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Abstract: The Evens-Lu-Weinstein representation (QA,D) for a Lie algebroid A on a manifold

M is studied in the transitive case. To consider at the same time non-oriented manifolds as

well, this representation is slightly modified to (Qor
A ,Dor) by tensoring by orientation flat line

bundle, Qor
A = QA⊗or (M) and Dor = D⊗∂or

A . It is shown that the induced cohomology pairing

is nondegenerate and that the representation (Qor
A ,Dor) is the unique (up to isomorphy) line

representation for which the top group of compactly supported cohomology is nontrivial. In the

case of trivial Lie algebroid A = TM the theorem reduce to the following: the orientation flat

bundle (or (M) , ∂or) is the unique (up to isomorphy) flat line bundle (ξ,∇) for which the twisted

de Rham complex of compactly supported differential forms on M with values in ξ possesses the

nontrivial cohomology group in the top dimension. Finally it is obtained the characterization

of transitive Lie algebroids for which the Lie algebroid cohomology with trivial coefficients (or

with coefficients in the orientation flat line bundle) gives Poincaré duality. In proofs of these

theorems for Lie algebroids it is used the Hochschild-Serre spectral sequence and it is shown the

general fact concerning pairings between graded filtered differential R-vector spaces: assuming

that the second terms live in the finite rectangular, nondegeneration of the pairing for the second

terms (which can be infinite dimensional) implies the same for cohomology spaces.
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1 Introduction

The cohomology pairing coming from Evens-Lu-Weinstein representation of a Lie alge-

broid [4] is very important in many applications of Lie algebroids (Poisson geometry,

intrinsic characteristic classes). This pairing generalizes the well known pairings that

give Poincaré duality for Lie algebra cohomology and de Rham cohomology of a manifold

and real cohomology of transitive invariantly oriented Lie algebroids [14]. For a Poisson

manifold, this pairing agree with the pairing on the Poisson homology. The authors of [4]

give an example of a nontransitive Lie algebroid for which the pairing is not necessarily

nondegenerate and post the problem of when it is nondegenerate. This paper gives the

positive answer for the case of any transitive Lie algebroids and proves the property of

this representation: it is the one (up to isomorphy) for which the top group of compactly

supported cohomology is nontrivial.

Finally, we prove that for the nonregular transformation Lie algebroid corresponding

to the action γ : R → X (R) , γ (t) = t ·X where X = xN d
dx
, there is no line representation

for which the cohomological pairing is nondegenerate.

More detailed, this paper is devoted to prove two cycles of theorems, mutually over-

coming.

FIRST CYCLE concerns nondegenerate cohomology pairings for manifolds (The-

orem 2.3), Lie algebras (Theorem 3.4) and Lie algebroids (Theorem 7.3).

— Assume thatM is a connected m-dimensional manifold (oriented or not) and ξ1, ξ2
are two flat vector bundles with flat covariant derivatives ∇1 and ∇2 respectively. Denote

by or (M) the orientation bundle with canonical flat structure ∂or. Let F : ξ1 × ξ2 →
or (M) be a pairing (i.e. 2-linear homomorphism) of vector bundles compatible with the

flat structures (∇1,∇2, ∂
or), nondegenerate at least at one point (therefore, at every).

From such a pairing one obtains a pairing on differential forms and the induced pairing

in cohomology

Hj
∇1
(M, ξ1)×Hm−j

∇2,c (M, ξ2)
F#−→ Hm

∂or,c (M, or (M))

∫ or,#
M−→ R

is nondegenerate in the sense that

Hj
∇1
(M, ξ1)

∼=→
(

Hm−j
∇2,c (M, ξ2)

)∗
.

The index ”c”means that the compactly supported cohomology are considered. This

theorem generalizes the classical Poincaré duality as well as the one for dω-cohomologies

[6].

— Assume that g is an arbitrary n-dimensional Lie algebra and ∇1,∇2 : g → LR

are two representations of g in R. Denote by ∇trad : g → LR the trace-representation

(∇trad)a = tr (ada) · id. Then the top group of cohomology Hn
trad (g) of g with respect

to ∇trad is nonzero, H
n
trad (g)

∼=→ R, and if the multiplication of reals is compatible with

respect to (∇1,∇2,∇trad) then the exterior multiplication ∧ : Λrg∗×Λn−rg∗ → Λng∗ ∼= R

yields the induced nondegenerate pairing in cohomology

H i
∇1
(g)×Hn−i

∇2
(g)→ Hn

trad (g)
∼= R,
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i.e.

H i
∇1
(g)

∼=→
(

Hn−i
∇2

(g)
)∗
.

In particular, for (∇1,∇2,∇trad) = (0,∇trad,∇trad) we obtain

H i (g)
∼=→

(

Hn−i
trad (g)

)∗
.

For unimodular Lie algebra g the usual Poincaré duality is obtained in this way.

— Let A = (A, [[·, ·]],#A) be a Lie algebroid on M and

QA = ΛtopA⊗ ΛtopT ∗M

the line vector bundle with canonical Evens-Lu-Weinstein representation [4],

Dγ (Y ⊗ ϕ) = Lγ (Y )⊗ ϕ+ Y ⊗ L#A(γ) (ϕ) .

To consider non-oriented manifolds we modify it into

Qor
A = QA ⊗ or (M)

and

Dor = D ⊗ ∂or
A

tensoring by the orientation bundle and its flat structure ((∂or
A )γ σ = (∂or)#A(γ)

σ, σ ∈
Γ (or (M)), #A : A → TM is the anchor of A). For transitive Lie algebroids with n-

dimensional isotropy Lie algebras and multiplications by reals (M × R)⊗Qor
A → Qor

A the

induced pairing in cohomology

Hj (A)×Hm+n−j
Dor,c (A,Qor

A )→ Hm+n
Dor,c (A,Q

or
A )→ R

is nondegenerate, i.e. Hm+n
Dor,c (A,Q

or
A )
∼= R and

Hj (A) ∼=
(

Hm+n−j
Dor,c (A,Qor

A )
)∗
.

SECOND CYCLE shows the uniqueness of the line representation for which the

top group of compactly supported cohomology is not zero (Theorems 2.10, 3.5, 7.10).

— Hm
∇,c (M, ξ) 6= 0 if and only if (ξ,∇) is, up to isomorphy, the orientation flat line

bundle (or (M) , ∂or) . In particular, for oriented manifold, Hm
∇,c (M, ξ) 6= 0 if and only if

(ξ,∇) is, up to isomorphy, the trivial flat line bundle (M ×R, ∂) .

— For an n-dimensional Lie algebra g the trace-representation ∇trad is the unique line

representation ∇ for which Hn
∇ (g) 6= 0.

— Let A be a transitive Lie algebroid and ∇ a representation of A in a line vector

bundle ξ. Then Hm+n
∇,c (A, ξ) 6= 0 if and only if (ξ,∇) is, up to isomorphy, the E-L-W-

representation (Qor
A , D

or) .

In conclusion we obtain a full classification of transitive Lie algebroids for which the

algebra of real cohomologies with trivial coefficients satisfies the Poincaré duality.
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— If A is a transitive Lie algebroid then the following conditions are equivalent:

• Hm+n
c (A) 6= 0,

• Hm+n
c (A) ∼= R and Hj (A) ∼= (Hm+n−j

c (A))
∗
,

• A is orientable vector bundle and the modular class of A is zero, θA = 0.

In particular,

— For an orientable manifoldM we have: Hm+n
c (A) 6= 0 if and only if A is a TUIO-Lie

algebroid [13], i.e. the adjoint Lie Algebra Bundle ggg = ker#A is oriented and there is a

global nonsingular section ε ∈ Γ (Λnggg) invariant with respect to the adjoint representaion.

The above theorem for a compact oriented manifold M and 1-rank adjoint LAB

ggg =M × R was proved earlier in [15].

To prove Theorem 7.10 we use Theorem 4.4 concerning a pairing · : 1A × 2A → 3A

between graded filtered differential R-vector spaces and theirs spectral sequnces. Roughly

speaking, if the second terms rEj,i
2 live in the rectangular 0 ≤ j ≤ m, 0 ≤ i ≤ n, 3E

(m+n)
2 =

3Em,n
2

∼= R and the multiplication of the second terms 〈·, ·〉2 : 1E
(j)
2 × 2E

(m+n−j)
2 → 3Em,n

2
∼=

R is nondegenerate in the sense that 1E
(j)
2
∼=

(

2E
(m+n−j)
2

)∗
, then the cohomology pairing for

cohomologies of spaces is nondegenerate as well, i.e. 3Hm+n ∼= R and 1Hj
∼=−→ (2Hm+n−j)

∗
.

We must stress that the spaces rEj,i
2 may be infinite dimensional.

2 Non-degenerate pairings for twisted cohomology of a mani-

fold

Many of the facts from this section belong to ”the folklore”. We call 1-dimensional vector

bundles line bundles.

2.1 Twisted cohomology, elementary properties

Let M be an m-dimensional paracompact manifold and ξ a vector bundle of rank p and

∇Xν, X ∈ X (M) , ν ∈ Γ (ξ) , a flat covariant derivative on M in ξ.

(•) The differerential equation ∇ν = 0 (with respect to the local section ν of ξ) is locally

uniquelly integrable.

The local section ν satisfying∇ν = 0 is called∇-constant (or sometimes∇-invariant).

To set a flat covariant derivative ∇ is equivalent to set local trivializations {(Uα, ϕα)}
relative to which the transitive functions are locally constant which is, in turn, equivalent

to set a homomorphism of Lie algebroids∇ : TM → A (ξ) where A (ξ) is the Lie algebroid

of ξ. The flat bundles (ξ,∇) form a category with morphisms F : (ξ1,∇1)→ (ξ2,∇2) being

linear isomorphisms F : ξ1 → ξ2 compatible with flat covariant derivatives (∇1,∇2), i.e.

for which F (∇1,Xν) = ∇2,X (Fν) . We write also

(ξ1,∇1)
F
∼ (ξ2,∇2)

or briefly ∇1
F
∼ ∇2.
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Two flat line bundles over a connected manifold are isomorphic if and only if they

have the same holonomy homomorphism h : π1 (M,x) → GL (R, 1) . For a flat vector

bundle (ξ,∇) the differential operator d∇ of the degree 1 for ξ-valued differential forms

Ω∗ (M, ξ) is defined by the standard formula

d∇ (φ) (X0, ..., Xq)

=
∑

i

(−1)i∇Xi
(φ (X0, ...̂ı..., Xq)) +

∑

i<j

(−1)i+j φ ([Xi, Xj] , X0, ...̂ı....̂..., Xq) .

Let σ1α, ..., σ
p
α be local sections of ξ over Uα corresponding to the standard basis e

1, ..., ep ∈
R

p under the trivialization ϕα, σ
i
α (x) = ϕα,x (e

i) . The local sections σi
α are ∇-constant,

∇σi
α = 0. Over Uα a ξ-valued q-form φ can be written as

∑

φi ⊗ σi
α, φ

i ∈ Ωq (Uα)

and we have d∇ (
∑

φi ⊗ σi
α) =

∑

ddR (φ
i) ⊗ σi

α. The flatness of ∇ implies that d∇ is

a differential operator, d2∇ = 0, therefore Ω∗ (M, ξ) is a differential complex and the

(twisted) cohomology

H∗
∇ (M, ξ) = H (Ω∗ (M, ξ) , d∇)

makes sense. By the definition the 0-group of cohomology can be written as

H0
∇ (M, ξ) = {ν ∈ Γ (ξ) ; ∇Xν = 0 for all X ∈ X (M)} . (1)

(••) If (ξ,∇) is a line nontrivial flat vector bundle then according to (•) aboveH0
∇ (M, ξ) =

0.

If ∇ is a flat covariant derivative in a vector bundle ξ and ω ∈ Ω1 (M) is a closed

real 1-form, then

∇ω
Xν = ∇Xν + ω (X) · ν (2)

is a flat covariant derivative as well. If ξ is a line bundle and ∇ and ∇1 are two flat

covariant derivatives then there exists a closed 1 -form ω such that ∇1 = ∇ω.

Each flat covariant derivative∇ in the trivial vector bundleM×R is of the form ∂ω for

some closed 1-form ω (∂ is the standard covariant derivative in the trivial vector bundle

M ×R defined by differentiation of functions ∂X (f) = X (f) ). Differential operator d∂ω

is given directly by

d∂ω (φ) = ddRφ+ ω ∧ φ.
The operator d∂ω is in the literature denoted rather by dω than by d∂ω [6], [8] and the

cohomology space H∂ω (M,M × R) is denoted by Hω (M). If ω = 0 the usual de Rham

cohomology of M is obtained. It is easy to see that

H0
ω (M) =











0 ⇐⇒ ω is nonexact,

R ⇐⇒ ω is exact.
(3)

The space of ξ-valued q-forms with compact support Ω∗c (M, ξ) is a differential complex

as well and we have the compactly supported cohomology H∗
∇,c (M, ξ) . If (ξ1,∇1)

F
∼

(ξ2,∇2) then F∗ : Ω
∗ (M, ξ1) → Ω∗ (M, ξ2) commutes with the differential operators d∇1
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and d∇2 and gives rise to an isomorphism in cohomology F# : H∗
∇1
(M, ξ1)→ H∗

∇2
(M, ξ2).

Analogously, for compact supports, we have an isomorphism F#,c : H∗
∇1,c (M, ξ1) →

H∗
∇2,c (M, ξ2) .

For an open subset U ⊂ M we have the restricted flat covariant derivative ∇U on

U in the vector bundle ξU and the twisted cohomology H∇ (U, ξ) and H∇,c (U, ξ) are

defined. Similarly as in the case of real coefficients (see for example [1]) we can obtain

the short exact Mayer-Vietoris sequences (U1, U2 ⊂M are open subset, U = U1∪U2, and
U12 = U1 ∩ U2)

0→ Ω∗ (U, ξ)
α→ Ω∗ (U1, ξ)⊕ Ω∗ (U2, ξ)

β→ Ω∗ (U12, ξ)→ 0

and

0← Ω∗c (U, ξ)
αc← Ω∗c (U1, ξ)⊕ Ω∗c (U2, ξ)

βc← Ω∗c (U12, ξ)← 0.

They give rise to long exact sequences in cohomology

→ Hq
∇ (U, ξ)

α#→ Hq
∇ (U1, ξ)⊕Hq

∇ (U2, ξ)
β#→ Hq

∇ (U12, ξ)
∂q

→ Hq+1
∇ (U, ξ)→

and

← Hq
∇,c (U, ξ)

αc#← Hq
∇,c (U1, ξ)⊕Hq

∇,c (U2, ξ)
βc#← Hq

∇,c (U12, ξ)
∂q

c← Hq+1
∇,c (U, ξ)←

Remark 2.1. There is a natural isomorphism H∗
∇ (M, ξ) ∼= H∗

I(∇) (U, ξ) of H
∗
∇ (M, ξ)

with H∗
I(∇) (U, ξ) , the cohomology ofM in the sheaf I (∇) of local ∇-constant sections of

ξ. In other words, H∗
∇ (M, ξ) are cohomology of M with local system of coefficients.

2.2 Orientation flat bundle and its characterization

Let {(Uα, xa)} be a coordinate open cover for the manifold M, with transition functions

gαβ = xα ◦ x−1β . Take the orientation bundle or (M) , i.e. the line bundle on M with a

distinguished system of local trivializations {ϕα} such that the transition functions are

equal to sgn J (gαβ) [1]. Let {eα} be a family of local sections corresponding to 1 under
the trivializations {ϕα} , eα (x) = ϕα,x (1) . In the bundle or (M) there exists exactly one

flat covariant derivative ∂or such that eα are ∂or-constant, ∂or (eα) = 0. The notation eα

and ∂or is valid in the whole paper.

The flat orientation bundle (or (M) , ∂or) is characterized by the holonomy homomor-

phism s : π1(M,x0) → Z2 ⊂ GL (R, 1) that can be identified with monodromy to the

group of the local orientations in the fixed point x0 which also is Z2.

In the sequel it will be useful to give other characterization of the flat orientation

bundle.

Proposition 2.2. Let (ξ,∇) be a flat line bundle. The following conditions are equiva-

lent:

(a) (ξ,∇) ∼= (or (M) , ∂or) ,
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(b) there exists a collection of local sections {σα} of ξ such that σa are ∇-constant and

the transition functions are equal to sgn J (gαβ) ,

(c) (or (M)⊗ ξ, ∂or ⊗∇) ∼= (M × R, ∂) ,

(d) there exists a global nonsingular section t ∈ Γ (or (M)⊗ ξ) which is ∂or⊗∇-constant.

Proof. Equivalences (a)⇔(b) and (c)⇔(d) are evident by definition.

(b)⇒(c) The linear homomorphism F : or (M)⊗ξ →M×R defined by F (eα ⊗ σα) =

1 is a well defined linear isomorphism compatible with (∂or ⊗∇, ∂) .
(d)⇒(b) Locally t = eα ⊗ σα for some local nonsingular sections σα of ξ. Since

0 = ∂or ⊗∇ (eα ⊗ σα) = ∂or ⊗ σα + eα ⊗∇σα = eα ⊗∇σα,

it follows that σα are ∇-constant and have the same transition functions sgn J (gαβ) .

The or (M)-valued m-differential forms are called densities. There exists an operator

∫ or

M

: Ωm
c (M, or (M))→ R

of the integration of densities and the Stoke’s Theorem for densities holds

∫ or

M

d∂or (ω) = 0

for ω ∈ Ωm−1
c (M, or (M)) [1]. Hence it produces a linear operator

∫ or,#

M

: Hm
∂or,c (M, or (M))→ R. (4)

2.3 Pairings and cohomology, nondegeneracy

Now let (ξ1,∇1) , (ξ2,∇2) , and (ξ3,∇3) be three flat vector bundles. We say that (ξ1,∇1)

and (ξ2,∇2) are paired to (ξ3,∇3) if there is a bilinear homomorphism F : ξ1 × ξ2 → ξ3
compatible with flat covariant derivatives (∇1,∇2,∇3), i.e. such that, for every X ∈
X (M) ,

∇3,XF (ν1, ν2) = F (∇1,Xν1, ν2) + F (ν1,∇2,Xν2) .. (5)

Then we write F : (ξ1,∇1) × (ξ2,∇2) → (ξ3,∇3) . From such a pairing one obtains a

pairing (φ, ψ) 7→ φ∧ψ := F∗ (φ, ψ) of Ω
q (M, ξ1) and Ω

r (M, ξ2) to Ω
q+r (M, ξ3) fullfilling

the equality

d∇3F∗ (φ, ψ) = F∗ (d∇1φ, ψ) + (−1)deg φ F∗ (φ, d∇2ψ) .

Clearly, φ ∧ ψ := F∗ (φ, ψ) is the usual wedge product of differential forms with F -

multiplication of values, see [7, Vol.II]. The pairing of differential forms induces a pairing

of cohomology classes

F# : H∗
∇1
(M, ξ1)×H∗

∇2
(M, ξ2)→ H∗

∇3
(M, ξ3)
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as well as the pairing for compact supports

F#,c : H
∗
∇1
(M, ξ1)×H∗

∇2,c (M, ξ2)→ H∗
∇3,c (M, ξ3) .

Consider two flat vector bundles (ξ1,∇1) , (ξ2,∇2) and a pairing

F : (ξ1,∇1)× (ξ2,∇2)→ (or (M) , ∂or) . (6)

For an open subset U ⊂ M we define a pairing

∫ or,#

U

◦F# : Hq
∇1
(U, ξ1)×Hm−q

∇2,c (U, ξ2)
F#→ Hm

∂or,c (U, or (M))

∫ or,#
U→ R,

and the Poincaré linear homomorphism

Dq
U : Hq

∇1
(U, ξ1)→

(

Hm−q
∇2,c (U, ξ2)

)∗
, Dq

U ([Φ]) ([Ψ]) =

∫

U

(Φ ∧Ψ) .

Similarly as in the case of real coefficients we check that the family of Poincaré homo-

morphisms {Dq
U} induces a map from the long exact sequences in cohomology to the long

exact sequences in compactly supported cohomology (the symbols of vector bundles ξ1
and ξ2 in the diagram below are ommitted and the sign ± is equal precisely to (−1)q+1)

Hq
∇ (U)

α#−−−→ Hq
∇ (U1)⊕Hq

∇ (U2)
β#−−−→ Hq

∇ (U12)
∂q

−−−→ Hq+1
∇ (U)





y

DU





y

DU1
⊕DU2





y

DU12





y

DU

Hq
∇,c (U, ξ)

∗ α∗
c#−−−→ Hq

∇,c (U1)
∗ ⊕Hq

∇,c (U2)
∗ β∗

c#−−−→ Hq
∇,c (U12)

∗ ±(∂q
c)
∗

−−−−→ Hq+1
∇,c (U)

∗

(7)

For an infinite disjoint open subsets U =
∐

Ui we deduce that DU can be identifying

with
∏

DUi
.

Theorem 2.3. Assume that M is connected. If pairing (6) is nondegenerate at least one

point then the cohomology pairing

∫ or,#

M

◦F# : Hq
∇1
(M, ξ1)×Hm−q

∇2,c (M, ξ2)
F#→ Hm

∂or,c (M, or (M))

∫ or,#
M→ R,

is also nondegenerate in the sense that

Dq
M : Hq

∇1
(M, ξ1)

∼=→
(

Hm−q
∇2,c (M, ξ2)

)∗

is an isomorphism, q ∈ {0, 1, ..., m} .

Proof. We can use the standard method from [7, Vol.I] (or a slightly modified method

by using Riemannian structure and properties of geodesically convex neighbourhoods,

[1], [18]). According to [7, Vol.I, Prop.II, p.16] and the commutativity of diagram (7)

and remark on infinite disjoint open subsets we need only to prove the theorem for the

manifold M = R
m.
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Each vector bundle ξ over R
m is trivial, each flat covariant derivative ∇ has trivial

holonomy, so the differential equation ∇ν = 0 is globally integrable. Therefore for an

arbitrary point x0 ∈M there exists an isomorphism of flat vector bundles

ϕ : (ξ,∇)→ (Rm × ξx0, ∂)

where by ∂ is denoted the standard flat covariant derivative ∂Xf = X (f) .

(Remark: for the line bundle ξ the isomorphism ϕ can be given directly as follows.

For ξ = R
m × R any flat covariant derivative ∇ is of the form ∇Xf = ∂Xf + ∂X (α) · f

for some function α. Then ϕ (f) = e−αf is a required isomorphism.)

The isomorphism ϕ gives rise to an isomorphism in cohomology

ϕ# : H∇ (R
m, ξ)

∼=→ HdR (R
m, ξx0) ,

especially for the zero level

H0
∇ (R

m, ξ)
ϕ0

#→
∼=
H0

dR (R
m, ξx0)

ρ→
∼=
ξx0.

On the other hand, the isomorphism ϕ also gives rise to an isomorphism in compactly

supported cohomology ϕ#,c : H∇,c (R
m, ξ)

∼=→ HdR,c (R
m, ξx0) , especially for the top level

ϕm
#,c : H

m
∇,c (R

m, ξ)
ϕm

#,c→
∼=

Hm
dR,c (R

m, ξx0)
ρc→
∼=
ξx0,

where ρc is defined by the formula

ρc

([

∑

i

f i ·∆⊗ vi

])

=
∑

i

(

∫

Rm

f i
)

· ei

where vi is a basis of ξx0, ∆ is a determinant function on R
m and f i ∈ C∞c (Rm) are

functions with compact support. ρc is independent of the choice of the basis vi and fulfils

the equality ρc ([f ·∆⊗ v]) =
(∫

Rm f
)

· v, f ∈ C∞c (Rm) , v ∈ ξx0.

Now take flat vector bundles (ξi,∇i) on R
m and linear isomorphisms ϕi : (ξi,∇i) →

(

R
m × (ξi)x0

, ∂
)

. For any pairing F : (ξ1,∇1) × (ξ2,∇2) → (ξ3,∇3) we get easily the

commutative diagram

F# : H0
∇1
(Rm, ξ1)×Hm

∇2,c (R
m, ξ2) −−−→ Hm

∇3,c (R
m, ξ3)





y

ϕ0
1#×ϕm

2#,c





y

ϕm
3#,c

F̄# : H0
dR

(

R
m, (ξ1)x0

)

×Hm
dR,c

(

R
m, (ξ2)x0

)

−−−→ Hm
dR,c

(

R
m, (ξ3)x0

)





y

ρ×ρc





y

ρc

Fx0 : (ξ1)x0
× (ξ2)x0

−−−→ (ξ3)x0

where the middle pairing comes from the ”constant” pairing

F̄ :
(

R
m, (ξ1)x0

)

×
(

R
m, (ξ2)x0

)

→
(

R
m, (ξ3)x0

)

, F̄x = Fx0.

To prove the theorem take (ξ3,∇3) = (or (M) , ∂or) and choose a point x0 such that Fx0

is nondegenerate.
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2.4 Applications of the nondegenerate cohomology pairing

Now we give a number of applications of Theorem 2.3.

Example 2.4. For a connected orientable manifoldM and the trivial flat vector bundles

(ξi,∇i) = (M ×R, ∂) and the multiplication of reals · : R× R → R we obtain the classical

Poincaré duality Hj (M) × Hm−j
c (M) → Hm

c (M) → R. Especially Hm
c (M) = R and

Hj (M) ∼= (Hm−j
c (M))

∗
.

Example 2.5. More generally, for arbitrary connected manifold M taking (ξ1,∇1) =

(M ×R, ∂) and (ξ2,∇2) = (or (M) , ∂or) and the multiplication by reals F : (M ×R) ×
or (M) → or (M) we get the Poincaré duality also for nonorientable manifold [1]. Espe-

cially operator (4) is an isomorphism, Hm
∂or,c (M, or (M)) ∼= R.

Example 2.6. [6], [8] LetM be an oriented connected manifold. The following conditions

are equivalent:

(1) Hm
ω,c (M) = 0,

(2) H1 (M) ∋ [ω] 6= 0.

If [ω] = 0 then Hm
ω (M) = R.

Indeed, consider multiplication by reals F : (M × R) × (M × R) → M × R. This

pairing is nondegererate and compatible with (∂−ω, ∂ω, ∂) . By Theorem 2.3 we get the

nondegenerate pairing Hp
−ω (M) × Hm−p

ω,c (M) → Hm
c (M) ∼= R. In particular, we get

H0
−ω (M) =

(

Hm
ω,c (M)

)∗
, so all follows from (3).

Each flat covariant derivative in or (M) is of the form (∂or)ω for a closed 1-form ω.

Concider the multiplications by reals F : (M ×R) × or (M) → or (M). Then we easily

get:

Example 2.7. For any connected manifold M (oriented or not) the following conditions

are equivalent:

(1) Hm
(∂or)ω ,c (M, or (M)) = 0,

(2) H1 (M) ∋ [ω] 6= 0.

If [ω] = 0 then Hm
(∂or)ω ,c (M, or (M)) = R.

The next applications are given in the following propositions.

Proposition 2.8. If M is orientable and ξ is an arbitrary line nonorientable (i.e. non-

trivial) vector bundle then for any flat covariant derivative ∇ in ξ

Hm
∇,c (M, ξ) = 0.

Proof. Indeed, consider the natural nondegenerate pairing

F : (ξ,∇)× (ξ,∇)→ (ξ ⊗ ξ,∇⊗∇) , (ν, µ) 7→ ν ⊗ µ,
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and any linear isomorphism ϕ : ξ ⊗ ξ → M ×R. The latter transforms the flat covariant

derivative ∇⊗∇ to the ∂ω for some closed 1-form ω.We recall that (∇⊗∇)X (ν ⊗ µ) =

∇Xν ⊗ µ + ν ⊗ ∇Xµ. Then the pairing ϕ ◦ F : ξ × ξ → M × R is compatible with

(∇,∇, ∂ω) and, in consequence, with (∇−ω,∇, ∂) (for ∇−ω see (2)). By Theorem 2.3 we

have the nondegenerate pairing

H0
∇−ω (M, ξ)×Hm

∇,c (M, ξ)→ Hm
c (M)

∫

M→ R.

In consequence we obtain by the nontriviality of ξ and observation (•) from section 2.1

0 = H0
∇−ω (M, ξ) =

(

Hm
∇,c (M, ξ)

)∗

which imply Hm
∇,c (M, ξ) = 0.

Proposition 2.9. If ξ is a line bundle not isomorphic to or (M) then for arbitrary flat

covariant derivative ∇ in ξ we have

Hm
∇,c (M, ξ) = 0.

Proof. Indeed, fix a linear isomorphism

ϕ : ξ ⊗ ξ →M × R.

Such isomorphism ϕ exists since ξ ⊗ ξ is orientable line vector bundle, therefore, trivial.

Let ∇⊗∇ F
∼ ∂ω for a closed 1-form ω. Take the multiplication by reals

τ : or (M)⊗ (M × R)→ or (M)

and notice that τ is compatible with (∂or ⊗ ∂ω, (∂or)ω) . Consider the canonical non-

degenerate pairing F : (or (M)⊗ ξ) × ξ → or (M) ⊗ ξ ⊗ ξ which is compatible with

(∂or ⊗∇,∇, ∂or ⊗∇⊗∇) . The composition

F ′ : (or (M)⊗ ξ)× ξ
F→ or (M)⊗ ξ ⊗ ξ

id⊗ϕ−→ or (M)⊗ (M ×R)
τ→ or (M) ,

clearly, is nondegenerate and is compatible with (∂or ⊗∇,∇, (∂or)ω) . Therefore F ′ is

compatible with (∂or ⊗∇−ω,∇, ∂or) . According to Theorem 2.3 applied to F ′ we get

H0
∂or⊗∇−ω (M, or (M)⊗ ξ) ∼=

(

Hm
∇,c (M, ξ)

)∗
.

Since ξ is not isomorphic to or (M) the vector bundle or (M)⊗ ξ is not trivial (indeed, if
or (M)⊗ξ ∼=M×R then or(M) ∼= ξ∗ ∼= ξ ) which producesH0

∂or⊗∇−ω (M, or (M)⊗ ξ) = 0

and further Hm
∇,c (M, ξ) = 0.

Finally we have the main application.

Theorem 2.10. The following conditions are equivalent:



674 J. Kubarski, A. Mishchenko / Central European Journal of Mathematics 2(5) 2004 663–707

a) Hm
∇,c (M, ξ) 6= 0,

b) Hm
∇,c (M, ξ) = R,

c) (ξ,∇) ∼ (or (M) , ∂or) ,

Proof. For c) =⇒ b) see Example 2.5 or [1]; b) =⇒ a) is evident. It remains to show

that

a) =⇒ c). Keep the notation ϕ and ω from the proof of the previous proposition. By

the same reasoning we check

H0
∂or⊗∇−ω (M, or (M)⊗ ξ) 6= 0.

It means that or (M) ⊗ ξ is trivial and there exists a nonsingular global cros-section

ν ∈ Γ (or (M)⊗ ξ) which is ∂or⊗∇−ω-constant. Express locally ν in the form ν = eα⊗fα

for some local sections fα of ξ, for eα see subsection 2.2. It is evident that {fα} has the
transition function equal to sgnJgαβ and that ∇−ωfα = 0, i.e. ∇Xfα = ω (X) · fα. The

formula f = ϕ (fα ⊗ fα) determines correctly a nonsingular function f . Since ∇⊗∇
ϕ
∼ ∂ω

then ∂Xf + ω (X) · f = ∂ω
Xf = 2 · ω (X) · f , one has

∂Xf = ω (X) · f.

The global cros-section ν ′ = 1
f
ν is ∂or ⊗ ∇-constant. The proposition follows now from

Proposition 2.2.

3 A generalization of the Chern-Hirzebruch-Serre Lemma and

applications to cohomology of Lie algebras

We generalize Lemma 3 from [2] concerning Poincaré differentiation from algebras to

pairings. The assumption on finite dimensionality is superfluous.

Lemma 3.1. Let As =
⊕n

i=0A
i
s, ds : As → As, s = 1, 2, 3, be three graded differential

R-vector spaces such that

(1) ds [A
i
s] ⊂ Ai+1

s ,

(2) d2s = 0,

(3) d3
[

An−1
3

]

= 0.

(4) An
3
∼= R, Ai

3 = 0 for i > n.

Let

· : A1 ×A2 → A3

be a pairing such that

(5) Ai
1 ·Aj

2 ⊂ Ai+j
3 ,

(6) d3 (x · y) = d1x · y + (−1)deg x x · d2y,
(7) · : Ar

1 × An−r
2 → An

3
∼= R, r = 0, 1, ..., n are nondegenerate in the sense that the

induced mappings

ir : A
r
1

∼=−→
(

An−r
2

)∗



J. Kubarski, A. Mishchenko / Central European Journal of Mathematics 2(5) 2004 663–707 675

are linear isomorphisms.

Then the induced homomorphisms in cohomology

· : Hr (A1, d1)×Hn−r (A2, d2)→ Hn (A3, d3) ∼= R

are nondegenerate as well, i.e. the induced linear homomorphism

i′r : H
r (A1, d1)→

(

Hn−r (A2, d2)
)∗

are linear homomorphisms.

Proof. The proof is identical with the original proof by Chern-Hirzebruch-Serre for an

algebra and it is sufficient to check that

i′r : H
r (A1, d1)

(ir)#−→ Hn−r (A∗2, d
∗
2)

∼=−→ Hn−r (A2, d2) ,

where (A∗2, d
∗
2) denotes the dual complex.

Now we give some applications to the cohomology of Lie algebras with coefficients.

Let g be a real Lie algebra of dimension n and let

∇ : g→ LR = EndR ∼= R

be an arbitrary representation in 1 dimensional vector space. We will distinguish two

representations

• ∇0 = 0,

• (∇trad)a = tr (ada) · id .
We see that ∇0 = ∇trad if and only if g is unimodular. Denote the differential

with respect to ∇trad by dtrad and the cohomology of g by Htrad (g) . Straightforward

computations show that dn−1
trad = 0. Therefore

Proposition 3.2. Hn
trad (g) = Λng∗ ∼= R for every Lie algebra.

Let us notice the following

Remark 3.3. (1) Each representation ∇ : g → LR is equal to 0 on g2 and, conversely,

each linear homomorphism ∇ : g → LR such that ∇|g2 = 0 is a representation.

(2) The zero group of cohomology H0
∇ (g) = 0 if and only if ∇ 6= 0.

(3) The multiplication of reals · : R× R → R is compatible with (∇1,∇2,∇3) if and

only if ∇3 = ∇1 +∇2.

Point (1) from the remark above implies that any linear combination of representations

is a representation. Take an arbitrary representation ∇ and put

∇′ = ∇trad −∇.



676 J. Kubarski, A. Mishchenko / Central European Journal of Mathematics 2(5) 2004 663–707

Then the multiplication of reals is compatible with (∇′,∇,∇trad) by (3) from the remark.

Therefore, for differential operators d∇′, d∇, dtrad the condition (6) from Lemma 3.1 holds.

Since the exterior multiplication

∧ : Λrg∗ × Λn−rg∗ → Λng∗ ∼= R

is nondegenerate then according to Lemma 3.1 the multiplication in cohomology

Hr
∇′ (g)×Hn−r

∇ (g)→ Hn
trad (g)

∼= R

is nondegenerate as well, i.e. in particular

H0
∇′ (g)

∼= (Hn
∇ (g))

∗ .

Immediately from the above reasoning we obtain the following theorems.

Theorem 3.4. The multiplication of reals is compatible with the representations (0,∇trad,

∇trad) and the induced cohomology pairing

Hn−r (g)×Hr
trad (g)→ Hn

trad (g)
∼= R,

is nondegenerate. In particular we obtain a noncanonical isomorphism

Hr
trad (g)

∼=
(

Hr
trad (g)

)∗ ∼= Hn−r (g) .

Theorem 3.5. ∇trad is the unique representation ∇ for which Hn
∇ (g) 6= 0.

Proof. For any representation ∇ take ∇′ = ∇trad−∇. By (2) from the remark above we

have

Hn
∇ (g)

∼= H0
∇′ (g) 6= 0 ⇐⇒ ∇′ = 0 ⇐⇒ ∇ = ∇trad.

4 Pairings for graded filtered differential R-vector spaces and

spectral sequences

The aim of this chapter is to prove that for any pairing of graded regularly filtered diffe-

rential R-vector spaces, if the second terms of spectral sequences gives the nondegenerate

pairing then the same holds for the cohomology algebras of the spaces. This holds wi-

thout assumption that dimE2 is finite and generalizes the suitable theorem for graded

filtered differential algebras [16].

Given three graded filtered differential R-vector spaces

(

rA =
⊕

i≥0

rAi, rd, rAj

)

, r = 1, 2, 3, (8)

denote for shortness
rH := H (rA, rd) .
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Assume

· : 1A× 2A→ 3A

preserves gradations and filtrations

1As · 2At ⊂ 3As+t, (9)

1Aj · 2Ak ⊂ 3Aj+k, (10)

and that the differentials rd satisfy the compatibility condition

3d (x · y) = 1dx · y + (−1)deg x x · 2dy. (11)

Clearly, there exists a multiplication of cohomology classes

· : 1Hj × 2Hk → 3Hj+k, ([x] , [y]) 7→ [x · y] ..

Let
(

rEj,i
s ,

rds

)

be spectral sequences of graded filtered differential R-vector spaces (8).

Lemma 4.1. (1)
1Zj,i

s · 2Zk,l
s ⊂ 3Zj+k,i+l

s , 0 ≤ s ≤ ∞,

(2)

1Zj,i
s · 2Dk,l

s−1 +
1Dj,k

s−1 · 2Z i,l
s ⊂ 3Zj+k+1,i+l−1

s−1 + 3Dj+k,i+l
s−1 , 0 ≤ s <∞,

1Zj,i
∞ · 2Dk,l

∞ + 1Dj,i
∞ · 2Zk,l

∞ ⊂ 3Dj+k,i+l
∞ , (s =∞).

Proof. Straightforward calculations.

Conclusion 4.2. There exists a multiplication of s-terms of spectral sequences

1Ej,i
s × 2Ek,l

s → 3Ej+k.i+l
s , ([x] , [y]) 7→ [x · y] , 0 ≤ s ≤ ∞.

The differentials 1ds,
2ds,

3ds fulfils the compatibility condition with respect to the total

gradation
3ds (x · y) = 1dsx · y + (−1)total deg x x · 2dsy.

There exists a multiplication of cohomology classes of s-terms

Hj,i
(

1Es,
1ds

)

×Hk,l
(

2Es,
2ds

)

→ Hj+k,i+l
(

3Es,
3ds

)

, ([x̃] , [ỹ]) 7→ [x̃ · ỹ] .

The linear isomorphisms of bigraded spaces

rσs :
rEs+1 → H (rEs,

rds) ,
rσ∞ : rE∞ → E0 (

rH)
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conserve the multiplications

3σs ([x] · [y]) = 1σs [x] · 2σs [y] ,
3σ∞ (x̄ · ȳ) = 1σ∞ (x̄) · 2σ∞ (ȳ) .

Remark 4.3. For s ≥ i+ 2 we consider the canonical epimorphisms

rγj,i
s : rEj,i

s
∼= rZj,i

∞/
(

rZj+1,i−1
∞ + rDj,i

s−1

)

։
rZj,i
∞/

(

rZj+1,i−1
∞ + rDj,i

∞

) ∼= rEj,i
∞ .

For s ≥ i + l + 2 the canonical epimorphisms 1γj,i
s ,

2γk,l
s , 3γj+k,i+l

s are compatible with

multiplications
3γj+k,i+l

s ([x] · [y]) = 1γj,i
s [x] · 2γk,l

s [y] .

This implies that if spectral sequences (rEs,
rds) collapse at the m̄th term then the ca-

nonical isomorphisms rβm̄ : rEm̄

∼=→ rE∞, see [7, Vol.III. §1.1.2], conserve bigradations
and are compatible with multiplications. We recall the construction of rβm̄. For arbitrary

(j, i) we select arbitrary s ≥ max (m̄, i+ 2) and put

rβj,i
m̄ : rEj,i

m̄

rσj,i
m̄←−
∼=

rEj,i
m̄+1 ←−∼= ...←−

∼=

rEj,i
s

rγj,i
s

։
rEj,i
∞ .

The following main result of this chapter generalizes Corollary 12 from [16].

Theorem 4.4. Given three graded filtered differential R-vector spaces (8) and a pairing

· : 1A × 2A → 3A satisfying (9), (10), (11), assume that the filtrations are regular in

the sense rA0 =
rA and that the second terms rEj,i

2 live in the rectangular 0 ≤ j ≤ m,

0 ≤ i ≤ n and that 3E
(m+n)
2 = 3Em,n

2
∼= R.

If the multiplication in the second terms

〈·, ·〉2 : 1E
(j)
2 × 2E

(m+n−j)
2 → 3Em,n

2
∼= R

is nondegenerate in the sense that

1E
(j)
2

∼=−→
(

2E
(m+n−j)
2

)∗
, x 7→ 〈x, ·〉2,

is a linear isomorphism, then

(a) 3Hm+n ∼= R,

(b) rH t = 0 for t > m+ n,

(c) the multiplication in cohomology classes

〈·, ·〉H : 1Hj × 2Hm+n−j → 3Hm+n ∼= R (12)

is nondegenerate as well, i.e.

1Hj ∼=−→
(

2Hm+n−j
)∗
, [x] 7→ 〈[x] , ·〉H ,

is a linear isomorphism.
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Proof. The terms rE3,
rE4, ...,

rE∞ live also in the same rectangular 0 ≤ j ≤ m, 0 ≤
i ≤ n. The bidegree argument of the second differential operator 3d2 implies (compare

with [16]) the condition 3d2
[

3E
(m+n−1)
2

]

= 0. By the generalized Chern-Hirzebruch-Serre

Lemma 3.1 we get 3E
(m+n)
2 = 3Em,n

2
∼= R and nondegeneracy of the multiplication for

third terms. Proceeding inductively we get the same for all finite terms. The bidegree

argument for the further differential operators rds implies the colapsing of spectral sequ-

ences (rEs,
rds) , say at

rm > max (m+ 1, n+ 2) places. Then 3E
(m+n)
∞ = 3Em,n

∞
∼= R so (a)

holds because 3Hm+n ∼= 3E
(m+n)
∞

∼= R and next, for m̄ ≥ max (1m, 2m, 3m) the canonical

isomorphisms rβm̄ (see Remark 4.3) are compatible with multiplications. In consequence,

the multiplication in the infinite terms

· : 1E(j)
∞ × 2E(m+n−j)

∞ → 3Em,n
∞

∼= R (13)

is nondegenerate as well.

It remains to prove the nondegeneracy of the multiplication of cohomology classes

(12). The spaces rH possess a natural graded filtration rHj,i, and thanks to the regularity

of filtrations we have

rH t = rH0,t ⊃ rH1,t−1 ⊃ ... ⊃ rH t,0 ⊃ 0 (14)

and a noncanonical isomorphism

rH t ∼= (rH0,t/ rH1,t−1)⊕ (rH1,t−1/ rH2,t−2)⊕ ....⊕ rH t,0 =
⊕

j+i=t

Ej,i
0 (rH) . (15)

Analogously to the proof of Theorem 11 from [16] we assert that

E
(m+n)
0 (rH) = Em,n

0 (rH) = rHm,n, (16)

and
rHj,i = rHj+1,i−1 for j > m or i > n.

Therefore by (15) rH t = 0 for t > m+ n which proves (b). As in [16] we check the rule:

• if 1σj,i
∞ (x̄) = [x] for x̄ ∈ 1Ej,i

∞ , x ∈ 1Hj,i, and if 2σm−j,n−i
∞ (ȳ) = [y] for ȳ ∈ 2Em−j,n−i

∞ ,

y ∈ 2Hm−j,n−i, then
3σm,n
∞ (x̄ · ȳ) = [x] · [y] = x · y. (17)

We fix generators ξ∞ ∈ 3Em,n
∞ and ξH ∈ 3Hm,n in such a way that 3σm,n

∞ (ξ∞) = ξH .

Consider the pairings, see (13),

〈·, ·〉∞ : 1E(j)
∞ × 2E(m+n−j)

∞ → R, 〈x̄, ȳ〉∞ · ξ∞ = x̄ · ȳ,

〈·, ·〉H : 1Hj × 2Hm+n−j → R, 〈x, y〉H · ξH = x · y.

By (17) we have

〈x̄, ȳ〉∞ = 〈x, y〉H (18)
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where 1σj,i
∞ (x̄) = [x] and 2σm−j,n−i

∞ (ȳ) = [y]. According to (13) the pairing 〈·, ·〉∞ is

nondegenerate, that is 1E
(j)
∞
∼=

(

2E
(m+n−j)
∞

)∗
. Consider the induced linear mapping

κ : 1Hj →
(

2Hm+n−j
)∗
, x 7→ 〈x, ·〉H.

Similarly to [16] we easily check the monomorphy of κ. It remains to check that κ is an

epimorphism.

Take a linear function 0 6= l : 2Hm+n−j → R and consider the filtration (14) for

r = 2 and t = m + n − j. Let V p ⊂ 2Hp,m+n−j−p be a subspace complementary to
2Hp+1,m+n−j−p−1, p = 0, 1, ..., m+ n− j and

ψp : V p → Ep,m+n−j−p
0

(

2H
)

, x 7→ [x] ,

the induced isomorphism. Put

ψ =
∑

p

ψp : 2Hm+n−j =
⊕

p

V p ∼=
⊕

p

Ep,m+n−j−p
0

(

2H
)

.

The composition l◦ψ−1 ∈
(
⊕

pE
p,m+n−j−p
0 (2H)

)∗
determines a family of linear functions

lp0 ∈
(

Ep,m+n−j−p
0 (2H)

)∗
. Define

Il = {p; lp0 6= 0} .

For each p ∈ Il we define - through isomorphisms
2σp,m+n−j−p
∞ : 2Ep,m+n−j−p

∞

∼=−→ Ep,m+n−j−p
0

(

2H
)

- a linear nonzero functions

lp∞ ∈
(

2Ep,m+n−j−p
∞

)∗
, lp∞ = lp0 ◦ 2σp,m+n−j−p

∞ .

The nondegenerate pairing 〈·, ·〉∞ : 1Em−p,p+j−m
∞ × 2Ep,m+n−j−p

∞ → R determines an

element 0 6= x̄m−p ∈ 1Em−p,p+j−m
∞ such that 〈x̄m−p, ·〉∞ = lp∞ ∈ (2Ep,m+n−j−p

∞ )
∗
. Let

1σm−p,p+j−m
∞ (x̄m−p) = [xm−p] ∈ Em−p,p+j−m

0 (1H) , where

xm−p ∈ 1Hm−p,p+j−m and xm−p /∈ 1Hm−p+1,p+j−m−1.

Put

x :=
∑

p∈Il

xm−p.

We prove the equality

κ (x) = 〈x, ·〉H = l ∈
(

2Hm+n−j
)∗
.

Since 2Hm+n−j =
⊕

p V
p, we need only to prove κ (x) (yp) = 〈x, ·〉H (yp) = l (yp) for

yp ∈ V p ⊂ 2Hp,m+n−j−p. If p /∈ Il, i.e. l
p
0 = 0, then l (yp) = 0 and for all p′ ∈ Il by (16)

and (17)

〈xm−p′ , yp〉H · ξH = xm−p′ · yp =
[

xm−p′
]

· [yp] ∈ Em−p+p′,n+p−p′

0

(

3H
)

= 0.
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If p ∈ Il and 0 6= yp ∈ V p then

l (yp) = (l|V p) ◦ (ψp)−1 [y] = lp0 [y
p] = lp∞ ◦

(

2σp,m+n−j−p
∞

)−1
([yp])

= 〈x̄m−p,
(

2σp,m+n−j−p
∞

)−1
([yp])〉∞

(18)
= 〈xm−p, yp〉H
= 〈x, yp〉H .

The last equation holds because for p′ 6= p, p′ ∈ Il, we have

0 6=
[

xm−p′
]

∈ Em−p′,p′+j−m
0

(

1H
)

and by (16) and (17)

xm−p′ · yp =
[

xm−p′
]

· [yp] ∈ Em−p′,p′+j−m
0

(

3H
)

= 0.

5 Hochschild-Serre filtration and the spectral sequence for trans-

itive Lie algebroids

We fix a transitive Lie algebroid A = (A, [[·, ·]],#A) with the Atiyah sequence 0 → ggg →֒
A

#A→ TM → 0 and a representation ∇ : A → A (ξ) of a Lie algebroid A on a vector

bundle ξ. ∇ is a homomorphism of Lie algebroids, then ∇ induces a homomorphism of

vector bundles ∇+ : ggg → End (ξ)

ggg
∇+

−−−→ End (ξ)




y





y

A
∇−−−→ A (ξ)

and ∇+
x : gggx → End (ξx) is a representation of the isotropy Lie algebra gggx in the vector

space ξx. We will consider the pair of R-Lie algebras (g, k) where

g = Γ (A) , k = Γ (ggg) .

Below, the elements of g will be denoted by γ, γ1, γ2, ... while elements of k by σ, σ1, σ2, ....

Of course, k is an ideal of g (actually, k is C∞ (M)-Lie algebra but it is not interesting

here). The space Γ (ξ) is a g-modul with respect to the induced representation denoted

by the same letter ∇ : Γ (A) → Γ(A (ξ)) ⊂ LΓ(ξ). Following Hochschild-Serre [9] we can

consider a graded cochain group of R-linear alternating functions

AR =
⊕

i≥0

Ai, Ai = Ci (g,Γ (ξ)) ,

with the R-differential operator of degree 1

d∇ : Ci (g,Γ (ξ))→ Ci+1 (g,Γ (ξ))
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defined by the standard formula

(d∇f) (γ0, ..., γt) =
∑

i

(−1)i∇γi
(f (γ0, ...̂ı..., γt)) +

∑

i<j

(−1)i+j f ([[γi, γj]], ...̂ı...̂...) .

For the trivial representation ∂A : A → A (M × R) , (∂A)γ (f) = ∂#(γ) (f), this operator

is denoted by dA. Clearly, for a real alternating t-cocycle ϕ and σ ∈ Γ (ξ) we get

d∇ (ϕ⊗ σ) = dAϕ⊗ σ + (−1)t ϕ ∧ d∇σ.

In the space
⊕

t≥0A
t we have the Hochschild-Serre filtration Aj ⊂ AR as follows:

Aj = AR for j ≤ 0. If j > 0, Aj =
⊕

t≥j A
t
j , A

t
j = Aj ∩ At, where At

j consists of all those

t-cochains f for which f (γ1, ..., γt) = 0 whenever t− j+1 of the arguments γi belongs to

k. In this way we have obtained a graded filtered differential R-vector space

(

AR =
⊕

t≥0

At, d∇, Aj

)

(19)

and we can use its spectral sequence

(

Ej,i
s , ds

)

. (20)

Following K. Mackenzie [17] (see also V.Itskov, M.Karashev, and Y.Vorobjev [11]) we

will consider the C∞ (M)-submodule of C∞ (M)-linear altarnating cochains with values

in the vector bundle ξ (i.e. A-differential ξ-valued forms)

Ωt (A, ξ) ⊂ Ct (g,Γ (ξ))

and the induced filtration

Ωj = Ωj (A, ξ) = Aj ∩ Ω (A, ξ)

of C∞ (M)-modules. The differential d∇ of a C∞ (M)-cochain is a C∞ (M)-cochain, so

we get dA,∇ : Ω (A, ξ) → Ω (A, ξ) . We obtain in this way a graded filtered differential

space
(

Ω (A, ξ) =
⊕

t

Ωt (A, ξ) , dA,∇,Ωj

)

(21)

and its spectral sequence
(

Ej,i
A,s, dA,∇,s

)

. (22)

Now we consider as well a submodule of C∞ (M)-linear altarnating cochains with compact

support Ωt
c (A, ξ) ⊂ Ωt (A, ξ) and the corresponding filtration

Ωc,j = Ωj ∩ Ωc (A, ξ)

of C∞ (M)-modules. Since supp d∇f ⊂ supp f then we obtain

dAc,∇ : Ωc (A, ξ)→ Ωc (A, ξ)



J. Kubarski, A. Mishchenko / Central European Journal of Mathematics 2(5) 2004 663–707 683

and we get a graded filtered differential space with compact support

(

Ωc (A, ξ) =
⊕

t

Ωt
c (A, ξ) , dAc,∇,Ωc,j

)

(23)

and its spectral sequence
(

Ej,i
Ac,s, dAc,∇,s

)

. (24)

Sometimes we can deduce directly properties of the last two spectral sequences (22), (24)

from the suitable properties of (20), see [9], denoted further by AR , sometimes we must

use some additional observations.

Lemma 5.1. The homomorphisms ρ0 and ρc,0 in the sequence

Ej,i
Ac,0 = Ωj+i

c,j /Ω
j+i
c,j+1

ρc,0

֌ Ωj+i
j /Ωj+i

j+1 = Ej,i
A,0

ρ0

֌ Aj+i
j /Aj+i

j+1 = Ej,i
0

are monomorphisms. For differentials dAc,∇, dA,∇, d0 the following diagram is commuta-

tive

Ej,i
Ac,0

ρc,0−−−→
֌

Ej,i
A,0

ρ0−−−→
֌

Ej,i
0





y

dj,i
Ac,∇,0





y

dj,i
A,∇,0





y
dj,i
0

Ej,i+1
Ac,0

ρc,0−−−→
֌

Ej,i+1
A,0

ρ0−−−→
֌

Ej,i+1
0 .

From

• AR For R-cochains there exists an isomorphism

aj,i : Ej,i
0 → Cj

(

g/k, Ci (k,Γ (ξ))
)

such that

aj,i [f ] ([γ1] , ..., [γj]) (σ1, ..., σi) = f (σ1, ..., σi, γ1, ..., γj) , . (25)

we can easily obtain the following

Conclusion 5.2. The homomorphisms

aj,i
A : Ej,i

A,0 → Ωj
(

M,Λiggg∗ ⊗ ξ
)

aj,i
Ac
: Ej,i

Ac,0 → Ωj
c

(

M,Λiggg∗ ⊗ ξ
)

defined by the formula

aj,i
A [f ] (X1, ..., Xj) (σ1, ..., σi) = f (σ1, ..., σi, λX1, ..., λXj) ,

Xj′ ∈ X (M) , σi′ ∈ k, (aj,i
Ac

defined by the identical formula) where λ : TM → A is an

arbitrary connection, are correctly defined linear isomorphisms of C∞ (M)-modules.

Proof. Monomorphy of aj,i
A and aj,i

Ac
follows from the commutativity of the diagram
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Ej,i
Ac,0

ρc,0−−−→
֌

Ej,i
A,0

ρ0−−−→
֌

Ej,i
0





y

aj,i
Ac





y
aj,i

A





yaj,i

Ωj
c (M,Λiggg∗ ⊗ ξ)

ρ̄c,0−−−→
→֒

Ωj (M,Λiggg∗ ⊗ ξ)
ρ̄0−−−→
→֒

Cj (g/k, Ci (k,Γ (ξ))) .

To prove that aj,i
A is an epimorphism it is sufficient to check that if aj,i [f ] is a C∞ (M)-

linear cochain, i.e. aj,i [f ] = ρ̄0
(

f̄
)

for some f̄ ∈ Ωj (M,Λiggg∗ ⊗ ξ), i.e.

f̄ (#A (γ1) , ...,#A (γj)) (σ1, ..., σi) = f (σ1, ..., σi, γ1, ..., γj) ,

then there exists a representative f ′ ∈ [f ] ∈ Ej,i
A,0 which is C∞ (M)-linear cochain such

that aj,i
A [f ′] = f̄ . To this end take a connection form ω0 : A → ggg coresponding to λ and

put f ′
(

γ′1, ..., γ
′
j, γ1, ..., γi

)

= f
(

ω0 (γ
′
1) , ..., ω0

(

γ′j
)

, γ1, ..., γi

)

. Then f ′ fulfils the desired

conditions.

• AR Through isomorphism aj,i the differential dj,i
0 becomes a differentiation of values

with respect to the differential

d∇◦ι : C
i (k,Γ (ξ))→ Ci+1 (k,Γ (ξ)) (26)

( ι : k →֒ g, is the inclusion),

d̃∇◦ι : C
j
(

g/k, Ci (k,Γ (ξ))
)

→ Cj
(

g/k, Ci+1 (k,Γ (ξ))
)

,

d̃∇◦ι (f) ([γ1] , ..., [γj]) = d∇◦ι (f ([γ1] , ..., [γj])) .

In conclusion, the differentials dj,i
A,∇,0 and d

j,i
Ac,∇,0 becomes (through the isomorphisms

aj,i
A and aj,i

Ac
) differentials of values with respect to

d∇+ : Λiggg∗ ⊗ ξ → Λi+1ggg∗ ⊗ ξ,

namely

d̃∇+ : Ωj
(

M,Λiggg∗ ⊗ ξ
)

→ Ωj
(

M,Λi+1ggg∗ ⊗ ξ
)

,

d̃∇+ (f) (X1, ..., Xj) = d∇+ (f (X1, ..., Xj)) .

Analogously we obtain a differential d̃c,∇+ for compact supports.

Remark 5.3. According to K.Mackenzie [17, Th.2.5, p.201] the homomorphisms di
∇+ :

Λiggg∗ ⊗ ξ → Λi+1ggg∗ ⊗ ξ are locally of constant rank, and consequently, there are well-

defined vector bundles Z i = ker di
∇+ , Bi = Im di−1

∇+ and H i (ggg, ξ) = Z i/Bi such that

Γ (H i (ggg, ξ)) = H i (Γ (Λggg∗ ⊗ ξ) , d∇+) . Clearly,

H i (ggg, ξ)x = H i
(

Λggg∗x ⊗ ξx, d∇+
x

)

.

Therefore

H
(

Ωj
(

M,Λiggg∗ ⊗ ξ
)

, d̃∇+

) ∼= Ωj
(

M,H i
∇+ (ggg, ξ)

)

,

H
(

Ωj
c

(

M,Λiggg∗ ⊗ ξ
)

, d̃c,∇+

) ∼= Ωj
c

(

M,H i
∇+ (ggg, ξ)

)

.
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From the above we obtain isomorphisms of C∞ (M)-modules

(

aj,i
A

)

#
: H i

(

Ej,∗
A,0, d

j,∗
A,∇,0

) ∼=→ Ωj
(

M,Λiggg∗ ⊗ ξ
)

,
(

aj,i
Ac

)

#
: H i

(

Ej,∗
Ac,0, d

j,∗
Ac,∇,0

) ∼=→ Ωj
c

(

M,Λiggg∗ ⊗ ξ
)

.

Now we pass to consideration of the modules Zs, Ds, Es and ZA,s, DA,s, EA,s and ZAc,s,

DAc,s, EAc,s for three spectral sequences for graded, filtered, differential spaces (19), (21),

(23), respectively. Immediately by definitions we get

Lemma 5.4. (1) Zj
A,s = Zj

s ∩ Ω (A, ξ) , (2) Dj
A,s = Dj

s ∩ Ω (A, ξ) , (3) Zj
Ac,s = Zj

A,s ∩
Ωc (A, ξ) .

Fix an auxiliary connection λ : TM → A and for f ∈ Zj,i
A,1 ⊂ Ωj+i (A, ξ) we define

f̄j ∈ Ωj
(

M,Λiggg∗ ⊗ ξ
)

by the formula

f̄j (X1, ..., Xj) (σ1, ..., σi) = f (λX1, ..., λXj, σ1, ..., σi)

= (−1)ji f (σ1, ..., σi, λX1, ..., λXj) .

Lemma 5.5. If f ∈ Zj,i
A,1 then f̄j (X1, ..., Xj) ∈ Γ (Λiggg∗ ⊗ ξ) is a d∇+-cocycle independent

of the choice of λ.

Proof. For f ∈ Zj,i
A,1 ⊂ Ωj+i

j (A, ξ) ⊂ Aj+i
s we take a cochain fj ∈ Cj (g, Ci (g,Γ (ξ)))

defined by fj (γ1, , , , γj) (γ
′
1, ..., γ

′
i) = f (γ1, , , , γj, γ

′
1, ..., γ

′
i) , see [9]. From the equalities

Zj,i
A,1 =

{

f ∈ Ωj+i
j ; d∇f ∈ Ωj+i+1

j+1

}

= Zj,i
1 ∩ Ωj+i (A, ξ)

we get (see [H-S]) that ι∗j (fj (γ1, , , , γj)) ∈ Cj (k,Γ (ξ)), where

ι∗j : C
j (g,Γ (ξ))→ Cj (k,Γ (ξ)) , ι∗j (g) = g|k× ...× k,

is a
(

∇ ◦ ι : k → LΓ(ξ)
)

-cocycle and that this cocycle depends only on the equivalence

class [γj′] ∈ g/k ∼= X (M) , i.e. on the anchors of the elements γj′, i.e. on #A (γj′) . But

ι∗j (fj (γ1, , , , γj)) is C
∞ (M)-linear ι∗j (fj (γ1, , , , γj)) ∈ Γ (Λiggg∗ ⊗ ξ) therefore the condition

d∇◦ι
(

ι∗j (fj (γ1, , , , γj))
)

= 0 is equivalent to

d∇+

(

ι∗j (fj (γ1, , , , γj))
)

= 0.

The equality ι∗j (fj (γ1, , , , γj)) = f̄j (#A (γ1) , ...,#A (γj)) proves the lemma.

We recall that

Ej,i
A,1 = Zj,i

A,1/
(

Zj+1,i−1
A,0 +Dj,i

A,0

)

=
{

f ∈ Ωj+i
j (A, ξ) ; d∇f ∈ Ωj+i+1

j+1

}

/
(

Ωj+i
j+1 + d∇

[

Ωj+i−1
j

])
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and analogously for Ej,i
Ac,1.

Lemma 5.6. The homomorphisms

ΨA,1 : E
j,i
A,1 → Ωj

(

M,H i
∇+ (ggg, ξ)

)

, [f ] 7→ (−1)ji
[

f̄j

]

,

ΨAc,1 : E
j,i
Ac,1 → Ωj

c

(

M,H i
∇+ (ggg, ξ)

)

, [f ] 7→ (−1)ji
[

f̄j

]

,

are isomorphisms of C∞ (M)-modules.

Proof. Clearly, we need to notice only that ΨA,1 is a composition of isomorphisms

ΨA,1 : E
j,i
A,1

σj,i
A,0−→
∼=

H i
(

Ej,∗
A,0, d

j,∗
A,0

)
(aj,i

A )#−→
∼=

Ωj
(

M,H i
∇+ (ggg, ξ)

)

and analogously for compact supports.

From the above lemmas we see that the canonical homomorphism Ej,i
Ac,1 → Ej,i

A,1 is a

monomorphism.

• AR There exists a representation [precisely, a Lie derivation]

Li : g → LCi(k,Γ(ξ))

defined by the formula

(

Li
γf

)

(σ1, ..., σi) = ∇γ (f (σ1, ..., σi))−
∑

t

f (σ1, ..., [[γ, σt]], ..., σi) .

Li
γ commutes with R-differential operator d∇◦ι, see (26), induces a representation

in cohomology

L#,i : g → LHi
∇◦ι

(k,Γ(ξ))

and k ⊂ kerL#,i (because Li
σf = d∇◦ι (ισf) if f is a d∇◦ι-cocycle.). It produces a

representation
[

L#,i
]

: g/k → LHi
∇◦ι

(k,Γ(ξ)).

Noticing that a Lie derivation of a C∞ (M)-linear cochain is C∞ (M)-linear too, we

can pass to Γ (Λiggg∗ ⊗ ξ) . Additionally we observe that Li
γ : Γ (Λ

iggg∗ ⊗ ξ) → Γ (Λiggg∗ ⊗ ξ)

is a covariant derivative operator with the anchor #A (γ) and Li
γ is C

∞ (M)-linear with

respect to γ. In conclusion we obtain a representation of the Lie algebroid A in the vector

bundle Λiggg∗ ⊗ ξ

Li
A : A→ A

(

Λiggg∗ ⊗ ξ
)

.

Lemma 5.7. The representation Li
A coincides with the adjoint representaion of A in

Λiggg∗ cross ∇, Li
A = adA ⊗∇.

Proof. The adjoint representation adA : A → A (ggg) , adA (γ) (σ) = [[γ, σ]], induces the

one in the associated bundle Λiggg∗ (denoted also adA) and its tensor product with ∇ is

just equal to Li
A.
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The representation Li
A induces the one in cohomology

L#,i
A : A→ A

(

H i
∇+ (ggg, ξ)

)

such that ggg ⊂ kerL#,i
A (indeed, (Li

A)σ (f) = d∇+ (ισf) for a d∇+-cocycle f). Therefore,

we obtain a flat covariant derivative

∇i : TM → A
(

H i
∇+ (ggg, ξ)

)

(27)

by the formula

∇i
X ([f ]) =

(

L#,i
A

)

λX
([f ]) =

[(

Li
A

)

λX
(f)

]

where for a d∇+-cocycle f ∈ Λiggg∗ ⊗ ξ
(

Li
A

)

λX
(f) (σ1, ..., σi) = ∇λX (f (σ1, ..., σi))−

∑

t

f (σ1, ..., [[λX, σt]], ..., σi) .

Remark 5.8. For the trivial representation ∇ = ∂A we get a flat structure in the

cohomology bundle H i (ggg). If the structure Lie algebras gggx are unimodular then H
n (ggg) =

Λnggg∗ and the induced flat covariant derivative ∂n
A : TM → A (Λnggg∗) is defined by

((∂n
A)X f) (σ1, ..., σn) = X (f (σ1, ..., σn))−

∑

i

f (σ1, ...[[λX, σi]], . . . , σn) .

This flat structure coincides with the flat structure in Λnggg∗ defined in the paper [16] via

some system A = {ϕ̃n
U} of local trivializations with locally-constant transitive functions.

We recall that ϕ̃n
U : U ×Λng∗ → Λnggg∗ (g is the typical fiber of ggg) is determined by a local

trivialization ϕU : AU → TU × g of the Lie algebroid A in the following way: ϕU induces

a local trivialization ϕ+U : gggU → U × g of the adjoint Lie Algebra Bundle ggg and we put

(ϕ̃n
U)x = Λn

(

ϕ+U
)∗

x
.

Now, we carry over the differentials dj,i
A,1 : E

j,i
A,1 → Ej+1,i

A,1 , dj,i
Ac,1

: Ej,i
Ac,1 → Ej+1,i

Ac,1 , to

the spaces Ωj
(

M,H i
∇+ (ggg, ξ)

)

and Ωj
c

(

M,H i
∇+ (ggg, ξ)

)

, respectively, via the isomorphisms

ΨA,1 and ΨAc,1. Since the canonical homomorphism

Γ
(

H i
∇+ (ggg, ξ)

)

→ H i
∇◦ι (k,Γ (ξ))

is not a monomorphism unless the Lie algebra bundle ggg is trivial, we can not infer the form

of this differentials immediately from the level of R-cochains and its spectral sequence

(20). In comparising of the cohomology classes from H i
∇◦ι (k,Γ (ξ)) having representative

of C∞ (M)-linear cochains we must see whether these representatives differ by a C∞ (M)-

linear cochain.

Proposition 5.9. The following diagrams are commutative

Ej,i
A,1

dj,i
A,1−−−→ Ej+1,i

A,1




y

Ψj,i
A,1





y

Ψj+1,i
A,1

Ωj
(

M,H i
∇+ (ggg, ξ)

) (−1)id
∇i−−−−−→ Ωj+1

(

M,H i
∇+ (ggg, ξ)

)
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Ej,i
Ac,1

dj,i
Ac,1−−−→ Ej+1,i

Ac,1




y

Ψj,i
Ac,1





y

Ψj+1,i
Ac,1

Ωj
c

(

M,H i
∇+ (ggg, ξ)

) (−1)id
∇i−−−−−→ Ωj+1

c

(

M,H i
∇+ (ggg, ξ)

)

Proof. The calculations identical as in the R-linear cochains [9] yield for f ∈ Zj,i
A,1 ⊂ Zj,i

1

the following formulae

(−1)i
(

d∇i ◦Ψj,i
A,1 [f ]

)

(X1, ..., Xj+1) = (−1)(j+1)i [ρf (X1, ..., Xj+1)] ,

(

Ψj+1,i
A,1 ◦ dj,i

A,1 [f ]
)

(X1, ..., Xj+1)

= (−1)(j+1)i
[

ρf (X1, ..., Xj+1)− d∇+

(

(−1)j f̄j+1 (X1, ..., Xj+1)
)]

where ρf ∈ Ωj+1 (M,Λiggg∗ ⊗ ξ) and ρf (X1, ..., Xj+1) is a d∇+-cocycle defined by

ρf (X1, ..., Xj+1) (σ1, ..., σi)

=

j+1
∑

t=1

(−1)t+1∇λXt

(

f̄j

(

X1, ...t̂..., Xj+1

)

(σ1, ..., σi)
)

+

+

j+1
∑

t=1

(−1)t
i

∑

s=1

f̄j

(

X1, ...t̂..., Xj+1

)

(σ1, ..., [[λXt, σs]], . . . , σi) +

+
∑

r<s

(−1)r+s f̄j ([Xr, Xs] , X1, ...r̂...ŝ...Xj+1) (σ1, ..., σi) .

The cochain f̄j+1 (X1, ..., Xj+1) is C
∞ (M)-linear, i.e. belongs to the module

Ωj+1 (M,Λi−1ggg∗ ⊗ ξ) . This gives

(

(−1)i d∇i ◦Ψj,i
A,1 −Ψj+1,i

A,1 ◦ dj,i
A,1

)

(f) (X1, ..., Xj+1)

= (−1)(j+1)i
[

d∇+

(

(−1)j f̄j+1 (X1, ..., Xj+1)
)]

= 0.

If f has a compact support, the same hold for ρf and f̄j+1 and we get the commuta-

tivity of the second diagram.

The next theorem is the main goal of this section. It describes the second terms of

the sepectral sequences (22) and (24) (see also [17]).

Theorem 5.10. The homomorphisms

ΨA,2 : E
j,i
A,2 → Hj

∇i

(

M,H i
∇+ (ggg, ξ)

)

, [f ] 7→
[

(−1)ji
[

f̄j

] ]

,

ΨAc,2 : E
j,i
Ac,2 → Hj

∇i,c

(

M,H i
∇+ (ggg, ξ)

)

, [f ] 7→
[

(−1)ji
[

f̄j

] ]

,

are isomorphisms of C∞ (M)-modules.
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Proof. Clearly, we need to notice only that ΨA,2 is a composition of isomorphisms

ΨA,2 : E
j,i
A,2

σj,i
A,1−→
∼=

Hj
(

E∗,iA,1, d
∗,i
A,1

)
(Ψj,i

A,1)#−→
∼=

Hj
∇i

(

M,H i
∇+ (ggg, ξ)

)

and analogously for compact supports.

6 Algebroids and pairings

Assume that A is a transitive Lie algebroid with three representations

∇r : A→ A (ξr) , r = 1, 2, 3,

and a pairing

F : ξ1 × ξ2 → ξ3

compatible with the representations (∇1,∇2,∇3) , i.e. fulfilling the property analogous

to (5) in which we must replace X by γ ∈ Γ (A) . Then the multiplication of cochains

∧ : Λjggg∗ ⊗ ξ1 × Λiggg∗ ⊗ ξ2 → Λj+iggg∗ ⊗ ξ3

is compatible with

(a) suitable representations Lj
A, Li

A, Lj+i
A

Lj+i
A,γ (f ∧ g) = Lj+i

A,γ (f) ∧ g + f ∧ Lj+i
A,γ (g) ,

f ∈ Γ (Λjggg∗ ⊗ ξ1) , g ∈ Γ (Λiggg∗ ⊗ ξ2) ,

(b) differentials d∇+
1
, d∇+

2
, d∇+

3

d∇+
3
(f ∧ g) = d∇+

1
(f) ∧ g + (−1)j f ∧ d∇+

2
(g) ,

f, g as above.

The latter equality gives the pairing of cohomology vector bundles

∧ : Hj

∇+
1

(ggg, ξ1)×H i
∇+

2
(ggg, ξ2)→ Hj+i

∇+
3

(ggg, ξ3) (28)

which is compatible with the suitable representations L#,j
A , L#,i

A , L#,j+i
A and finally with

the flat covariant derivatives ∇j , ∇i, ∇j+i

∇j+i
X ([f ] ∧ [g]) = ∇j

X ([f ]) ∧ [g] + [f ] ∧∇i
X [g] .

We assume in the sequel that n = rankggg (and we recall that m = dimM).

Together with three representations ∇r one consider three graded filtered differential

spaces Ω (A, ξ1) ,Ωc (A, ξ2) , Ωc (A, ξ3) (21), (23), and theirs spectral sequences
(

1Ej,i
A,s,

1dA,∇,s

)

,
(

2Ej,i
Ac,s,

2dAc,∇,s

)

,
(

3Ej,i
Ac,s,

3dAc,∇,s

)

. Using monomorphy of ρ0 and of ρc,0, Lemma 5.1, we see

immediately from the case of R-linear cochains [9] that the following diagram commutes.

1Ej,i
A,0 × 2Ej′,i′

Ac,0
∧−−−→ 3Ej+j′,i+i′

Ac,0




y
aj,i

A
×aj′,i′

Ac





y
aj,i

A
×aj′ ,i′

Ac

Ωj
(

M,Λiggg∗ ⊗ ξ1
)

× Ωj′

c

(

Λi′ggg∗ ⊗ ξ2
) (−1)i

′j ·∧−−−−−→ Ωj+j′

c

(

Λi+i′ggg∗ ⊗ ξ3
)

.
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Passing twice to cohomology and using definitions of suitable homomorphisms we get the

commutativity of the diagram

1Ej,i
A,2 × 2Ej′,i′

Ac,2

∧−−−→ 3Ej+j′,i+i′

Ac,2




y

1Ψj,i
A,2×

2Ψj′,i′

Ac,2





y

3Ψj+j′,i+i′

Ac,2

Hj
∇i

(

M,H i
∇+

1
(ggg, ξ1)

)

×Hj′

∇i′ ,c

(

M,H i′

∇+
2
(ggg, ξ2)

) (−1)i
′j ·∧−−−−−→ Hj+j′

∇i+i′ ,c

(

M,H i+i′

∇+
3

(ggg, ξ3)
)

.

(29)

The main theorem of Chapter 1 one gets the very important

Conclusion 6.1. If ξ3 is a line bundle and
(

Hn
∇+

3

(ggg, ξ3) ,∇n
)

∼ (or (M) , ∂or) [in parti-

cular,
(

∇+
3

)

x
= ∇trad⊗ id according to Lemma 3.5] and the pairing of cohomology vector

bundles

∧ : H i
∇+

1
(ggg, ξ1)×Hn−i

∇+
2

(ggg, ξ2)→ Hn
∇+

3
(ggg, ξ3)

is nondegenerate, then the same holds for the pairing

Hj
∇i

(

M,H i
∇+

1
(ggg, ξ1)

)

×Hm−j
∇n−i,c

(

M,Hn−i

∇+
2

(ggg, ξ2)
)

→ Hm
∇n,c

(

M,Hn
∇+

3
(ggg, ξ3)

)

∫ #
M→ R. (30)

i.e.

Hj
∇i

(

M,H i
∇+

1
(ggg, ξ1)

) ∼=
(

Hm−j
∇n−i,c

(

M,Hn−i

∇+
2

(ggg, ξ2)
))∗

.

Diagram (29) assert that the nondegenerate pairing (30) is ±equal to the multiplication

of the second term of the spectral sequences

1Ej,i
A,2 × 2Em−j,n−i

Ac,2
∧−→ 3Em,n

Ac,2

∼=→ R

so the last is nondegenerate as well,

1Ej,i
A,2
∼=

(

2Em−j,n−i
Ac,2

)∗
,

and the main theorem of Chapter 4 gives that the multiplication of cohomology classes

〈·, ·〉H : Hj
∇1
(A, ξ1)×Hm+n−j

∇2,c (A, ξ2)→ Hm+n
∇3,c (A, ξ3)

∼=→ R

is nondegenerate too, i.e.

Hj
∇1
(A, ξ1) ∼=

(

Hm+n−j
∇2,c (A, ξ2)

)∗
.

7 Evens-Lu-Weinstein pairing for transitive Lie algebroids

7.1 Nondegeneracy of Evens-Lu-Weinstein pairing for transitive Lie alge-

broids

We prove that for transitive Lie algebroid A the duality of Evens-Lu-Weinstein [4]

Hj (A)×Hm+n−j
Dor,c (A,Qor

A )→ Hm+n
Dor,c (A,Q

or
A )→ R



J. Kubarski, A. Mishchenko / Central European Journal of Mathematics 2(5) 2004 663–707 691

is nondegenerate, i.e. Hm+n
Dor,c (A,Q

or
A )

∼=→ R and

Hj (A) ∼=
(

Hm+n−j
Dor,c (A,Qor

A )
)∗
.

For arbitrary (nonregular in general) Lie algebroid A on a manifold M the authors [4]

introduced a vector bundle

QA = ΛtopA⊗ ΛtopT ∗M

(the notation Λtop refers to the highest exterior power). Geometrically, sections of QA

can be thought of as transverse measures to characteristic foliation Im#A to any Lie

algebroid A [4]. For Poisson manifolds, the Evens-Lu-Weinstein pairings takes the form

of the pairing on the Poisson homology; for more applications see [4]. Ibidem, there is an

example of nonregular Lie algebroid A over a compact oriented manifold for which the

pairing Hj (A)×Hm+n−j
D,c (A,QA)→ R is not necessarily nondegenerate. J.Huebschmann

in [10] has generalized the construction of the bundle QA and the modular class θA to

Lie-Rinehart algebras, an algebraic generalization of Lie algebroids.

We slightly modify the Weinstein construction to consider nonoriented manifolds:

Qor
A = QA ⊗ or (M) .

For an oriented manifold M we can identify Qor
A = QA.

In [4] a representation

D : A→ A (QA)

was introduced by

Dγ (Y ⊗ ϕ) = Lγ (Y )⊗ ϕ+ Y ⊗ L#A(γ) (ϕ) ,

Y ∈ Γ (ΛtopA) , ϕ ∈ Γ (ΛtopT ∗M) = Ωm (M) , where Lγ (Y ) = [γ, Y ] ([γ, Y ] denotes the

Schouten bracket) and L#A(γ) (ϕ) is the usual Lie derivative of a differential form ϕ. We

recall that for Y = γ1 ∧ .... ∧ γt

Lγ (Y ) =
∑

i

γ1 ∧ ... ∧ [[γ, γi]] ∧ ... ∧ γt.

There is some interest to consider the representation D in the context of intrinsic charac-

teristic classes of Lie algebroids [3], [5].

We modify the representation D to

Dor = D ⊗ ∂or
A : A→ A (Qor

A ) .

In the sequel we will be interested only in the transitive case. A choice of a connection

λ : TM → A enables us to identify

Λm+nA = Λnggg ⊗ ΛmTM,

ε ∧ (Λmλ)(X) = ε⊗X,
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and

Qor
A = Λnggg ⊗ ΛmTM ⊗ ΛmT ∗M ⊗ or (M) = Λnggg ⊗ or (M) . (31)

Lemma 7.1. (a) D+ : ggg → End (QA) is defined by

D+
σ = (∇trad)σ = tr (adσ) · id, σ ∈ Γ (ggg) .

(b) Hn
D+ (ggg,QA) = Λnggg∗ ⊗QA, H

n
Dor+ (ggg,Qor

A ) = Λnggg∗ ⊗Qor
A .

Proof. (a) Consider locally defined nonsingular section of QA of the form εU ⊗XU ⊗ϕU ,

εU ∈ Γ (ΛngggU) , XU ∈ Γ (ΛmTMU) , ϕU ∈ Γ (ΛmT ∗MU ) , and assume that 〈XU , ϕU〉 = 1.

For σ ∈ Γ (ggg) we have #A (σ) = 0 and [[σ, λWi]] ∈ Γ (ggg) . Therefore if εU = σ1 ∧ ... ∧ σn,

XU =W1 ∧ ... ∧Wm, σi ∈ Γ (ggg) , Wi ∈ Γ (TMU) ,

Dσ (εU ⊗XU ⊗ ϕU)

= Lσ (εU ⊗XU)⊗ ϕU

= Lσ (σ1 ∧ ... ∧ σn ∧ λW1 ∧ ... ∧ λWm)⊗ ϕU

=
∑

i

σ1 ∧ ... ∧ [[σ, σi]] ∧ ... ∧ σn ∧ λW1 ∧ ... ∧ λWm ⊗ ϕU

= tr (adσ) · εU ⊗XU ⊗ ϕU .

(b) Follows immediately from Proposition 3.2.

The vector bundle Λnggg∗ ⊗QA is trivial. Indeed, the classical homomorphism

c : Λnggg∗ ⊗QA = Λnggg∗ ⊗ Λnggg ⊗ ΛmTM ⊗ ΛmT ∗M →M × R

c (ε∗ ⊗ ε⊗X ⊗ ϕ) = 〈ε∗, ε〉 · 〈X,ϕ〉
(32)

is an isomorphism. Therefore

c⊗ id : Λnggg∗ ⊗Qor
A

∼=−→ or (M) . (33)

Let A (c) : A (Λnggg∗ ⊗QA) → A (M × R) be the induced isomorphism of Lie algebroids

[12],

A (c) (u) (f) = c
(

u
(

c−1 ◦ f
))

,

u ∈ Γ (A (Λnggg∗ ⊗QA)) , f ∈ C∞ (M) . Let

∇D : TM → A (Hn
D+ (ggg,QA)) = A (Λnggg∗ ⊗QA)

be the induced flat adjoint covariant derivative (27) for D. Analogously we have ∇Dor

:

TM → A (Λnggg∗ ⊗Qor
A ) .

Lemma 7.2. The compositions

∇D : TM → A (Λnggg∗ ⊗QA)
A(c)−→
∼=

A (TM ×R) ,

∇Dor

: TM → A (Λnggg∗ ⊗Qor
A )

A(c⊗id)−→
∼=

A (or (M)) ,
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are trivial representations ∂ and ∂or, respectively, so

(

Hn
D+ (ggg,QA) ,∇D

)

∼ (TM ×R, ∂) ,
(

Hn
Dor+ (ggg,Qor

A ) ,∇Dor) ∼ (or (M) , ∂or) .

Proof. It is necessary to check it locally. Take locally defined nonsingular sections

εU ∈ Γ (ΛngggU) , XU ∈ Γ (ΛmTMU) and theirs duals ε
∗
U ∈ Γ (Λnggg∗U) , ϕU ∈ Γ (ΛmT ∗MU) ,

〈ε∗U , εU〉 = 1, 〈XU , ϕU〉 = 1. On the set U arbitrary section of the bundle Λnggg∗ ⊗ QA =

Λnggg∗ ⊗ Λnggg ⊗ ΛmTM ⊗ ΛmT ∗M is of the form f · ε∗U ⊗ εU ⊗ XU ⊗ ϕU , f ∈ C∞ (U) .

For X ∈ X (MU ), XU = W1 ∧ ... ∧Wm (W1, ...,Wm is a base of vector fields on U) and

ϕU = W ∗
1 ∧ ... ∧W ∗

m, W
∗
i is the dual basis, and εU = σ1 ∧ ... ∧ σn (σi is a base of the

vector bundle ggg on U), we write [[λX, σi]] =
∑

j g
j
i · σj , [[λX, λWi]] =

∑

k h
k
i · σk + ak

i · λk,

so [X,Wi] = ak
i ·Wk. Then

DλX (εU ⊗XU ⊗ ϕU)

= LλX (εU ⊗XU)⊗ ϕU + εU ⊗XU ⊗ LXϕU

=
(

∑

i

gi
i · σ ∧ λX

)

⊗ ϕU + σ ∧
(

∑

i

ai
i · λX

)

⊗ ϕU + σ ∧ λX ⊗
∑

(

−ai
i

)

ϕU

=
∑

i

gi
i · εU ⊗XU ⊗ ϕU .

Therefore

∇D
X (f · ε∗U ⊗ εU ⊗XU ⊗ ϕU) (εU)

= DλX (f · εU ⊗XU ⊗ ϕU)−
−

∑

i

f · ε∗U (σ1 ∧ ... ∧ [[λX, σi]] ∧ ... ∧ σn) · εU ⊗XU ⊗ ϕU

= ∂Xf · εU ⊗XU ⊗ ϕU + f ·DλX (εU ⊗XU ⊗ ϕU)− f ·
∑

i

gi
i · εU ⊗XU ⊗ ϕU

= ∂Xf · εU ⊗XU ⊗ ϕU

= ∂Xf · (ε∗U ⊗ εU ⊗XU ⊗ ϕU) (εU) .

Finally

(

A (c) ◦ ∇D
X

)

(f) = c
(

∇D
X (f · ε∗U ⊗ εU ⊗XU ⊗ ϕU)

)

= c (∂Xf · (ε∗U ⊗ εU ⊗XU ⊗ ϕU))

= ∂Xf.

For the proof of the second part we notice that for local ∂or-constant section σ0 of or (MU )

one has

(

A (c⊗ id) ◦ ∇Dor

X

)

(f ⊗ σ0) =
(

A (c) ◦ ∇D
X

)

(f)⊗ σ0

= ∂Xf ⊗ σ0

= ∂or
X (f ⊗ σ0) .
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Theorem 7.3. For an arbitrary transitive Lie algebroid A

Hm+n
Dor,c (A,Q

or
A )
∼= R,

and the Evens-Lu-Weinstein cohomology pairing

Hj (A)×Hm+n−j
Dor,c (A,Qor

A )→ Hm+n
Dor,c (A,Q

or
A )
∼= R

is nondegenerate, i.e.

Hj (A) ∼=
(

Hm+n−j
Dor,c (A,Qor

A )
)∗
.

Proof. Theorem 3.4 and Lemma 7.1 show that the pairing

H i (ggg)×Hn−i
Dor+ (ggg,Q

or
A )→ Hn

Dor+ (ggg,Qor
A )

is nondegenerate. On account of Theorem 2.3 and Conclusion 6.1 we assert that the

pairing

Hj
∇D

(

M,H i (ggg)
)

×Hm−j
∇or,c

(

M,Hn−i
Dor+ (ggg,Q

or
A )

)

→ Hm
∇Dor,c (M,Hn

Dor+ (ggg,Qor
A ))→∼= R,

is nondegenerate. Equivalently, this is a multiplication of the second terms of the Hochshild-

Serre spectral sequences of graded filtered differential spaces Ω (A) with the trivial diffe-

rential and Ωc (A,Q
or
A ) with the differential D

or. The fundamental Theorem 4.4, see also

mentioned above Conclusion 6.1, completes the proof.

7.2 Remarks on the top group of cohomology

Analyzing the proof of Theorem 4.4 and composing isomorphism (33) with isomorphism

(4) we can define the isomorphism I : Hm+n
Dor,c (A,Q

or
A )

∼=−→ R as a composition

I : Hm+n
Dor,c (A,Q

or
A ) = Hm,n

Dor,c (A,Q
or
A ) = Em,n

0 (HDor,c (A,Q
or
A ))

σm,n
Ac,∞←−
∼=

Em,n
Ac,∞ =

= Em,n
Ac,2

Ψm,n
Ac,2−→
∼=

Hm
∇Dor ,c (M,Hn

Dor+ (ggg,Qor
A )) =

= Hm
∇Dor ,c (M,Λnggg∗ ⊗Qor

A )
(c⊗id)#−→
∼=

Hm
∂or,c (M, or (M))

∫ or,#
M−→
∼=

R.

We compare this isomorphism with the one defined by direct formula in [E-L-W]

resctricting our interest to transitive Lie algebroids. Immediately from the definition of

Ψm,n
Ac,2 (see Theorem 5.10), Ψm,n

Ac,2
[f ] = (−1)mn [

f̄m

]

, and definition of σm,n
Ac,∞ we observe

that

I1 : H
m+n
Dor,c (A,Q

or
A ) = Em,n

0

σm,n
Ac,∞←−
∼=

Em,n
Ac,∞ = Em,n

Ac,2

Ψm,n
Ac,2−→
∼=

Hm
∇Dor ,c (M,Λnggg∗ ⊗Qor

A )

is given by the formula looking analogously to Ψm,n
Ac,2

, I1 [f ] = (−1)mn [

f̄m

]

, or equivalently

(under the identification Λm+nA∗ = ΛmT ∗M ⊗ Λnggg∗ given by the help of a connection

λ : TM → A) by

I1 ((ϕ⊗ ε∗)⊗ q) = (−1)mn [ϕ⊗ (ε∗ ⊗ q)]



J. Kubarski, A. Mishchenko / Central European Journal of Mathematics 2(5) 2004 663–707 695

where ϕ ∈ Ωm
c (M) , ε∗ ∈ Γ (Λnggg∗) , q ∈ Γ (Qor

A ) . Therefore if q = ε ⊗ X ⊗ µ ⊗ e,

ε ∈ Γ (Λnggg) , X ∈ Γ (ΛmTM) , µ ∈ Γ (ΛmT ∗M) = Ωm (M) , e ∈ Γ (or (M)) then

(c⊗ id)# ◦ I1 ((ϕ⊗ ε∗)⊗ ε⊗X ⊗ µ⊗ e) = (−1)mn [ϕ · 〈ε∗, ε〉 · 〈X,µ〉 ⊗ e] .

So, for f = (ϕ⊗ ε∗)⊗ ε⊗X ⊗ µ⊗ e we get

I [f ] = (−1)mn

∫ or

M

〈ε∗, ε〉 · 〈X,µ〉 · ϕ⊗ e = (−1)mn

∫ or

M

〈ε∗, ε〉 · 〈X,ϕ〉 · µ⊗ e

= (−1)mn

∫ or

M

〈ϕ⊗ ε∗, X ⊗ ε〉 · µ⊗ e

which is concordant up to the sign with the definition of Evens-Lu-Weinstein [4] given

by them only for oriented compact manifold (but for any Lie algebroid, not necessary

transitive).

The fact Hm+n
Dor,c (A,Q

or
A )

∼=−→ R for transitive Lie algebroids is not proved in [4]. Below

we prove this immediately without use of the spectral sequences.

(a) on oriented manifolds. The authors of [4] introduced an isomorphism of vector

bundles

ρ̃ : ΛtopA∗ ⊗ ΛtopA⊗ ΛtopT ∗M → ΛtopT ∗M,

ρ̃ (Ψ⊗ Y ⊗ µ) = 〈Ψ, Y 〉 · µ
and proved a version of Stokes Theorem (to be sure for compact manifold but without

troubles we can extend it to differential forms with compact support on arbitrary oriented

manifold).

Theorem 7.4 (Stokes Theorem [4]). Let rankA = r. For r− 1-form Ψ′ ∈ Γ (Λr−1A∗) we

have

ρ̃ (dD (Ψ
′ ⊗ Y ⊗ µ)) = (−1)r−1 ddR

(

ι#A(Ψ′yY )µ
)

.

Consequently, if the form Ψ′ ⊗ Y ⊗ µ has compact support then
∫

M

ρ̃ (dD (Ψ
′ ⊗ Y ⊗ µ)) = 0.

Put

ρ̃r−1 : Λr−1A∗ ⊗QA → Λm−1T ∗M, (Ψ′ ⊗ Y ⊗ µ) 7→ (−1)r−1 ι#A(Ψ′yY )µ,

and notice the commutativity of the diagram

Ωr−1
c (A,QA)

ρ̃r−1
c−−−→ Ωm−1

c (M)




y

dD





y

ddR

Ωr
c (A,QA)

ρ̃c−−−→ Ωm
c (M) .

From this we deduce that ρ̃c induces an R-linear homomorphism in cohomology

ρ̃c,# : Hr
D,c (A,QA)→ Hm

c (M) .
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Since ρ̃ is an isomorphism ρ̃c,# is an epimorphism.

Lemma 7.5. If A is transitive Lie algebroid, then ρ̃c,# is an isomorphism.

Proof. One can easily see the lemma provided that ρ̃r−1 is an epimorphism. It is a simple

matter to show that ρ̃r−1
x is an epimorphism at every point x ∈M using transitivity of the

Lie algebroid A i.e. using the fact that the anchor (#A)x : Ax → TxM is an epimorphism.

This finishes the proof that

ρ̃c,# : Hr
D,c (A,QA)→ Hm

c (M)

∫ #
M−→
∼=

R

is an isomorphism.

(b) on nonoriented manifolds. We prove this analogously multiplying the vector bun-

dles by or (M) and use the Stokes theorem for densities [1].

7.3 Exceptional property of the Evens-Lu-Weinstein representation

Assume A is a transitive Lie algebroid. Before the next theorems we must give algebroid’s

equivalent of some lemmas from Chapter 1. For any A-connection ∇ : A → A (ξ) and a

1-form ω ∈ Ω1 (A) we define a new A-connection

∇ω : A→ A (ξ) , ∇ω
γν = ∇γν + ω (γ) · ν.

The curvature tensors R∇
ω

, R∇ ∈ Ω2 (A, ξ) of the connections ∇ω and ∇ are related via

the formula

R∇
ω

= R∇ + dAω ⊗ id.

Therefore, if ∇ is flat (it means, ∇ is a representation) then ∇ω is flat if and only if ω is

closed. Each A-connection ∇ : A→ A (M × R) in the trivial vector bundle M × R is of

the form ∂ω
A, indeed, we need to put ω (γ) = ∇γ (1) .

For a line bundle ξ and a representation ∇ : A → A (ξ) the differential equation

∇ν = 0 is locally uniquelly integrable provided that it is locally integrable.

Lemma 7.6. For a line bundle ξ and a representation ∇ : A → A (ξ) the differential

equation ∇ν = 0 is locally integrable if and only if ∇+ = 0. This last condition is

equivalent to the projectability of ∇, i.e. that ∇ = ∇̃ ◦#A for some usual flat covariant

derivative ∇̃ on M in the vector bundle ξ.

Proof. ”=⇒”Assume that ∇ν = 0 is locally integrable. If ν is locally defined nonsingular

∇-constant section of ξ then arbitrary section is equal to ν1 = f · ν for a smooth function
f and for σ ∈ Γ (ggg)

∇+
σ (f · ν) = ∂#A(σ)f · ν + f · ∇σν = 0.

”⇐=” Assume that ∇+ = 0. Take x0 ∈ M and u ∈ ξx0. Locally (x0 ∈ U ∼= R
m)

∇U = ∂ω
AU

: AU → A (ξU) = A (U × R) for a closed 1-form ω ∈ Ω1 (AU) . By assumption
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∇+ = 0, ω (σ) · ν = 0 for all σ ∈ Γ (ggg) and ν ∈ Γ (ξ) , so ω (σ) = 0 and ω is projectable

on U, ω = #∗A (ω̄) for some ω̄ ∈ Ω1 (U) . Since the anchor #A is an epimorphism, the

pullback of the differential forms #∗A is a monomorphism. Therefore, since 0 = dAω =

dA (#
∗
A (ω̄)) = #∗A (ddRω̄) we get ddRω̄ = 0. Clearly, then ω̄ = df for some function

f ∈ C∞ (U) . It is easy to see that the section σ = e−f of the bundle U × R ∼= ξU is

∇U -constant.

Similar considerations show that for trivial vector bundle ξ = M × R and a re-

presentation ∂ω
A the following conditions are equivalent (1) ∇+ = 0, (2) ω is projec-

table (i.e. ω = #∗A (ω̄) for some ω̄ ∈ Ω1 (M) . On the other hand, if ω is exact, i.e.

0 = [ω]A ∈ H1 (A) , then ∇+ = 0, which impies that the differential equation ∇ν = 0 is

locally uniquelly integrable.

By the definition the 0-group of cohomology can be written similarly to (1).

H0
∇ (A, ξ) = {ν ∈ Γ (ξ) ; ∇ν = 0} .

Proposition 7.7. (1) H0
∇ (A, ξ) = 0 if ξ is nontrivial.

(2) For the trivial vector bundle ξ =M ×R and ∇ = ∂ω
A for closed 1-form ω ∈ Ω1 (A)

we have

H0
∇ (A, ξ) 6= 0 ⇐⇒ [ω]A = 0.

In particular, if H0
∇ (A, ξ) 6= 0 then ∇+ = 0.

Proof. (1) Evidently, since each section of nontrivial line bundle ξ is singular and by

Lemma 7.6 the set {x; ∇ν = 0} is open-closed.
(2) This result may be proved in the same way as in the case of A = TM, i.e. as the

formula (3), see also Example 2.6 from Chapter 1.

Proposition 7.7(1) generalizes observation (••) from section 2.1.

Proposition 7.8. Let ξ be a line bundle and fix an isomorphism ϕ : ξ⊗ ξ →M ×R. Let

us assume that ϕ transforms a given A-representation ∇ : A→ A (ξ) to A-representation

∂ω
A for a closed 1-form ω ∈ Ω1 (A) . Then there exists a linear isomorphism

Hj
Dor⊗∇−ω (A,Q

or
A ⊗ ξ) ∼= Hm+n−j

∇,c (A, ξ)∗ .

In particular

H0
Dor⊗∇−ω (A,Qor

A ⊗ ξ) ∼= Hm+n
∇,c (A, ξ)∗ .

Proof. Consider the multiplication by reals

ρ : Qor
A × (M × R)→ Qor

A .

ρ is compatible with (Dor, ∂ω
A, (D

or)ω) . The canonical nondegenerate pairing

F : Qor
A ⊗ ξ × ξ → Qor

A ⊗ ξ ⊗ ξ
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is compatible with (Dor ⊗∇,∇, Dor ⊗∇⊗∇) , so the composition

F̃ : Qor
A ⊗ ξ × ξ

F→ Qor
A ⊗ ξ ⊗ ξ

id⊗ϕ−→ Qor
A ⊗ (M × R)

ρ→ Qor
A

is compatible with (Dor ⊗∇,∇, (Dor)ω) which implies that it is also compatible with

(Dor ⊗∇−ω,∇, Dor) . Therefore, for each point x ∈M, the pairing F̃x : Q
or
A,x⊗ ξx× ξx →

Qor
A,x is compatible with the representations

(

(Dor ⊗∇−ω)
+
x ,∇+

x , D
or+
x

)

of the isotropy

Lie algebra gggx in the vector spaces Q
or
A,x ⊗ ξx, ξx, Q

or
A,x, respectively. From this it follows

that the differentials d(Dor⊗∇−ω)+x
, d∇+

x
, d(Dor)+x

fulfil condition (6) from Lemma 3.1. Of

course, d(Dor)+x
= dtrad ⊗ id satisfies condition (3) from the mentioned lemma. Since

∧ : Λiggg∗x ⊗
(

Qor
A,x ⊗ ξx

)

× Λn−iggg∗x ⊗ ξx → Λnggg∗x ⊗Qor
A,x

is nondegenerate, the generalized Chern-Hirzebruch-Serre Lemma 3.1 asserts that induced

pairing in cohomology

H i
(Dor⊗∇−ω)+

(ggg,Qor
A ⊗ ξ)×Hn−i

∇+ (ggg, ξ)→ Hn
Dor+ (ggg,Qor

A )
l.(7.2)→ or (M)

is nondegenerate at every point x ∈M . The fundamental Theorem 4.4, see also Conclu-

sion 6.1, shows that the pairing

Hj
Dor⊗∇−ω (A,Q

or
A ⊗ ξ)×Hm+n−j

∇,c (A, ξ)→ Hm+n
Dor,c (A,Q

or
A )

is nondegenerate. This ends the proof.

Conclusion 7.9. If ξ is not isomorphic to Qor
A (i.e. ξ is not isomorphic to Λnggg⊗or (M) ,

see (31), then for an arbitrary connection ∇ : A→ A (ξ) we have Hm+n
∇,c (A, ξ) = 0.

Proof. If ξ is not isomorphic to Qor
A the vector bundle Qor

A ⊗ξ is not trivial so Proposition
7.7 gives H0

Dor⊗∇−ω (A,Qor
A ⊗ ξ) = 0. Proposition 7.8 proves our theorem.

The next theorem is one of the importest theorems of the paper. Compare this

theorem and Theorem 7.3 with Theorem 5.4 form [10].

Theorem 7.10. For a line bundle ξ and a representation ∇ : A → A (ξ) the following

conditions are equivalent:

(a) Hm+n
∇,c (A, ξ) 6= 0,

(b) Hm+n
∇,c (A, ξ) = R and the pairing Hj (A) × Hm+n−j

∇,c (A, ξ) → Hm+n
∇,c (A, ξ) ∼= R is

nondegenerate, i.e. Hj (A) ∼=
(

Hm+n−j
∇,c (A, ξ)

)∗
,

(c) (ξ,∇) ∼ (Qor
A , D

or) .

Proof. (c) =⇒ (b) by Lemma 7.2, (b) =⇒ (a) is evident.

(a) =⇒ (c). Let Hm+n
∇,c (A, ξ) 6= 0. By Conclusion 7.9 ξ ∼= Qor

A . It remains to compare

the representations. Consider then a flat bundle (ξ = Qor
A ,∇) and any linear isomorphism

Qor
A ⊗Qor

A →∼= M × R, ∇⊗∇ ∼ ∂ω
A.
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By Proposition 7.8

H0
Dor⊗∇−ω (A,Qor

A ⊗Qor
A )
∼= Hm+n

∇,c (A,Qor
A ) 6= 0,

therefore there exists a nonsingular global section ν ∈ Γ (Qor
A ⊗Qor

A ) which is D
or⊗∇−ω-

constant. Additionally, ∇⊗∇ ∼ ∂ω
A implies ∇⊗∇−ω ∼ ∂A which means that there exists

a second nonsingular section ν ′ ∈ Γ (Qor
A ⊗Qor

A ) which is ∇⊗∇−ω-constant. The bundle

Qor
A ⊗ Qor

A is 1-dimensional, so ν ′ = f · ν for a nonsingular function f ∈ C∞ (M) . Write

locally ν = ν ′α ⊗ να for nonsingular sections ν ′α, να of Qor
A . Then

0 =
(

Dor ⊗∇−ω
)

γ
(ν) = Dor

γ (ν ′α)⊗ να + ν ′α ⊗∇−ω
γ (να) ,

0 =
(

∇⊗∇−ω
)

γ
(f · ν) = ∇γ (f · ν ′α)⊗ να + f · ν ′α ⊗∇−ω

γ (να) .

Multiplying first equation by f and then substracting the second we get

(

f ·Dor
γ (ν ′α)−∇γ (f · ν ′α)

)

⊗ να = 0.

The nonsingularity of να yields the equation f ·Dor
γ (ν ′α) = ∇γ (f · ν ′α) . The bundle Qor

A

is 1-dimensional, so

f ·Dor
γ (ν̄) = ∇γ (f · ν̄) (34)

for all ν̄ ∈ Γ (Qor
A ) . Define a linear isomorphism

ϕ : Qor
A → Qor

A , ν̄ 7→ f · ν̄.

By (34) one has that (Qor
A ,∇) ∼ (Qor

A , D
or) .

7.4 Characterization of transitive Lie algebroids with Poincaré duality

The last aim is to characterize two classes of transitive Lie algebroids.

(1) Hm+n
∂A,c (A) 6= 0 - the top group of real compact cohomology is not trivial.

This condition is equivalent to (Qor
A , D

or) ∼ (M × R, ∂A) . These classes fulfil the

Poincaré duality: the pairing

Hj (A)×Hm+n−j
c (A)→ Hm+n

c (A) ∼= R

is not degenerate, see Theorem 7.3, i.e. Hj (A) ∼= (Hm+n−j
c (A))

∗
.

(2) Hm+n
∂or

A
,c (A, or (M)) 6= 0 - the top group of or (M)-valued compact cohomology is

not trivial.

This condition is equivalent to (Qor
A , D

or) ∼ (or (M) , ∂or
A ) . In this class the multipli-

cation of cohomology classes

Hj (A)×Hm+n−j
∂or

A
,c (A, or (M))→ Hm+n

∂or
A

,c (A, or (M)) ∼= R

is not degenerate, see Theorem 7.3, i.e. Hj (A) ∼=
(

Hm+n−j
∂or

A
,c (A)

)∗
.
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Before the characterization of these classes we reduce the Evens-Lu-Weinstein re-

presentation (Qor
A , D

or) to equivalent simple form (only for transitive Lie algebroids of

course). We recall that the adjoint representation adA : A → A (ggg) induces a top-power

representaion adtopA : A→ A (Λtopggg) by

(

adtopA

)

γ
(σ1 ∧ ... ∧ σn) =

∑

i

σ1 ∧ ... ∧ [[γ, σi]] ∧ ... ∧ σn =
∑

i

ai
i · σ1 ∧ ... ∧ σn

where [[γ, σi]] =
∑

j a
j
i · σj .

Lemma 7.11. There exist isomorphisms of flat vector bundles

(QA, D) ∼=
(

Λtopggg, adtopA

)

,

(Qor
A , D

or) ∼=
(

Λtopggg ⊗ or (M) , adtopA ⊗ ∂or
A

)

.

Proof. It is necessary to show the first assertion, because the second follows from first

by tensor product with or (M). Fix arbitrary a connection λ : TM → A and a linear

isomorphism

K̄ : Λm+nA⊗ ΛmT ∗M
ϕλ←−
∼=

Λnggg ⊗ ΛmTM ⊗ ΛmT ∗M
K−→
∼=

Λnggg

ε ∧ λX ⊗ ϕ←−p ε⊗X ⊗ ϕ 7−→ ε · 〈X,ϕ〉.

Taking a local basis σ1, ..., σn of ggg, W1, ...,Wm of TM and the duals W ∗
1 , ...,W

∗
m we

see that K̄ (σ1 ∧ ... ∧ σn ∧ λW1 ∧ ... ∧ λWm ⊗W ∗
1 ∧ ... ∧W ∗

m) = σ1∧ ...∧σn. To prove our

lemma it is necessary to show the compatibility D
K̄∼ adn

A on these nonsingular sections

only, i.e.

(adn
A)γ (σ1 ∧ ... ∧ σn) = K̄ (Dγ (σ1 ∧ ... ∧ σn ∧ λW1 ∧ ... ∧ λWm ⊗W ∗

1 ∧ ... ∧W ∗
m))

Let [[γ, σi]] =
∑

j a
j
i · σj , [[γ, λWj ]] =

∑

k ã
k
j · σk +

∑

r b
r
j · λWr, then [#A (γ) ,Wj] =

∑

r b
r
j · λWr. The right side of the above equation is equal to

K̄
(

∑

ai
i · σ1 ∧ ... ∧ σn ∧ λW1 ∧ ... ∧ λWm ⊗W ∗

1 ∧ ... ∧W ∗
m+

+ σ1 ∧ ... ∧ σn ∧
∑

bjj ∧ λW1 ∧ ... ∧ λWm ⊗W ∗
1 ∧ ... ∧W ∗

m+

+σ1 ∧ ... ∧ σn ∧ λW1 ∧ .... ∧ λWm ⊗
(

−
∑

bjj
)

W ∗
1 ∧ ... ∧W ∗

m

)

= K̄
(

∑

ai
i · σ1 ∧ ... ∧ σn ∧ λW1 ∧ ... ∧ λWm ⊗W ∗

1 ∧ ... ∧W ∗
m

)

=
∑

ai
i ·

(

K̄ (σ1 ∧ .... ∧ σn ∧ λW1 ∧ ... ∧ λWm ⊗W ∗
1 ∧ ... ∧W ∗

m)
)

= (adn
A)γ · σ1 ∧ ... ∧ σn.

Conclusion 7.12. (1)

Hm+n
∂A,c (A) 6= 0 ⇐⇒ (Λnggg ⊗ or (M) , adn

A ⊗ ∂or
A ) ∼ (M × R, ∂A) ,
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(2)

Hm+n
∂or

A
,c (A, or (M)) 6= 0 ⇐⇒ (Λnggg ⊗ or (M) , adn

A ⊗ ∂or
A ) ∼ (or (M) , ∂or

A ) .

The following proposition generalizes Proposition 2.2. The proof is analogous.

Proposition 7.13. For a representation ∇ : A → A (ξ) in a line vector bundle ξ the

following conditions are equivalent:

(a) (ξ,∇) ∼ (or (M) , ∂or
A ) ,

(b) (ξ ⊗ or (M) ,∇⊗ ∂or
A ) ∼ (M ×R, ∂A) .

In the sequel we need the notion of a modular class of a Lie algebroid [19], [4]. Firstly,

we recall the characteristic classes of a representation ∇ : A → A (ξ) in a line vector

bundle ξ. If ξ is trivial as a line bundle and s ∈ Γ (ξ) is a nonsingular section of ξ we

define a 1-cocycle θ ∈ Ω1 (A) with respect to dA defined by ∇γν = θs (γ) · s. The class
θ∇ = [θ] ∈ H1 (A) is independent on the choice of s and is called characteristic class of

A associated to the representation ∇. For a general ξ, we define θ∇ = 1
2
θ∇⊗∇ (∇ ⊗ ∇

is a flat representation in trivial line bundle ξ ⊗ ξ). We add that if ξ is trivial, the last

equation holds.

For next propositions and theorems we need the following lemma.

Lemma 7.14. If ξ is a line bundle and {ϕα} is a collection of local trivialiations with

the transition functions λαβ : Uα × Uβ → R, ϕβ = ϕα · λαβ, then there exist functions

fα > 0 such that the local trivializations

ϕ̄α = ϕα · fα

(ϕ̄α,x = ϕα,x · fα (x)) have transition functions λ̄αβ = sgnλαβ .

In conclusion, each line bundle ξ possesses a system of local trivializations with trans-

ition functions equaling to ±1 and then a family {sα} of nonsingular ±sections i.e. with

transition functions equaling just to ±1.

Proof. Consider a line bundle ξ with a collection of local trivialiations {ϕα} and trans-
ition functions λαβ. The tensor product ξ ⊗ ξ is a trivializable vector bundle with local

system of trivializations {ϕα ⊗ ϕα} . Choice a global trivialization ρ : ξ ⊗ ξ → M × R

such that ρα := ρ (ϕα ⊗ ϕα (1⊗ 1)) > 0. We put

fα =
1√
ρα

> 0.

We show that {fα} is a required family. The transition functions λ̄αβ for the collection

of new local trivializations {ϕ̄α := ϕα · fα} are equl to λ̄αβ = λαβ · fβ

fα
so that sgn λ̄αβ =

sgnλαβ. On the other hand, ρβ = ρ (ϕβ ⊗ ϕβ (1⊗ 1)) = λ2αβ · ρα so λ̄2αβ =
(

λαβ · fβ

fα

)2

=

λ2αβ · ρa

ρβ
= 1 and next

∣

∣λ̄αβ

∣

∣ = 1. Finally λ̄αβ = sgn λ̄αβ = sgnλαβ.
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Lemma 7.15. For an arbitrary line bundle ξ the characteristic class θ∇ of a representa-

tion ∇ : A → A (ξ) can be computed via any family of local nonsingular ±sections {sα}
(see Lemma 7.14) of ξ in the following way: the 1-differential A-form θ ∈ Ω1 (A) defined

by

θ (γ)|Uα
sα = ∇γ (sα)

is a correctly defined dA-cocycle and its cohomology class is equal to θ∇. θ∇ = 0 if and

only if there exists a family of local nonsingular ∇-constant ±sections {sα} , ∇sα = 0.

For transitive Lie algebroid A if θ∇ = 0 then ∇+ = 0, so the isotropy Lie algebras gggx are

unimodular.

The simple proof will be omitted.

We have θ∂or
A
= 0. The modular class of a Lie algebroid A is by definition the charac-

teristic class θA of the associated representation D : A→ A (QA) . According to Lemma

7.11 for a transitive Lia algebroid A we have θA = θadn
A
where adn

A : A → A (Λnggg) is the

representation induced by the adjoint one adA : A→ A (ggg) .

For real coefficients we have the following characterization of Lie algebroids in the

case of the nontriviality of the top group of cohomology. Let {(Uα, xa)} be a coordinate
open cover for the manifold M, with transition functions gαβ = xα ◦ x−1β . Each map xa

determines canonically a local trivialization x̄α of the line bundle Λ
mTM and the family

{x̄α} has the transition functions J (gαβ) .

Theorem 7.16. The following conditions are equivalent

(a) Hm+n
∂A,c (A) 6= 0,

(b) Hm+n
∂A,c (A)

∼= R and H (A) is a Poincaré algebra, i.e. the pairing Hj (A)×Hm+n−j
c (A)

→ Hm+n
c (A) ∼= R is nondegenerate, Hj (A) ∼= (Hm+n−j

c (A))
∗
,

(c) (Qor
A , D

or) ∼ (M × R, ∂A) ,

(d) (Λnggg ⊗ or (M) , adn
A ⊗ ∂or

A ) ∼ (M × R, ∂A) ,

(e) (Λnggg, adn
A) ∼ (or (M) , ∂or

A ) , that is the holonomy homomorphism of (Λnggg, adn
A) is

the same as for the orientation bundle (or (M) , ∂or
A ) .

(f) A is orientable vector bundle and θA = 0 (in particular, gggx are unimodular).

Proof. (a) ⇐⇒ (b) ⇐⇒ (c) follows immediately from Theorem 7.10 for

(ξ,∇) = (M × R, ∂A) ,

(c) ⇐⇒ (d) by Lemma 7.11,

(d) ⇐⇒ (e) see Proposition 7.13,

(e) =⇒ (f) indeed, θA = θadn
A
= θ∂or

A
= 0. The bundle Λm+nA ∼= Λnggg ⊗ ΛmTM ∼=

or (M)⊗ΛmTM is trivial line bundle because it possesses a local system of trivializations

with positive transition functions |J (gαβ)| .
(f) =⇒ (e) It is necessary to find a local system of nonsingular adn

A-constant sections

{σα} of Λnggg with transition functions sgn J (gαβ) .

Fix a system of local trivializations {ψα} of Λm+nA with positive transition functions

γαβ > 0. We can choose a system of local trivializations {ϕα} of the line bundle Λnggg
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in such a way that ϕα ⊗ x̄α form a system of local trivializations of the line bundle

Λm+nA ∼= Λnggg ⊗ ΛmTM compatible with {ψα} , i.e. such that

ϕα ⊗ x̄α = gα · ψα, gα > 0.

This implies that the transition functions λαβ of the system {ϕα} have the sign of J (gαβ) .

Indeed,

ϕβ ⊗ x̄β =











ϕα ⊗ x̄α · λαβ · J (gαβ) = ψα · gα · λαβ · J (gαβ) ,

ψβ · gβ = ψα · γαβ · gβ.

Therefore, since gα, gβ and γαβ are positive we have λαβ · J (gαβ) > 0, i.e.

sgnλαβ = sgn J (gαβ) .

By Lemma 7.14 there exists functions fα > 0 such that the local trivializations

ϕ̄α = ϕα · fα

(ϕ̄α,x = ϕα,x · fα (x)) have transition functions λ̄αβ = sgnλαβ = sgn J (gαβ) . The family

of ±sections σ̄α = ϕ̄α (1) determine a 1-cocycle θ ∈ Ω1 (A) with respect to dA defined

by θ (γ)|Uα
· σ̄α = (adn

A)γ (σ̄α) whose cohomology class is the characteristic class of the

adjoint representation adn
A, [θ] = θadn

A
. Since θadn

A
= θA = 0 one has θ = dAf for some

function f ∈ C∞ (M) , i.e.

θ (γ) = (dAf) (γ) = ∂#A(γ)f.

Put σα = e−f · σ̄α. Then the transition functions of {σα} are equal to sgn J (gαβ) and the

sections σα are adn
A-constant.

In case of oriented manifold the above theorem yields:

Theorem 7.17. If M is a oriented manifold then the following conditions are equivalent

(a) Hm+n
∂A,c (A) 6= 0,

(b) Hm+n
∂A,c (A)

∼= R and H (A) is a Poincaré algebra, i.e. the pairing Hj (A)×Hm+n−j
c (A)

→ Hm+n
c (A) ∼= R is nondegenerate, Hj (A) ∼= (Hm+n−j

c (A))
∗
,

(c) (Λnggg, adn
A) ∼ (M × R, ∂A) , i.e. there exists a global nonsingular section ε ∈ Γ (Λnggg)

which is adn
A-constant, that is, A is a TUIO-Lie algebroid, see [13],

(d) ggg is orientable and θA = 0.

The independent proof of the implication (c) =⇒ (b) one can be found in [13].

Finally we give a characterization of Lie algebroids whose the top group of cohomology

with coefficients in the orientation bundle or (M) is not trivial.

Theorem 7.18. The following conditions are equivalent:

(a) Hm+n
∂or

A
,c (A, or (M)) 6= 0,
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(b) Hm+n
∂or

A
,c (A, or (M)) ∼= R and the pairing

Hj (A)×Hm+n−j
∂or

A
,c (A, or (M))→ Hm+n

∂or
A

,c (A, or (M)) ∼= R

is not degenerate, i.e. Hj (A) ∼=
(

Hm+n−j
∂or

A
,c (A, or (M))

)∗
,

(c) (Qor
A , D

or) ∼ (or (M) , ∂or
A ) ,

(d) (Λnggg ⊗ or (M) , adn
A ⊗ ∂or

A ) ∼ (or (M) , ∂or
A ) ,

(e) (Λnggg, adn
A) ∼ (M × R, ∂A) ,

(f) ggg is orientable and there exists a global nonsingular section ε ∈ Γ (ξ) which is adn
A-

constant (i.e. A is a TUIO-Lie algebroid, see [13]),

(g) ggg is orientable and θA = 0.

Proof. Only the implication (d) =⇒ (e) needs a proof. Since

(or (M)⊗ or (M) , ∂or
A ⊗ ∂or

A ) ∼ (M × R, ∂A)

one has

(Λnggg, adn
A) ∼ (Λnggg ⊗ or (M)⊗ or (M) , adn

A ⊗ ∂or
A ⊗ ∂or

A )
(d)∼ (or (M)⊗ or (M) , ∂or

A ⊗ ∂or
A )

∼ (M × R, ∂A) .

For an orientable manifold we get Theorem 7.17.

7.5 Remarks on Example 5.3 from [4].

In the cited paper there is an example of nonregular Lie algebroid for which the E-L-W

cohomological pairing is not necessary nondegenerate. In the text of Example 5.3 from [4]

there are some inaccuracies (concerning dimensional of the group of cohomology) which

we remove here. We prove additionally that there is no line representation for which

the cohomological pairing is nondegenerate and we prove that the E-L-W representation

is not exceptional. The example is the Lie transformation algebroid A = g ×M → M

associated with the infinitesimal action γ : g → X (M) of a finitely dimensional Lie

algebra g on a manifold M. The anchor is given by ρ (v, x) = γ (v)x , and Lie bracket by

[[a, b]] (x) = [a (x) , b (x)] + γ (a (x))x (b)− γ (b (x))x (η) ,

a, b ∈ C∞ (M, g) ∼= Γ (g×M) and x ∈ M. The vector field X = xN d
dx

on R (N ∈ N)

defines an action of the 1-dimensional Lie algebra g = R on M = R by γ : R →
X (R) , γ (t) = t ·X. Let A be the transformation Lie algebroid associated with γ. Then

Γ (A) = C∞ (R) , #x : Ax = R → TxM, t 7→ t · xN · d
dx
, [[a, b]] = xN · (a · b′ − b · a′) ,

Ω0 (A) = C∞ (R) ,

Ω1 (A) = Γ (A∗) = C∞ (R,R∗) = Ω1 (R) ∼= C∞ (R) , fdx 7→ f, (35)
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and, clearly, Ω2 (A) = 0.

Lemma 7.19. H1 (A) ∼= R
N .

Proof. By definition dA : C∞ (R)→ Ω1 (A) ∼= C∞ (R) , dA (f) (a) = # (a) (f) = a·xN ·f ′,
and therefore dA (f) = xN · f ′ and

H1 (A) = C∞ (R)/{xN ·f ′, f∈C∞(R)} = C∞ (R)/xN ·C∞(R)
∼= R

N .

Indeed, the classes of functions x0, x1, ..., xN−1 form a basis ofC∞ (R)/xN ·C∞(R) because the

classes are linearly independent and for any f ∈ C∞ (R) the equality [f ] =
∑N−1

i=0 ak

[

xk
]

holds where ak =
f(k)(0)

k!
.

Proposition 7.20. For each linear representation∇ : A→ A (ξ) we have (1) H0
∇,c (A, ξ) =

0, (2) H1
∇,c (A, ξ) 6= 0.

Therefore, for each representation ∇ of A in a line bundle ξ the cohomological pairing

H1 (A)×H0
∇,c (A, ξ)→ H1

∇,c (A, ξ) is not nondegenerate even in a weak manner‡.

Proof. (1): The line bundle ξ over R is trivial ξ =M×R (M = R) so each representation

∇ : A → A (ξ) is of the form ∇ = ∂ω
A for some 1-form ω ∈ Ω1 (A). Let ω (a) = g · a for

g ∈ C∞ (R) . Then (∂ω
A)a (f) = (∂A)a (f) + ω (a) · f = a · xN · f ′ + a · g · f and

H0
∇,c (A, ξ) =

{

f ∈ C∞c (R) ; xN · f ′ + g · f = 0
}

= 0.

by the uniqueness of the Cauchy problem for the differential equation y′ = −g(x)
xN · y.

(2) H1
∇,c (A, ξ) = C∞c (R)/{xN ·f ′+g·f ; f∈C∞c (R)} 6= 0. To prove this we find a compactly

supported function h ∈ C∞c (R) . such that the differential equation

xN · y′ + g · y = h (36)

has no global solution y ∈ C∞c (R) .

Case g (0) = 0. For any h such that h (0) 6= 0 there is no solution of (36).

Case g (0) 6= 0. Let |g (x)| ≥ δ > 0 for |x| ≤ ε, ε > 0. Take any function h ∈ C∞c (R)

such that h ≥ 0, h 6= 0 and supp h ⊂ [α, β] ⊂ (ε,∞) . The elementary theory of linear

differential equations [the formula solving the Cauchy problem in the form of denoted

integrals] yields easily that no global compactly supported solution of (36) exists.

Consider the E-L-W representation D : A→ A (QA) .. We see that QA = A⊗ T ∗R ∼=
M × R [M = R] so Γ (QA) = Γ (A) ⊗ Ω1 (R) ∼= C∞ (M) by 1 ⊗ fdx 7→ f and that

D is equivalent to ∂ω
A for ω ∼=

(

xN
)′
(with respect to isomorphism (35)). According to

Proposition (7.20) the top group of cohomology of A for trivial and for E-L-W repre-

sentations are nontrivial. We prove that this representations are not isomorphic so the

E-L-W representation is not exceptional.

‡ A pairing F : V ×W → U is called weakly non-degenerated if both null spaces N1 = {v ∈ V ; F (v, ·)}
and N2 = {w ∈ W ; F (·, w)} are zero
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Proposition 7.21. The A-flat line bundles (M × R, ∂A) and (QA, D) [M = R] are not

isomorphic.

Proof. Let ϕ :M×R →QA be a linear homomorphism compatible with ∂A and D. ϕ is of

the form ϕ (f) = 1⊗g ·f ·dx for some g ∈ C∞ (M) . The equality Da (ϕ (f)) = ϕ ((∂A)a f)

yields a ·
(

xN · fg
)′
= a ·xN · f ′ · g, therefore

(

xN · g
)′
= 0 which produces g ≡ 0 and that

ϕ is not an isomorphism.
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