · · · ∪ Bi in A
and embeddings gi : Vi → X, i = 1, 2 . . . n such that B ⊂ Bi and gi|Vi−1

= gi−1,
where V0 = B and g0 = f .

There exists a closed neighborhood B̃1 of the set B1 in B for which f(B̃1) ⊂
U1. Then f |fB1

: B̃1 → U1
h1−→ h1(U1) ⊂

op
I(α). By the characterization theorem

for the space I(α) (see [30][Theorem 3.1]), for the pair (A, B̃1), the embedding

h1 ◦ (f |fB1
) : B̃1 → I(α) can be extended to an embedding f1 : A → I(α). Choose

a closed neighborhood C1 of the set B1 such that C1 ⊂ W , f1(C1) ⊂ h1(U1) and

C1 ∩B ⊂ B̃1. Denote h−1
1 ◦ f1 ≡ f̃1.

Consider V1 = B ∪ C1 and the embedding g1 : V1 → X which satisfies the
conditions g1|B = f , g1|V1 = f̃1. In n steps we obtain an embedding gn : Vn → X,
where Vn is a neighborhood of the set B in A.

2) ⇒ 1). Let X = lim−→ Ki, where K1 ⊂ K2 ⊂ . . . are compact Hausdorff

spaces with w(Ki) < τ . Write I(α) = lim−→ {Y1 ↪→ Y2 ↪→ Y3 ↪→ . . . }, where Yi are

compact Hausdorff spaces from the definition of I(α), i.e. Yi = Iτ0 × · · · × Iτi .
Let n1 = 1. There exists an embedding f1 : Kn1 → I(α). Since f1(Kn1) is

compact, f1(Kn1) ⊂ Ym1 , for some m1. Consider the pair (Ym1 , (f1(Kn1)) and the
embedding f−1

1 : f1(Kn1) → X. By the condition, there exists a neighborhood
U1 on which one can extend the embedding g1 : U1 → X, where U1 is the closed
neighborhood of the set f(Kn1) in Ym1 . Since the set g1(U1) is compact, there
exists n2 > n1 such that g1(U1) ⊂ Kn2 . The embedding g−1

1 : g1(U1) → I(α) can
be extend to an embedding f2 : Kn2 → I(α), by [30, Theorem 3.1]. Since f2(Kn2)
is a compact set, there exists m2 > m1 such that f2(Kn2) ⊂ Ym2 . Proceeding as
above, we obtain the following commutative diagram:

Kn1

Â Ä //

f1

²²

Kn2

Â Ä //

f2

²²

Kn3

Â Ä //

f3

²²

. . .

f1(Kn1)Ä _

²²

f2(Kn2)Ä _

²²

f3(Kn3)Ä _

²²

. . .

U1Ä _

²²

g1

BB¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
Â Ä // U2Ä _

²²

g2

BB¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥
Â Ä // U3Ä _

²²

g3

DDªªªªªªªªªªªªªªªªªª
Â Ä // . . .

Ym1

Â Ä // Ym2

Â Ä // Ym3

Â Ä // . . .

By the construction above, the maps gifi and fi+1gi are inclusions for each
i = 1, 2, . . . or this might be simply written gifi = id and fi+1gi = id.
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We therefore obtain that

X =lim−→
j

Kj = lim−→{Kn1 ↪→ Kn2 ↪→ . . . }

= lim−→{Kn1

f1−→ U1
g1−→ Kn2

f2−→ U2
g2−→ . . . }

= lim−→{U1 ↪→ U2 ↪→ . . . } = U

is an open subset in the space I(α). Therefore X is an I(α)-manifold.

Note that, actually, we have proved a stronger result.

Theorem 4.4 (Open embedding). Every I(α)-manifold X admits an open embed-
ding into the model space I(α).

5 Universal maps

The projection maps pr : R∞ × R∞ → R∞ and pr : Q∞ × Q∞ → Q∞ are charac-
terized in [2].

The second named author [37, 39], using the construction of Dranishnikov map
fn : µn → Q (see [11]), defined a universal map ϕ : R∞ → Q∞. This map can be
characterized as follows:

Definition 5.1. A map f : X → Y is said to be strongly (ω,∞)-universal if for
every finite-dimensional compact metrizable pair (Z, A), and a metrizable com-
pactum C, every embedding α : A → X and maps β : Z → C, γ : C → Y such
that f ◦ α = γ ◦ β|A, there exists an embedding ᾱ : Z → X such that ᾱ|A = α
and f ◦ ᾱ = γ ◦ β (i.e., the diagram

X
f // Y

A ⊂
α

OO

Z
β

//

ᾱ
bbE

E
E

E
E

C

γ

OO

is commutative).

Theorem 5.2. There exists a unique (up to homeomorphisms) strongly (ω,∞)-
universal map ϕ : R∞ → Q∞.

It is natural to conjecture that the universal map ϕ is locally self-similar, i.e.
for every x ∈ R∞ and every neighborhood U of x there exists a neighborhood
V ⊂ U of x such that the restriction map ϕ|V : V → ϕ(V ) is homeomorphic to
ϕ. It is proved in [5] that this is not the case.
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Universal maps µ∞n → µ∞n , µ∞n → R∞ and µ∞n → Q∞ are constructed and
characterized in [25]. In the theory of µ∞n -manifolds, the universal map ψn : µ∞n →
µ∞n plays a role analogical to the projection map pr : R∞ × R∞ → R∞ in the
theory of R∞-manifolds. In particular, a counterpart of Stability Theorem looks
as follows (see the proof of Theorem 4.5 in [25]): for any µ∞n -manifold M ⊂ µ∞n ,
the preimage ψ−1

n (M) is homeomorphic to M .
Note also that there exists a metrizable counterpart of the universal map

ϕ : R∞ → Q∞, namely, a map σ → Σ defined in [40].

6 Applications

The R∞-manifolds and Q∞-manifolds naturally arise in different areas of topology
and other areas of mathematics.

Given a sequence (Xi, xi) of separable metrizable locally compact ANR-spaces
with base points, one can construct the direct limit

X1 → X1 × {x2} ↪→ X1 ×X2 → X1 ×X2 × {x3} ↪→ . . .

It is proved in [22] that, under some natural conditions, the mentioned direct
limit is an R∞-manifold. Another situations when the countable direct limits of
ANR-spaces are either R∞- or Q∞-manifolds are considered in [36].

It is proved in [34] that the free topological groups of compact metrizable
(finite-dimensional) ANR-spaces are Q∞-manifolds (respectively R∞-manifolds).
Recall that the free topological group of a Tychonov space X is a topological
group F (X) which is characterized by the following conditions:

1. X is a closed subspace of F (X);

2. any continuous map of f : X → G into a topological group G admits an
extension f̄ : F (X) → G, where f̄ is a continuous homomorphism.

An analogous result is proved in [34] for the infinite symmetric power functor
SP∞. Recall that the space SP∞(X, ∗) is defined as the countable direct limit
lim−→ SPn(X), where the embedding SPn(X) → SPn+1(X) is defined by the for-
mula [x1, . . . , xn] 7→ [x1, . . . , xn, ∗]. The condition that X is an ANR-space is not
necessary in order that SP∞(X, ∗) be an R∞-manifold; a corresponding example
is constructed in [35]. The infinite symmetric powers are examples of topological
semigroups. In [3], one can find results when the free topological semigroups in
some classes are R∞-manifolds. In [7] it is proved that the free topological semi-
lattices over suitable spaces are R∞-manifolds and Q∞-manifolds. In particular,
such a free semilattice over a space X ∈ MC∞ is a Q∞-manifold if and only if
every compact subspace of X is contained in a Q-manifold.

In [39], it is proved that for any topological group G whose underlying space
is from the class MC∞ there exists a continuous epimorphism : H → G, where



Manifolds modeled on countable direct limits 119

H is a topological group whose underlying space is an R∞-manifold (called an
R∞-resolution of G). The result is based on existence of a counterpart of the
universal map ϕ : R∞ → Q∞ in the theory of topological groups.

Let us turn our attention to the theory of topological linear spaces. It is
known in [16] that the space Q∞ is homeomorphic to the space (`2, bw), where
bw stands for the bounded-weak topology. In [1], there are characterized the
linear topological spaces which are homeomorphic to R∞. In [5], it is proved
that the universal map ϕ : R∞ → Q∞ can be realized as a linear map of linear
topological spaces. A related result that the universal map ϕ can be realized as
a map of suitably topologized spaces of probability measures with finite supports
is obtained in [38].

The following application of the topology of Q∞-manifolds to function spaces
is obtained in [29]. Let X, Y be metric spaces and for each k let k-LIP(X, Y ) be
the space of all k-Lipschitz maps from X to Y endowed with the compact-open
topology. In [29], it is proved that, under some natural conditions on X and Y , the
direct limit of the sequence 1-LIP(X,Y ) ↪→ 2-LIP(X,Y ) ↪→ · · · is a Q∞-manifold

The Banach-Mazur compactum BM(n) is the space of norms on Euclidean
n-space Rn modulo the natural action of the linear group GL(n). In [4], a natural
chain of embeddings

BM(1) ↪→ BM(2) ↪→ · · · ↪→ BM(n) ↪→ · · ·

is defined and it is proved that the direct limit lim−→ BM(n) of this sequence is
homeomorphic to the space Q∞.

Because of fractal nature of the n-dimensional universal Menger compactum
µn, one can expect that the µ∞n -manifolds will be applied in fractal geometry.

7 Remarks and open problems

In connection to the results on existence of universal maps R∞ → Q∞ and σ → Σ
the following problem seems to be natural.

Problem 7.1. Is there a bitopological universal map (R∞, σ) → (Q∞, Σ)? If the
answer is affirmative, find a topological characterization of such a map.

One can naturally introduce the notion of differentiable structure on every
R∞-manifold (see, e.r. [24]).

As it is proven in [34] the free topological groups of suitable ANR-spaces are
R∞-manifolds.

Problem 7.2. Is there a differentiable structure on the free topological group
F (X) for which both the multiplication operation and the inversion are differen-
tiable?
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The results of Section 4 lead to the following question:

Problem 7.3. Is it possible to extend Theorem 4.2 to the case of sequence α =
(τ1, τ2, τ3, . . . ) such that τ1 > ω and τ1 > τi, for all i > 1?

Some results in this direction can be found in [10].

Problem 7.4. Is the free topological group of the Tychonov cube Iτ , where τ > ω,
an I(α)-manifold, for some α?

Problem 7.5. Are there representations of I(α)-manifolds “in nature” (e.g., as
function spaces or linear topological spaces)?

Acknowledgements. The authors are indebted to two anonymous referees
for their valuable comments.
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Second order variational problem and
2-dimensional concircular geometry1 2

by Roman Matsyuk

Abstract

It is proved that the set of geodesic circles in two dimensions may be
given a variational description and the explicit form of it is presented. In
the limit case of the Euclidean geometry a certain claim of uniqueness of
such description is proved. A formal notion of ‘spin’ force is discovered as
a by-product of the variation procedure involving the acceleration.

1 Introduction

The concircular geometry deals with geodesic circles in (pseudo)-Riemannian
space. Geodesic circles in two dimensions are those curves in 2-dimensional
(pseudo)-Riemannian space who preserve the Frenet curvature along them. In
relativity theory this coincides with the definition of the uniformly accelerated
one-dimensional motion of a test particle. The ordinary differential equation to
govern such curves has order three [1]. Thus the Lagrange function should involve
second derivatives and, at the same time, it should depend linearly on them.

Aiming at simplification of the exposition and of the accompanying notations,
let us agree not to be confused with such notions as vector or bivector norm
in pseudo-Riemannian geometry. Although the outcome of present investigation
lucidly concerns both the proper Riemannian and the pseudo-Riemannian ge-
ometries, for the sake of prudence one may restrict oneself to the case of proper
Riemannian space, and it still will remain evident, wherein the results will be valid
in actually the pseudo-Riemannian framework as well. Thus hereinafter we shall
somewhat vaguely use the terms Riemannian and Euclidean, keeping in mind that
strictly speaking, some details of pure technical developments can in fact apply
only to proper Riemannian case.

Consider the following Lagrange function in 2–dimensional Euclidean space:

(1) L = LII + LI =
εiju

iu̇j

‖u‖3 −m‖u‖ ,

1Received: November 20, 2007
2Research supported by the grant GAČR 201/06/0922 of the Czech Science Foundation
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with εij denoting the skew-symmetric covariant Levi–Civita symbol. The first
addend, LII , is the so-called signed first Frenet curvature of a path. Further in
this contribution we show that the expression (1) as a candidate for the Lagrange
function is very tightly defined by the conditions of the symmetry of corresponding
equation of motion and by the request that the Frenet curvature be preserved along
the extremal curves.

Formula (1) clearly suggests accepting same Lagrange function also for general
Riemannian case,

(2) LR = k −m‖u‖ .

To prove the preservation of curvature k along the extremals of (2) we need some
further tools as introduced below.

2 Means from higher order mechanics of

Ostrohrads’kyj

2.1 Parametric homogeneity

Let T qM = {xj, uj, u̇j, üj, . . . ,
(q−1)
u j} denote the manifold of qth-order Ehres-

mann velocities to the base manifold M of dimension n. The prolonged repa-
rametrization group Glqn = Jq

0 (R, R)0 acts on the manifold T qM = Jq
0 (R, M)

by composition of jets (in our case n = 2). As far as the Lagrange function (2)
depends on the derivatives of at most second order, it lives on the space T 2M .
The infinitesimal counterpart of the above mentioned parameter transformations
of T 2M (we put q = 2) is given by so-called fundamental fields (for arbitrary order
consult [2, 3]):

ζ1 = ui ∂

∂ui
+ 2 u̇i ∂

∂u̇i
, ζ2 = ui ∂

∂u̇i
.

If a function F defined on T 2M does not change under arbitrary parame-
ter transformations discussed above, then it with necessity satisfies the following
sufficient conditions:

(3) ζ1F = 0 , ζ2F = 0 .

On the other hand, if a function L on T 2M defines a parameter-independent
autonomous variational problem with the action functional

∫
L

(
xj, uj, u̇j

)
dς ,

then it also with necessity satisfies the so-called Zermelo sufficient conditions [4, 5]:

(4) ζ1L = L , ζ2L = 0 .
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The generalized momenta are being conventionally introduced by the next
expressions:

p
(2)
i =

∂L

∂u̇i
, p

(1)
i =

∂L

∂ui
− d

dς
p

(2)
i ,

while the Hamilton function reads:

H = p
(2)
i u̇i + p

(1)
i ui − L .

This Hamilton function may also be expressed in different way [3, 8]:

(5) H = ζ1L +
d

dς
ζ2L− L .

As the Hamilton function is a constant of motion, from (3), (4), and (5) we
immediately obtain the following proposition:

Proposition 2.1. Let a function LII be parameter-independent, and let another
function LII define a parameter-independent variational problem on T 2M . Then
LII is constant along the extremals of the variational problem, defined by the
Lagrange function

(6) L = LII + LI .

This holds because LII = −H with H corresponding to (6).
Frenet curvature is constant along the extremals of (2), so by the Proposi-

tion 2.1 we have right to state:

Claim 2.1 ([6, 7]). The Lagrange function(2) constitutes the variational principle
for the geodesic circles.

Now we wish to provide evidence that in the limit case of Euclidean space the
corresponding Euler-Poisson equation may be specified by means of symmetry
considerations together with the curvature preservation requirement. This means
that the inverse variational problem tools should be applied.

2.2 The generalized Helmholtz conditions and
symmetry.

Following Tulczyjew (see [9, 3]), let us introduce some operators, acting in the
graded algebra of differential forms who live on manifolds T qM of varying order
q of jets:

1. The total derivative:

dT f = ui ∂f

∂xi
+ u̇i ∂f

∂ui
+ üi ∂f

∂u̇i
+ · · ·+ q

ui ∂f

∂
q−1

u i
, ddT = dT d ;



128 Roman Matsyuk

2. For each of r ≤ q the derivations of zero degree:

i0(ω) = deg(ω) ω , ir(f) = 0 , ir(dxi) = 0 ,

ir(d
k
ui) = (k+1) !

(k−r+1) !
d

k−r
u i, ir(d

k
ui) = 0 , if k < r − 1 ;

3. The Lagrange derivative:

δ =

(
i0 − dT i1 +

1

2
dT

2i2 − 1

6
dT

3i3 + · · ·+ (−1)q

q!
dT

qiq

)
d .

It is of common knowledge that the Euler–Poisson expressions constitute a co-
variant object.

Lemma 2.1 ([9]). Let a system of some differential expressions of the third order
form a covariant object—the differential one-form

(7) ε = Ei

(
xj, uj, u̇j, üj

)
dxi.

Then ε = δ (L) for some (local) L if and only if

(8) δ (ε) = 0 .

Developing the criterion (8) amounts to establishing a general pattern for the
expression (7),

(9) Ei = Aij(x
l, ul) üj + u̇p ∂

∂up
Aij(x

l, ul) u̇j + Bij(x
l, ul) u̇j + qi(x

l, ul),

and to some generalized Helmholtz conditions [8, 10, 11], cast in the form of a
system of partial differential equations, imposed on the coefficients Aij = −Aji,
Bij, and qi:

∂u[iAjl] = 0

2 B [ij] − 3D1Aij = 0(10a)

2 ∂u[i B j] l − 4 ∂x[i A j] l + ∂xlAij + 2D1∂ulAij = 0(10b)

∂u(i q j) −D1B(ij) = 0

2 ∂ul∂u[i q j] − 4 ∂x[i B j] l + D1
2∂ulAij + 6D1∂x[i A jl] = 0

4 ∂x[i q j] − 2D1∂u[i q j] −D1
3Aij = 0 ,

where the notation D1 = up∂xp was introduced.
The Euclidean symmetry means that everywhere on the submanifold E defined

by the system of equations El = 0 the shifted system X (El) vanishes too, where
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X denotes the prolonged generator of (pseudo)-orthogonal transformations. We
denote this criterion as

(11) X(El) |E = 0 .

That we tend to embrace nothing more but only the geodesic circles as extremals,
falls into similar condition:

(12) (dT k) |E = 0 .

As far as in two-dimensional space (dim M = 2) the skew-symmetric matrix Aij

is invertible, it is not difficult to implement conditions (11) and (12).
If one wishes to include in the set of extremals all those Euclidean geodesics

that refer to the natural parameter, one has to imply one more condition:

(13) El |u̇=0 .

Theorem 2.1. Let a third order autonomous dynamical equation E = 0 in two-
dimensional space obey conditions:

1. δ(ε) = 0;

2. The system of ODEs {Ej = 0} possesses the Euclidean symmetry;

3. The system {Ej = 0} possesses the first integral — the Frenet curvature k,
and includes all curves of constant curvature as its solutions;

4. It also includes the strait lines with natural parametrization, u̇ = 0.

Then

Ei =
εijü

j

‖u‖3 − 3
(u̇ · u)

‖u‖5 εiju̇
j + m

‖u‖2u̇i − (u̇ · u) ui

‖u‖3 .

The Lagrange function is given by (1).

Remarks.

• If, for instance, we took L = k
√

uiui, then H = 0 for this Lagrange function,
and the Proposition 2.1 wouldn’t work.

• Because of the non-degeneracy of the matrix Aij, there cannot exist a
parameter-invariant variational problem in two dimensions that would pro-
duce strictly the third order Euler–Poisson equation. But, if we omit the
first addend k in (2), then what remains defines the conventional parameter-
invariant problem for the Riemannian projective geodesic paths. So, what
fixes the parameter along the extremal in our case, is the Frenet curvature k
in (2).

One should confer with [12] and [13] on these remarks.
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2.3 Proof of the Theorem 2.1

Before passing to the proof of the above Theorem let us notice two simplification
formulæ which hold at specific occasion of two dimensions. Namely, for arbitrary
vectors a, c, v, and w it is true that

(14) ‖a ∧ c‖ =
√
| det[gij]| |εija

icj| and ‖a ∧ c‖‖v ∧w‖ = |(a ∧ c)·(v ∧w)| ,

where, as usual, (a ∧ c)·(v ∧w) = (a · v)(c ·w)− (c · v)(a ·w) [14]. Also, let us
agree to postpone the proof of the second part of statement 3 of Theorem 2.1 until
more general Riemannian case proved in Section 3.2.

Proof of the necessity implication of Theorem 2.1 assumptions. In order to meet
the condition 4 of the Theorem 2.1 in the form(13), we have to remove the array
q from (9). Next we write down the first part of the statement 3 given by means
of (12). Starting with the expression

(15) k =
‖u ∧ u̇‖
‖u‖3

of the Frenet curvature we substitute ü in

dT k =
(u ∧ u̇)·(u ∧ ü)

‖u‖3‖u ∧ u̇‖ − 3
‖u ∧ u̇‖(u · u̇)

‖u‖5

by ü = −A−1(u̇.∂u) Au̇−A−1Bu̇ of (9) and then split the expression (12) by the
powers of u̇ to obtain separately

(u · u)(u ∧ u̇) · (u ∧ (
A−1(u̇.∂u)Au̇

))
+ 3 (u · u̇)‖u ∧ u̇‖2 = 0(16a)

(u ∧ u̇) · (u ∧ (
A−1Bu̇

))
= 0 .(16b)

Let us recall that the covariant and the contravariant Levi–Civita symbols are
related by εije

jl = −δi
l and also let matrix A be expressed as Aij = A12εij. With

these agreements the first addend in (16a) becomes

1

A12

‖u‖2‖u ∧ u̇‖2(u̇.∂u)A12 ,

thus reducing (16a) by means of (14) to the partial differential equation

‖u‖2(u̇.∂u)A12 + 3 A12(u · u̇) = 0

that in turn yields the solution

A12 = α‖u‖−3.
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Now we see that matrix A satisfies the relations

(17) u̇.∂u A = −3
u·u̇
‖u‖2

A ,

and, evidently,

(18) eijui
∂

∂uj
A = 0 ,

with the help of which the Euler–Poisson expression (9) becomes

(19) E = Aü− 3
u·u̇
‖u‖2

Au̇ + Bu̇ ,

so that the submanifold E = 0 is now defined by the equation

(20) ü = 3
u·u̇
‖u‖2

A−1Bu̇ .

Again with the help of (14) the equation (16b) takes the shape

∥∥u ∧ (
A−1Bu̇

)∥∥ = 0, or εije
jpBplu

iu̇l = 0 ,

from where it follows that

(21) upBpl = 0.

The generators of the Euclidean symmetry are enumerated by an arbitrary
constant $ and an arbitrary constant array χ = {χi} and they read:

χ.∂x

(
≡ χi ∂

∂xi

)
;(22a)

$eij

(
xi

∂

∂xj
+ ui

∂

∂uj
+ u̇i

∂

∂u̇j
+ üi

∂

∂üj

)
.(22b)

Applying criterion (11) with X = χ.∂x and taking into account the substitu-
tion (20) ends in

(23) −χ.∂x α

α
Bu̇ + χ.∂x Bu̇ = 0.

Applying criterion (11) with X equal to (22b) and again calling to mind the
substitution (20) with the help of

Alje
ijA−1

i
p =

1

A12

A−1
l
p = −gile

ip
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ends in

gije
ilBlpu̇

p + eilui
∂

∂ul
Bjpu̇

p + eilBjlu̇i = 0 , identically with respect to u̇p,

from where we conclude:

(24) eilui
∂

∂ul
Bjp + gije

ilBlp + gipe
ilBjl = 0 .

We may deduce from (24) that the skew-symmetric part of B should satisfy the
equation:

(25) eijui
∂

∂uj
B[lp] + gile

ijB[jp] + gipe
ijB[lj] = 0.

Let the skew-symmetric part of matrix B be presented as βεij. Then equation (25)
confirms that β should be a differential invariant:

(26) eijui
∂

∂uj

β = 0.

But the variationality condition (10a) now says:

(27) 2β = 3u.∂xα .

Applying the left hand side operator of (26) to (27) along with equation (18)
produces

εjie
ip ∂

∂xp
α = 0.

Thus α does not depend on xi. Looking back at (27) immediately implies β = 0,
matrix B being symmetric thus. In addition, we see that matrix B also should
not depend on xi by the reason of relation (23).

Now it is time to turn back to the constraint (21) Of course, we could have used
it much earlier, but we prefer to unleash it now. So, the two equations, contained
there, allow us to prescribe the shape to the matrix B as follows (independent of
its virtual symmetry). Let B12 = b1u2, B21 = b2u1. Then from (21) one has:

Bij = biuj − (b·u)gij .

But we already know that B[ij] = 0. This immediately implies that b and u must
be collinear, b = µu, thus suggesting the following form of matrix B:

(28) Bij = µ (uiuj − (u · u) gij) .

Let us again act on (28) with the operator eijui
∂

∂uj and make use of (24). After
some simplifications we get:

eijui
∂

∂uj
µ = 0 ,
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what suggests that µ depends on ui exclusively via u·u.
The definite step consists in applying the second valid variational criterion,

that of (10b). It is efficient to make contraction of (10b) with ui on the left and
in meanwhile not to forget about the constraint (21). One obtains:

ui ∂

∂ui
Bjp = −Bjp .

Together with the guise (28) this produces
(

2 (u · u)
∂µ

∂‖u‖2
+ 3 µ

)
(uiuj − (u · u)gij) = 0 ,

what clearly has the solution µ = m

(u·u)3/2 and so says the finite appearance of B:

Bij =
m

(u · u)3/2
(uiuj − (u · u) gij) .

3 The variational description of geodesic circles

3.1 The variational equation

Before calculating the variation of the integrand in the functional expression
∫

k dς
let us agree on some basic formulæ. If υ denotes the infinitesimal shift of the path
xi(ς) and if D̃ stands for the covariant differentiation operator according to that
shift, then the covariant variation of any vector field ξ along this path is given by

(29) 〈υ, D̃ξ〉i = 〈υ, dξi〉+ Γi
lj ξ

jυl.

Let the covariant derivative of a vector field be notated by prime. And let us
introduce a special designation for the evaluation of Riemannian curvature on
velocities as follows:

σl
j = Rji,p

luiup.

The vector differential one-form σ = [σl
j] is semi-basic when the projection TM →

M is considered: 〈υ, σ〉l = σl
jυ

j. Let θ denote the vector one-form representing
the identity: θ = [δl

j]. Next formulæ replace then the usual interchange rule
between infinitesimal variation and ordinary differentiation:

D̃u = θ ′ [this recapitulates definition (29)],

D̃(u′) = (D̃u)′ − σ [this recapitulates the definition of the tensor Rji,p
l ].

(30)

Further on we shall find escape from highly tangled and tedious calculations
in the truth of the following relation (valid in two dimensions only):

(31) (a · a) (v ∧ c)·(v ∧ c)− (a · v) (v ∧ c)·(a ∧ c) + (a · c) (v ∧ c)·(a ∧ v) = 0 ,
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along with the simplification formulæ (14).
The above formal and highly symbolic notations save place and time and

help to avoid unessential calculative details, whereas keeping the skeleton of the
variational procedure untouched and faithfully tracing the logical outlines of our
development as well as producing the correct final result.

With these prerequisites we calculate the covariant variation of the Frenet
curvature (15), discarding terms which present total covariant derivatives:

D̃k =
(u ∧ u′)·

(
D̃u ∧ u′

)

‖u‖3‖u ∧ u′‖ − 3
‖u ∧ u′‖
‖u‖5

(
u · D̃u

)
+

(u ∧ u′)·
(
u ∧ D̃u′

)

‖u‖3‖u ∧ u′‖ =

[by (14), (30), and Leibniz rule]

= 2
‖D̃u ∧ u′‖
‖u‖3

− 3
‖u ∧ u′‖
‖u‖5

(
u · D̃u

)
− 3

‖D̃u ∧ u‖
‖u‖5

(u · u′)

−(u ∧ u′)·(u ∧ σ)

‖u‖3‖u ∧ u′‖

= −‖D̃u ∧ u′‖
‖u‖3

− (u ∧ u′)·(u ∧ σ)

‖u‖3‖u ∧ u′‖ [by (31)]

=
‖θ ∧ u′′‖
‖u‖3

− 3
‖θ ∧ u′‖
‖u‖5

(u · u′)− (u ∧ u′)·(u ∧ σ)

‖u‖3‖u ∧ u′‖ [by Leibniz rule again].

Let us introduce one more succinct notation:

Rj =

√| det[gij]|
‖u‖3

εilRjn,p
luiupun

The relation between this scalar semi-basic one form Rjdxj and previously intro-
duced vector semi-basic one form σi

jdxj is obvious:

√
| det[gij]| εilu

iσl
j

‖u‖3
= Rj.

Both quantities satisfy the constraint imposed on the contraction with velocity:

(32) Rju
j = 0 ,

along with

(33) uiσ
i
j = 0 .

Now the Euler–Poisson equation for the complete Lagrange function (2) may be
expressed in the form, valid in each case of different signature of metric tensor gij

with the help of Hodge star operator:

(34) ER = −∗u′′

‖u‖3
+ 3

(u · u′)
‖u‖5

∗ u′ + m
(u · u)u′ − (u′ · u)u

‖u‖3
−R = 0
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Remark. The force R may be given another shape thanks to the relation (33):

Rldxl =
(u ∧ u′)·(u ∧ σ)

‖u‖3‖u ∧ u′‖ =
σ·u′

‖u‖‖u ∧ u′‖ =
1

2
Rlj,piu

jSpidxl ,

where Spi =
(u ∧ u′)pi

‖u‖‖u ∧ u′‖ is a formally introduced ‘spin’ tensor.

3.2 Completeness of variational description of geodesic
circles

It remains to prove that every geodesic circle may be given a consistent parametri-
zation, which makes it an extremal of the variational problem with the Lagrange
function (2).

The governing equation for the geodesic circles. With the intention to derive a
dynamical differential equation, governing the motion along a geodesic path, we
put equal to zero the derivative of the Frenet curvature function k in terms of
natural parametrization by ds =

√
uiui dς:

(35) u′
s·u′′

s = 0.

To it we add the obvious constraint

(36) u′
s·u′

s + us·u′′
s = 0,

which merely presents the differential consequence of

(37) us·u′
s = 0.

Next we solve the system of equations (35) and (36) for u′′
s to obtain

(38) (u′′s)l =
εli(u

′
s)

i

εij(u′s)i(us)j
u′

s·u′
s .

We leave it to the Reader to check with the help of (37) and of us·us = 1
that in two–dimensional space the late (38) by means of the relation εil(u

′
s)

i =
(u′s)lεij(u

′
s)

i(us)
j reduces to the well known governing equation of geodesic circles

(39) u′′
s + (u′

s·u′
s)u = 0.

In order to dispense with the constraint us·us = 1 we recalculate the derivatives
in (39) by the reparametrization from s to an arbitrary elapsed parameter ς along
the path of a geodesic circle to see at last that geodesic circles accept characteri-
zation as the integral curves of the following parameter-homogeneous differential
equation:

(40)
u′′

‖u‖3
=

u·u′′

‖u‖5
u + 3

u·u′

‖u‖5
u′ − 3

(u · u′)2

‖u‖7
u .
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Proof of the exhaustivenes of extremal set. Let us complement equation (40) by
the following additional one, which is consistent with the equation (34) (as its
consequence) and will play the role of the means to fix the way of parametrization
along the extremal curve:

(41)
u·u′′

‖u‖3
− 3

(u · u′)2

‖u‖5
=

(
m

‖u‖ u ∧ u′ − u ∧R
)

.

For the sake of efficiency, let us evaluate the Euler–Poisson expression (34) on
some arbitrary vector υ:

ER.υ =
∗ (υ ∧ u′′)
‖u‖3

− 3
u·u′

‖u‖5
∗ (υ ∧ u′) +

m

‖u‖3
(u ∧ u′)·(u ∧ υ)−R .υ .

If now we substitute u′′ in this equation with the expression from (40) and simul-
taneously take into account the additional equation (41), we will get:

ER.υ = −∗ (υ ∧ u) ∗ (υ ∧R)

‖u‖2
+

m

‖u‖3
∗ (υ ∧ u) ∗ (u ∧ u′)

+
m

‖u‖3
(u ∧ u′)·(u ∧ υ)−R .υ

= −(υ · u) (u ·R)

‖u‖2
+ υ·R−R .υ ≡ 0

because of (32)
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Complex of Nijenhuis and KV cohomology 1

by Michel Nguiffo Boyom

Abstract

Various cohomology theories on the same locally flat manifold and their
relationships are discussed. In particular a spectral sequence is used to re-
late the cohomology of superorder differential forms following Koszul [19]
and a pioneering complex initiated by Nijenhuis [32]. The moduli of holo-
morphic structures which are adapted to a symplectic structure is discussed.
A kahlerian alter ego of the Weinstein-Marsden symplectic reduction is stud-
ied as well as some relevant applications.

1 Introduction

In a locally flat manifold (M, D) we plan dealing with three cochain complexes.
The first one has been constructed in [32]. This work of Nijenhuis is really the
pioneering work on the cohomology of locally flat manifolds. The second complex
we are interested in is the complex of superorder differential forms. It is a sub-
complex of the Chevalley-Eilenberg complex of the Lie algebra A(M) of smooth
vector fields with coefficents in the vector space of tensors in M [19]. The third
complex we intend to deal with is called KV complex [29]. From the theory of
deformations of linear connections viewpoint [34] the KV complex of a locally flat
manifold (M, D) is the solution of the following conjecture of Gerstenhaber.
Every restrict theory of deformation generates its proper cohomology theory [7].
Really the pioneering work of Nijenhuis has been motivated by the Lie group
versus of this conjecture. Indeed, Albert Nijenhuis and Jean-Louis Koszul were
interested in the deformations of (Koszul-) Vinberg algebras. These algebras are
closely related to left invariant locally flat structures in Lie groups. At the other
side compact locally flat hyperbolic maniflods are non rigid, viz they always admit
non trivial deformations [17] [18]. The homological versus of this non rigidity prop-
erty might be the non vanishing property of the second cohomolgy space of some
deformation complex. Through section 8 we discuss relationships between various
cohomology complexes on a locally flat manifold (M, D). For instance we shall
prove that the cohomology of the pioneering complex constructed by Nijenhuis
and the cohomology of the complex of superorder differential forms constructed

1Received: December 14, 2007
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by Koszul coincide with the term E1 of a spectral sequence E = (Ep,q
r ) which con-

verges to the KV cohomology of (M,D). To start we shall recall the definitions
of cochain complexes we are intrested in.

2 Complex of superorder differential forms

Let A(M) be the Lie algebra of smooth vector fields in a smooth manifold M .
We denote by θ the representation of A(M) which extends its adjoint in the space
τ(M) of tensors in M . Every subspace T r

s (M) of homogeneous tensors of type
(r, s) is a A(M)-module. Let

C(A(M), T r
s (M) = ⊕kC

k(A(M), T r
s (M))

be the T r
s (M)-valued Chevalley-Eilenberg complex of A(M). Elements of

Ck = Ck(A(M), T r
s (M))

are k-multilinear maps from A(M) to T r
s (M). We set

Ck = 0

whenever k is a negative integer,

C0 = T r
s (M).

Let ` be a non negative integer. Following [19] a cochain f ∈ Ck is of order ≤ `
if for X1, .., Xk ∈ A(M) and x ∈ M the value f(X1, .., Xk)(x) depends on the `-jets
j`
xX1, .., j

`
xXk. The set of cochains of order ≤ ` is denoted by C`(A(M), τ(M)).

Let us set
C∞(A(M), τ(M)) = ∪`C`(A(M), τ(M)).

Then C∞(A(M), τ(M)) is called the complex of τ(M)-valued superorder differen-
tial forms in M . This complex contains some canonical non vanishing cohomology
classes. Here are two examples given in [19].(i) The divergence class is defined
in an oriented manifold equipped with a volume form v. The divergence of an
element X ∈ A(M) is defined by the formula

div(X)v = θ(X)v.

Let ∇ be the covariant derivation of a linear connection in M . Then consider the
T 2

1 (M)-valued 1-cochain α defined by

α(X) = θ(X)∇.

For (Y, Z ∈ A(M) α(X)(Y, Z) is defined by

θ(X)∇)(Y, Z) = [X,∇Y Z]−∇[X,Y ]Z −∇Y [X, Z].
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This cocycle α is of order ≤ 1. Its cohomology class [α] never vanishes. Fur-
thermore this cohomology class [α] doesn’t depend on the choice of the linear
connection ∇. Some interpretations of those canonical classes are given in [19].

3 Pioneering cochain complex of Nijenhuis

Let (M, D) a locally flat manifold. This means that D is the covariant derivation
of a torsion free linear connection whose curvature tensor vanishes identically.
Therefore the Lie algebra A(M) is the commutator (Lie) algebra of the Koszul-
Vinberg algebra A whose multiplication is defined by XY = DXY ∀X, Y ∈ A(M).
Thus the vector space X(M) of smooth vector fields is a two-sided A-module.
We recall that a two-sided module of a Koszul-Vinberg algebra A is a vector space
V with two-sided actions of A which are denoted by av and by va respectively.
These actions must satisfy the following axioms: ∀a, b ∈ A, ∀v ∈ V

a(bv))− (ab)v = b(av))− (ba)v,

a(vb))− (av)b = v(ab)(va)b.

The tensor product V ⊗W of A-two-sided modules V and W is a two-sided module
over the KV algebra A under the following actions

a(v ⊗ w) = av ⊗ w + v ⊗ aw,

(v ⊗ w)a = v ⊗ wa.

The linear space Hom(V,W ) is a A-two-sided module under the following actions
of A: ∀f ∈ Hom(V, W ), a ∈ A, v ∈ V

(af)(v) = a((fv))− f(av),

(fa)(v) = (f(v))a.

Thus if W is a left module over A then Hom(V,W ) is a left module over A.
Let us go back to the case of the locally flat manifold (M, D). The extension of
DX in τ(M) is denoted by DX as well. Then A and τ(M) are left modules over
the Lie algebra A(M). The vector space HomR(A, τ(M)) is endowed with the
structure of left module over A(M) which is defined by

(Xf)(Y ) = DX(f(Y ))− f(DXY )

Now we consider the Chevalley-Eilenberg complex Cce(A(M), HomR(A, τ(M)))
of HomR(A, τ(M))-valued cochains of A(M). Its kth homogeneous subspace is
denoted by Ck

N(A, τ(M). It consists of HomR(A, τ(M))-valued skew symmetric
k-multilinear maps of A(M). Its coboundary operator dce is defined as it follows.
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If f ∈ Ck
N(A(M), HomR(A, τ(M)) then dcef ∈ Ck+1

N (A(M), HomR(A, τ(M)) is
defined as it follows

(dcef)(X1, .., Xk+1) =
∑

j≤k+1

(−1)j+1DXj
(f(X1, ..X̂j, ..; Xk+1))+

∑

i≤j,i6=j

(−1)i+jf([Xi, Xj], ., X̂i, ., X̂j, ., Xk+1).

The symbol X̂j means that the variable Xj is missing. The kth cohomology
space of this complex is denoted by Hk

N(A(M), HomR(A, τ(M))). Following [32]
the graded vector space ⊕kC

k
N(A(M), HomR(A, τ(M))) is the complex of τ(M)-

valued cochains of the Koszul-Vinberg algebra A. Thereby A. Nijenhuis defines
the kth cohomology space Hk

N(A, τ(M)) of the Koszul-Vinberg algebras A as it
follows

Hk(A, τ(M)) = Hk−1
CE (A(M), HomR(A, τ(M))).

4 The KV complex of (M,D)

Let (M, D) be a locally flat manifold. As before we consider the Koszul-Vinberg
algebra A whose multiplication is defined by XY = DXY ∀X, Y ∈ X(M). The
vector space of contravariant tensors is a two-sided module over A. Both left
action and right action are defined as it follows. Let ξ = Y1 ⊗ Y2.. ⊗ Yp and let
X ∈ A. We set

Xξ =
∑
j≤p

Y1 ⊗X2..⊗XYj..⊗ Yp,

ξX = Y1 ⊗ Y2..⊗ Yp−1 ⊗ YpX.

The subspace of covariant tensors is a left module over A. Indeed we regard a
covariant p-tensor f as a p-multilinear map from the vector space A to the vector
space of real valued smooth functions. Then the left action Xf is defined by

(Xf)(Y1 ⊗ Y2...⊗ Yp) = X(f(Y1 ⊗ ..⊗ Yp))−
∑
j≤p

f(Y1 ⊗ Y2..XYj ⊗ ...Yp).

Let J(τ(M)) ⊂ τ(M) be the subspace consisting of ξ ∈ τ(M) such that X(Y ξ)) =
(XY )ξ ∀X,Y ∈ A. The subspace of k-multilinear maps from A to τ(M) is denoted
by Ck

KV (A, τ(M)). Let Z be the group of integers. We build the Z-graded vector
space CKV (A, τ(M)) = ⊕kC

k
KV (A, τ(M)) by setting

Ck
KV (A, τ(M)) = 0

if k is a negative integer,

C0
KV (A, τ(M)) = J(τ(M)),
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Ck(A, τ(M)) = HomR(A⊗k, τ(M))

if k is a positive integer. We define the coboundary operator

δ : Ck(A, τ(M)) → Ck+1(A, τ(M)).

Given f ∈ C0(A, τ(M)) then δf ∈ C1(A, τ(M)) is defined by

(δf)(X) = −Xf + fX.

Let f ∈ Ck
KV (A, τ(M)). Then δf ∈ Ck+1

KV (A, τ(M)) is defined as it follows

(δf)(X1 ⊗X2..⊗Xk+1) =
∑

j≤k

(−1)j[(Xjf)(X1 ⊗X2..X̂j..⊗Xk+1)+

(f(X1 ⊗X2..X̂j)...Xk ⊗Xj)XK+1].

The couple (CKV (A, τ(M)), δ) is a cochain complex. It is called the tensor-
valued KV complex of the locally manifold (M, D). Its cohomology is denoted by
HKV (A, τ(M)). The ultimate goal of the next sections is the study of relationships
between the KV cohomology and the following three deeply significant cochain
complexes of (M, D): the complex CN(A, τ(M)) initiated by Nijenhuis [32], the
complex of superorder differential forms C(A(M), τ(M)) initiated by Koszul [19]
and the classical de Rham complex of differential form CdR(M,R). That are
reasons why we plan performing some spectrale sequences which converge to the
cohomolgy of the KV complex CKV (A, τ(M)). To make short S-sequence stands
for spectral sequence.

5 An S-sequence converging to HKV(A, τ (M))

Let (j, `) be a couple of non negative integers. Let Cj,`
KV (A, τ(M)) be the vector

space consisting of f ∈ Cj+`
KV (A, τ(M)) such that f(X1, .., Xj, Y1, .., Y`) is skew

symmetric w.r.t. X1, .., Xj. We set

F jCKV (A, τ(M)) = ⊕`C
j,`
KV (A, τ(M)).

These subspaces have the following properties

F j+1CKV (A, τ(M)) ⊂ F jCKV (A, τ(M)),

δF jCKV (A, τ(M)) ⊂ F jCKV (A, τ(M)),

The filtration of Ck
KV (A, τ(M)) by F jCKV (A, τ(M))∩Ck

KV (A, τ(M)) is bounded.
From these properties one derives a spectral sequence E = Ep,q

r . Furthermore one
deduces that this spectral sequence Er converges to HKV (A, τ(M)). In particular
we have the decomposition

Hk
KV (A, τ(M)) = ⊕p+q=kE

p,q
∞ .



144 Michel Nguiffo Boyom

6 Relationships between scalar KV cohomology,

cohomology of superorder differential forms,

and the Nijenhuis complex

The spectral sequence Er of the last section is an efficient tool to relate the coho-
mology HN(A, τ(M)) of Nijenhuis complex to the cohomology H(A(M), τ(M)) of
superorder differential forms following Koszul [19]. This section is devoted to the
case of T 0(M)-valued KV complex of A. The subspace T 0(M) is nothing else than
the space of real valued smooth functions. It is a left A-module. At the ohter side
we may identify the vector space T 1

0 (M) with the vector space HomR(A, T 0(M)).
Thus according to our previous notation the vector space Ck

N(A(M), T 1
0 (M)) is a

subspace of the vector space Ck+1
KV (A, T 0(M)). The following result is a key step

towards our goal.

Theorem 6.1. [20] The graded vector space

CN = ⊕kC
k
N(A(M), T 1

0 (M))

is a subcomplex of the scalar KV complex CKV (M). Its (k)th cohomology space
Hk

N(A(M), T 1
0 (M)) after Nijenhuis [32] coincides with its (k+1)th KV cohomology

space Hk+1
KV (CN).

Really Theorem 6.1 is a corollary of the following general feature. Let V be
a two-sided module over a Koszul-Vinberg algebra A. Then the vector space
Ck

N(A, V ) = Hom(∧kA,Hom(A, V ) is obviously a subspace of the vector space
Ck+1

KV (A, V ). Therefore let f ∈ Ck
N(A, V ) ⊂ Ck+1

KV (A, V ). As we did before the
coboundary operator of Nijenhuis and the KV coboundary operator are denoted
by dce and by δ respectively. Given X1, .., Xk+2 ∈ A, according to the definition
of the operator δ one has

δf(X1, ., Xk+2) =
∑

j≤(k+1)

(−1)j[(Xjf)(X1, .X̂j, .Xk+2)+

(fXk+2)(X1, ..X̂j, .., Xk+1, Xj)].

At the right side of the formula above Xjf and fXk+2 must be understood as it
follows

(Xjf)(a1, .., ak+1) = Xj(f(a1, .., ak+1))−
∑

i

(f(a1, .., Xjai, .., ak+1)),

(fXk+2)(a1, .., ak+1) = (f(a1, .., ak+1))Xk+2.

It is easy to check that (δf)(X1, ..Xk+2) is skew symmetric w.r.t. X1, .., Xk+1.
Thus the graded space CN(A, V ) = ⊕Hom(∧kA,Hom(A, V )) is preserved by
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the KV coboundary operator δ. Thereby the graded space CN(A, V ) has two
cochain complex structures: (CN(A, V ), δ) and (CN(A, V ), dce). Nevertheless the
cohomology spaces which are derived from those cochain complex structures don’t
conicide. Theorem 6.1 is a straight consequence of the following

Theorem 6.2. Suppose V to be a left module over the KV algebra A. Then the
coboundary operators δ and dce we have defined are related by the formula

δf(X1, .., Xk+2) = −(dcef(X1, .., Xk+1))(Xk+2)

∀f ∈ Ck
N(A, V ).

Theorem 6.2 help to end the sketch of proof of Theorem 6.1. Now we go back
to the previous filtration. Namely F jCKV (A, T 0(M)) ⊂ CKV (A, T 0(M)). It gives
rise to the filtration of HKV (A, T 0(M)) by the subspaces

F jHKV (A, T 0(M)) = ι?(HKV (F jCKV (A, T 0(M)))).

The mapping ι : F jCKV CKV (A, TO(M)) → CKV (A, T 0(M)) is the inclusion map.
From Theorem 6.2 the cohomology defined by Nijenhuis [32] is closely related to
the cohomology of superorder differential forms defined by Koszul [19]. Indeed we
are in position to impliment the following identification

Hk+1
KV (F kCKV (A, TO(M))) = Hk+1

N (A, T 0(M)) = Hk(A(M), T 1
O(M)).

Really the vector space Hk(A(M), T 1
0 (M)) is nothing but the T 1

0 (M)- valued kth

cohomology of superorder differential forms [19]. Owning this argument we have
the following equalities

F kHKV (A, T 0(M)) ∩Hk+1
KV (A, T 0(M)) = ι?(Hk+1

N (A(M), T 0(M))).

To conclude we use the spectral sequence Er which is derived from the filtration
F jCKV (A, T0(M)). Then it becomes easy to check that both Hj−1(A(M), T 1

0 (M))
and Hj

N(A, T 0(M)) defined by Nijenhuis [32] and by Koszul [19] respectively are
connected to the spectral sequence Er by of the identifications

Hj
N(A, T 0(M)) = Hj

KV (F j−1C?(A, T 0(M))) = Hj−1(A(M), T 1
O(M)).

7 Relation to the de Rham complex of M

In this section we shall use the filtration F jCKV (A, T 0(M)) to point out some re-
lationships between the KV cohomology and the de Rham cohomolgy of a locally
flat manifold (M,D). Let us consider the vector space Cp,q

KS(A, T 0(M)) whose
elements f are (p + q)-multilinear maps f(X1, .., Xp, Y1, .., Yq) from A to T 0(M)
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subject to the following requirements

(i) f(X1, .., Xp, Y1, .., Yq) is skew symmetric w.r.t. the variables X1, .., Xp;

(ii) f(X1, .., Xp, Y1, .., Yq) is symmetric w.r.t. the variables Y1, .., Yq.

Thus we can write f(X1∧X2∧ ..∧Xp, Y1∨Y2∨ ..∨Yq) where X1∧X2∧ ..∧Xp

is the exterior (tensor) product of X1, .., Xp and Y1 ∨ Y2 ∨ ..∨ Yq is the symmetric
(tensor) product of Y1, .., Yq. So, one has

CKS(M,R) =
∑
p,q

Cp,q
KS(A, T 0(M)).

Consider the Koszul-Spencer coboundary operator

∂ : Cp,q
KS(M, R) → Cp+1,q−1

KS (M, R)

[10]. Let f ∈ Cp,q
KS(M, R). Let ξ = X1 ∧X2 ∧ ..∧Xp+1 and ζ = Y1 ∨ Y2 ∨ ..∨ Yq−1.

Then ∂f ∈ Cp+1,q−1
KS (M,R) is defined by

(∂f)(ξ, ζ) =

p+1∑
j=1

(−1)j(f(X1 ∧ ..X̂i... ∧Xp+1, Xi ∨ Y1 ∨ ..Yq−1).

It is easy to check that ∂2 = 0. Thus one gets the Koszul-Spencer complex

→ Cp−1,q+1
KS (M,R) → Cp,q

KS(M,R) → Cp+1,q−1
KS (M, R) →

whose cohomology at the level Cp,q
KS(M,R) is denoted by Hp,q

KS(M, R). This com-
plex is positively acyclic in the sense that Hp,q

KS(M, R) vanishes for every pair (p, q)
of positive integers. Furthermore the map

∂ : Cp,1
KS(M, R) → Cp+1,0

KS (M,R)

is surjective. The vector space Cp,0
KS(M, R) is the space of p-multilinear skew

symmetric maps from the vector space A to the vector space T 0(M). The vector
space Ωp(M) of ordinary differential p-forms is a subspace of Cp

KS(M, R). Now let

d : Ωp(M) → Ωp+1(M)

be the classical exterior differential operator. The space Cp,1
KS(M, R) is nothing but

Cp
N(A, T 1

O(M)) ⊂ Cp+1
KV (A, T 0(M)). Then the KV coboundary operator δ maps

Cp,1
KS(M,R) in Cp+1,0

KS (M, R). Theorem 6.2 is a particular case of the following
statement (where KS coboundary operator means Koszul-Spencer coboundary
operator).
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Theorem 7.1. Let f ∈ Cp,1
KS(M, R). The de Rham operator d, the K-S coboundary

operator ∂ and the KV operator δ are related as it follows. Given f ∈ Cp,1
KS(M, R)

we have
d(δf) = (−1)p−1∂(δf).

Clearly tensorial cochains are superorder differential forms of order ≤ O. They
are preserved by all of the coboundary operators d, ∂ and δ. Now we deal with
tensorial cochains of CKS(M, R). This means that we are concerned with cochains
which are T 0(M)-linear. Then Theorem 7.1 shows that the Koszul-Spencer oper-
ator gives rise to the following short exact sequence of cochain complexes

O → ∂(Cp−1,2
KS (M,R)) → Cp,1

KS(M,R) → Ωp+1(M) → 0.

At the level ∂(Cp−1,2
KS (M, R)) the KV cohomology of

∑
p ∂(Cp−1,2

KS (M,R) will be

denoted by hp−1,2. On one hand we already know that Hp
N(A, T 1

0 (M)) coincides
with the (p+1)th real valued KV cohomology space Hp+1(A) of CKV (M, R) at the
level of Cp,1

KS(M, R). On another hand we know that the cohomology of (Ω(M), d)
is nothing else than the real de Rham cohomology HdR(M, R) of the manifold M .
This discussion yields the long exact cohomology sequence which relates the KV
cohomology to the real de Rham cohomology, namely

→ hp−1,2 → Hp+1(A) → Hp+1
dR (M, R) → hp,2 →

8 Weinstein- Marsden reduction of adapted holo-

morphic structures

This section is devoted to foliated symplectic manifolds and their reductions under
hamiltonian actions of Lie [22]. Hamiltonian actions we deal with have equivariant
momenta maps. Main definitions are given below.

Definition 8.1. A FL structure in a smooth manifold M is a triple (M,ω, L)
where L is a lagrangian foliation in a symplectic manifold (M, ω).

Definition 8.2. An automorphism of (M,ω, L) is a L-preserving symplectomor-
phism of (M, ω)

Let Φ = (φt)t∈R be a flow of automorphisms of (M, ω,L) which is generated
by a non singular vector field X. The flow Φ is assumed to be a hamiltonian flow
of (M,ω) with a proper momentum map which is denoted by µ. Let us suppose
that zero is a regular value of µ. Then µ−1(0) is a submanifold of M . By the
virtue of the classical Weinstein-Marsden theorem Φ\µ−1(0) admits a symplectic
form ωo such that

π?(ωo) = ι?(ω)
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where π is the canonical projection

µ−1(0) → Φ\µ−1(0)

and ι is the inclusion map of µ−1(0) in M .

Definition 8.3. An almost complex tensor J ∈ Aut(TM) is said to be adapted
to (M,ω) if at every point x ∈ M ωx(JX, JY ) = ω(X,Y ) and if the quadratic
form ω(JX, X) is positive definite.

There are symplectic maniflolds without any adapted holomorphic structure
[31], [36] If J is adapted to (M,ω) then J(L) is a lagrangian distribution which
is transverse to L. Then arises the following question: (Q1): Is the distribution
J(L) completely integrable? When the answer of question (Q1) is affirmative the
couple (L, J(L)) defines a bilagrangian structure in (M,ω). Thereby there exists
a unique torsion free linear connection whose covariant derivation D satisfies the
followings requirements:

DX(L) = L,

DX(J(L)) = J(L),

DXω = 0

for every smooth vector field X.
Let X(M) be the vector space of smooth vector fields in M . We consider the
bilinear map ∇ from X(M) to itself which is definied by

ω(∇XY, Z) = X(ω(Y, Z))− ω(Y, [X,Z])

∀X, Y, Z ∈ X(M). The bilinear ∇ has the following remarkable property. Every
lagrangian foliation L in (M, ω) is preserved by ∇. Furthermore if F is a leaf of L
then the restriction of ∇ in F is a torsion free linear connection whose curvature
tensor vanishes identically [39]. We decompose the tangent bundle TM as TM =
L ⊕ J(L). Then every X ∈ X(M) is decomposed as X = (X1, X2) ∈ L × J(L).
Suppose that J(L) is completely integrable. Then the covariant derivation of the
unique torsion free symplectic connection D defined by the couple (L, J(L)) is
given by

DX1,X2(Y1, Y2) = (∇X1Y1 + [X2, Y1]1,∇X2Y2 + [X1, Y2]2).

Now we suppose J(L) to be completely integrable. Araises the question (Q2)
to know whether the connection D is locally flat. To answer this question Q2

one may perform the following relevant theorem by H. Hess [12]. A system
(q1, .., qm, p1, .., pm)) of local coordinate functions will be denoted simply by q, p).
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Theorem 8.4. Suppose that J(L) is completely integrable. Then the following
statements are equivalent
(1) The curvature tensor of D vanishes identically.
(2) In a neighbourhood of each point of M there exists a system (q, p) of local
coordinate functions subject to the following requirements
(a) ω =

∑
i dqi ∧ dpi,

(b) L is generated by the hamiltonian vector fields Xi of the functions pi,
(c) J(L) is generated by the hamiltonian vector fields Yi of the functions qi.

Let us go back to the Weinstein-Marsden reduction (Φ\µ−1(0), ωo). Since the
foliation L is preserved by Φ let us assume that L is subordinated to µ−1(0)
in the following meaning. If a leaf F of L meets µ−1(0) then F ⊂ µ−1(0).
Thereby the foliation L gives rise to a lagrangian foliation Lo in the reduction
(Φ\µ−1(0), ωo). The third question we are interested in is (Q3): does J give rise
to an almost complex tensor Jo ∈ Aut(T (Φ\µ−1)(0)) which is adapted to the
reduction (Φ\µ−1(0), ω)? The last statement relating J and Jo has the follow-
ing meaning. Let go be the Riemannian metric in µ−1(0) which is defined by
the quadratic form ω(J(X), X). We suppose that Φ\µ−1(0) is simply connected.
Then there exists a complex analytic submanifold W of (M,J) satisfying the fol-
lowing conditions
(i) W ⊂ µ−1(0)
(ii) W is a transversal of the foliation of µ−1(0) by the orbits of Φ.
The main concern of the sequel is to (briefly) discuss questions (Q1), (Q2) and
(Q3). We suppose once for all that the following property (DH) holds in (M,ω, L).
In a neighbourhood of every point x ∈ M there exists a system (q1, .., qm, p1, .., pm)
of local coordinate functions such that (DH1): ω =

∑
j dqj ∧ dpj, (DH2): L is

generated by the hamiltonian vector fields of the functions pj. Using property
(DH) one defines a local complex analytic structure whose complex coordinates
functions are

zj = qj +
√−1pj.

The almost complex tensor JDH of this local holomorphic structure is defined by

JDH(Sj) = Yj,

JDH(Yj) = −Sj

where Sj and Yj are the hamiltonian vector fields of pj and of qj respectively. In
regard to the question Q1 the following theorem is useful.

Theorem 8.5. Let (M,J) be an integrable almost complex structure which is
adapted to (M, ω). Let (qj, pj) be local coordinate functions with property (DH).
Then the hamiltonian vector fields Sj satisfy the following properties : (a) [Si, J(Sj)]
is a local section of J(L), (b) [J(Si), J(Sj)] is a local section of L.
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Proof. We suppose that the local functions qi, pi are defined in an open U ⊂ M
and that the tangent bundle TM is trivial over U . Let LU be the restriction of L
over U . Then we define the map θ from LU to U ×R2m by setting

θ(x, v) = (x, ωx(J(S1), v), .., ωx(J(Sm), v), ωx(J(Y1), v), .., ωx(J(Ym), v)).

Now let (σ1, .., σm be a basis of local sections of LU such that θ(σj) = constant.
Clearly the system (S1, .., Sm, Y1, .., Ym) is an orthonormal basis of the local Rie-
mannian metric gDH which is defined by

gDH(X,Y ) = ω(JDHX,Y ).

Then let us perform the Riemannian metric gDH to get the following gDH-othogonal
decomposition of J(σj)

J(σj) =
∑

ω(JDHSi, J(σj))Si +
∑

ω(JDHYi, J(σj))Yi.

Since the local functions ω(JSi, σj) and ω(J(Yi), σj) are constant, all of the brack-
ets [Si, σj] vanish identically. Of course the Nijenhuis tensor NJ vanishes identi-
cally as well. One combines the last arguments with the fact that Si and Yj are
hamiltonian vector fields to end the proof of Theorem 8.5.
We have assumed that the flow Φ preserves the lagrangian foliation L. Without
loss of generality we can suppose that S1 coincides with the generator of Φ. We
know that [S1, J(S1] is a local section of J(L). The complex line bundle gener-
ated by span(S1 ,J(S1 )) is completely integrable. According to our hypothesis the
triple (M, ω, J) is a Kaehler manifold. Let To be the orthogonal of span(S1, J(S1))
w.r.t. the Riemannian metric defined by ω(JX, Y ). Then both span(S1 ,J(S1))
and To are complex analytic distributions. According to [13], [14] To is completely
integrable (resp totally geodesic ) if and only span(S1, J(S1)) is completely inte-
grable (resp. totally geodesic). These arguments allow one to prove that J(L) is
completely integrable. To make this claim more precise the following remark may
be useful. Every leaf Fo of To is a Kaehlerian submanifold of (M,ω, J). Moreover
such a leaf Fo is a covering of the symplectic reduction (Φ\µ−1(0), ωo). Let us sup-
pose that Φ\µ−1(0) is simply connected. Then we may identify Φ\µ−1(0) with the
Kaehlerian manifold (Fo, ω, J). Thus every integrable almost complex structure
(M,J) which is adapted to (M, ω) has a reduction in (Φ\µ−1(0), ωo, Lo).

We conclude the discussion above by the following statement

Theorem 8.6. Every holomorphic structure (M,J) which is adapted to (M, ω)
has a reduction (Φ\µ−1(0), Jo) which is adapted to (Φ\µ−1(0), ωo, Lo).

Theorem 8.6 above helps to prove inductively ( w.r.t. dim(M)) that J(L) is
completely integrable [25].
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9 The flatness problem for (L,J(L))

From now on we suppose that J(L) is completely integrable. We keep the previ-
ous notation. Let us recall that the couple (L, J(L)) defines a unique (L, J(L))-
preserving torsion free symplectic connection whose covariant derivative D is de-
fined by

DX1,X2(Y1, Y2) = (∇X1Y1 + [X2, Y1]1,∇X2Y2 + [X1, Y2]2).

The curvature tensor of D may be different from zero. For instance let one con-
sider the euclidian space R2 with the symplectic form ω(x, y) = exp(xy)dx ∧ dy.
Let L and L′ be the foliations whose leaves are the straight lines y = constant
and x = constant respectively. These foliations are lagrangian. The torsion
free symplectic connection defined by (L,L′) is not locally flat, viz its curvature
tensor doesn’t vanish identically. In constrast to this, let one take ω(x, y) =
(exp(x) + exp(y))dx ∧ dy. The foliations L and L′ are the same as above. Then
the curvature tensor of the torsion free symplectic connection defined by (L,L′)
vanishes identically.
We go back to general situation. We consider the couple (L, J(L)) given by a holo-
morphic structure (M,J) which is adapted to (M, ω). We suppose that (M,ω, L)
has property (DH). Let (qi, pi) be a system of local Darboux coordinate functions
with property (DH). Thus, the functions p1, .., pm are local first integrals of the
lagrangian foliation L. We fix a basis α1, .., αm of local sections of L subject to
the following requirements: ω(JSi, αj) = δi,j where δi,j is the Kronecker symbol.
We use property (DH) and Theorem 8.6 to prove that for every couple (i, j) the
local vector fields [Si, J(Sj)] and [JSi, JSj] are local sections of J(L) and of L re-
spectively. Thereby the complete integrability of J(L) implies that [JSi, JSj] = 0.
We combine these results to prove that the local vector fields Jαj are hamiltonian
vector fields. Moreover the system (S1, .., Sm, Jα1, .., Jαm)(x) is a symplectic basis
of (TxM, ω) satisfying the following conditions

[Si, Sj] = 0,

[Si, Jαj] = 0,

[Jαi, Jαj] = 0.

Now for every index j let yj be a fixed local primitive of the closed differential
1-form iJαj

ω. In regard to the bilagrangian structure (M,ω, J, J(L)) the system
(y1, .., ym, p1, .., pm) of local coordinate functions satisfy the properties of the the-
orem of Hess. In other words the following statements hold
(a) ω =

∑
dyi ∧ dpi,

(b) L is spanned by the hamiltonian vector fields Sj of pj;
(c) J(L) is spanned by the hamiltonian vector fields Jαj of yj.
Let D be the torsion free symplectic connection defined by the couple (L, J(L)).
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According to the theorem of Hess the conditions (a), (b) and (c) hold if and only
if the curvature tensor of D vanishes identically. Thus we can state the following

Theorem 9.1. Let (M, ω, L) be a FL-structure in a symplectic manifold (M,ω).
Then, every complex analytic structure (M, J) which is adapted to (M,ω) defines
a locally flat structure (M, D) satisfying the following conditions
(i) DXω = 0,
(ii) DX(L) = L and DX(J(L)) = J(L) for every vector field X.

The flatness problem for (L, J(L)) that we just discussed is but a particular
case of the general extension problem. More precisely suppose a submanifold
N ⊂ M (respectively suppose the leaves of a foliation of M) to carry a particular
geometrical structure (S). The problem is to know whether (S) can be extended
in the ambiant manifold M. For instance, we consider a FL-structure (M,ω, L).
The leaves of L are locally flat manifolds. In the discussion above we have been
concerned with the extension problem for the locally flat structures of leaves of L
and of leaves of J(L) respectively. About the reduction of (M, ω, L) by the flow
Φ our discussion yields the following statement.

Theorem 9.2. Let us consider data (M, ω,L), Φ and µ such that the symplectic
reduction (Φ\µ−1(0), ωo) is simply connected. If (M, ω, L) admits an adapted holo-
morphic structure (M, J) then its reduction (Φ\µ−1(0), ωo, Lo) admits an adapted
holomorphic structure (Φ\µ−1(0), Jo).

The Kaehlerian reduction theorem above yields other relevant corollaries some
of which have been proved using different techniques [25]. Let one state (without
proof) two such theorems.

Theorem 9.3. [8]. We assume that the manifold M is simply connected. Suppose
(M,ω, L) is homogeneous under an effective action of a completely solvable Lie
group G. If a G-homogeneous holomorphic structure (M,J) is adapted to (M, ω)
then the following statements hold.
(i) The action of G in M is free.
(ii) The manifold M is the total space of a fiber bundle whose base is a Hessian
manifold and whose fibers are simply connected homogeneous Kaehlerian subman-
ifolds.

Theorem 9.3 we just stated has been proved by Gindikin S.G, Piatecckii-Sapiro
I.I. and Vinberg E.B. [8] See also [4], [5] and [9]. Theorem 9.3 is a special case
of a theorem by Dorfmeister and Nakjima (the fundamental conjecture) [5]. For
other cases of the conjecture see [3], [23].
The second statement we have in mind is a particular case of a conjecture of
Benson and Gordon [1], [2].

Theorem 9.4. We assume that (M, ω,L) is homogeneous under the action of a
completely solvable Lie group G. Suppose that a holomorphic structure (M,J) is
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adapted to (M, ω). If the Kaehlerian structure (M,ω, J) is invariant under the ac-
tion of a cocompact lattice Γ ⊂ G then the compact manifold Γ\G is diffeomorphic
to the flat torus T 2m = Z2m\R2m.

Really the statement above is a particular solution of a conjecture which has
been stated by C. Benson and C. Gordon see [2],[11],[25], [33], [37]. See also [20].

10 Lagrangian webs

Let (M,ω, L) be a FL-structure. We plan pointing out another relevant corollary
of the existence of holomorphic structures which are adapted to (M, ω).

Theorem 10.1. Let M be a simply connected manifold with a FL-structure
(M,ω, L). Then every holomorphic structure (M, J) which is adapted to (M, ω)
gives rise to a continuous one parameter family L(t) of lagrangian foliations of
(M,ω) which have the following properties.
(i) These foliations L(t) are pairwise transverse everywhere and (L(t), L(t′)) is
locally flat ∀(t, t′) ∈ R2 −∆R2.
(ii) The locally flat symplectic connection Dt,t′ defined by (L(t), L(t′)) doesn’t de-
pend on the choice of the point (t, t′) ∈ R2 −∆R2.

Proof. We start with the locally flat structure (M,D) which is defined by (L, J(L)).
For every t ∈ R the distribution L(t) is spanned by the vector fields X + tJ(X)
where X runs over the set of local sections of L. The complete integrability of
J(L) implies the complete integrability of L(t). Obviously the lagrangian folia-
tions L(t) and L(t′) are transverse whenever t 6= t′.
Let Dt,t′ be the torsion free symplectic connection defined by the couple (L(t), L(t′)).
Let (x1, .., xm, y1, .., ym) be a system of local coordinates functions satisfying the
conditions
(a) ω =

∑
dxi ∧ dyi,

(b) L is generated by the hamiltonian vector fields of y1, .., ym)
(c) J(L) is generated by the hamiltonian vector fields of (x1, .., xm).
Then the functions xj, yj are local affine coordinate functions of the locally flat
structure (M,D). In other words, these functions satisfy the following conditions

D(dxj) = 0,

D(dyj) = 0.

Let (t, t′) ∈ R2 −∆R2. Then we set

xj(t, t
′) =

1

t− t′
(yj + txj),

yj(t, t
′) = yj + t′xj
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for j := 1, .., m.
Now it is easy to check that data

D(t,t’) = ((x1(t, t
′), ., xm(t, t′), y1(t, t

′), ., ym(t, t′)), ω, (L(t), L(t′)))

satisfy conditions (a), (b) and (c). Therefore, by the virtue of Theorem 8.4 the
curvature tensor of Dt,t′ vanishes identically. The property (i) is proved.
At one side the local functions xj(t, t

′), yj(t, t
′) satisfy the conditions

Dt,t′(dxj(t, t
′)) = 0,

Dt,t′(dyj(t, t
′)) = 0.

At the other side the same functions xj(t, t
′), yj(t, t

′) satisfy the requirements
D(dxj(t, t

′)) = 0 and D(dyj(t, t
′)) = 0. As conclusion we get Dt,t′ = D.

A straightforth consequence of Theorem 10.1 is that (M,ω) admits lagrangian
k-web for every positive integer k. The study of these lagrangian webs is not the
purpose of this paper. Nevertheless we intend to show that those lagrangian webs
are locally linearizable.

11 Linearization problem for lagrangian webs

Let Fj, j := 1, .., k be a k-web in a smooth manifold M .
Let m = dimM and n = dimFj. Then m = 2n. Let x ∈ M . Let Fj(x) be the leaf
of Fj through the point x and let Vj = TxFj.
We shall say that the web Fj is linearizable near the point x ∈ M if there exists
a local chart of M , namely (U, φ), satisfying the following conditions

φ(U ∩ Fj) ⊂ (dφ)(x)(Vj)

∀j := 1, .., k. The linearization problem for webs is a difficult problem. Our
concern is the linearization problem for lagrangian webs defined by a holomorphic
structure (M, J) which is adapted to a symplectic manifold with a FL-structure
(M,ω, L)
From Theorem 10.1 above we deduce that the symplectic manifold (M, ω) admits
a lagrangian k-web for every positive integer k. Such a k-web is defined by a
k-sequence (t1, .., tk) ∈ Rk with tj 6= tj′ whener j 6= j′.

Theorem 11.1. The family L(t) is continuously locally linearizable.

Proof. Actually, every k-web (L(t1), .., L(tk)) is locally linearizable. Indeed, in a
neighbourhood U of x ∈ M one considers a system of local coordinate functions,
namely x1, .., xm, y1, .., ym which satisfy conditions (a), (b) and (c) (see the proof of
Theorem 10.1). Let us suppose that xi(p) = 0, yi(p) = 0. The lagrangian foliation
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L(tj) is locally defined by the system yi + tjxi = ci, with ci ∈ R ∀i := 1, .., m. Let
Xi and Yi be the hamiltonian vector fields of yi and of xi respectively. Condition
(a) implies that

[Xi, Xi′ ] = 0,

[Xi, Yi′ ] = 0,

[Yi, Yi′ ] = 0.

Thus conditions (b) and (c) imply that span((Y1 + tjX1, .., Ym + tjXm)) = L(tj).
From this discussion we deduce that the local chart whose local coordinate func-
tions are x1, .., xm, y1, .., ym yields a linearization of the web (L(t1), .., L(tk)). It is
clear that our proof walks continuously w.r.t. the parameter t ∈ R. This ends the
proof of Theorem 11.1.

Now we have an application which assigns to each couple (t, t′) ∈ R2 − ∆R2

the locally flat structure (M, Dt,t′) which is defined by (L(t), L(t′)). We know that

(M,Dt,t′) = (M,D0,1) = (M,D).

Then arises the question to know whether (M,D) is complete or hyperbolic. Be-
fore discussing those questions let us recall the notions we are concerned with.
Let c : [0, 1] → M be a smooth curve. The parallel transport (w.r.t. D) along c is
denoted by τ . Let s ∈ [0, 1], we denote by τs the parallel transport from Tc(0)M
to Tc(s)M . Then let one set

Q(c) =

∫ 1

O

(τ−1
s (ċ(s)))ds

where ċ(s) is the velocity of c at the time s. Since (M, D) is locally flat Q(c)
depends only on the homotopy class of c. Thus, let us identify the universal
covering M̃ with the set [[0, 1],M ]xo of homotopy class of curves c with c(0) =
xo ∈ M . Then, we get a local (affine) diffeomorphism Q from M̃ to the vector
space TxoM . The couple (τ,Q) defines an affine representation of the fundamental
group π1(M) in the affine space TxoM . The linear part τ : π1(M) → GL(ToM is
the linear holonomy representation and τ(π1(M)) is the linear holonomy group of
(M,D). Let us go back to the map which goes from (M,L(t), L(t′)) to (M,D(t,t′)).
Now, (M, D(t,t′)) defines the linear holonomy group H ⊂ GL(Txo) which doesn’t
depend on (t, t′). This holonomy group H is a discrete subgroup of the linear
group GL(TxoM). The locally flat structure (M,D) is called complete if Q is a
global diffeomorphim onto TxoM . In constrast to the completeness property a
locally flat structure (M,D) is called hyperbolic if Q is a diffeomorphism onto a
convex domain not containing any straight line. Taking into account the discussion
concerning the holonomy group H, we have the following result. Let Aff(M,ω, D)
be the Lie group of (ω, D)-preserving diffeomorphisms of M .
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Theorem 11.2. Suppose that the manifold M is simply connected. If the Lie
group Aff(M,ω, D) contains a discrete nilpotent subgroup Γ such that Γ\M is
compact then Q is a diffeomorphism onto TxoM .

Theorem 11.2 is a corrolary of a theorem due to David Fried, Bill Goldman
and Michael Hirsh [6]. Regarding the completeness problem for affinely flat man-
ifolds see also [16], [24]. Really (M, D) is the universal covering of a locally flat
structure (Γ\M, D′) whose fundamental group is Γ. The linear holonomy group
H of (Γ\M, D′) is unimodular and nilpotent. According to [6] the conjecture of
Markus holds for H. In other words both (M, D) and (Γ\M, D′) are complete.
Let (M,ω, L, N) be an arbitrary locally flat bilagrangian structure. Let D be the
torsion free symplectic connection defined by (L,N). We know that every local
Darboux coordinate system (q1, .., qm, p1, .., pm) which satisfies the conditions of
the theorem of Hess are actually affine coordinates functions of (M, D) [26]. Such
a local coordinate system is called Darboux-Hess coordinate funtions.
Let us observe that when (M,D) is hyperbolic all of the geodesics of the linear
connection D are bounded. Now suppose that (L,N) = (L, J(L)). Every system
(x1, .., xm, y1, .., ym) of Darboux-Hess coordinate funtions of (L, J(L)) gives rise to
a system (xi(t, t

′), yi(t, t
′)) of Darboux-Hess coordinate functions of (L(t), L(t′)),

namely

xi(t, t
′) =

1

t− t′
(yi + txi),

yi(t, t
′) = yi + t′xi.

We have observed that these functions xi(t, t
′), yi(t, t

′) are affine functions of
(M,D).

Theorem 11.3. We assume that M is simply connected. Suppose that the group
Aff(M, D) of D-preserving diffeomorphisms contains a discrete subgroup Γ such
that (Γ\M, D) is a compact locally flat manifold. Then the following statements
are equivalent. (i) (Γ\M, D) is hyperbolic. (ii) there exist a real valued smooth
function h ∈ C∞(M) such that dh is Γ-equivariant and the quadratic form D(dh)
is positive definite.

Theorem 11.3 is a reformulation of a result of Koszul [18]. According to the
theorem of Koszul a compact locally flat maniflod (M,D) is hyperbolic if and only
if it admits a locally hessian Riemannian metric [35]. In other words, a compact
locally flat manifold (M, D) is hyperbolic if and only if there is a closed differential
1-form θ ∈ Ω1(M, R) whose covariant derivative Dθ is positive definite.
J-L Koszul has also proved that a compact hyperbolic manifold (M, D) always
admits non trivial deformations.
The KV cohomology theory provides a good framework for the study of hyper-
bolic locally flat manifolds. This cohomology also helps to handle the non rigidity
theorem proved by Koszul. In the next section we plan to summarize some other
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applications of the KV cohomology of locally flat manifolds. In this note we have
highlighted the pioneering paper of Nijehnuis. The reader is refered to [29], [32].
In terms of KV cohomology a hessian manifold is a triple (M,D, g) where (M,D)
is a locally flat manifold and (M, g) is a Riemannian manifold whose metric ten-
sor g ∈ C2(M, R) is a 1-cocycle of the real valued KV complex (C(M, R), δ). In
other words it satifies the condition δ(g) = 0. The condition δg = 0 implies that
in a neighbourhood of every point of M there exists a local real valued smooth
function h such that g = δ(dh). Let us go back to the FL-structure (M,ω, L)
admitting an adapted holomorphic structure (M, J). Let (M,D) be the locally
flat structure defined by the bilagrangian structure (L, J(L)). We are going to
build a spectral sequence Ep,q

r which is analogous to the Hochschild-Serre spectral
sequence and which converges to the KV cohomology H?

KV (M, R). The notation
is the same as in section 4. So A is the KV algebra (X(M), D) of (M,D). Let
AL ⊂ A be the subspace of smooth vector fields which are tangent to leaves of L.
We endow the cochain complex ⊕Ck(M, R) with the filtration

F jC = ⊕k(F
jC) ∩ Ck(M,R).

By definition f ∈ (F jC)∩Ck(M, R) if f(X1⊗X2..⊗Xk) = 0 whenever more than
k + 1− j arguments between X1, .., Xk are elements of the subspace AL. We put
F 0C ∩ Ck(M,R) = Ck(M, R). It is easy to check that all of the subspaces F jC
have the following properties

F j+1C ⊂ F jC,

δ(F jC) ⊂ F jC

F k+1C ∩ Ck(M, R) = 0.

Conditions (i), (ii) and (iii) imply that the spectral sequence E = Ep,q
r which is

derived from the filtration F jC converges to the cohomology space H?
KV (M, R).

Roughly speaking one has

E∞ = lim
r

Er = HKV (M).

This implies that

Hk
KV (M) =

∑

p+q=k

Ep,q
∞ .

The spectral sequence Ep,q
r we just built is the alter ego of the Hochschild-Serre

spectral sequence of a pair (h ⊂ g) of Lie algebras.

12 KV cohomology and hyperbolicity

Our discussions show that the hyperbolicity problem for locally flat manifolds is
closely related to the KV cohomology. The same cohomology helps to handle
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the deformations of linear connections on a locally flat manifold (M, D). The
reader is refereed to [34] for other aspect of deformation of torsion free linear
connections on Riemannian manifolds. Regarding the hyperbolicity problem the
reader is refereed to [15], [18], [38]. The hyperbolicity property is in contrast with
the following rigidity theorem

Theorem 12.1. Let (M,D) be a locally flat manifold. If H2
KV (M) = 0 then every

deformation of (M, D) is trivial.

Thus the non rigidity of compact hyperbolic locally flat manifolds (M,D)
implies the non vanishing of H2

KV (M) = H2
KV (A,A). An simple example has

been worked in detail in [29].
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The Kepler and the two-center problems
in spaces of constant curvature:
on the regularization problem;
Lie algebra of first integrals1

by Tatiana G. Vozmishcheva

Abstract

The Kepler and the two-center problems in spaces of constant curvature
are investigated. The statement of problems of dynamics in spaces of con-
stant curvature is often rather nontrivial. One of the main question is the
description of the potential which is generated by a gravitational center.
There exist several approaches to the generalization of the classical prob-
lems for curved spaces. Moreover, the systems under consideration in celes-
tial mechanics have singularities and, formally speaking, are not integrable
in the sense of Liouville (the vector fields generated by the Hamiltonians
are not complete). In this paper we describe a regularization of the prob-
lem under consideration; after this regularization the vector fields become
complete and smooth.

1 Dynamics in spaces of constant curvature

The problem on the regularization takes one of the central places in celestial me-
chanics. A solution of the equations of motion in the classical Kepler problem at
γ > 0 has a singularity corresponding to a material particle falling on the gravi-
tational center. At the point of singularity the velocity of motion is infinite (i.e.,
the vector fields are not complete). However this singularity can be eliminated
after a suitable regularization.

We describe two approaches to the generalization of the Newtonian potential
to the case of curved spaces using the example of spaces of constant curvature.

1. One approach to determine the Newtonian potential V in the planar case
consists in solving the Poisson equation, which reduces to the Laplace equation
for zero mass density. Except of the constants, there exist only the following
spherically-symmetrical solutions of the Laplace equation in n-dimensional Eu-
clidean space (with accuracy up to the multiplication by a constant): r2−n for

1Received: January 20, 2008
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n ≥ 3 and ln r for n = 2. Thus, in the three-dimensional Euclidean space, the
function 1

r
is a harmonic function. If we consider the plane motion under the

action of the gravitational potential field (for instance, in the classical Kepler
problem) as a reduction of the three-dimensional problem, then one can deter-
mine the Newtonian potential as −1

r
in the two-dimensional case as well.

The solutions of the Laplace equation (invariant with respect to rotations
about the attracting center) are the functions (tan r)2−n and (tanh r)2−n for n ≥ 3
and the functions ln tan r and ln tanh r for n = 2 (here r is a distance to the attract-
ing center, the constant, which enters into the solution of the Laplace equation,
is unessential) for the n-dimensional sphere (of constant curvature 1) and for the
n-dimensional Lobachevsky space (of constant curvature −1) respectively. As in
the plane case, for the two-dimensional sphere an analog of the Newtonian poten-
tial can be thought of (with accuracy up to a coefficient) as the function −cotan r,
i.e., a harmonic function on a three-dimensional sphere. For the two-dimensional
Lobachevsky space an analog of the Newtonian potential is the function −cotanh r
(with accuracy up to a coefficient).

2. Another approach to the determination of the Newtonian potential consists
in the fact that only this potential (and the potential of an elastic spring) generates
a central field where all bounded orbits are closed.

Let a material particle p of unit mass move in a field of force with the potential
V depending only on a distance between the particle and the fixed gravitational
center P in a three-dimensional space of constant curvature. We consider it as a
sphere S3 or the upper sheet of hyperboloid H3 (depending on a sign of curvature)
embedded in R4 or in the Minkowski space M4 (with the coordinates q0, q1, q2, q3)
in a standard way. We will attend to the case of the negative curvature when the
equation of hyperboloid has the form

q2
0 − q2 = R2, R2 =

1

λ
,

making the necessary remarks for the case of the positive curvature. Here, λ is
the curvature, R is the curvature radius. For a sphere the corresponding equation
has the form

q2
0 + q2 = R2.

The problem under consideration is an analog of the classical problem on the
motion in the central field. Let θ be the length of the arc of the hyperbola,
connecting the points p and P (θ is measured in radians). Let us place the
gravitational center at the vertex of hyperboloid. Then the potential V is a
function depending only on the angle θ

(1.1) V = − γ

R
cotanh θ + const .

The constant is unessential, the parameter γ plays the role of the gravitational
constant.
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In the case of positive curvature we must replace the hyperbolic functions by
the corresponding trigonometric functions in formula (1.1).

The function V has the singular point of Newtonian type at θ = 0. For
the sphere the potential is antisymmetric between the two hemispheres. If γ is
positive, then we have the attracting singularity at θ = 0 (the north pole) and the
equal repelling singularity at the antipodal point, i.e., at θ = π (the south pole).
These two singularities can be treated as a source and a sink, since the phase flow
through the boundary of any closed region, which does not contain gravitational
centers, equals zero.

The Lagrangian function in the problem considered is

L =
1

2
[−(q̇0)

2 + (q̇1)
2 + (q̇2)

2 + (q̇3)
2]− V.

The Lagrangian is defined in the ambient space where the metric is indefinite.
It has to be restricted to the tangent space to H3. The metric induced by the
pseudo-Euclidean metric in H3 is positive definite and so the kinetic energy is also
positive definite. The metric signature of the Minkowski space is g(−1, 1, 1, 1). If
the metric signature in the Minkowski space is defined as g(1,−1,−1,−1), then
the induced metric in H3 is negative definite. In this case, in order to obtain
a positive definite kinetic energy, we have to take the induced metric with the
reversed sign.

Let us pass to the pseudospherical coordinates. The transformation formulas
are the following

(1.2)
q0 = R cosh θ, q1 = R sinh θ cos ϕ,
q2 = R sinh θ sin ϕ cos ψ, q3 = R sinh θ sin ϕ sin ψ.

Here, θ defines the length of hyperbola (”meridian”) in the pseudo-Euclidean
metric going from the pole of the upper sheet of the hyperboloid to a variable
point, that is, the pseudospherical coordinates are analogous to the spherical
coordinates (for the spherical coordinates, θ is the length of a meridian, great
circle, going from the north pole of the sphere to a variable point). The metric
induced in the space H3 (relative to the coordinates R, θ, ϕ, ψ) is

ds2 = R2(dθ2 + sinh 2θdϕ2 + sinh 2θ sin2 ϕdψ2).

The Lagrangian L is given by

(1.3) L =
1

2
R2(θ̇2 + sh2θ(ϕ̇2 + sin2 ϕψ̇2)− V.

(In the case of positive curvature the function sinh θ in formula (1.3) must be
replaced by the function sin θ.)

It appears that for the potential function of type (1.1) (we suppose that γ > 0)
all bounded orbits of a mass point are closed.
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It is well known that for the Newtonian potential all finite orbits are closed
(they are ellipses). As was proved by G. Bertrand (1873), along with Newtonian,
there exists exactly one more central potential field for which all finite trajectories
are closed. This is the field generated by the Hook potential V = kr2, where k is
a positive constant.

For the sphere and the Lobachevsky space, the problem of describing potentials
for which all finite trajectories are closed was solved in [5, 6, 4, 7].

2 Hamiltonian vector fields

Let us presents some definitions.
Let H be a smooth function on a symplectic manifold (M2n, w). We define the

vector of skew-symmetric gradient sgrad H for this function by using the following
identity:

w = (v, sgrad H) ,

where v is an arbitrary tangent vector, v(H) is the derivative of the function H
along v.

In local coordinates x1, ..., x2n, we obtain the following expression:

(sgrad H)i = ωij ∂H

∂xj
.

Here, ωij are components of the inverse matrix to the matrix Ω (the summation is
taken over recurring superscripts and subscripts), Ω is the matrix of the canonical
form

Ω =

(
0 E
−E 0

)
.

Definition 1. The vector field sgrad H is called a Hamiltonian vector field. The func-
tion H is called the Hamiltonian (or energy function) of the vector field sgrad H.

In local symplectic coordinates q1, ..., qn, p1, ..., pn, which, according to the
Darboux theorem, always exist in a neighborhood of any point of manifold, the
Hamiltonian system is written in the following form:





dqi

dt
=

∂H

∂pi
∂pi

∂t
= −∂H

∂qi

i = 1, , . . . , n

H(q, p) = H(q1 , ..., qn , p1 , ..., pn) ,

that is, the components of the Hamiltonian vector field in appropriate (canonical)
coordinates have the form:

sgrad H =

(
∂H

∂p1

, ...,
∂H

∂pn

,−∂H

∂q1
, ...,−∂H

∂qn

)
.
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Definition 2.1. A function f on a manifold is called a first integral of the vector
field v, if it is constant along all trajectories of the system, i.e.,

f(γ(t)) = const ,

where γ(t) is the integral trajectory of the system under consideration.

3 Regularization of the Kepler problem on a

sphere

Let us carry out the regularization of the Kepler problem on a two-dimensional
sphere [8]. We shall consider the gravitating center placed at the pole of the sphere

q2
0 + q2

1 + q2
2 =

1

λ
with the coordinates (q0, q1, q2) = (

1√
λ

, 0, 0), and locally pass to

the gnomonic coordinates x1, x2.
Let us introduce the complex variable z = x1 + ix2. Then in the gnomonic

variables the energy of the system can be presented in the form

(3.1) h = (1 + λr2)(ż2 + λ(z, ż)2) + V (r) .

Let us make the change of variable z and time t by the formulas

(3.2)

z = ω2, t′ =
dt

dτ
= 4|ω2| = 4|z|;

ż = 2ωω̇ =
1

2|ω2|ωω′;

r = |z|; V (r) =
γ

r
.

Thus, the expression for h can be rewritten as

(3.3)
1

2

(
1 + λ|ω2|2)

{
|ω′|2 + λ|ω2| [Re(ωω′)]2

}
+ 4γ = 4h|ω2| .

Clearly, after the change of coordinates and time, the equations of motion do
not have any singularity.

4 Lie Algebra of first integrals

As was noted above the Kepler problem in Euclidean space admits 5 independent
first integrals. In the Kepler problem all the bounded orbits are closed. Because
of this it is possible to construct integrals of motion which define the orientation of
an orbit in its plane. These integrals are the cartesian components of the Laplace-
Runge-Lenz vector, which at every point of a Keplerian orbit lies in its plane and
is parallel to the major axis of the orbit

(4.1) Ai = −Lijpj +
γxi

r
.
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The generalization of expression (4.1) for a sphere was obtained in [5]. The
first term in the expression for Ai is conserved in the motion of a free particle. It
is constructed from the generators Lij and momenta pj. In free particle motion
on the sphere, the law of conservation of linear momentum is replaced by the law
of conservation of the following vector

(4.2) π = p + λx(x · p).

The components are proportional to the corresponding generators of the geomet-
rical symmetry group SO(N +1). These generators are the components of angular
momentum in the ambient space

πi = λ1/2L0i .

Making the same replacement in expression (4.1), one can obtain the required
generalization of the Runge-Lenz-Laplace vector in the Kepler problem on the
sphere

(4.3) Ai = −Lijπj +
γxi

r
.

The length of the Runge-Lenz-Laplace vector is defined from

(4.4) A2 = γ2 + 2HL2 − λ(L2)2.

The Hamiltonian is written in the form

(4.5) H =
1

2
(π2 + λL2)− γ

r
.

The commutative relations for L and A are the following [5], [2], [3]

(4.6)
{Ai, Aj} = −2εijkLk(H − λL2) ,
{Li, Lj} = εijkLk , {Li, Aj} = εijkAk ,

(here, we use the notation Lij = εijkLk). In the space of the negative constant
curvature the sign in the brackets is positive.

5 Description of the system on a sphere. Re-

duction

Let r1 and r2 be radius-vectors (issuing from the center of the sphere ) of stationary
attracting centers, and let r be the radius-vector of a mass point. Then the
potential of the two-center problem on a sphere has the form

(5.1) V = −γ1

R
cotan θ1 − γ2

R
cotan θ2 ,
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where R is the radius of the sphere, γ1 and γ2 are positive constants characterizing
the force of attraction, and θi is the angle between the vectors ri and r.

Let P1 and P2 denote the attracting centers, and let Q1 and Q2 be the points
which are diametrically opposite to them. It is seen from the formula for the

potential V that at the points P1, P2 this potential has singularities of the type −1

r

and at the points Q1, Q2 it has singularities of the type
1

r
, i.e., for the Newtonian

potential on a sphere, the existence of the attracting center leads to the appearance
of an additional repelling center (at the antipodal point).

We consider a three-dimensional sphere S3 of radius R. It is embedded in
a standard way in the space R4 that is described in the Cartesian coordinates
q0, q1, q2, q3. The equation of this sphere has the form (q0)

2 +(q1)
2 +(q2)

2 +(q3)
2 =

R2. Let the attracting centers P1 and P2 be located on the sphere at the points
with the coordinates r1 = (α, β, 0, 0) and r2 = (−α, β, 0, 0), α > 0, β > 0, α2 +
β2 = R2, under the action of the Newtonian attraction of which a mass point
moves.

We introduce the spherical coordinate system. The transition formulas are
written as

q0 = R cos θ, q1 = R sin θ cos ϕ,
q2 = R sin θ sin ϕ cos ψ, q3 = R sin θ sin ϕ sin ψ.

The metric that is induced on the three-dimensional sphere is written as

(5.2) ds2 = R2(dθ2 + sin2 θdϕ2 + sin2 θ sin2 ϕdψ2).

Relative to the spherical coordinates R, θ, ϕ, ψ, the Lagrangian L is given by

(5.3) L =
1

2
R2(θ̇2 + sin2 θ(ϕ̇2 + sin2 ϕψ̇2))− V.

Without any loss in generality, we consider a unit sphere.

Theorem 5.1. A material point in the two-center problem on the three-dimensional
sphere S3 moves in the same way as in the two-dimensional system (on the unit
two-dimensional sphere S2 : y2 + x2 + z2 = 1) with the energy

h =
1

2
(ẏ2 + ẋ2 + ż2) + Veff ,

where the effective potential energy is given by the expression

Veff = −γ1cotan θ1 − γ2cotan θ2 +
p2

ϕ

2z2
.

Proof. Let a mass point move on a three-dimensional sphere in the field of two
fixed attracting centers. We pass to the new variables q0 = x, q1 = y, q2 = z cos ϕ
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and q3 = z sin ϕ. The Lagrange function with respect to the new variables is given
by

(5.4) L =
1

2
(ẋ2 + ẏ2 + ż2 + z2ϕ̇2)− V .

Since the Lagrangian does not depend on the variable ϕ, then the system admits
the symmetry group gα : ϕ → ϕ + α, x → x, y → y, z → z. The vector field
∂/∂ϕ corresponds to this symmetry group. According to the Noether theorem,

the value pϕ =
∂L

∂ϕ̇
is preserved. In mechanics the coordinate ϕ is called a cyclic

coordinate. Now we can exclude it using the Routh method, i.e.,

(5.5)
∂L

∂ϕ̇2
= pϕ = const ,

where pϕ is a generalized momentum corresponding to the coordinate ϕ and de-
pending on the initial conditions. As a result, we have the Routh function

(5.6) R =
1

2
(ẋ2 + ẏ2 + ż2)− Veff ,

where Veff is the reduced potential of the form

(5.7) Veff = −γ1cotan θ1 − γ2cotan θ2 +
p2

ϕ

2z2
.

Thus, we have reduced our problem on the motion of a material particle on a
three-dimensional sphere in the field of two fixed centers to the two-dimensional
case, that is, to the motion on a two-dimensional sphere x2 + y2 + z2 = 1 in the
field with the reduced potential (5.7).

6 Integrals of the system

The coordinates on a sphere in which the Hamiltonian of the two-center problem
has the Liouville form were pointed out in [7]. These are spheroconical coor-
dinates ξ, η. They are determined in the following way. Consider the equation
(relative to λ)

x2

λ− α2
+

y2

λ + β2
+

z2

λ
= 0 .

It is easily verified that its roots have different signs. Denoting them by ξ2 and−η2,
we obtain the coordinates (ξ, η), where 0 ≤ ξ ≤ α and 0 ≤ η ≤ β.

The coordinate lines of this coordinate system are the lines (ξ = const , η =
const ) of intersection of the sphere with two families of conical cones with vertices
at the center of the sphere, i.e., the quadrics. The geometric properties of these
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lines on the sphere are in many respects similar to that of ordinary ellipses and
hyperbolae on the plane. In addition, they are the “Keplerian” orbits in the
problem on motion of a point on a sphere in the field generated by a single center
(see [4]).

Formulas expressing the Cartesian coordinates through the spheroconical ones
have the form

x2 =
1

α2
(α2 − ξ2)(α2 + η2), y2 =

1

β2
(β2 + ξ2)(β2 − η2), z2 =

R2

α2β2
ξ2η2 .

Obviously, extracting the roots, we obtain different signs for x and y depending
on what half of the sphere (right or left, upper or lower) we consider. Therefore,
we obtain the following expressions for the coordinate transformation formulas:

(6.1)

x =
1

α
sgn (x)

√
(α2 − ξ2)(α2 + η2),

y =
1

β
sgn (y)

√
(β2 + ξ2)(β2 − η2),

z =
R

αβ
ξη.

(In order to obtain the limit cases of the problems under consideration we consider
here the radius of the sphere to be equal to R, in [7] the radius is 1. This means
that if R →∞ we must obtain the plane case.)

Introduced curvilinear coordinates are orthogonal and satisfy the following
conditions:

(6.2) ξ2 ≤ α2, η2 ≤ β2.

Let us consider the potential (5.1)

V =
−γ1 cos θ1 sin θ2 − γ2 cos θ2 sin θ1

R sin θ1 sin θ2

.

It is clear that
cos θi = ±αx + βy, sin2 θi = 1− cos2 θi.
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The Hamiltonian function relative to the new coordinates is given by the ex-
pression

(6.3)

H = T + Veff ,

T =
(α2 − ξ2)(β2 + ξ2)

2(ξ2 + η2)
p2

ξ +
(α2 + η2)(β2 − η2)

2(ξ2 + η2)
p2

η,

Veff =
−sgn (y)(γ1 + γ2)

√
(α2 + η2)(β2 − η2)

R(ξ2 + η2)
+

−sgn (x)(γ1 − γ2)
√

(α2 − ξ2)(β2 + ξ2)

R(ξ2 + η2)
+

p2
ϕα2β2(ξ−2 + η−2)

2R(ξ2 + η2)
,

where T and Veff are the kinetic and reduced potential energies, respectively, pξ

and pη are generalized momenta corresponding to the coordinates ξ and η. (The
coefficient γ1 corresponds to the attracting center with the coordinates (α, β, 0, 0),
and the coefficient γ2 corresponds to the attracting center with the coordinates
(−α, β, 0, 0)). The functions sgn (x) and sgn (y) describe the potential in the
quarter of the sphere, i.e., x > 0, y > 0; x < 0, y < 0; x > 0, y < 0; x <
0, y > 0.

In the coordinates (ξ, η) the Hamiltonian has the Liouville form, which makes
it possible to write down the integrals of the system under consideration, namely,
the energy integral

(6.4) h = T + Veff ,

and the two Liouville integrals (they are dependent)

(6.5)

I1 =
1

2
(α2 − ξ2)(β2 + ξ2)ṗ2

ξ−

−sgn (x)(γ1 − γ2)

R

√
(α2 − ξ2)(β2 + ξ2) +

p2
ϕα2β2ξ−2

2R
− hξ2,

I2 =
1

2
(α2 + η2)(β2 − η2)ṗ2

η−

−sgn (y)(γ1 + γ2)

R

√
(α2 + η2)(β2 − η2) +

p2
ϕα2β2η−2

2R
− hη2.

The additional integral can be also written in the following symmetrical form

L =
(α2 − ξ2)(β2 + ξ2)η2

2(ξ2 + η2)
p2

ξ −
(α2 + η2)(β2 − η2)ξ2

2(ξ2 + η2)
p2

η+

+
(sgn (y)(γ1 + γ2)

√
(α2 + η2)(β2 − η2)− p2

ϕα2β2η−2/2)ξ2

R(ξ2 + η2)
+

(−sgn (x)(γ1 − γ2)
√

(α2 − ξ2)(β2 + ξ2) + p2
ϕα2β2ξ−2/2)η2

R(ξ2 + η2)
.
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In this problem the potential has a singularity at the point with the coordinates
(ξ = 0, η = 0). Instead of t, we introduce a new independent variable τ (the new
time increases monotonically with the growth of t)

dt =
ξ2 + η2

√
2(γ1 + γ2)

dτ

Making the change of variables h → h

γ1 + γ2

, l → l

γ1 + γ2

, we reduce the

problem to quadratures

(6.6)
dξ

dτ
=

√
R(ξ),

dη

dτ
=

√
S(η),

where R(ξ) and R(η) are the irrational functions

R(ξ) = (α2 − ξ2)(β2 + ξ2)R∗(ξ),
S(η) = (α2 + η2)(β2 − η2)S∗(η),

where

(6.7)
R∗(ξ) = l + hξ2 +

sgn (x)K
√

(α2 − ξ2)(β2 + ξ2)

R
,

S∗(η) = −l + hη2 +
sgn (y)

√
(α2 + η2)(β2 − η2)

R
.

As was already noted, the properties of the coordinate lines of the coordinate
system (ξ, η) are similar to that of ellipses and hyperbolae on the plane. For
instance, for each point of the coordinate line {η = const }, the sum of distances
(on the sphere) from this point to the attracting centers P1 and P2, and also the
difference of distances from this point to the points P1 and Q2 are constant. The
same property holds also for the coordinate lines {ξ = const }. Using this fact, we
can write the Hamiltonian and the integral of the problem under consideration in
more descriptive coordinates q1 and q2, where

q1 = θ2 − θ1 , q2 = θ2 + θ1 ,

and θ1 and θ2 are the angular sizes of arcs connecting the point under consideration
with the centers P1 and P2.

Let pϕ = 0. Introducing the momenta p1 and p2 corresponding to the coordi-
nates q1 and q2, we can write the integral and the Hamiltonian in the following
form:

H =
2(cos q1 − cos δ)

cos q1 − cos q2

p2
1 +

2(cos δ − cos q2)

cos q1 − cos q2

p2
2−

−(γ1 − γ2) sin q1 + (γ1 + γ2) sin q2

R(cos q1 − cos q2)
,

L =
2 cos q2(cos δ − cos q1)

cos q1 − cos q2

p2
1 −

2 cos q1(cos δ − cos q2)

cos q1 − cos q2

p2
2+

+
γ1 sin(q1 + q2) + γ2 sin(q2 − q1)

R(cos q1 − cos q2)
,
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where δ denotes the angular size of the arc connecting the centers P1 and P2.
Naturally, the coordinates q1, q2 (like the coordinates ξ, η) are not global

coordinates on the sphere (no such coordinates exist on a sphere). The coordinate
system (q1, q2) has singularities at the points of intersection of the sphere with
the plane containing the centers. In particular, with the points of the sphere
symmetric about this plane, one associates identical coordinates q1, q2.

However, if the variables are separated, then their coordinate lines are defined
uniquely (if the system is nonresonant) by the system itself because they bound
the projections of the Liouville tori on the configuration space. Therefore, for
the system under consideration, any other “good” (i.e., separable) variables must
have the form of the functions q̃1(q1) and q̃2(q2).

We describe the coordinates u, v on the sphere (with the same coordinate
lines), which are more convenient for the calculation of the topological invariants
of the system.

It is known that a two-dimensional sphere can be presented as a two-sheeted
branching covering by a two-dimensional torus with four branch points. We can
choose the covering such that the branch points are the attracting points P1, P2

and the antipodal points Q1, Q2, and the preimages of ”ellipses” {q1 = const } and
{q2 = const } are the coordinate lines of the angle coordinates u, v on the torus.

This covering can be described in terms of the elliptic Jacobi functions. Con-
sider the mapping of the torus T 2 with the angle coordinates u, v into the space
R3 with the Cartesian coordinates x, y, z, given by the formulas

(6.8)
x = R sn (u, k1) dn (v, k2) ,
y = R sn (v, k2) dn (u, k1) ,
z = R cn (u, k1) cn (v, k2) .

Here, sn (u, k1), cn (u, k1), dn (u, k1) are the Jacobi function with the module k1 =
α
R

= sin δ
2
, and sn (v, k2), cn (v, k2), dn (v, k2) are the Jacobi function with the

module k2 = β
R

= cos δ
2

(where δ is the angle value of the arc between the centers
P1 and P2). In what follows, we will not indicate the module for brevity assuming
that for the Jacobi functions of the variable u, the module is equal to k1, and for
the Jacobi functions of the variable v, the module is equal to k2.

Using the properties of the Jacobi functions it can be easily verified that under
the mapping given by formulas (6.8), the image of any point of the torus (u, v) is
a point on the sphere {x2 + y2 + z2 = R2}. Moreover, two points of the torus are
mapped into each point of the sphere (except for the points P1, P2, Q1, and Q2).
Thus, the mapping (6.8) is the two-sheeted covering T2 → S2 branched at four
points.

It is convenient to present this covering in the following way. The first two
of the formulas (6.8) specify the continuous one-to-one mapping of the rectangle
{|u| ≤ K1, |v| ≤ K2} onto the circle {x2 + y2 ≤ R2}, where K1 and K2 are
complete elliptic integrals of the first kind corresponding to the modules k1 and
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k2. Here, the corners of the rectangle go into the points of the boundary circle
with the coordinates (±α,±β). This mapping is extended to the whole plane
R2(u, v) by symmetry about the sides of the rectangle. Taking into account the
third formula in (6.8), we obtain the mapping of the plane R2(u, v) onto the sphere
{x2 + y2 + z2 = R2}.

In Fig. 1, the partition of the plane R2(u, v) into rectangles with the sides 2K1

and 2K2 is depicted; each of these rectangles is mapped onto the hemisphere
(shaded rectangles are mapped onto the “top” hemisphere {z ≥ 0}, and unshaded
rectangles are mapped onto the “bottom” hemisphere {z ≤ 0}). Here, the “black”
corners of rectangles are mapped into attracting centers P1 and P2, while the
“white” are mapped into repelling centers Q1 and Q2. Since the functions sn u
and cn u have the period 4K1, and the functions sn v and cn v have the period
4K2, the described mapping of the plane R2(u, v) onto onto the sphere S2 specifies
the mapping T2 → S2, where the torus T2 can be represented as a rectangle in
the plane R2(u, v) with the sides 4K1 and 4K2 (consisting of two shaded and
two unshaded rectangles with common vertex); the pairs of opposite sides of this
rectangle are identified via translations.

K2

K1
u

v

Figure 1.

The central symmetry of the plane R2(u, v) about any of the corners of rect-
angles (see Fig. 1) specifies the involution σ : T2 → T2 with four fixed points. The
quotient space T2/σ is the configuration space S2 of the problem under consid-
eration. Therefore, instead of the motion of the point on the sphere S2, one can
consider the motion of the point on the torus T2, next taking into account the
action of the involution σ. This procedure is described more precisely in Sec. 4.
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The Hamiltonian and the additional integral in the variables u, v (i.e., describ-
ing the motion of the point on the torus T2) have the form

H =
p2

u + p2
v

2
(
sin2 δcn 2u + cos2 δcn 2v

)−

−(γ1 − γ2) sin δsn udn u + (γ1 + γ2) cos δsn vdn v

R
(
sin2 δcn 2u + cos2 δcn 2v

) ,

L =
cotan δcn 2vp2

u−tan δcn 2up2
v

2
(
tan δcn 2u + cotan δcn 2v

)−

−(γ1−γ2) cos δsn udn ucn 2v−(γ1+γ2) sin δsn vdn vcn 2u

R
(
tan δcn 2u + cotan δcn 2v

) ,

where pu and pv are the momenta corresponding to the coordinates u, v.

7 Regularization

The potential V of the problem under consideration has singularities at four points
on the sphere (the attracting centers P1 and P2 and repelling centers Q1 and Q2).
Moreover, at the points P1 and P2, the function V tends to −∞, and at the
points Q1 and Q2 it tends to +∞. Since the kinetic energy T is always positive
and the total energy H = T + V is constant along the trajectories of the system,
this implies that the particle moving on the sphere in the field generated by the
potential V never reaches the points Q1 and Q2. For the points P1 and P2, the
situation is just opposite: for any location of a particle on the sphere, we can
set an initial velocity such that this particle reaches the attracting center for a
finite time. Moreover, the velocity of the particle “at the instant of falling on the
attracting center” becomes infinitely large (because T + V = const ).

Thus, the two-center problem on a sphere is described by the Hamiltonian
system on the cotangent bundle to the two-dimensional sphere T ∗S2 with the
Hamiltonian H = T + V , where T is a function quadratic in momenta (the
standard metric on the sphere), and V is the function on the sphere given by
formula (5.1). However, in this approach, the phase space of this system is not
the whole manifold T ∗S2, because the function V is not defined at four points P1,
P2, Q1, and Q2 of the sphere (and, therefore, the function H is not defined on
four planes which are fibers of the cotangent bundle T ∗S2 over these four points).

Denote by S0 the sphere S2 with four points P1, P2, Q1, and Q2 removed.
Then the phase space of the system is T ∗S0. As was already noted above, the
Hamiltonian vector field w = sgrad H on T ∗S0, which specifies the system, is
not complete. Therefore, although the system has the additional integral L (see
Sec. 3), it is not Liouville integrable. Nevertheless, as will be shown below, after
a certain regularization the qualitative behavior of the system will be the same
as that of Liouville integrable Hamiltonian systems (almost all trajectories are
conditionally periodic windings of tori).
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Note that the method for regularizing the system described below is similar
to the regularization proposed by T. Levi-Civita for the classical Kepler problem.

Consider the Hamiltonian H as a function of the variables (u, v, pu, pv). A
system with such a Hamiltonian can be considered as a Hamiltonian system on
the cotangent bundle to the torus T2. Introduce the notation

(7.1) λ(u, v) = sin2 δcn 2u + cos2 δcn 2v .

Then the Hamiltonian has the form

H =
p2

u + p2
v

2λ(u, v)
− (γ1 − γ2) sin δsn udn u + (γ1 + γ2) cos δsn vdn v

R · λ(u, v)
,

and the coordinates of the field W = sgrad H on T ∗T2 are equal to
(

∂H

∂pu

,
∂H

∂pv

,−∂H

∂u
,−∂H

∂v

)
.

In the phase space T ∗T2, the vector field W has singularities at the points
where λ(u, v) = 0, i.e., at the points (±K1,±K2, pu, pv). Consider the vector field
W̃ = λ(u, v) · sgrad H. In the coordinates (u, v, pu, pv) it has the form

(7.2)

(
pu, pv, sin δcn u

(
γ1 − γ2

R
(2dn 2u− 1)− 2 sin δsn udn u · h

)
,

cos δcn v

(
γ1 + γ2

R
(2dn 2v − 1)− 2 cos δsn vdn v · h

))
,

where h = H(u, v, pu, pv) is the value of the Hamiltonian at the point (u, v, pu, pv).
The vector field W̃ also has singularities at the points
(±K1,±K2, pu, pv) because the Hamiltonian H is not defined at the points where
λ(u, v) = 0. Denote by Wh the restriction of the vector field W̃ to the isoenergy
surface Qh = {H = h} ⊂ T ∗T2. The vector field Wh already has no singularities
(but it is defined only on the three-dimensional surface Qh). It is specified by
formula (7.2) and, in particular, is defined at the points (±K1,±K2, pu, pv) lying
on the surface Qh, i.e.,

Wh(±K1,±K2, pu, pv) = (pu, pv, 0, 0) .

It is clear that integral trajectories of the field Wh coincide (with an accu-
racy up to the change of a parameter) with integral trajectories of the initial
vector field W = sgrad H on T ∗T2, since the multiplication of the field W by the

function λ(u, v) can be treated as the change of time:
dt

dτ
= λ(u(t), v(t)), where

(u(t), v(t), pu(t), pv(t)) is the trajectory of the field W .
On the other hand, the vector field Wh on the surface Qh coincides with the

restriction to this surface of a certain vector field defined on the whole phase space
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T ∗T2. It is clear that such a continuation is not unique. For instance, as a such
field, we can take the field sgrad Fh, where

(7.3)
Fh = λ(H − h) =

p2
u + p2

v

2
− h

(
sin2 δcn 2u + cos2 δcn 2v

)−
−γ1 − γ2

R
sin δsn udn u− γ1 + γ2

R
cos δsn vdn v .

Then sgrad Fh = λsgrad H + (H − h)sgrad λ. Since {Fh = 0} = {H = h}, the
vector field sgrad Fh is tangent to the surface Qh and coincides with the field Wh

on it.
The integral L of the initial system is, obviously, the integral of the Hamil-

tonian system with the Hamiltonian Fh on the surface {Fh = 0}. Therefore,
after the described regularization the topological properties of the system with
the Hamiltonian H on T ∗T2 on each isoenergy surface Qh, will be similar to those
of ordinary integrable Hamiltonian systems. In particular, nonsingular invari-
ant manifolds of the system are Liouville tori and surgeries of these tori can be
described via the Fomenko–Ziecshang invariants.

Up to now, we, in fact, spoke about the regularization of the system on T ∗T2,
which appeared from the consideration of the (branched) covering of the sphere S2

by the torus T2. This covering is defined by the involution σ : T2 → T2, described
in Sec. 3. The involution σ extends to an involution σ∗ : T ∗T2 → T ∗T2 in a
natural way. Now, in order to return to the system on the sphere (and exactly
this system is the main subject of our study), it is necessary to take into account
the action of the involution σ∗ on T ∗T2.

Since the involution σ : T2 → T2 is generated by the central symmetry of
the plane R2(u, v) about the point (K1, K2) (or any other corner of rectangles in
Fig. 1), in the coordinates (u, v, pu, pv), the involution σ∗ has the form

(7.4) σ∗ : (u, v, pu, pv) → (2K1 − u, 2K2 − v,−pu,−pv) .

Therefore, the involution σ∗ has exactly 4 fixed points (±K1,±K2, 0, 0). Note
that the quotient space T ∗T2/σ∗ is not a manifold.

Now, we fix a certain value of h and consider the function Fh given by for-
mula (7.3). It is easy to see that the surface {Fh = 0} is invariant with respect
to the involution σ∗ and does not contain the points (±K1,±K2, 0, 0) (a direct
calculation shows that at these 4 points, the values of the function Fh are equal

to ±γi

R
sin δ, where i = 1, 2). Thus, the quotient spaces {Fh = 0}/σ∗ can be

considered as the isoenergy surfaces of the initial system on the sphere after the
regularization.

Moreover, it is also easily verified that the vector field Wh on the surface {Fh =
0} is likewise invariant with respect to the involution σ∗, which makes it possible
to consider the vector field wh = Wh/σ

∗ as a result of the regularization of the
initial vector field w = sgrad H on the isoenergy surface Qh = {H = h} ⊂ T ∗S2.
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Thus, the above argument leads to the following statement describing the reg-
ularization of the two-center problem on the sphere, i.e., the Hamiltonian system
w = sgrad H on the cotangent bundle to the sphere T ∗S2 with the Hamiltonian
H = T + V , where the function T quadratic in momenta is defined by the stan-
dard metric on the sphere of radius R in R3, and the function V is given by
formula (5.1).

Theorem 7.1 (on the regularization). Let h be a regular value of the Hamilto-
nian H, and let Qh = {H = h} ⊂ T ∗S2 be the corresponding isoenergy surface.
On the surface Qh, we consider the vector field wh = λsgrad H, where λ is func-
tion (7.1) on the sphere S2.

Let f : T2 → S2 be the (branched) two-sheeted covering (6.8), let
σ∗ : T ∗T2 → T ∗T2 be the corresponding involution (7.4), and let Fh be the func-
tion defined by formula (7.3), on the cotangent bundle to the torus T ∗T2. On the
surface {Fh = 0} ⊂ T ∗T2, consider the vector field Wh = sgrad Fh.

Then we have the following :

(1) the surface {Fh = 0} ⊂ T ∗T2 is a closed three-dimensional manifold on
which the involution σ∗ acts without fixed points ;

(2) on the surface {Fh = 0}, the vector field Wh has no singularities and is
invariant with respect to the involution σ∗;

(3) mapping (6.8) induces a diffeomorphism of the quotient space (with respect
to the involution σ∗) of the surface {Fh = 0} without points lying in 4
fibers over the branch points of the mapping f onto the surface {H = h} ;
moreover, this diffeomorphism transforms the vector field Wh into the vector
field wh.

Note that the irregular values h of the Hamiltonian H are explicitly written
in the construction of bifurcation diagrams.
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Sur la désintégration de la
représentation de conjugaison des

groupes de Lie nilpotents1

by Fatma Khlif

Résumé

Nous présentons dans ce papier une désintégration en irréductibles de
la représentation de conjugaison d’un groupe de Lie nilpotent connexe et
simplement connexe. Nous construisons aussi un opérateur d’entrelacement
explicite pour cette désintégration.

Classification Mathématique par Matières. 22E27.

Mots-clef. Représentation de conjugaison, opérateur d’entrelacement, double-
classe.

1 Introduction

Soit G un groupe localement compact de fonction module ∆G. On définit la
représentation de conjugaison (γG, L2(G)) de G par

γG(x)ξ(y) = ∆
1
2
G(x)ξ(x−1yx), ξ ∈ L2(G), x, y ∈ G.

Il est clair que γG est triviale sur le centre Z(G) de G. Soient (π,Hπ) et (π′,Hπ′)
deux représentations unitaires de G. On appelle opérateur d’entrelacement entre
π et π′ tout opérateur linéaire et borné U : Hπ → Hπ′ tel que U ◦π(g) = π′(g)◦U
pour tout g ∈ G. L’espace des opérateurs d’entrelacement est noté Hom(π, π′). On
dit que π et π′ sont équivalentes et on note π ' π′ s’il existe un opérateur unitaire
dans Hom(π, π′). Soient maintenant S et T deux ensembles de représentations
de G,. On dit que S est faiblement contenu dans T , qu’on note S ≺ T , si
∩σ∈Sker(σ) ⊇ ∩τ∈T ker(τ). On dit aussi que S et T sont faiblement équivalents et
on note S ∼ T , si S ≺ T et T ≺ S. Le support d’une représentation ρ de G est
défini par

suppρ = {π ∈ Ĝ, π ≺ ρ}.
1This work was supported by the CMCU contract 03/S 1502
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Alors il est clair que suppγG ⊂ Ĝ/Z(G), et que l’inclusion peut être stricte
(Voir [4], [6] et [7]). Cette égalité a été établie pour les groupes de Lie compacts et
connexes (voir [11]), les groupes de Lie simplement connexes nilpotents de classe
maximale, les produits semi-directs de la forme Rn Rn (voir [9]).

Dans [6], E. Kaniuth a montré que

suppγG ∼ {π ⊗ π̄, π ∈ Ĝ}
pour les groupes σ-compacts et moyennables.

Dans ce papier, on se propose dans une première étape de montrer que si
G est un groupe de Lie nilpotent connexe et simplement connexe, alors γG est
équivalente à

∫ ⊕
Ĝ

πl,−ldµ(πl), pour une certaine mesure dµ sur Ĝ et certaines
représentations unitaires πl,−l spéciales de G (voir 3.4). Ensuite, on écrit une
désintégration en irréductibles de la représentation γG en faisant intervenir des
formules de désintégrations des représentations induites [2] et des restrictions des
représentations unitaires et irréductibles des groupes de Lie nilpotents [1]. Finale-
ment, on construit un opérateur d’entrelacement explicite pour cette désintégration.

2 Définitions et rappels

2.1 Mesures sur les sous-groupes de Lie nilpotents

Soit G un groupe de Lie connexe, simplement connexe et nilpotent d’algèbre de Lie
g. En notant exp l’application exponentielle, on écrit G = exp g. Soit B = exp b

un sous-groupe connexe fermé de G.
Nous appelons base de Jordan-Hölder de b toute base Y = {Y1, . . . , Yk} de b

telle que le sous-espace bi := vec{Yi, ..., Yk} soit un idéal de b pour i = 1, ..., k. La
suite d’idéaux (bi)

k+1
i=1 , telle que bk+1 = {0}, s’appelle suite de Jordan-Hölder de b

associée à Y .
Une base de Malcev de g relative à b est par définition toute famille libre de

vecteurs X = {X1, ..., Xn−k} telle que vec{Xj, ..., Xn−k, b} soit une sous-algèbre
de dimension n− j + 1 pour tout j = 1, ..., n− k. Alors les applications

Expb,Y : Rk → B, (t1, . . . , tk) 7→ exp t1Y1 · · · exp tkYk

et

Expg
b : Rn−k → G/B, (t1, . . . , tn−k) 7→ exp t1X1 · · · exp tn−kXn−k ·B

sont des difféomorphismes.
L’espace de Schwartz S(G) de G est donné par l’ensemble des fonctions ϕ :

G → C vérifiant ϕ ◦Expg,Z ∈ S(Rn), où Z est une base de Jordan-Hölder de g et
où S(Rn) désigne l’espace de Schwartz ordinaire des fonctions C∞ à décroissance
rapide sur l’espace vectoriel réel Rn.
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On choisit une mesure db sur B de la manière suivante. Si η ∈ Cc(B), l’espace
des fonctions continues sur B à support compact, on pose

∫

B

η(b)db :=

∫

Rk

η(exp t1Y1 · · · exp tkYk)dt1 . . . dtk.

Cette mesure est invariante à gauche, donc une mesure de Haar. D’autre part si
X = {X1, . . . , Xn−k} une base de Malcev de g relative à b, alors la mesure dX sur
G/B définie pour toute fonction continue à support compact η sur G/B par

∫

G/B

η(g)dX (g) :=

∫

Rn−k

η(Expg
b(t))dt

est aussi G-invariante.

2.2 Représentations induites

Soit G un groupe de Lie nilpotent connexe et simplement connexe d’algèbre de
Lie g. Soit l une forme linéaire sur g et bl la forme bilinéaire définie par bl(X, Y ) =
〈l, [X, Y ]〉, X, Y ∈ g. On dit qu’une sous-algèbre de Lie h de g est subordonnée à l si
elle est totalement isotrope pour bl, c.à.d bl(h, h) = {0}. On note S(l, g) l’ensemble
de telles sous-algèbres et M(l, g) celui des sous-algèbres qui sont en même temps
des sous-espaces totalement isotropes pour bl et maximaux. Un élément h de
M(l, g) sera appelé polarisation en l dans g, et par abus de language, le sous-
groupe de Lie associé H = exp h sera aussi appelé polarisation en l dans G. Soit
Z une base de Jordan-Hölder de g. On obtient une polarisation p(l) en l ∈ g∗

particulière, appelée polarisation de Vergne relative à Z, de la façon suivante.
Soit (gj)

n+1
j=1 la suite de Jordan-Hölder de g associée à Z. Alors

p(l) :=
n∑

j=1

gj(l|gj
).

Ici pour une algèbre de Lie g et une forme linéaire l ∈ g∗, le symbole g(l) désigne
le stabilisateur de l dans g, c. à d. g(l) = {X ∈ g; 〈l, [X, g]〉 = {0}}.

Soit h ∈ S(l, g) et H = exp h. On définit le caractère χl de H par χl(exp X) =
e−i〈l,X〉, X ∈ h. On construit la représentation induite τl := τl,H := IndG

Hχl de G
de la façon suivante. Soit

S(G/H, χl) := {ξ : G → C; ξ(gh) = χl(h
−1)ξ(g), pour tout g ∈ G, h ∈ H,

ξ ◦ Expg
h ∈ S(Rn−k)},

pour une base (et alors pour toute base) de Malcev X = {X1, . . . , Xn−k} de g

relative à h. Nous munissons S(G/H, χl) de la norme

‖ξ‖2
2 :=

∫

G/H

|ξ(g)|2dX (g), ξ ∈ S(G/H, χl).
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Comme la mesure dX est G-invariante, la translation à gauche dans S(G/H, χl)
est isométrique et définit la représentation τl sur le complété L2(G/H,χl) de
S(G/H, χl) pour la norme ‖.‖2.

D’après la théorie de Kirillov, la représentation τl,H est irréductible, si et seule-
ment si H est une polarisation en l dans G. Dans ce cas-là, on écrira πl au lieu
de τl. En outre, les représentations πl,Bl

et πl,B′l sont équivalentes si et seulement
si Bl et B′

l sont deux polarisations en l dans G.

2.3 Représentation conjuguée

Soit G un groupe localement compact et (π,Hπ) une représentation de G. On
note H′

π le dual C-linéaire de Hπ. D’après le théorème de Riesz, l’application
Hπ → H′

π, ξ 7→ fξ, définie pour tout η ∈ Hπ par fξ(η) = 〈ξ, η〉, est bijective et
anti-linéaire. Munissons H′

π du produit scalaire 〈fξ, fη〉 = 〈ξ, η〉. La représentation
conjuguée π de G agit sur H′

π par π(g)fξ = fπ(g)ξ pour tout g ∈ G.

2.4 Intégrale directe d’espaces de Hilbert

Soient G un groupe localement compact et X un espace localement compact, soit
{(πx,Hπx), x ∈ X} un champ de représentations unitaires de G et µ une mesure
sur X. On note HX = ∪x∈XHπx et L2

0 = L2
0(X,HX , µ) l’ensemble des applications

f : X → HX telles que pour tout x ∈ X, f(x) ∈ Hπx et les fonctions x →
‖f(x)‖Hπx

et (g, x) → 〈πx(g)[f(x)], f(x)〉 soient continues à support compact sur
X resp. sur G×X. On suppose que pour tout x ∈ X, le sous-espace {f(x), f ∈ L2

0}
est dense dans Hπx . On munit L2

0 de la norme

‖f‖2 :=

√∫

X

‖f(x)‖2
Hx

dµ(x).

On appelle alors intégrale directe de (Hπx)x∈X , notée
∫ ⊕

X
Hπxdµ(x), l’adhérence

de L2
0 pour la norme ‖.‖2 et on définit la représentation intégrale directe π =∫ ⊕

X
πxdµ(x) de G agissant sur Hπ =

∫ ⊕
X
Hπxdµ(x) par [π(g)f ](x) = πx(g)[f(x)]

pour tout g ∈ G, x ∈ X et f ∈ Hπ.

2.5 Espace de Garding

Soient G un groupe de Lie et du la mesure de Haar sur G, (π,Hπ) une représentation
unitaire de G, ξ ∈ Hπ et ϕ ∈ C∞

c (G), l’espace des fonctions infiniment différentiables
à support compact sur G. On appelle vecteur de Garding le vecteur π(ϕ)ξ défini
par

π(ϕ)ξ =

∫

G

ϕ(u)π(u)ξ du.
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2.6 Opérateurs de Hilbert-Schmidt

Soient H un espace de Hilbert, B(H) l’ensemble des opérateurs bornés de H et
A ∈ B(H). On dit que A est un opérateur de Hilbert-Schmidt si l’opérateur borné
A∗A est traçable. L’ensemble des opérateurs de Hilbert-Schmidt sera noté HS(H),
sur lequel on définit la norme suivante

‖A‖2
HS = tr(A∗A).

En particulier pour une représentation unitaire (π,Hπ) d’un groupe de Lie connexe,
simplement connexe et nilpotent G = exp g et ϕ ∈ S(G), l’opérateur π(ϕ) est
toujours de Hilbert-Schmidt. De plus, si π = πl ∈ Ĝ, l ∈ g∗ et ϕ ∈ S(G), alors
l’opérateur πl(ϕ) est à noyau, c’est-à-dire on peut écrire

πl(ϕ)ξ(x) =

∫

G/Bl

Kπl(ϕ)(x, g)ξ(g)dg, ξ ∈ Hπl
, x ∈ G,

où Bl est une polarisation en l dans G et Kπl(ϕ) est le noyau de πl(ϕ), qui est
donné par

Kπl(ϕ)(x, y) =

∫

Bl

ϕ(xby−1)χl(b)db, x, y ∈ G.

De plus Kπl(ϕ) ∈ S(G/Bl ×G/Bl, χl × χ−l) et l’application

S(G) → S(G/Bl ×G/Bl, χl × χ−l); ϕ 7→ Kπl(ϕ),

est continue et surjective (voir [5]).

2.7 Mesure de Plancherel

Soient G = exp g un groupe de Lie nilpotent connexe et simplement connexe,
Z = {Z1, . . . , Zn} une base de Jordan-Hölder de g et (gj)

n+1
j=1 la suite de Jordan-

Hölder de g associée à Z. On note pour tout j ∈ {1, . . . , n+1}, dj(l) = dim(G·l|gj
)

et dj = max
l∈g∗

dj(l). Soit E = {l ∈ g∗, dj(l) = dj, j ∈ {1, . . . , n + 1}} l’ouvert

G−invariant des orbites génériques. On considère les ensembles d’indices suivants

S = {j ∈ {1, . . . , n}; dj 6= dj+1}, T = {1, . . . , n} \ S.

Si on pose g∗S = vec{Z∗
j , j ∈ S} et g∗T = vec{Z∗

j , j ∈ T}, on aura g∗ = g∗S⊕g∗T . De
plus, chaque G−orbite dans E rencontre g∗T en un seul point, en particulier E ∩g∗T
est un ouvert de Zariski non vide dans g∗T . D’autre part, pour tout l ∈ E , la forme
bilinéaire bl, définie par bl(X, Y ) = 〈l, [X, Y ]〉, X, Y ∈ g, est non dégénérée. Il
existe alors une fonction polynomiale, appelée le Pfaffien de l, qui vérifie Pf(l)2 =
det

(〈l, [Zi, Zj]〉
)

i,j∈S
. Soit K la bijection de Kirillov définie par

K : g∗/G 3 Ad∗G(l) 7→ [πl] ∈ Ĝ.
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Si dlT est la mesure euclidienne sur g∗T , alors l’application K : (E ∩ g∗T )/G → Ĝ
envoie la mesure dl = |Pf(l)|dlT en la mesure de Plancherel dµ sur Ĝ. Cette mesure
intervient dans la désintégration de la représentation régulière gauche de G. La
formule de Plancherel dit que

‖ϕ‖2
2 =

∫

Ĝ

‖π(ϕ)‖2
HSdµ(π) =

∫

E∩g∗T

‖πl(ϕ)‖2
HS|Pf(l)|dlT , ϕ ∈ L2(G).

Par abus d’écriture nous mettons aussi∫

g∗/G

dµ(πl) =

∫

Ĝ

dµ(π).

Nous définissons l’espace Hilbertien L2(Ĝ) comme intégrale hilbertienne

L2(Ĝ) :=

∮

Ĝ

HS(Hπ)dµ(π).

2.8 Ensemble des double-classes

Soient H = exp h et B = exp b deux sous-groupes fermés connexes d’un groupe
de Lie G = exp g nilpotent, connexe et simplement connexe. On définit la double-
classe relative à H et B d’un élément g ∈ G, et on la note g̃ = H · g · B, comme
étant le sous-ensemble de G donné par H · g · B = {h · g · b, (h, b) ∈ H × B}.
L’ensemble de toutes ces doubles-classes sera noté H�G�B. Pour décrire cet
ensemble, on peut se référer au travail de Abdennadher et Ludwig [1]. Dans la
suite, on adopte leurs notations pour rappeler leur résultat. Soit Z = {Z1, . . . , Zn}
une base de Jordan-Hölder de g. L’idéal engendré par {Zi, . . . , Zn} est noté gi et
Gi son sous-groupe de Lie. On considère maintenant les sous-ensembles d’indices
suivants

Ig/h = {i ∈ {1, . . . , n}, Zi 6∈ h + gi+1}, I = Ig/h ∩ Ig/b.

On note aussi I(h, b) le sous-ensemble de I caractérisé par

i ∈ I(h, b) ⇐⇒
{

il existe un ouvert de Zariski non vide Ui ⊂ G
tel que pour tout g ∈ Ui, Zi 6∈ h + Adgb + gi+1.

On désigne par Wi, i ∈ I, la partie de G donnée par

Wi =

{{g ∈ G, Zi 6∈ h + Adgb + gi+1} si i ∈ I(h, b)
{g ∈ G,Zi ∈ h + Adgb + gi+1} sinon.

Ces ensembles ont la propriété (P) de stabilité par la multiplication à droite avec
les éléments de B et à gauche avec les éléments de H. De plus, chaque Wi contient
un ouvert de Zariski maximal Ui non vide de G, ayant la propriété (P). On pose

U =
⋂
i∈I
Ui,
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qui est aussi un ouvert de Zariski de G vérifiant (P). L’ensemble d’indices I(h, b),
caractérisant l’ensemble des double-classes H�G�B, est alors

I(h, b) = {i ∈ I, ∀g ∈ U , Zi 6∈ h + Adgb + gi+1}.

On pose I(h, b) = {i1 < · · · < id} et on considère les applications suivantes

φ : Rd → G
(t1, . . . , td) 7→ exp t1Zi1 · · · exp tdZid

et
P : G → H�G�B

g 7→ g̃ = H · g ·B.

Ainsi V = φ−1(U) est un ouvert de Zariski de Rd et Ũ = P (U) est l’ensemble
des double-classes de presque tous les éléments de G. Avec cette construction
l’application

φ̃ : V → Ũ
(t1, . . . , td) 7→ H · exp t1Zi1 · · · exp tdZid ·B

est un homéomorphisme. Dans la suite on notera Φ : Ũ → G tel que Φ = φ ◦ φ̃−1.
Dans le même travail, Abdennadher et Ludwig [1] ont désintégré la mesure

invariante sur G/B en une intégrale sur l’ensemble des double-classes. Si on prend
des bases de Malcev Y(g, h, b) et X de h relative à h ∩ Adgb respectivement de
g relative à b qui varient rationnellement en g ∈ G, alors il existe une fonction
rationnelle F définie sur l’ensemble des double-classes telle que la mesure dγ,
définie pour toute fonction ψ : H�G�B → C continue et à support compact
dans Ũ , par la relation
∫

H�G�B

ψ(g̃)dγ(g̃) :=

∫

V
ψ(H · exp t1Zi1 · · · exp tdZid ·B)|F (t1, . . . , td)|dt1 . . . dtd,

vérifie
(2.1)∫

G/B

ϕ(g)dX (g) =

∫

H�G�B

( ∫

H/H∩Φ(g̃)·B·Φ(g̃)−1

ϕ(h · Φ(g̃) ·B)dY(Φ(g̃),h,b)(h)
)
dγ(g̃)

pour ϕ ∈ Cc(G/B).

2.9 Désintégration des restrictions de représentations

Soient G un groupe de Lie nilpotent connexe et simplement connexe d’algèbre de
Lie g, l ∈ g∗ et πl ∈ Ĝ. Soient Bl = exp bl une polarisation de G en l et H = exp h

un sous-groupe fermé connexe de G. La désintégration de πl|H sur l’ensemble des
double-classes H�G�Bl est donnée par Mackey dans [10] par



186 F. Khlif

πl|H '
∫ ⊕

H�G�Bl

IndH
H∩Φ(g̃)·Bl·Φ(g̃)−1χ

Ad∗
Φ(g̃)

(l)
dγ(g̃)

avec une mesure γ sur H�G�Bl. Un opérateur d’entrelacement explicite pour
cette désintégration est donné par Abdennadher et Ludwig dans [1] par

Srest : S(G/Bl, χl) −→
∫ ⊕

H�G�Bl

L2(H/H ∩ Φ(g̃) ·Bl · Φ(g̃)−1, χ
Ad∗

Φ(g̃)
(l))dγ(g̃)

tel que

(2.2) Srest(ξ)(g̃)(h) = ξ(h · Φ(g̃)),

où ξ ∈ S(G/Bl, χl), g̃ ∈ H�G�Bl et h ∈ H.

2.10 Désintégration des représentations induites

Soient G un groupe de Lie nilpotent connexe simplement connexe d’algèbre de
Lie g, l ∈ g∗, H = exp h un sous-groupe de Lie fermé de G tel que 〈l, [h, h]〉 = {0}
et soit τl = IndG

Hχl la représentation monomiale induite à partir du caractère
unitaire χl. D’après Corwin, Greenleaf [3] et Lipsman [8], la désintégration de τl

en irréductibles s’obtient comme suit

τl '
∫ ⊕

(l+h⊥)/H

πfd(f),

d(f) étant une certaine mesure naturelle sur l’espace (l + h⊥)/H des H-orbites.
Une désintégration concrète de τl est donnée par Baklouti et Ludwig [2], par la
formule

(2.3) τl '
∫ ⊕

VR,B
l

πfdλR,B
l (f),

où VR,B
l est un sous-espace affine construit comme suit. Soit s = (gj)0≤j≤n une

suite d’idéaux de g vérifiant

{0} = gn+1 ⊂ gn ⊂ . . . ⊂ g1 = g

et Z = {Z1, . . . , Zn} la base de Jordan-Hölder associée à s, c.à.d Zj ∈ gj/gj+1 et
gj = {Zj, . . . , Zn} . On note hj = gj + h, j = 1, . . . , n et 1 ≤ j1 < . . . < jk ≤ n les
indices tels que hj 6= hj+1. Ainsi on construit à partir de Z une base de Malcev
B = {X1, . . . , Xk} de g relative à h, dite extraite de la base Z, telle que Xi = Zji

.
On pose alors

(2.4) VR,B
l = {l +

r∑
i=1

Ri(t)X
∗
i , t ∈ Rk} ⊂ l + h⊥
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où R = (R1, ..., Rr) est une famille de fonctions affines sur Rk, pour un certain
r ∈ N, qui seront décrites en détail dans (4.1). De plus dλR,B

l est la mesure de
Lebesgue sur VR,B

l . Dans leur même article, Baklouti et Ludwig ont construit
un opérateur d’entrelacement pour cette équivalence, en choisissant pour tout
f ∈ VR,B

l et pour sa polarisation de Vergne relative à Z Bf = exp bf , certaines
bases de Malcev Y(f) de bf relative à bf ∩ h, qui varient rationnellement avec f ,
de sorte que l’opérateur

(2.5) SInd : S(G/H,χl) −→
∫ ⊕

VR,B
l

L2(G/Bf , χf )dλR,B
l (f)

défini pour tout ξ ∈ S(G/H, χl), f ∈ VR,B
l et g ∈ G par

SInd(ξ)(f)(g) =

∫

Bf /Bf∩H

ξ(gb)χf (b)dY(f)(b)

se prolonge sur L2(G/H, χl) en un opérateur d’entrelacement unitaire pour l’équi-
valence (2.3).

3 Désintégration de la représentation de conju-

gaison

Il s’agit de donner dans cette partie une désintégration en irréductibles de la
représentation de conjugaison γG d’un groupe de Lie nilpotent connexe et simple-
ment connexe G. Nous devons d’abord introduire certaines nouvelles représentations
du groupe G.

Définition 3.1. Soit l ∈ g∗ et Bl une polarisation en l. On définit la représentation
(πl,−l) de G dans l’espace hilbertien L2(G/Bl ×G/Bl, χl × χ−l) par

πl,−l(g)η(x, y) = η(g−1x, g−1y), x, y, g ∈ G.

Définition 3.2. Soit (π,Hπ) une représentation unitaire et irréductible de G et
A ∈ HS(Hπ), alors l’opérateur π(g) ◦ A ◦ π(g−1) est aussi dans HS(Hπ) pour
g ∈ G. On définit alors la représentation (Cπ, HS(Hπ)) de G par

Cπ(g)A = π(g) ◦ A ◦ π(g−1), g ∈ G, A ∈ HS(Hπ).

En outre, la représentation (C, L2(Ĝ)) de G est définie comme étant l’intégrale
hilbertienne

C :=

∫ ⊕

Ĝ

Cπdµ(π).

Notre premier résultat s’énonce comme suit.
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Lemme 3.3. Soit l ∈ g∗ et Bl une polarisation de G en l. Alors pour πl = πl,Bl

on a que
Cπl

' πl,−l.

Démonstration. Notons HS0(Hπl
) = {πl(ξ), ξ ∈ S(G)}, qui est un sous-espace

dense de HS(Hπl
). Nous savons d’après [5], que l’application linéaire

U : HS0(Hπl
) → L2(G/Bl ×G/Bl, χl × χ−l)

définie par
U(πl(ξ)) := Kπl(ξ), ξ ∈ S(G),

envoie HS0(Hπl
) sur l’espace S(G/Bl×G/Bl, χl×χ−l). Elle s’étend par continuité

en un opérateur d’entrelacement unitaire entre Cπl
et πl,−l. En effet, pour ξ ∈ Hπl

,
on a

‖U(πl(ξ))‖2
L2(G/Bl×G/Bl,χl×χ−l)

=

∫

G/Bl×G/Bl

|Kπl(ξ)(x, y)|2dxdy = ‖πl(ξ)‖2
HS(Hπl

).

D’autre part, pour x, y ∈ G on a

U ◦ Cπl
(g)(πl(ξ))(x, y) = KCπl

(g)(πl(ξ))(x, y) = Kπl(γG(g)(ξ))(x, y) = Kπl(ξ)(g
−1x, g−1y)

= πl,−l(g)(Kπl(ξ))(x, y) = πl,−l(g) ◦ U(πl(ξ))(x, y).

¤

Théorème 3.4. Soit G un groupe de Lie nilpotent connexe et simplement connexe.
Soit µ la mesure de Plancherel de Ĝ. Alors

γG '
∫ ⊕

g∗/G

πl,−ldµ(πl).

Démonstration. Il suffit de se rappeler que d’après le théorème de Plancherel,
les espaces hilbertiens L2(G) et L2(Ĝ) =

∮
Ĝ

HS(Hπ)dµ(π) sont isométriquement
isomorphes et la transformation de Fourier

F (ξ)(π) := π(ξ), ξ ∈ L2(G) ∩ L1(G),

nous donne un tel opérateur unitaire. En outre, F entrelace les représentations γG

et C. En effet

F (γG(g)ξ)(π) = π(g)π(ξ)π(g−1) = Cπ(g)F (ξ)(π), ξ ∈ L2(G), g ∈ G.

Alors on a d’après le lemme 3.3

γG '
∫ ⊕

Ĝ

Cπdµ(π) '
∫ ⊕

g∗/G

πl,−ldµ(πl).

¤
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L’étape suivante dans cette section consiste à écrire une formule de désintégration
en irréductibles de la représentation de conjugaison. Commençons par prouver la
proposition suivante.

Proposition 3.5. On a :

γG '
∫ ⊕

g∗/G

IndG
Bl

(χl|Bl
⊗ π−l|Bl

)dµ(πl).

Démonstration. D’après le théorème 3.4, il suffit de montrer l’équivalence

πl,−l ' IndG
Bl

(χl|Bl
⊗ π−l|Bl

),

où l ∈ g∗ et Bl une polarisation de G en l. On note νl := IndG
Bl

(χl|Bl
⊗ π−l|Bl

),
donc νl est une représentation de G qui agit sur l’espace hilbertien

Hνl
:=





ψ : G → L2(G/Bl, χ−l), ψ mesurable,
ψ(gb) = χl(b)

−1π−l(b)
−1(ψ(g)), g ∈ G, b ∈ Bl,∫

G/Bl
‖ψ(g)‖2

Hπ(−l)
dX (g) < ∞



 .

Nous vérifions que si η ∈ L2(G/Bl × G/Bl, χl × χ−l), alors la fonction y 7→
η(x, xy) =: V (η)(x)(y) est dans L2(G/Bl, χ−l) pour presque tout x ∈ G et que

V (η)(xb)(y) = η(xb, xby) = χl(b)
−1π−l(b)

−1(V (η(x)))(y), y ∈ G, b ∈ Bl.

On peut donc considérer l’opérateur

V : Hπl,−l
−→ Hνl

défini par
V (η)(x)(y) = η(x, xy), x, y ∈ G, η ∈ Hπl,−l

.

Il est clair que V est une isométrie. D’autre part, on vérifie facilement que V ◦
πl,−l(g) = νl(g) ◦ V. En effet, pour x, y ∈ G, on a

(V ◦ πl,−l(g))η(x)(y) = πl,−l(g)η(x, xy) = η(g−1x, g−1xy)

= V (η)(g−1x, y) = (νl(g) ◦ V )η(x)(y).

Par conséquent, les représentations πl,−l et νl sont équivalentes. Le théorème 3.4
permet de conclure.

¤

En ce qui suit, on donne finalement la formule de la désintégration de γG en
irréductibles.
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Théorème 3.6. Soient g∗ 3 l 7→ Bl = exp bl un choix mesurable de polarisa-
tions en l dans G et soit dγl, l ∈ g∗, la mesure sur l’ensemble des double-classes
Bl�G�Bl =: G��Bl décrite dans 2.8. Pour g ∈ G, on note l(g) := l−Ad∗Φ(g̃)(l),

VR,B
l(g) le sous-espace affine de l(g) + (bl ∩ AdΦ(g̃)bl)

⊥ défini comme dans (2.4) et

dλR,B
l(g) la mesure de Lebesgue associée. On a alors

(3.1) γG '
∫ ⊕

g∗/G

∫ ⊕

G��Bl

∫ ⊕

VR,B
l(g)

π
l(g)+R(t)

dλR,B
l(g) (t)dγl(g̃)dµ(πl).

Démonstration. Pour tout l ∈ g∗ et Bl une polarisation en l dans G on a

IndG
Bl

(χl|Bl
⊗ π−l|Bl

) ' IndG
Bl

(χ
l|Bl

⊗
∫ ⊕

G��Bl

IndBl

Bl∩Φ(g̃)·Bl·Φ(g̃)−1χAd∗
Φ(g̃)

(−l)
dγl(g̃))

' IndG
Bl

∫ ⊕

G��Bl

IndBl

Bl∩Φ(g̃)·Bl·Φ(g̃)−1χl(g)
dγl(g̃)

'
∫ ⊕

G��Bl

IndG
Bl∩Φ(g̃)·Bl·Φ(g̃)−1χl(g)

dγl(g̃)

'
∫ ⊕

G��Bl

∫ ⊕

VR,B
l(g)

π
l(g)+R(t)

dλR,B
l(g) (t)dγl(g̃).

La proposition 3.5 nous permet de conclure. ¤

Corollaire 3.7. Soit G un groupe de Lie nilpotent connexe et simplement connexe
et γG la représentation de conjugaison associée, alors si L : Ĝ → g∗/G désigne
l’application réciproque de la bijection de Kirillov, on a

L(suppγG) ⊂ {(Ωπ − Ωπ)/G, π ∈ Ĝ},

où Ωπ est l’orbite coadjointe de π.

Démonstration. Ce résultat découle immédiatement de la désintégration de la
représentation γG décrite dans le théorème 3.6. En effet, pour tout l ∈ g∗ et g ∈ G
on a

l − Ad∗g(l) + (bl ∩ Adgbl)
⊥ = l − Ad∗g(l) + (bl)

⊥ + (Adgbl)
⊥

= (l + (bl)
⊥)− (Ad∗g(l) + (Adgbl)

⊥) ⊂ Ωπl
− Ωπl

.

¤
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4 Espace de désintégration

Dans cette partie, on écrit une désintégration concrète de γG. Le lemme suivant est
un outil indispensable dans la construction explicite de l’espace de désintégration.

Lemme 4.1. (voir [1]) On considère une famille F(t) = {V 1(t), . . . , V k(t)} de
k vecteurs de Rn qui dépendent polynomialement d’un paramètre t ∈ Rn. Soit
r = max{rang(F(t)), t ∈ Rn} et soit {e1, . . . , en} la base canonique de Rn. On a
alors le résultat suivant

1. Vr = {t ∈ Rn, rang(F(t)) = r} est un ouvert de Zariski de Rn.
2. Pour tout i ∈ {1, . . . , n}, l’ensemble {t ∈ Rn, ei 6∈ vec{F(t)}} ou bien son

complémentaire, contient un ouvert de Zariski non vide de Rn.

Fixons une base de Jordan-Hölder Z = {Z1, . . . , Zn} de g et adoptons les
notations de 2.7. On a vu que chaque G−orbite dans E rencontre g∗T en un seul
point, en particulier E ∩ g∗T est un ouvert de Zariski non vide dans g∗T . Soit q le
cardinal de l’ensemble indice T = {T1 < · · · < Tq}. Identifions g∗T avec Rq à l’aide
de l’application

w = (w1, . . . , wq) →
q∑

j=1

wjZ
∗
Tj

=: lw.

Ainsi il existe un ouvert de Zariski O de Rq, tel que

γG '
∫ ⊕

O
IndG

Blw

(
(χlw)|Blw

⊗ (π−lw
)|Blw

)|Pf(lw)|dw.

Dans la suite, on donnera une désintégration en irréductibles de (π−lw
)|Blw

en
se basant sur les résultats de Abdennadher et Ludwig [1]. Notons que l’existence
des différents ouverts de Zariski dans cette construction est due au lemme 4.1.
On note Bw := Blw et bw := blw la polarisation de Vergne dans g en lw relative
à la base de Jordan-Hölder Z. Soit w ∈ O et i 6∈ Ig/bw , alors Zi ∈ bw + gi+1.
Il existe Zi(w) = Zi +

∑n
k=i+1 ai,k(w)Zk ∈ bw tels que ai,k(w)i+1≤k≤n soient les

solutions du système d’équations linéaires donné par 〈lw, [Zi(w), Zk]〉 = 0 pour
tout k ∈ {i, . . . , n}. En réduisant si nécessaire O on peut supposer que pour tout
w dans l’ouvert de Zariski O on a

Ig/bw = {j1, ..., jp}.

D’autre part, d’après le lemme 4.1, il existe un ouvert de Zariski W de Rq ×G et
un ensemble d’indices {i1, . . . , id} ⊂ {1, . . . , n} tel que pour tout w ∈ Rq verifiant
({w} ×G) ∩W 6= ∅,

I(bw, bw) = {i ∈ Ig/bw ; Zi 6∈ bw + Adgbw + gi+1, ∀(w, g) ∈ W} = {i1, . . . , id}.
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Notons aussi pour w ∈ Rq, tel que ({w} ×G) ∩W 6= ∅

φ = φw : Rd → G; φ(s) =
d∏

k=1

exp skZik ,

Ww := {g ∈ G; (w, g) ∈ W} et Vw = φ−1
w (Ww).

On obtient alors

πlw |Bw
'

∫ ⊕

Vw

IndBw

Bw∩φ(s)·Bw·φ(s)−1χAd∗
φ(s)

(lw)
|Fw(s)|ds, s ∈ Vw

et d’après l’égalité (2.1), Fw(s) est une fonction rationnelle en s et en w, donc
elle est continue en (w, s) pour tout (w, φ(s)) dans l’ouvert de Zariski W et qui
détermine la mesure sur l’ensemble des double-classes.

Passons maintenant à la construction d’un opérateur d’entrelacement pour
cette équivalence. On a vu que {Zj1 , ..., Zjp} est une base de Malcev de g relative à
bw, pour tout w ∈ O. De plus, si on note cIg/bw = {1, ..., n}\Ig/bw = {α1, ..., αn−p},
alors on trouve une famille {Zα1(w), ..., Zαn−p(w)} de vecteurs de g qui forment une
base de Jordan-Hölder de bw pour tous les w dans un ouvert de Zariski qu’on peut
supposer être égal à O, en réduisant si nécessaire O, et qui varient rationnellement
et continûment en w ∈ O.

On considère maintenant pour tout (w, s) tel que (w, φ(s)) ∈ W l’ensemble
d’indices

Ibw/bw∩Adφ(s)bw = {αi, i ∈ {1, ..., n− p}; Zαi
(w) 6∈ bw ∩ Adφ(s)bw + (bw)i+1},

avec (bw)i+1 = vec{Zαi+1
(w), ..., Zαn−p(w)}, i = 1, ..., n− p.

Comme précédement, en réduisant si nécessaire W , on peut supposer qu’il existe
une partie {β1, ..., βe} ⊂ {α1, ..., αn−p} telle que

Ibw/bw∩Adφ(s)bw = {β1, ..., βe} pour tout (w, φ(s)) ∈ W .

Ainsi {Zβ1(w), ..., Zβe(w)} est une base de Malcev de bw relative à bw ∩ Adφ(s)bw

pour tout (w, φ(s)) ∈ W . D’après l’équation (2.2), l’opérateur d’entrelacement
pour la restriction est

Srest(w) : L2(G/Bw, χlw) →
∫ ⊕

Vw⊂Rd

L2(Re, χAd∗φ(s)(lw))Fw(s)ds,

défini par

Srest(w)(ξ)(s1, . . . , sd)(z1, . . . , ze)

= ξ(exp z1Zβ1(w) · · · exp zeZβe(w) · exp s1Zi1 · · · sdZid).
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Il s’agit maintenant de désintégrer la représentation

IndG
Bw∩φ(s)·Bw·φ(s)−1χlw+Ad∗φ(s)(−lw)

en se basant sur les résultats de Baklouti et Ludwig [2] dans le cadre de la
désintégration concrète des représentations induites des groupes de Lie nilpotents.
Soit (w, φ(s)) ∈ W , on note

lw(s) := lw + Ad∗φ(s)(−lw), b(w, s) := bw ∩ Adφ(s)bw.

Nous voyons que lw(s) varie polynomialement en (w, s). Il existe donc un ouvert
de Zariski de Rq×G, qu’on peut supposer être égal à W , et un ensemble d’indices
{θ1, ..., θk} ⊂ {1, ..., n}, tel que Ig/b(w,s) = {θ1, ..., θk} pour tout (w, φ(s)) ∈ W .
On note pour tout 1 ≤ j ≤ k , Xj = Zθj

. Ainsi B = {X1, ..., Xk} est une base de
Malcev de g relative à toutes les sous-algèbres de Lie b(w, s). Ecrivons

bi(w, s) := b(w, s) + vec {Xi, ..., Xk} et Bi(w, s) := exp bi(w, s), (w, φ(s)) ∈ W .

On note pour tout j ∈ {1, . . . , k}, et (w, φ(s)) ∈ W , Γw,s := lw(s) + b(w, s)⊥

et dj(w, s) le maximum des dimensions des Bj(w, s)-orbites dans lw(s)|bj(w,s) +
b(w, s)⊥ ⊂ [bj(w, s)]∗.
Cette dimension maximale est donnée par le rang d’une matrice qui varie polyno-
mialement en w et s. Soit

dj = max
(w,φ(s))∈W

dj(w, s), d0 = 0 et L = {j ∈ {1, ..., k}; dj = dj−1} = {λ1, ..., λr}.

Alors, il existe un ouvert de Zariski, qu’on peut supposer être égal à W , tel que

∀(w, φ(s)) ∈ W , dj(w, s) = dj, j = 1, ..., k.

Soit

(4.1) R = {R1, . . . , Rk} : Rr → Rk

la famille de fonctions affines définies sur Rr de la façon suivante. Soit t =
(t1, ..., tr) ∈ Rr,

Rj(t) = ti, si j = λi ∈ L,

= 0, si j 6∈ L.

L’espace de désintégration de IndG
B(w,s)χlw(s) est donné par

VR,B
lw(s) = {lw(s, t); t ∈ Rr} ⊂ Γw,s

où

lw(s, t) := lw(s) +
k∑

j=1

Rj(t)X
∗
j .
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Ainsi pour tout (w, φ(s)) ∈ W , on trouve la désintégration suivante

(4.2) IndG
B(w,s)χlw(s) '

∫ ⊕

Rr

πlw(s,t)dt,

avec πlw(s,t) = IndG
B(w,s,t)χlw(s,t), B(w, s, t) = exp b(w, s, t) et b(w, s, t) est la pola-

risation de Vergne en lw(s, t) dans g relative à la base de Jordan-Hölder Z.
Pour la construction d’un opérateur d’entrelacement pour cette équivalence,

on se propose tout d’abord de construire une base de Malcev de b(w, s, t) relative
à b(w, s, t) ∩ b(w, s). On note comme avant, pour (w, φ(s), t) ∈ W × Rr

Ig/b(w,s,t) = {i ∈ {1, ..., n}, Zi 6∈ b(w, s, t) + gi+1}.
De nouveau, on peut supposer qu’il existe un ouvert de Zariski D de W × Rr et
un ensemble indice {m1, ..., mv} ⊂ {1, ..., n} tel que pour tout (w, φ(s), t) ∈ D on
ait

Ig/b(w,s,t) = {κ1, ..., κv}.
On ordonne aussi l’ensemble indice

cIg/b(w,s,t) = {1, ..., n} \ Ig/b(w,s,t) = {ζ1, ..., ζn−v}

Ainsi {Zκ1 , ..., Zκv} est une base de Malcev de g relative à b(w, s, t) pour tout
(w, φ(s), t) ∈ D. D’autre part, pour (w, φ(s), t) ∈ D, on prend une base de Jordan-
Hölder de b(w, s, t)

Zζi
(w, s, t) = Zζi

+
n∑

j=ζi+1

a′i,j(w, s, t)Zj, i = 1, ..., n− v

qui varie rationnellement et même, quitte à réduire D, continûment sur D et on
pose

(b(w, s, t))i = vec{Zζi
(w, s, t), ..., Zζn−v(w, s, t)}, i = 1, ..., n− v,

et aussi

Ib(w,s,t)/b(w,s,t)∩b(w,s)

= {ζi, i ∈ {1, ..., n− v}; Zζi
(w, s, t) 6∈ b(w, s, t) ∩ b(w, s) + (b(w, s, t))i+1}.

On peut supposer de nouveau que pour tout (w, φ(s), t) ∈ D, on a

Ib(w,s,t)/b(w,s,t)∩b(w,s) = {ϑ1, ..., ϑu}.
Ainsi {Zϑ1(w, s, t), ..., Zϑu(w, s, t)} est une base de Malcev de b(w, s, t) relative à
b(w, s, t) ∩ b(w, s) pour tout (w, φ(s), t) ∈ D.
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Soit b = (b1, ..., bu) ∈ Ru, on note

Exp
b(w,s,t)
b(w,s,t)∩b(w,s)(b) = exp(b1Zϑ1(w, s, t)) · · · exp(buZϑu(w, s, t)).

D’autre part, d’après [2] et 2.10, il existe pour (w, s) fixé, un choix continu en t
de bases de Malcev Y(w, s, t) de b(w, s, t) relative à b(w, s, t) ∩ b(w, s), tel que
l’opérateur

SInd(w, s) : S(G/B(w, s), χlw(s)) →
∫ ⊕

Rr

Hπlw(s,t)
dt,

SInd(w, s)ξ(t)(g) =

∫

B(w,s,t)/B(w,s,t)∩B(w,s)

ξ(gb)χlw(s,t)(b)dY(w,s,t)(b), g ∈ G,

réalise une isométrie qui se prolonge en un opérateur d’entrelacement unitaire pour
l’équivalence (4.2). En fait les bases construites dans l’article [2] varient de façon
rationnelle en t et il est facile de vérifier que cette variation est aussi rationnelle
en (w, s). Donc finalement les bases Y(w, s, t) sont continues en (w, s, t) pour tout
(w, φ(s), t) dans un ouvert de Zariski, qu’on peut supposer être égal à D.

Si on remplace la base Y(w, s, t) par une autre base Y ′(w, s, t), qui varie
continûment en w, s et t, alors on obtient une fonction continue C(w, s, t) stricte-
ment positive, telle que

dY(w,s,t) = C(w, s, t)dY ′(w,s,t),

Donc pour notre choix de la base Y ′(w, s, t) = {Zϑ1(w, s, t), ..., Zϑu(w, s, t)} il
existe une fonction strictement positive continue C(w, s, t), pour laquelle l’opérateur
d’entrelacement

SInd(w, s) : S(
G/B(w, s), χlw(s)

) −→
∫ ⊕

Rr

L2
(
G/B(w, s, t), χlw(s,t)

)
C(w, s, t)dt,

défini par

SInd(w, s)(ξ)(t)(g)

=

∫

Ru

ξ
(
g.Exp

b(w,s,t)
b(w,s,t)∩b(w,s)(b)

)
χlw(s,t)(Exp

b(w,s,t)
b(w,s,t)∩b(w,s)(b))dY ′(w,s,t)(b), g ∈ G,

réalise une isométrie qui se prolonge en opérateur unitaire pour l’équivalence (4.2).

5 Opérateur d’entrelacement

On rassemble maintenant les résultats des sections précédentes pour obtenir la
forme finale de notre opérateur d’entrelacement concret pour l’équivalence (3.1).
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Théorème 5.1. Avec les notations plus haut, pour tout (w, φ(s), t) ∈ D, il existe
une base de Malcev Y(w, s, t) de b(w, s, t) relative à b(w, s, t) ∩ b(w, s), pour la-
quelle l’opérateur défini par

S : S(G) −→
∫ ⊕

Rq

∫ ⊕

Rd

∫ ⊕

Rr

L2(G/B(lw(s, t)), χlw(s,t))C(w, s, t)|Fw(s)| |Pf(lw)|dtdsdw,

tel que :

S(ξ)(w, s, t)(x)

=

∫

B(w,s,t)/B(w,s,t)∩B(w,s)

Kπlw (ξ)(xb, xbφ(s))χlw(s,t)(b)dY(w,s,t)(b)

=

∫

B(w,s,t)/B(w,s,t)∩B(w,s)

∫

Bw

ξ(xbb′φ(s)−1b−1x−1)χlw(b′)db′χlw(s,t)(b)dY(w,s,t)(b).

est une isométrie qui s’étend en un opérateur unitaire qui entrelace γG et sa
désintégration en irréductiles.

6 Exemples

Exemple 6.1. Soit g = vec{X, Y1, ..., Yn, Z} l’algèbre de Lie filiforme de dimen-
sion n + 2 tel que n ≥ 1 et de crochets non nuls

[X, Yi] = Yi+1, i ∈ {1, ..., n− 1}, [X, Yn] = Z.

On peut identifier le groupe de Lie G = exp g avec le produit semi-direct expRXn
exp a, avec a = vec{Y1, ..., Yn, Z}. La représentation de conjugaison γG est donnée,
pour tout (x, a), (t, b) ∈ G et ξ ∈ L1(G), par

γG(t, b)ξ(x, a) = ξ((t, b)−1 · (x, a) · (t, b)) = ξ(b−1 · t−1 · x · a · t · b)
= ξ(x · x−1 · b−1 · x · t−1 · a · t · b) = ξ(x, b− Adx−1b + Adt−1a).

Dans cet exemple on écrit dans une première étape une désintégration en irréductibles
de la represéntation πl,−l, l ∈ g∗ et on donne l’opérateur d’entrelacement associé.
Ensuite, on en déduit une désintégration en irréductibles de γG. Soit l ∈ g∗ satis-
faisant l(Z) 6= 0, on montre que

(6.1) πl,−l '
∫ ⊕

R
π(I−Ad∗exp sX)(l)ds =: ρl.
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SoitZ = {X,Y1, ..., Yn, Z} une base de Jordan-Hölder de g et bl = vec{Y1, ..., Yn, Z}
la polarisation de Vergne relative à Z en tout l ∈ g∗ telle que l(Z) 6= 0 et
Bl = exp bl. On montre que l’opérateur

S1 : S(G/Bl ×G/Bl, χl × χ−l) →
∫ ⊕

R
Hπ(I−Ad∗

exp sX
)(l)

ds

défini pour η ∈ S(G/Bl ×G/Bl, χl × χ−l) par

S1(η)(s)(exp uX) = η(exp uX, exp(u + s)X), u, s ∈ R
se prolonge par continuité surHπl,−l

en un opérateur qui entrelace les représentations
de l’équivalence (6.1). Dans la suite on note euX := exp uX et

δu(a) := exp uX · a · exp(−uX).

Soit l ∈ g∗ et g = ewX .a tels que w ∈ R et a = exp A ∈ exp a. On a

(S1 ◦ πl,−l(g))(η)(s)(euX) = πl,−l(g)(η)(euX , e(u+s)X) = η(g−1euX , g−1e(u+s)X)

= η(a−1e(u−w)X , a−1e(u−w+s)X)

= η(e(u−w)Xδw−u(a
−1), e(u+s−w)Xδw−u−s(a

−1))

= χ
l
(δ(w−u)(a))χ−l(δ(w−u−s)(a))η(e(u−w)X , e(u+s−w)X)

= e−i<l,Ad
e(w−u)X A>ei<l,Ad

e(w−u−s)X A>η(e(u−w)X , e(u+s−w)X)

= e−i<(I−Ad∗
esX )(l),Ad

e(w−u)X A>η(e(u−w)X , e(u−w+s)X)

= χ
(I−Ad∗

esX
)(l)

(δ(w−u)(a))(S1(η))(s)(e(u−w)X)

= (S1(η))(s)(g−1euX) = π
(I−Ad∗

esX
)(l)

(g)(S1(η))(s)(euX)

= (ρl(g) ◦ S1)(η)(s)(euX).

D’autre part on a

‖S1(η)‖2
Hρl

=

∫

R
‖S1(η)(s)‖2

Hπ(I−Ad∗
esX

)(l)
ds =

∫

R

∫

R
‖S1(η)(s)(euX)‖2duds

=

∫

R

∫

R
‖η(euX , e(u+s)X)‖2duds = ‖η‖2

L2(G/Bl×G/Bl,χl×χ−l)
.

Par suite, d’après (3.4), on a

γG '
∫ ⊕

g∗/G

πl,−ldµ(πl) '
∫ ⊕

Rn−1×R∗

∫ ⊕

R
π(I−Ad∗

esX )l(y,z)
|z|dsdy1 . . . dyn−1dz,

avec l(y,z) =
n−1∑
i=1

yiY
∗
i + zZ∗. Posons yn = 0, alors on a

Ad∗esX l(y,z) =
n∑

j=1

( n∑
i=j

(−s)i−j

(i− j)!
yi +

(−s)n−j+1

(n− j + 1)!
z
)
Y ∗

j + zZ∗.
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Par conséquent

l(y,z)(s) := (I− Ad∗esX )l(y,z) =
n−1∑
j=1

( n∑
i=j+1

−(−s)i−j

(i− j)!
yi − (−s)n−j+1

(n− j + 1)!
z
)
Y ∗

j .

Ainsi on trouve

γG '
∫ ⊕

Rn−1×R∗

∫ ⊕

R
πl(y,z)(s)|z|ds dy dz.

L’opérateur d’entrelacement est donné par

S : S(G) →
∫ ⊕

Rn−1×R∗

∫ ⊕

R
L2(R, χl(y,z)(s))|z|ds dy dz,

tel que

S(ξ)(y, z)(s)(x) = S1(Kπl(y,z)(s)
(ξ))(s)(x) = Kπl(y,z)(s)

(ξ)(e
xX , e(x+s)X)

=

∫

Rn×R
ξ(exXea1Y1 . . . eanYnetZe−(x+s)X)χl(y,z)(s)(e

a1Y1 . . . eanYnetZ) da1 . . . dan dt

=

∫

Rn×R
ξ
(
e−sX ·

n∏

k=1

exp(
k−1∑
j=0

(x + s)j

j!
ak−j

)
Yk · exp

(
t +

n∑
j=1

(x + s)j

j!
an−j+1)Z

)

e

−i

( n−1∑
j=1

(
n∑

i=j+1

−(−s)i−j

(i− j)!
yi − (−s)n−j+1

(n− j + 1)!
z)aj + tz

)

da1 . . . dandt.

Exemple 6.2. Soit g l’algèbre de Lie de dimension 6 engendrée par les vecteurs
{A,B, C, U, V, Z} et de crochets non nuls

[A,B] = Z, [B, C] = U et [C, A] = V.

D’après le théorème (3.4), on a

γG '
∫ ⊕

(R×R∗)2
π

l(a,u,v,z),−l(a,u,v,z)
|u|da du dv dz

avec l(a,u,v,z) = aA∗+uU∗+vV ∗+zZ∗. La polarisation en l(a,u,v,z) dans g relative à
la base de Jordan-Hölder {A,B, C, U, V, Z} est b(a,u,v,z) = vec{A+ v

u
B,C, U, V, Z}

qui est un idéal de g. Ainsi

γG '
∫ ⊕

(R×R∗)2

∫ ⊕

R
Ind

G

B(a,u,v,z)
χ

l(a,u,v,z)(s)
|u|ds da du dv dz

avec l(a,u,v,z)(s) = (I− Ad∗exp sB)l(a,u,v,z) = −szA∗ + suC∗ et u, z ∈ R∗. Par suite

(6.2) γG '
∫ ⊕

(R×R∗)2

( ∫ ⊕

R2

χ−szA∗+suC∗+t(B∗− v
u A∗) |u|dt ds

)
da du dv dz.
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D’après (5.1), l’opérateur d’entrelacement pour cette désintégration est donné,
pour tout ξ ∈ S(G) et (a, u, v, z, s, t) ∈ R× R∗ × R× R∗ × R2, par

S(ξ)(a, u, v, z)(s, t) =

∫

R
Kπ(a,u,v,z)(ξ)(e

bB, e(b+s)B)e−itbdb.

Dans la suite on vérifie avec un calcul explicite que S entrelace les représentations
de l’équivalence (6.2).

‖S(ξ)‖2
2 =

∫

(R×R∗)2×R2

|
∫

R
Kπ(a,u,v,z)(ξ)(e

bB, e(b+s)B)e−itbdb|2 |u|dt ds da du dv dz

=

∫

(R×R∗)2

∫

R2

|Kπ(a,u,v,z)(ξ)(e
tB, esB)|2 |u|dt ds da du dv dz

=

∫

(R×R∗)2
‖Kπ(a,u,v,z)(ξ)‖2

L2(G/B(a,u,v,z)×G/B(a,u,v,z))
|u| da du dv dz

=

∫

(R×R∗)2
‖π(a,u,v,z)(ξ)‖2

HS(Hπ(a,u,v,z)
)|u| da du dv dz

= ‖ξ‖2
L2(G).

D’autre part pour tout g = eβBh ∈ G tel que β ∈ R, h = eα(A+ v
u

B)+λCmod Z(G),
on note δβ(h) = eβBhe−βB. Alors on a

(S ◦ γG(g))(ξ)(a, u, v, z)(s, t) =

∫

R
Kπ(a,u,v,z)(γG(g)ξ)(e

bB, e(b+s)B)e−itbdb

=

∫

R
Kπ(a,u,v,z)(ξ)(g

−1ebB, g−1e(b+s)B)e−itbdb

=

∫

R
Kπ(a,u,v,z)(ξ)(h

−1e(b−β)B, h−1e(b−β+s)B)e−itbdb

=

∫

R
Kπ(a,u,v,z)(ξ)(e

bBδ−b(h
−1), e(b+s)Bδ−(b+s)(h

−1))

· e−itbdb e−itβ

=

∫

R
Kπ(a,u,v,z)(ξ)(e

bB, e(b+s)B)χ
l(a,u,v,z)

(δ−b(h))

· χ
l(a,u,v,z)

(δ−(b+s)(h
−1))e−itbdb e−itβ

=

∫

R
Kπ(a,u,v,z)(ξ)(e

bB, e(b+s)B)e−itbdb e−itβe−i(−sαz+suλ)

=

∫

R
Kπ(a,u,v,z)(ξ)(e

bB, e(b+s)B)e−itbdb

· χ−szA∗+suC∗+tB∗ (e
βBeαA+λC)
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= S(ξ)(a, u, v, z)(s, t)χ−szA∗+suC∗+t(B∗− v
u A∗)(g).

D’où le résultat.
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