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Abstract: The Evens-Lu-Weinstein representation (Q 4, D) for a Lie algebroid A on a manifold
M is studied in the transitive case. To consider at the same time non-oriented manifolds as
well, this representation is slightly modified to (Q9%, D°") by tensoring by orientation flat line
bundle, QY = Qa®or (M) and D" = D®0Y . It is shown that the induced cohomology pairing
is nondegenerate and that the representation (Q9, D°") is the unique (up to isomorphy) line
representation for which the top group of compactly supported cohomology is nontrivial. In the
case of trivial Lie algebroid A = T'M the theorem reduce to the following: the orientation flat
bundle (or (M), 9°") is the unique (up to isomorphy) flat line bundle (¢, V) for which the twisted
de Rham complex of compactly supported differential forms on M with values in £ possesses the
nontrivial cohomology group in the top dimension. Finally it is obtained the characterization
of transitive Lie algebroids for which the Lie algebroid cohomology with trivial coefficients (or
with coefficients in the orientation flat line bundle) gives Poincaré duality. In proofs of these
theorems for Lie algebroids it is used the Hochschild-Serre spectral sequence and it is shown the
general fact concerning pairings between graded filtered differential R-vector spaces: assuming
that the second terms live in the finite rectangular, nondegeneration of the pairing for the second
terms (which can be infinite dimensional) implies the same for cohomology spaces.
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1 Introduction

The cohomology pairing coming from Evens-Lu-Weinstein representation of a Lie alge-
broid [4] is very important in many applications of Lie algebroids (Poisson geometry,
intrinsic characteristic classes). This pairing generalizes the well known pairings that
give Poincaré duality for Lie algebra cohomology and de Rham cohomology of a manifold
and real cohomology of transitive invariantly oriented Lie algebroids [14]. For a Poisson
manifold, this pairing agree with the pairing on the Poisson homology. The authors of [4]
give an example of a nontransitive Lie algebroid for which the pairing is not necessarily
nondegenerate and post the problem of when it is nondegenerate. This paper gives the
positive answer for the case of any transitive Lie algebroids and proves the property of
this representation: it is the one (up to isomorphy) for which the top group of compactly
supported cohomology is nontrivial.

Finally, we prove that for the nonregular transformation Lie algebroid corresponding
to the action v : R — X (R), 7 (t) = t-X where X = 2L there is no line representation
for which the cohomological pairing is nondegenerate.

More detailed, this paper is devoted to prove two cycles of theorems, mutually over-
coming.

FIRST CYCLE concerns nondegenerate cohomology pairings for manifolds (The-
orem 2.3), Lie algebras (Theorem 3.4) and Lie algebroids (Theorem 7.3).

— Assume that M is a connected m-dimensional manifold (oriented or not) and &, &
are two flat vector bundles with flat covariant derivatives Vi and V5 respectively. Denote
by or (M) the orientation bundle with canonical flat structure 0°". Let F : & X & —
or (M) be a pairing (i.e. 2-linear homomorphism) of vector bundles compatible with the
flat structures (Vy, Vg, 0°"), nondegenerate at least at one point (therefore, at every).
From such a pairing one obtains a pairing on differential forms and the induced pairing
in cohomology

HL, (M, &) x HE 3 (M, &)~ Hy., (M, or (M) il g
is nondegenerate in the sense that
Hg, (M.&) = (Hg, ] (M.&))"

The index ”¢” means that the compactly supported cohomology are considered. This
theorem generalizes the classical Poincaré duality as well as the one for d_ -cohomologies
[6].

— Assume that g is an arbitrary n-dimensional Lie algebra and Vi,Vsy : g — Lg
are two representations of g in R. Denote by Vi.q : § — Lgr the trace-representation
(Virad), = tr(ad,) -id. Then the top group of cohomology H{ 4 (g) of g with respect
to0 Viaa is nonzero, H{'. , (g) = R, and if the multiplication of reals is compatible with
respect to (V1, Vg, Viaa) then the exterior multiplication A : A"g* x A" "g* — A"g* =
yields the induced nondegenerate pairing in cohomology

Hg (g) x HE ' (9) — Hita (9) =R,
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le.
Hg, (9) — (Hg,"(9))"-
In particular, for (V1, Va, Viraa) = (0, Virad, Viraa) We obtain
H' (g) = (H1 (9))" -
For unimodular Lie algebra g the usual Poincaré duality is obtained in this way.

— Let A= (A, [, -], #a4) be a Lie algebroid on M and
Qa=ANPARAPT*M
the line vector bundle with canonical Evens-Lu-Weinstein representation [4],
Dy(Y @)=L, (Y)®@¢+Y ® Ly, (9) -

To consider non-oriented manifolds we modify it into
G =Qa®or (M)

and
D" =D®Jy

tensoring by the orientation bundle and its flat structure ((03), 0 = (0"),,(, 0, 0 €
[ (or (M)), #4 : A — TM is the anchor of A). For transitive Lie algebroids with n-
dimensional isotropy Lie algebras and multiplications by reals (M x R) ® Q% — Q9% the
induced pairing in cohomology

H (A) x Hpo" 7 (A,QF) — Hpd" (A4,Q%) — R
is nondegenerate, i.e. Hpo" (A, Q%) = R and
H7 (A) = (Hpo'o”7 (A,Q%))
SECOND CYCLE shows the uniqueness of the line representation for which the

top group of compactly supported cohomology is not zero (Theorems 2.10, 3.5, 7.10).

— HZ . (M,&) # 0 if and only if (§, V) is, up to isomorphy, the orientation flat line
bundle (or (M) ,9°") . In particular, for oriented manifold, Hg;, (M, &) # 0 if and only if
(&, V) is, up to isomorphy, the trivial flat line bundle (M x R, 0).

— For an n-dimensional Lie algebra g the trace-representation Vy,.q is the unique line
representation V for which H (g) # 0.

— Let A be a transitive Lie algebroid and V a representation of A in a line vector
bundle §. Then HE (" (A,&) # 0 if and only if (&, V) is, up to isomorphy, the E-L-W-
representation (Q%, D).

In conclusion we obtain a full classification of transitive Lie algebroids for which the
algebra of real cohomologies with trivial coefficients satisfies the Poincaré duality.
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— If A is a transitive Lie algebroid then the following conditions are equivalent:
o HIH(A) £0,

o HI(A) 2R and Hi (A) 2 (HP (A))'

e A is orientable vector bundle and the modular class of A is zero, #4 = 0.

In particular,

— For an orientable manifold M we have: H™™ (A) # 0 if and only if A is a TUIO-Lie
algebroid [13], i.e. the adjoint Lie Algebra Bundle g = ker # 4 is oriented and there is a
global nonsingular section € € T (A"g) invariant with respect to the adjoint representaion.

The above theorem for a compact oriented manifold M and 1-rank adjoint LAB
g = M x R was proved earlier in [15].

To prove Theorem 7.10 we use Theorem 4.4 concerning a pairing - : A x 24 — 34
between graded filtered differential R-vector spaces and theirs spectral sequnces. Roughly
speaking, if the second terms "EJ” live in the rectangular 0 < j < m, 0 <1i < n, 3E§m+n) =
SEM™ =~ R and the multiplication of the second terms (-, -)o : 1B x 2E{™ "9 _, 3pmn o

) ~

R is nondegenerate in the sense that 'E = (2E§m+"7j )) *, then the cohomology pairing for
cohomologies of spaces is nondegenerate as well, i.e. 3H™ = R and 'H — (2H™n=3)"
We must stress that the spaces "E3" may be infinite dimensional.

2 Non-degenerate pairings for twisted cohomology of a mani-
fold

Many of the facts from this section belong to "the folklore”. We call 1-dimensional vector
bundles line bundles.

2.1 Twisted cohomology, elementary properties

Let M be an m-dimensional paracompact manifold and ¢ a vector bundle of rank p and
Vxv, X €eX(M),v el (), aflat covariant derivative on M in &.
(e) The differerential equation Vv = 0 (with respect to the local section v of £) is locally
uniquelly integrable.

The local section v satisfying Vv = 0 is called V-constant (or sometimes V-invariant).
To set a flat covariant derivative V is equivalent to set local trivializations {(Us,, ¢a)}
relative to which the transitive functions are locally constant which is, in turn, equivalent
to set a homomorphism of Lie algebroids V : TM — A (§) where A (§) is the Lie algebroid
of £. The flat bundles (¢, V) form a category with morphisms F': ({1, V1) — (&, Va) being
linear isomorphisms F': § — & compatible with flat covariant derivatives (Vy, V3), i.e.
for which F' (Vi xv) = Vg x (Fv). We write also

(&1, V1) < (&2, V2)

or briefly V, X V.
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Two flat line bundles over a connected manifold are isomorphic if and only if they
have the same holonomy homomorphism A : m (M,z) — GL(R,1). For a flat vector
bundle (£, V) the differential operator dy of the degree 1 for {-valued differential forms
QO (M, €) is defined by the standard formula

dy (¢) (Xo, ..., X,)
= (=)' Vx, (6 (Xo, i X)) + D (=)™ 6 (X5, X, Xo, o X,)

7 1<j

Let o}, ..., o2 be local sections of £ over U, corresponding to the standard basis €', ..., e? €
R? under the trivialization p,, o', (x) = @a.. (') . The local sections ¢!, are V-constant,
Vol = 0. Over U, a &valued g-form ¢ can be written as > ¢! @ o, ¢' € QI (U,)
and we have dy (3. ¢' ®0’) = > dur (¢") ® o!. The flatness of V implies that dy is
a differential operator, d% = 0, therefore Q* (M,¢) is a differential complex and the
(twisted) cohomology

makes sense. By the definition the 0-group of cohomology can be written as
HY (M, &) ={v el (§; Vxyv=0forall X € X(M)}. (1)

(ee) If (£, V) is aline nontrivial flat vector bundle then according to (e) above HY (M, ) =
0.
If V is a flat covariant derivative in a vector bundle ¢ and w € Q' (M) is a closed
real 1-form, then

Vv =Vxr+w(X)- v (2)

is a flat covariant derivative as well. If £ is a line bundle and V and V; are two flat
covariant derivatives then there exists a closed 1 -form w such that V; = V¥.

Each flat covariant derivative V in the trivial vector bundle M x R is of the form 9* for
some closed 1-form w (0 is the standard covariant derivative in the trivial vector bundle
M x R defined by differentiation of functions dx (f) = X (f) ). Differential operator dg
is given directly by

dps (¢) = dand +w A &.

The operator dg is in the literature denoted rather by d, than by ds. [6], [8] and the
cohomology space Hy. (M, M x R) is denoted by H, (M). If w = 0 the usual de Rham

cohomology of M is obtained. It is easy to see that

0 <= w is nonexact,
Hy (M) = (3)
R < wis exact.

The space of -valued g-forms with compact support QF (M, £) is a differential complex

as well and we have the compactly supported cohomology Hg . (M,§). If (&, V) B

(&2, V3) then F, : Q" (M, &) — Q* (M, &) commutes with the differential operators dy,
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and dy, and gives rise to an isomorphism in cohomology Fy : Hy, (M, &) — HS, (M, &).
Analogously, for compact supports, we have an isomorphism Fy. : Hg (M, &) —
H, . (M,6).

For an open subset U C M we have the restricted flat covariant derivative Vy on
U in the vector bundle &, and the twisted cohomology Hy (U,&) and Hy . (U,§) are
defined. Similarly as in the case of real coefficients (see for example [1]) we can obtain
the short exact Mayer-Vietoris sequences (U;, Uy C M are open subset, U = U; UU,, and
Ui = Uy NUy)

0— O (U,&) % Q (U1, 8) & Q" (Un, &) 5 O (U, €) — 0

and
0 — QF (U, &) & QF (Uy,€) @ 0 (Uy, €) &2 Q2 (U, €) — 0.

They give rise to long exact sequences in cohomology
« B o4
— HE (U,§) = HE (U, €) © HE (Uy, §) = HE (Ury, §) = HE (U,€) —

and

— H%,c (U7 f) Ojc_# H%,c (Ula 6) ©® H%,c (U27€) ﬁf_# H%,c (U127€) g H%—i_cl (U7 g) N

Remark 2.1. There is a natural isomorphism Hg (M,§) = Hj g (4, €) of Hg (M,€)
with Hj o) (U, ), the cohomology of M in the sheaf I (V) of local V-constant sections of
€. In other words, HE (M, &) are cohomology of M with local system of coeflicients.

2.2  Orientation flat bundle and its characterization

Let {(Ua,4)} be a coordinate open cover for the manifold M, with transition functions
Gap = Lo O xgl. Take the orientation bundle or (M), i.e. the line bundle on M with a
distinguished system of local trivializations {¢,} such that the transition functions are
equal to sgnJ (gas) [1]. Let {e,} be a family of local sections corresponding to 1 under
the trivializations {¢.}, €s (¥) = @a (1). In the bundle or (M) there exists exactly one
flat covariant derivative 0°" such that e, are 0°"-constant, 0 (e,) = 0. The notation e,
and 0°" is valid in the whole paper.

The flat orientation bundle (or (M), 0°") is characterized by the holonomy homomor-
phism s : m (M, xy) — Zo C GL(R,1) that can be identified with monodromy to the
group of the local orientations in the fixed point xy which also is Z,.

In the sequel it will be useful to give other characterization of the flat orientation
bundle.

Proposition 2.2. Let (£,V) be a flat line bundle. The following conditions are equiva-
lent:

(a) (§,V) = (or (M), 07),
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(b) there exists a collection of local sections {o,} of & such that o, are V-constant and
the transition functions are equal to sgn J (gag)

(c) (or (M) ®¢&,07 V)= (M xR,0),

(d) there exists a global nonsingular section t € ' (or (M) & &) which is 0°" @V -constant.

Proof. Equivalences (a)<(b) and (c)<(d) are evident by definition.

(b)=(c) The linear homomorphism F': or (M)®& — M xR defined by F (e, ® 0,) =
1 is a well defined linear isomorphism compatible with (0" ® V,0).

(d)=(b) Locally t = e, ® o, for some local nonsingular sections o, of £. Since

0=0"RV(ea®04) =0" ® 04+ ea Vo, =¢€, Vo,
it follows that o, are V-constant and have the same transition functions sgn J (gags) -

The or (M)-valued m-differential forms are called densities. There exists an operator

/A:[)TZQ?(M,OT(M)>—>R

of the integration of densities and the Stoke’s Theorem for densities holds

/ daor ((.L)) - O
M

for w € QM1 (M, or (M)) [1]. Hence it produces a linear operator

or,#
/M : Hyor o (M, 0r (M)) — R. (4)

2.3 Pairings and cohomology, nondegeneracy

Now let (£1, V1), (&2, Va), and (&3, V3) be three flat vector bundles. We say that (&, V1)
and (&2, Vo) are paired to (£3,V3) if there is a bilinear homomorphism F : & X & — &3
compatible with flat covariant derivatives (Vi, Vg, V3), i.e. such that, for every X €
X (M),

VixF (vi,1n) = F(Vixvi, 1) + F (11, Vaxin) .. (5)
Then we write F' : (&, V1) x (&, Va) — (&3, V3). From such a pairing one obtains a

pairing (¢, 1) — ¢ A = F, (¢,1) of QI (M, &) and Q" (M, &) to QI (M, &) fullfilling
the equality

dy, F. (¢,0) = F, (dy,¢,¢) + (=1)"? F, (¢, dv, ) .

Clearly, ¢ A ¢ = F,(¢,7) is the usual wedge product of differential forms with F-
multiplication of values, see [7, Vol.II]. The pairing of differential forms induces a pairing
of cohomology classes

F# : Hél (M7£1> X H%g (M7£2> - H%S (M7€3)
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as well as the pairing for compact supports
Fye: Hy, (M,&) x Hy, . (M, &) — Hy, . (M, &3).
Consider two flat vector bundles (&1, V1), (§2, V2) and a pairing
F (&1, Vi) X (&2, Va) — (or (M), 07) . (6)

For an open subset U C M we define a pairing

or,# or,#
[ oFs s 1 ) x B2 (U.6) 5 . Uor 00) ' R
U

and the Poincaré linear homomorphism

DY HE (U.€) — (HE9(U,6))", DY ([@]) ([¥]) = / (@A),

Similarly as in the case of real coefficients we check that the family of Poincaré homo-
morphisms {D};} induces a map from the long exact sequences in cohomology to the long
exact sequences in compactly supported cohomology (the symbols of vector bundles &;
and & in the diagram below are ommitted and the sign =+ is equal precisely to (—1)q+1)

« B q
HL(U) 5 HL(U)@HL(U)) —— HL(Up) -2 HI'(U)

lDU JDUl@DUQ lDUu lDU (7)

Hq U * az# q * q * ﬁz# q * i(82>* q+1 *
V,c( ’f) - HV,C (Ul) EBHV,C (UQ) - HV,C (U12) - HV,C (U)

For an infinite disjoint open subsets U = [[ U; we deduce that Dy can be identifying
with H DUZ-‘

Theorem 2.3. Assume that M is connected. If pairing (6) is nondegenerate at least one
point then the cohomology pairing

or,# —
/ 0Fy : HE, (M, &) x HE (M, &) ™ H. ,(M,or (M)) "™ R,
M

s also nondegenerate in the sense that
Diy - H, (M, &) — (Hyg, ! (M, &))"
is an isomorphism, q¢ € {0,1,....m}.

Proof. We can use the standard method from [7, Vol.I] (or a slightly modified method
by using Riemannian structure and properties of geodesically convex neighbourhoods,
[1], [18]). According to [7, Vol.I, Prop.Il, p.16] and the commutativity of diagram (7)
and remark on infinite disjoint open subsets we need only to prove the theorem for the
manifold M = R™.
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Each vector bundle £ over R™ is trivial, each flat covariant derivative V has trivial
holonomy, so the differential equation Vv = 0 is globally integrable. Therefore for an
arbitrary point xo € M there exists an isomorphism of flat vector bundles

p: (6 V) = (R™ X &, 0)

where by 0 is denoted the standard flat covariant derivative Ox f = X (f).

(Remark: for the line bundle ¢ the isomorphism ¢ can be given directly as follows.
For ¢ = R™ x R any flat covariant derivative V is of the form Vxf = Oxf + Ox (a) - f
for some function a.. Then ¢ (f) = e~ f is a required isomorphism.)

The isomorphism ¢ gives rise to an isomorphism in cohomology

SO# : HV (Rm’g) i HdR (Rm)ga:o) )

especially for the zero level

0
H% (Rm>€> § Ht(i)R (Rm7€xo) é) 590

0*

On the other hand, the isomorphism ¢ also gives rise to an isomorphism in compactly
supported cohomology ¢4 . : Hy.. (R™, &) = Hur. (R™, &), especially for the top level

m m m P4 e m c
SO#,C:HV,C(R 75) R HdRc(R 5350)%51’0,

where p,. is defined by the formula

p([S - awa]) =3 ([ )¢

. m
7

where v; is a basis of &, A is a determinant function on R™ and f* € C° (R™) are
functions with compact support. p. is independent of the choice of the basis v; and fulfils
the equality p. ([f - A®v]) = (Jom [) - v, f € CZ(R™), v € &,.

Now take flat vector bundles (&;, V;) on R™ and linear isomorphisms ¢; : (&, V;) —

(R™ x (&),, - 0) . For any pairing F : (&, V1) x (&, Va) — (£, V3) we get easily the
commutative diagram

F# HV1 (Rm §1> X HVQ c (Rm 52) - H%ng,c (Rm, 53)
J/ Xgogl#,c J/wgl#,c
F# : Hc(l)R (R xo) X Hglb%c (Rm (52) ) - Hglb%c (Rm) (€3)m0)
J/PXPC J/Pc
$0 : (gl)mo (52)m0 - (53)10
where the middle pairing comes from the "constant” pairing
F (R (&1),,) % (R™,(&2),,) = (R™,(83),,) » Fr = Fiy.

To prove the theorem take (&3, V3) = (or (M), 0°") and choose a point z( such that F,,
is nondegenerate.
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2.4 Applications of the nondegenerate cohomology pairing

Now we give a number of applications of Theorem 2.3.

Example 2.4. For a connected orientable manifold M and the trivial flat vector bundles
(&,V;) = (M x R,0) and the multiplication of reals - : R x R — R we obtain the classical
Poincaré duality H? (M) x H™ 7 (M) — H™(M) — R. Especially H™ (M) = R and
HI (M) = (H7 (M))".

Example 2.5. More generally, for arbitrary connected manifold M taking (&1, V;) =
(M x R,0) and (&, Va) = (or (M),0°") and the multiplication by reals F': (M x R) x
or (M) — or (M) we get the Poincaré duality also for nonorientable manifold [1]. Espe-
cially operator (4) is an isomorphism, Hys. . (M, or (M)) = R.

Example 2.6. [6], [8] Let M be an oriented connected manifold. The following conditions
are equivalent:

(1) H, (M) =0,

(2) H' (M) 3 [w] #0.

If [w] = 0 then H (M) = R.

Indeed, consider multiplication by reals F' : (M x R) x (M xR) — M x R. This
pairing is nondegererate and compatible with (0~¢,0%,9). By Theorem 2.3 we get the
nondegenerate pairing H” (M) x H'7? (M) — H" (M) = R. In particular, we get
H, (M) = (HI, (M))", so all follows from (3).

Each flat covariant derivative in or (M) is of the form (9°7)“ for a closed 1-form w.
Concider the multiplications by reals F': (M x R) x or (M) — or (M). Then we easily
get:

Example 2.7. For any connected manifold M (oriented or not) the following conditions
are equivalent:

(1) H{gorye o (M, 0r (M)) =0,

(2) HY(M) > [w] #0.

If [w] = 0 then Hgoryo (M, or (M)) =R.

)
The next applications are given in the following propositions.

Proposition 2.8. If M is orientable and & is an arbitrary line nonorientable (i.e. non-
trivial) vector bundle then for any flat covariant derivative V in &

Hy (M, &) = 0.
Proof. Indeed, consider the natural nondegenerate pairing

F:(EV)x (V)= (EREEVRV), (vp) —rvepu,
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and any linear isomorphism ¢ : £ ® ¢ — M x R. The latter transforms the flat covariant
derivative V ® V to the 0* for some closed 1-form w. We recall that (V&® V), (r @ p) =
Vxv @ pu+v® Vxu. Then the pairing o o F : £ x £ — M x R is compatible with
(V,V,0¥) and, in consequence, with (V™% V,0) (for V™¢ see (2)). By Theorem 2.3 we
have the nondegenerate pairing

HY- (M,€) x R, (M,€) — H (M) % R
In consequence we obtain by the nontriviality of £ and observation (e) from section 2.1
0=Hg . (M.§) = (Hg (M.E)
which imply Hg' . (M, &) = 0.

Proposition 2.9. If ¢ is a line bundle not isomorphic to or (M) then for arbitrary flat
covariant derivative V in & we have

Hy (M, ) =0.
Proof. Indeed, fix a linear isomorphism
p:ERE— M xR

Such isomorphism ¢ exists since £ ® £ is orientable line vector bundle, therefore, trivial.
Let V&V X 9+ for a closed 1-form w. Take the multiplication by reals

Tior(M)® (M xR) — or (M)

and notice that 7 is compatible with (9° ® 9~,(9°")*). Consider the canonical non-

degenerate pairing F' : (or (M) ®¢&) x & — or (M) ® £ ® £ which is compatible with

(0" ®@V,V,0 ® V& V). The composition
Filo(MeO)xéSoaMetot o (M)o(MxR) S or (M),

clearly, is nondegenerate and is compatible with (0" ® V,V, (9°")"). Therefore F’ is
compatible with (0°" ® V™ V,0°"). According to Theorem 2.3 applied to F’ we get

Hg‘”'®V*W (Mv or (M) ® g) = (H%n,c (Mv S))* :
Since & is not isomorphic to or (M) the vector bundle or (M) ® & is not trivial (indeed, if

or (M)®¢ = M xR then or(M) = &* = ¢ ) which produces Hp,, . (M, 0or (M) ®&) =0
and further HE (M, §) = 0.

Finally we have the main application.

Theorem 2.10. The following conditions are equivalent:
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a) Hg,(M,§) # 0,
b) Hy.(M,§) =R
c) (§,V) ~ ( (M 3”),

Proof. For ¢) = b) see Example 2.5 or [1]; b) = a) is evident. It remains to show
that

a) = c¢). Keep the notation ¢ and w from the proof of the previous proposition. By
the same reasoning we check

HYorg—o (M, or (M) ® &) # 0.

It means that or (M) ® £ is trivial and there exists a nonsingular global cros-section
v el (or(M)®E) which is 07 ® V~“-constant. Express locally v in the form v = e, ® f,,
for some local sections f, of &, for e, see subsection 2.2. It is evident that {f,} has the
transition function equal to sgn Jg,s and that V=“f, = 0, i.e. Vxf, =w(X) - fo. The
formula f = ¢ (fo ® fa) determines correctly a nonsingular function f. Since V@V <o
then Oxf +w(X) - f=0%f =2 -w(X)- f, one has

axf:w(X)-f.

The global cros-section /' = %y is 0" ® V-constant. The proposition follows now from

Proposition 2.2.

3 A generalization of the Chern-Hirzebruch-Serre Lemma and
applications to cohomology of Lie algebras

We generalize Lemma 3 from [2] concerning Poincaré differentiation from algebras to
pairings. The assumption on finite dimensionality is superfluous.

Lemma 3.1. Let A, = @) AL, ds : Ay — As, s = 1,2,3, be three graded differential
R-vector spaces such that
(1) d, [A7] © AT,
(2) & o,
(3) dy [457'] = 0,
(4) Ay =R, Ay =0 fori > n.

Let

i Ay X Ay — As

be a pairing such that

(5) Aj- Ay C A,

(6) ds(x-y) =diz-y—+ (—1)"" 2. dyy,

(7) -+ AT x A" — Ay =2 R, r = 0,1,...,n are nondegenerate in the sense that the
induced mappings

i A = (A3
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are linear isomorphisms.
Then the induced homomorphisms in cohomology

-t H" (Ay,dy) x H" " (Ag,dy) — H" (As3,d3) =R
are nondegenerate as well, i.e. the induced linear homomorphism
i H (A di) — (H' (A2, d))
are linear homomorphisms.

Proof. The proof is identical with the original proof by Chern-Hirzebruch-Serre for an
algebra and it is sufficient to check that

(ir) 4

i H (A, dy) =25 H (A, d5) — H" (Ag,dy)
where (A5, d5) denotes the dual complex.

Now we give some applications to the cohomology of Lie algebras with coefficients.
Let g be a real Lie algebra of dimension n and let

Vig— Lg=EndR=R

be an arbitrary representation in 1 dimensional vector space. We will distinguish two
representations

e Vy=0,

® (Viraa), = tr(ad,) -id.

We see that Vi = Vg if and only if g is unimodular. Denote the differential
with respect t0 Viaq by diraq and the cohomology of g by Hipaq (g) . Straightforward
computations show that d'.; = 0. Therefore

Proposition 3.2. H ,(g) = A"g* = R for every Lie algebra.
Let us notice the following

Remark 3.3. (1) Each representation V : g — Lg is equal to 0 on g2 and, conversely,
each linear homomorphism V : g — Lg such that V|g? = 0 is a representation.

(2) The zero group of cohomology HY (g) = 0 if and only if V # 0.

(3) The multiplication of reals - : R x R — R is compatible with (Vy, Vs, V3) if and
only if V3 = V; 4+ V,.

Point (1) from the remark above implies that any linear combination of representations
is a representation. Take an arbitrary representation V and put

v/ - vtrad - V.
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Then the multiplication of reals is compatible with (V', V| Vi.q) by (3) from the remark.
Therefore, for differential operators dy, dv, diraq the condition (6) from Lemma 3.1 holds.
Since the exterior multiplication

AN:ANg-xN""g" — A"g" =R
is nondegenerate then according to Lemma 3.1 the multiplication in cohomology
Hy: (g) x Hy " (g) — Hijq (9) =R
is nondegenerate as well, i.e. in particular

Hy, (9) = (Hy ()"

Immediately from the above reasoning we obtain the following theorems.

Theorem 3.4. The multiplication of reals is compatible with the representations (0, Vizad,
Virad) and the induced cohomology pairing

HTL*T (g) X H‘:rad (g) - Hg"ad (g) = R?

18 nondegenerate. In particular we obtain a noncanonical isomorphism
H‘znrad (g) = (H‘:rad (g) >* = Hn*T (g) .

Theorem 3.5. Viaq is the unique representation V' for which HZ (g) # 0.

Proof. For any representation V take V' = V.4 — V. By (2) from the remark above we
have
HE () = HY (9) #0 <= V' =0 <= V=V

4 Pairings for graded filtered differential R-vector spaces and
spectral sequences

The aim of this chapter is to prove that for any pairing of graded regularly filtered diffe-
rential R-vector spaces, if the second terms of spectral sequences gives the nondegenerate
pairing then the same holds for the cohomology algebras of the spaces. This holds wi-
thout assumption that dim F, is finite and generalizes the suitable theorem for graded
filtered differential algebras [16].

Given three graded filtered differential R-vector spaces

(A=Epu, an), r=123, (8)

>0

denote for shortness
"H:=H(A d).
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Assume

S Ax A3
preserves gradations and filtrations

1As . 2At C 3As+t,

A; - %Ay C A,
and that the differentials "d satisfy the compatibility condition
H(x-y) = do-y+ (1) . 2y.
Clearly, there exists a multiplication of cohomology classes

U xCHE — CHPYE S ([2], [y]) — )

Let
(TE£,17 T‘d5>

be spectral sequences of graded filtered differential R-vector spaces (8).

Lemma 4.1. (1)
IZg‘,i_ 2Z§,l C 3Zg+k,i+l7 0<s< oo,

(2)

lzji 2kl 1pyik | 2500 — 3j+k+litl—1 | 3pyj+k,it
ZP D+ DY - 2 C 4T + D7, 0< s < oo,

'Z10 - PDE + DI Pzl DI (s = o0).
Proof. Straightforward calculations.

Conclusion 4.2. There exists a multiplication of s-terms of spectral sequences

B B = PRI (] ly]) o ey, 0<s < oo

(10)

(11)

The differentials ‘dg, %, *d, fulfils the compatibility condition with respect to the total

gradation
U (w-y) = dox -y + (1) Ay,

There exists a multiplication of cohomology classes of s-terms
Ht (1E5, 1ds) > HkJ (2Es, 2d5) _ Hj+k7i+l (3E$, 3d5) , ([j] ’ [3]]) — [j . g] .
The linear isomorphisms of bigraded spaces

TO'S . TESJ,_l —-H (TE37 rds);
To—oo . 7nEioo - EO (TH)
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conserve the multiplications

oo ([2] - [y]) = 'os[2] - Toa [yl
Ooo (T ) = 000 (T) - oo (7).

Remark 4.3. For s > ¢ + 2 we consider the canonical epimorphisms
r,yg',i . rEg',i ~ ngg'/(ngjl,ifl + ngi1> _y rzgg/ (ng;rl,ifl + nggL) ~ TEC])g

k1 3 j+k it

s S

For s > i + [ + 2 the canonical epimorphisms /7, are compatible with

multiplications

IR (2] ly]) = N el - A )
This implies that if spectral sequences ("F, 'ds) collapse at the mth term then the ca-
nonical isomorphisms "G, : "E; — "Es, see [7, VolIIL. §1.1.2], conserve bigradations

and are compatible with multiplications. We recall the construction of "G;,. For arbitrary
(7,1) we select arbitrary s > max (m, i+ 2) and put

y L rgd h i -
"BL L TER T BN e e TR D TR

The following main result of this chapter generalizes Corollary 12 from [16].

Theorem 4.4. Given three graded filtered differential R-vector spaces (8) and a pairing
A x 2A — 3A satisfying (9), (10), (11), assume that the filtrations are regular in
the sense "Aqg = "A and that the second terms ’”E%Z live in the rectangular 0 < 5 < m,
0<i<n and that 3ES™™ = 3E"™ ~ R,
If the multiplication in the second terms

<., .>2 . lEéj) % 2E§m+n_j) N 3E;n,'f7« ~ R
18 nondegenerate in the sense that
lEéj) = (2Eém+n—j))*’ T — <$’ _>2,

1S a linear isomorphism, then

(a) SH™™ =R,

(b) "H* =0 fort>m+n,

(¢) the multiplication in cohomology classes

<‘>'>H . IHj % 2Hm+n—j _ 3Hm+n ~R (12)
1s nondegenerate as well, i.e.
i =, (2Hm+n—j)*7 [2] — ([z], ),

s a linear isomorphism.
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Proof. The terms "3, "Ey, ..., "Ey live also in the same rectangular 0 < 7 < m, 0 <
i < n. The bidegree argument of the second differential operator %y implies (compare
with [16]) the condition *dy [3E§m+"71)} = 0. By the generalized Chern-Hirzebruch-Serre

3 (mn)

Lemma 3.1 we get = 3Ey"" = R and nondegeneracy of the multiplication for

third terms. Proceeding inductively we get the same for all finite terms. The bidegree
argument for the further differential operators "d, implies the colapsing of spectral sequ-
ences ("Es,"dy) , say at 'm > max (m + 1,n + 2) places. Then Spimt) — SEmn >~ R so (a)
holds because 3H™+" o 3E™ o~ R and next, for m > max ('m, %m, 3m) the canonical
isomorphisms "3 (see Remark 4.3) are compatible with multiplications. In consequence,
the multiplication in the infinite terms

- 1BY) x 2p(mtn=d) , Spmn >~ R (13)

is nondegenerate as well.

It remains to prove the nondegeneracy of the multiplication of cohomology classes
(12). The spaces "H possess a natural graded filtration "H?*, and thanks to the regularity
of filtrations we have

"H'="H*" > "H"'"' > .. D> "H" 50 (14)
and a noncanonical isomorphism

THL‘ ~ ('I‘HO,t/ THl,t—1> D ('I‘Hl,t—l/'r’HQ,t—2> D... O 'r’Ht,O — @ Eé,l (TH) ) (15)
ji=t
Analogously to the proof of Theorem 11 from [16] we assert that
Eg" (H) = B (H) = TH™ (16)
and
"HY = THITY T for 5 > mor i > n.
Therefore by (15) "H* = 0 for ¢ > m + n which proves (b). As in [16] we check the rule:

o if 07! (%) = [z] for z € B!, x € 'HI' and if 0" () = [y] for y € 2ETInT
y € 2H™Im~1 then
(T -y =[] [yl =2y (17)

We fix generators {,, € *E™" and £y € 3H™" in such a way that 7" (&) = &x.
Consider the pairings, see (13),

<.7 .>OO . 1EC(>£) % ZEC(ern—kn—j) — R, <:E7g>oo b =77,

<'7'>H: 1Hj X ZHm—i-n—j _>R7 <x7y>H£H =Y.

By (17) we have
<j7g>00 = <x7y>H (18)
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where 07! (7) = [z] and %" () = [y]. According to (13) the pairing (-, ) is

nondegenerate, that is EY) = (QEé? e ))*. Consider the induced linear mapping

K HT (ZHm+n*j)*, T — <x, >H

Similarly to [16] we easily check the monomorphy of . It remains to check that x is an
epimorphism.

Take a linear function 0 # [ : 2H™™J — R and consider the filtration (14) for
r=2andt =m+n—j. Let VP C 2HP™=I=P he a subspace complementary to
2ptimin=j=p=1 n -0 1,...,m+n—jand

WP VP BRI CHY e 2],
the induced isomorphism. Put

) = pr - 2pmen—j _ @ VP o @ Eg,ernfjfp (2H) '
p p p

The composition loyy™" € (D, Ef MERITP (2[) )" determines a family of linear functions
15 e (EF™™77(?H))". Define

Iy ={p; If #0}.

For each p € I; we define - through isomorphisms

2 _pm+n—j—p . 2rpmin—j—p = p,m~+n—j—p (2 )
P . 2P =Ny il

- a linear nonzero functions
P 2 pm4n—j—p\* P _ JP 5 2,pmtn—j—p
looE<Eoo )7loo_looaoo :

The nondegenerate pairing (-,-)o : 'ET"PPTI=m x 2ppm+n=i=p _, R determines an
clement 0 # ™77 € 'ELTPPTT™ such that (277F, ) = & € (2EpmAn=i=p)* | Let
lgmoppri—m (gm=p) = [gmP] € BTPPTTM () | where

xm—p c le—p,p+]—m and xm—p §é le—p—&-l,p—‘r]—m—l‘

Put

T = g TP,

pEl;
We prove the equality
k(z) = (z,yg=1€ (CH"" ).
Since *H™"7 = @, V?, we need only to prove & (z) (y*) = (z,")u (v*) = 1 (y*) for
yP € VP C 2HPmIn=i=P If p ¢ [) ie. 15 =0, then [ (y?) = 0 and for all p’ € I, by (16)
and (17)

<xm—p’, Yy - € = mr - {l;m—p/} [yP) € Esn—p+p’7n+p—p’ (3H) —0.
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If pe I, and 0 # y? € VP then

L(y?) = (V7)o (WP) " [y] = B [y"] = 12, o (otmtn—i—s) 7!

= (@7, () T ([5]))ee

(18) (

(lv"1)

l_m—p, yp>H

= (z,y")y.
The last equation holds because for p’ # p, p’ € I;, we have
0 [:L,m—p'} e Egl—p’,p’+j—m (IH)

and by (16) and (17)

/

g™ yP = [xm_p/} [y € E(r)n—p’,p’ﬂ—m (3H) —0.

5 Hochschild-Serre filtration and the spectral sequence for trans-
itive Lie algebroids

We fix a transitive Lie algebroid A = (A, [-, ], #4) with the Atiyah sequence 0 — g —

A TM — 0and a representation V : A — A (&) of a Lie algebroid A on a vector
bundle £. V is a homomorphism of Lie algebroids, then V induces a homomorphism of
vector bundles V' : g — End (§)

g Y End(€)

! |

AT A

and VI : g, — End (&,) is a representation of the isotropy Lie algebra g, in the vector
space &,. We will consider the pair of R-Lie algebras (g, £) where

Below, the elements of g will be denoted by 7,71, 72, ... while elements of ¢ by o, 1, 09, ...
Of course, ¢ is an ideal of g (actually, € is C'™ (M)-Lie algebra but it is not interesting
here). The space I' (§) is a g-modul with respect to the induced representation denoted
by the same letter V : I' (A) — I'(A(§)) C Lr(). Following Hochschild-Serre [9] we can
consider a graded cochain group of R-linear alternating functions

Ar = @Aia At =C" (9,T(8)),

1>0

with the R-differential operator of degree 1

dy : C" (g, T (€)) — C™ (g,T(9))
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defined by the standard formula

(A9 f) (Yoo ) = D (=1 Vo (f (Yo v 7)) + D (1) f ([l o)

i 1<j

For the trivial representation da : A — A (M x R), (9a), (f) = Oy (f), this operator
is denoted by d4. Clearly, for a real alternating t-cocycle ¢ and o € I' (§) we get

dy (p®@0)=dsp @0+ (=1) v Adyo.

In the space P, A" we have the Hochschild-Serre filtration A; C Ag as follows:
Aj=Agfor j <0.1f j >0, A; = P, A%, A} = A;N A", where Al consists of all those

J
t-cochains f for which f (71, ...,7) = 0 whenever t — j + 1 of the arguments 7, belongs to

t. In this way we have obtained a graded filtered differential R-vector space

(Ar = D A", dy, A)) (19)

t>0
and we can use its spectral sequence
(Egl, ds). (20)

Following K. Mackenzie [17] (see also V.Itskov, M.Karashev, and Y.Vorobjev [11]) we
will consider the C'* (M )-submodule of C*° (M )-linear altarnating cochains with values
in the vector bundle ¢ (i.e. A-differential -valued forms)

Q' (A, 6) C C' (g, T (¢))
and the induced filtration
Q=0 (A8 =A;NQ(AY)

of C*° (M)-modules. The differential dy of a C* (M)-cochain is a C*° (M )-cochain, so
we get dav : Q(A,§) — Q(A,€). We obtain in this way a graded filtered differential
space

(24,8 =P (4,9),dav, ) (21)

and its spectral sequence
(Ei{fs, dA,v,s)- (22)

Now we consider as well a submodule of C'* (M )-linear altarnating cochains with compact
support Q% (A, &) C QF (A, €) and the corresponding filtration

Qc,j = Qj N Q. (Aa 5)
of C* (M)-modules. Since suppdy f C supp f then we obtain

dAC7V : Qc (A7 6) - Qc (Av 5)
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and we get a graded filtered differential space with compact support

(2 (4,6) = D LA ) da,v, ) (23)

and its spectral sequence

(B o da,v.s)- (24)
Sometimes we can deduce directly properties of the last two spectral sequences (22), (24)
from the suitable properties of (20), see [9], denoted further by , sometimes we must
use some additional observations.
Lemma 5.1. The homomorphisms py and p.o in the sequence

.. . . . . p070 . . . . .. po . . . . ..
it _ It /It YR re YR N VN JHi AT gt
B0 = Qg /50— Q7 /1 = By — A7V AL = By

are monomorphisms. For differentials da, v, dav, do the following diagram is commuta-

tive

i Pe,0 i PO i

EAC,O ’ EA,O > Ep

— —

g g
ldAC,V,O ldA,V,O ldél

Gitl  Peo Gi+l PO Grit1
EAC,O . EA,O — Ly

From

° For R-cochains there exists an isomorphism
o' Byt — 7 g/t C (T (€)))
such that
a [f1 (] i) (01, s 00) = [ (01, s 0071, ,7%) 5 - (25)

we can easily obtain the following
Conclusion 5.2. The homomorphisms

i By — (M, N'g" ®¢)
aiii : Ei{i,o — Qﬁ (M, Ng* ® 5)

defined by the formula
@ L] (Xt X5) (01,0000) = f (01,000 MK AX))

Xy e X(M), 00 €8, (ai{i defined by the identical formula) where A : TM — A is an

arbitrary connection, are correctly defined linear isomorphisms of C* (M)-modules.

Proof. Monomorphy of a{f and aﬁi follows from the commutativity of the diagram
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j.i . j.i Po j.i
EAC,O ’ EA,O - Ey

[ _ o _ o
01 (M, Ng* ©€) L 0 (M, Nig* 0 €) " € (g/8.C* (E.T (0)).

To prove that @’} is an epimorphism it is sufficient to check that if a?* [f] is a C> (M)-
linear cochain, i.e. a?' [f] = po (f) for some f € O (M,N'g* ®£), i.e.

f(#A (’71)7'%#14 (PYJ)) (01,...,01') = f(017"'7ai7717'“77j>7

then there exists a representative ' € [f] € Ef;{fo which is C*° (M)-linear cochain such
that a’{’ [f'] = f. To this end take a connection form wy : A — g coresponding to A and

put f’ (7{, ...,7},71, ...,%) =f (wo (V1) 5 -+e» Wo (’y;) V1, ...,’yi) . Then f’ fulfils the desired
conditions.

° Through isomorphism o’ the differential dé’i becomes a differentiation of values
with respect to the differential

dye, : C* (£, T (&) — C™ (£,T (€)) (26)
(v: €< g, is the inclusion),

dva: 7 (g/6.C7 (T (€)) = €7 (/8. C (T (€)).
v () (1] ) = e (F (] s ).

In conclusion, the differentials diifv,o and d{&i,v,o becomes (through the isomorphisms
a’; and o}’ ) differentials of values with respect to

dy+ 1 N'g" @€ — ANTg" @€,

namely

dy+ : Y (M, Nig* @ €) — Q7 (M, A*g" ®¢),

var (f) (Xla ,X]> — var (f (Xla ,X])) .
Analogously we obtain a differential CZC,VJF for compact supports.
Remark 5.3. According to K.Mackenzie [17, Th.2.5, p.201] the homomorphisms d. :
Ng* ® & — Atlg* ® & are locally of constant rank, and consequently, there are well-
defined vector bundles Z' = kerdy,, B' = ImdL! and H'(g,§) = Z'/B" such that
[ (H'(g,€) = H' (T (Ag" ©¢) , dy+) . Clearly,
H'(9,€), = H' (Mg, ® &, dg+).
Therefore
H(Q (M, N'g" ®€) ,dev+) = (M, He+ (9,€)) -
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From the above we obtain isomorphisms of C*° (M )-modules
(af&i)# L HY (B d'v o) = (M, Ng* ©¢),
(a) 4 H' (B0 &l w0) = QL (M N @6).

Now we pass to consideration of the modules Z;, Dy, Es and Z4 5, Da s, Eas and Zy4,_ s,
Dy, s, Ea, s for three spectral sequences for graded, filtered, differential spaces (19), (21),
(23), respectively. Immediately by definitions we get

Lemma 5.4. (1) Z), = ZL N Q(A§), (2) D}, = DINQAE), (3) Z),, = 23, N
Q. (A,6).

Fix an auxiliary connection A : TM — A and for f € Zi{fl C QT (A €) we define
fi e (M ANg ®¢)
by the formula

fj (Xl, ...,Xj) (0'1, ...,O'Z'> = f (/\Xl, ey /\Xj,O’l, ...,O'Z')
= (—1)ﬂf (017 ey 05y )\le cees )\X]) .

Lemma 5.5. If f € Z£f1 then f; (X1, ..., X;) € T (Aig* ® &) is a dy+-cocycle independent
of the choice of \.

Proof. For f € Z'} € Q™" (A,€) C AI*" we take a cochain f; € C7 (g, C?(g,T (£)))
defined by f; (v1,.,,7) (Vs %) = F(sy 557, V1s -5 V%) 5 see [9]. From the equalities

Z = {f e U dof € T = ZP n QY (4,¢)
we get (see [H-S]) that 5 (f; (11,,,,7)) € CI(e,T(£)), where
GO (g, T(8) = C7 (BT (), ¢ (g) =glex ... xE

is a (V oL:t— Lp(g))-COCYCIG and that this cocycle depends only on the equivalence
class [v;] € g/€ = X (M), i.e. on the anchors of the elements v;, i.e. on #4 (7). But
G (fi (s s55795)) 18 €% (M)-linear ¢} (f; (1,,,,7;)) €T (Alg* ® &) therefore the condition
dyo, (L;‘ (fi (15, ,'yj))) = 0 is equivalent to

dV“' (l’; (fj (717 ) nyj))) = 0.
The equality ¢ (f; (71,,,,7)) = fi (#4 (1) .., #a (7;)) proves the lemma.
We recall that

Bl = 20 (253 + D)
~ {7 €97 (1 dof € MY (@1 + do[27))
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and analogously for Eﬁlzl

Lemma 5.6. The homomorphisms

\IJA,I : Ejjqibl - QJ (M7 HZV+ (g)g)) )
Uap: By — Q0 (M Hy, (9,€)), [f]

are isomorphisms of C* (M )-modules.

Proof. Clearly, we need to notice only that W4 ; is a composition of isomorphisms

Way e E,];{,il % Hi(Efm df:O) (g# v (M’ H%J’ (g’Q)

and analogously for compact supports.

From the above lemmas we see that the canonical homomorphism E%' | — E%"| is a
monomorphism.
) There exists a representation [precisely, a Lie derivation]

Ei ‘g — Loi(g’F(g))

defined by the formula

(E;f) (01,.,00) =V (f(01,...,04)) — Z flon, [y, o], ey 00)
t
Ei commutes with R-differential operator dvy.,, see (26), induces a representation
in cohomology
L g = L, ere))
and € C ker L% (because L. f = dye, (to f) if [ is a dyo,-cocycle.). It produces a
representation
[£77] -8/t = Ly, (ercey)-

Noticing that a Lie derivation of a C'* (M)-linear cochain is C'* (M)-linear too, we
can pass to I' (A’g* ® &) . Additionally we observe that £ : T'(A'g* ® §) — TI' (A'g* ® &)
is a covariant derivative operator with the anchor #, (v) and £ is C*° (M)-linear with
respect to 7. In conclusion we obtain a representation of the Lie algebroid A in the vector
bundle Alg* @ &

£y:A—ANg ®¢).

Lemma 5.7. The representation L'y coincides with the adjoint representaion of A in
A'g* cross V, Ly = ada @ V.

Proof. The adjoint representation ads : A — A(g), ada () (o) = [v,0], induces the
one in the associated bundle A’g* (denoted also ad,) and its tensor product with V is
just equal to LY.



J. Kubarski, A. Mishchenko / Central European Journal of Mathematics 2(5) 2004 663-707 687

The representation £, induces the one in cohomology
L A— A(HL (9,€))

such that g C ker Eﬁ’i (indeed, (£%), (f) = dy+ (1.f) for a dy+-cocycle f). Therefore,
we obtain a flat covariant derivative

V' TM — A(H, (9.€)) (27)

by the formula ‘
Vi (1) = (£47) i (D = [(£4) 5 ()]

where for a dy+-cocycle f € Alg* @ &

(EQ)/\X (f)(o1,...,00) = Vax (f (01, ..y 0 Zf 01y ey [NX, 0], oo 00)

Remark 5.8. For the trivial representation V. = 04 we get a flat structure in the
cohomology bundle H' (g). If the structure Lie algebras g, are unimodular then H" (g) =
A"g* and the induced flat covariant derivative 82 : TM — A(A"g*) is defined by

(%) f) (01, .y 0n) = X (f (04, ..., 0 Zf (o1, [MX.0],....00).

This flat structure coincides with the flat structure in A”g* defined in the paper [16] via
some system A = {@}'} of local trivializations with locally-constant transitive functions.
We recall that @} : U x A"g* — A"g* (g is the typical fiber of g) is determined by a local
trivialization ¢y : Ay — TU x g of the Lie algebroid A in the following way: y induces
a local trivialization ¢f; : gy — U x g of the adjoint Lie Algebra Bundle g and we put

(&8), = A" (o), -

Now, we carry over the different.ials d%l : Ei{fl — Ef;rll’i, dﬁi,l : Eizl Efflll, to
the spaces (V/ (M, Hy, (g, 5)) and 7 (M, Hy, (g, 5)) , respectively, via the isomorphisms
W41 and W, ;. Since the canonical homomorphism

I (Ho+ (9,€)) — Heo, (6,1 (€))

is not a monomorphism unless the Lie algebra bundle g is trivial, we can not infer the form
of this differentials immediately from the level of R-cochains and its spectral sequence
(20). In comparising of the cohomology classes from Hg,, (€T (£)) having representative
of C* (M)-linear cochains we must see whether these representatives differ by a C*° (M )-
linear cochain.

Proposition 5.9. The following diagrams are commutative

- &’ L
75 Al ]+17Z
EA,l - EA71

J,t Jj+1,4
[ o

) . (-1)'dg; ; ;
v (Mv HZVJF (gv S)) — (M’ H1V+ (g’g))
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[ e it
Al Ac,l

Iyt Jj+1,2
3 e

0 (M, Hi (9.6)) 25 it (M, HE, (9.6))

Proof. The calculations identical as in the R-linear cochains [9] yield for f € Zi{fl c Z7
the following formulae

(_1)2 (dVZ © \11247271 [f]) (X17 “')Xj-‘rl) - (_1)(]+1)'L [pf (X17 sy Xj-i-l)] )
(\Ilz‘:,—ll’i © dﬁz,l [f] ) (X17 ceey Xj-‘rl)
= (=) oy (X1, o X)) — doe (1) Fion (X, X))
where py € Q7T (M, ANig* @ €) and py (X, ..., Xj41) is a dy+-cocycle defined by

pr ( X1y Xji1) (01, s 0%)

j+1
= ( 1)t+1 V)\Xt (fj (Xl, ...f...,XJ_H) (0'1, 7Uz>) +
t=1
Jj+1 i
+ Z (—1)t Z fj (Xl, -‘-t-‘-ij—s—l) (0'1, ey [[)\Xt, O'S]], ce 70i> +
t=1 s=1
Y (D) (X XL X 8 X ) (01, 00)
r<s

The cochain f,1 (X1, ..., X;11) is C> (M)-linear, i.e. belongs to the module
QL (M, AN g* ® £) . This gives
((=1)"dgi 0 W', — Wi 0 d')) () (X1, ., Xjia)
= (=1 [dos ((<1) i1 (X1, s Xj1) )]
=0.

If f has a compact support, the same hold for p; and fj+1 and we get the commuta-
tivity of the second diagram.

The next theorem is the main goal of this section. It describes the second terms of
the sepectral sequences (22) and (24) (see also [17]).

Theorem 5.10. The homomorphisms

Wan: By, — H (M H. (9.€)), [f
\IIAC,2 : Ei{z,g - vai,c (M7 HZV+ (975)) ) [f

are isomorphisms of C* (M )-modules.
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Proof. Clearly, we need to notice only that W, - is a composition of isomorphisms

.. a'j’il . i i (‘I’j’fl) . .
Was: By, = HI (B3, d5) 50 HL (M, Hy, (g,€))

[a)

and analogously for compact supports.

6 Algebroids and pairings

Assume that A is a transitive Lie algebroid with three representations
V,:A—A(E), m=1,2,3,
and a pairing
F & x&—&

compatible with the representations (Vi, Vs, V3), i.e. fulfilling the property analogous
to (5) in which we must replace X by v € I'(A). Then the multiplication of cochains

AN:Ng @& xNg @& — NTg e

is compatible with
(a) suitable representations £/, £, £

LN g) =LA () Ng+ ALY (g),
feET(Ng®&), geT (Ng®¢&y),
(b) differentials dy+, dgy, do+
dos (f N g)=dgs () Ng+(=1) f Ndgs (9),

f, g as above.
The latter equality gives the pairing of cohomology vector bundles

N HY (9.60) X Hep (9,62) — HYY (g.6) (28)

which is compatible with the suitable representations Eﬁ’j , Eﬁ’i, Eﬁ’j " and finally with
the flat covariant derivatives V7, V¢, v/ T

VT (AN L) = Vi (FD) Algl + [F1 A Vi L]

We assume in the sequel that n = rankg (and we recall that m = dim M).

Together with three representations V, one consider three graded filtered differential
spaces 2 (A, &), Qe (A, &), Qe (A, &) (21), (23), and theirs spectral sequences (1Eiffs;1dA,V,s)7
(B 2davs), CEY ,Pda,v.s). Using monomorphy of py and of peo, Lemma 5.1, we see
immediately from the case of R-linear cochains [9] that the following diagram commutes.

ity x B, N

P i . a
J,t J st J,t J st
J/GA ><CLAC j{(lA X(lAc

OJ (M, Aig* ® 51) % Qg’ (Ai/g* ® 52) w} Qg—l-j’ (Az‘—i-z"g* ® 53) )



690 J. Kubarski, A. Mishchenko / Central European Journal of Mathematics 2(5) 2004 663-707

Passing twice to cohomology and using definitions of suitable homomorphisms we get the
commutativity of the diagram

5 o gy
llqﬂ;;fz X200, lw;tf?”il (29)
.
: . . . (=1)¥9.A Ly S,
H]VZ(M7 sz-li- (g7§1)) X H]Vz/7C<M7 sz';_ (9752)) - vatiz”c(Mleng; (gvg3>)

The main theorem of Chapter 1 one gets the very important
Conclusion 6.1. If & is a line bundle and (Hg+ (9,8),V") ~ (or (M),0°") [in parti-
3

cular, (V}f):E = Viraa ® 1d according to Lemma 3.5] and the pairing of cohomology vector
bundles

A% Hivf (g,&1) x H@; (9,62) — H@; (9,83)
1s nondegenerate, then the same holds for the pairing
j i m—j n—i m n f#
H]Vz (Mu Hv'l*' (97 51) ) X an—jiﬁ(Mu Hv;r (gu €2> ) - HV",C(M7 va' (g’ 53) ) = R. (30)

1.€.
He, (M, Hyy (9.61)) = (He,?: (M HI (9.62)))

Diagram (29) assert that the nondegenerate pairing (30) is ‘equal to the multiplication
of the second term of the spectral sequences

117,8 2rm—jn—i N 3pmn =
B3 X "Ey 5 » By, — R

so the last 1s nondegenerate as well,
> (BT
and the main theorem of Chapter 4 gives that the multiplication of cohomology classes
(h t H, (A &) x Hg U™ (A, 6) — HgJT (A &) = R
18 nondegenerate too, i.e.

H, (A &) = (Hg ! (A,6))".
7 Evens-Lu-Weinstein pairing for transitive Lie algebroids

7.1 Nondegeneracy of Evens-Lu-Weinstein pairing for transitive Lie alge-
broids

We prove that for transitive Lie algebroid A the duality of Evens-Lu-Weinstein [4]

H7 (A) x HRi"7(A,Q) — HpAm (A,Q%) — R



J. Kubarski, A. Mishchenko / Central European Journal of Mathematics 2(5) 2004 663-707 691

is nondegenerate, i.e. HP:" (A, Q%) =R and
HY (A) 2 (Hpo o7 (A,Q%))

For arbitrary (nonregular in general) Lie algebroid A on a manifold M the authors [4]
introduced a vector bundle
Qa = ANPA® A*°PT*M

(the notation AP refers to the highest exterior power). Geometrically, sections of @4
can be thought of as transverse measures to characteristic foliation Im #,4 to any Lie
algebroid A [4]. For Poisson manifolds, the Evens-Lu-Weinstein pairings takes the form
of the pairing on the Poisson homology; for more applications see [4]. Ibidem, there is an
example of nonregular Lie algebroid A over a compact oriented manifold for which the
pairing H7 (A) x Hg:”_j (A, Q4) — R is not necessarily nondegenerate. J.Huebschmann
in [10] has generalized the construction of the bundle Q4 and the modular class 64 to
Lie-Rinehart algebras, an algebraic generalization of Lie algebroids.
We slightly modify the Weinstein construction to consider nonoriented manifolds:

I =Qa®or(M).

For an oriented manifold M we can identify Q% = Q4.
In [4] a representation
D:A— A(Qa)

was introduced by
D,(Y®p)=Ly(Y)®o+Y & Ly, (¢),

Y e I'(A*PA), o € T'(A*PT*M) = Q™ (M), where L, (Y) = [7,Y] ([7,Y] denotes the
Schouten bracket) and L ,(,) (¢) is the usual Lie derivative of a differential form ¢. We
recall that for Y =~ A ... Ay

L,(Y)= Z% A AVl A A e

2

There is some interest to consider the representation D in the context of intrinsic charac-
teristic classes of Lie algebroids [3], [5].
We modify the representation D to

D"=D®dy :A— AQY).

In the sequel we will be interested only in the transitive case. A choice of a connection
A :TM — A enables us to identify

A A = Amg @ APTM,
EAAN)(X) = e ® X,
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and
YG=NgAN"TMQAN"T*M @ or (M) =A"g®o0r(M). (31)
Lemma 7.1. (a) D" : g — End (Q4) is defined by
DY = (Viaa), = tr(ad,) -id, o€l (g).

(b) Hp. (9.Q0) = A" © Qu, Hpurs (9.Q%) = A9 © QF.

Proof. (a) Consider locally defined nonsingular section of @ 4 of the form ey ® Xy ® ¢y,
ey € '(A"gy), Xy € U' (AT My), oy € ' (A™T*My), and assume that (X, op) = 1.
For o € I' (g) we have #4 (0) = 0 and [o, \W;] € I' (g) . Therefore if ey = o1 A ... A o,
Xu=Wi{NAN..AW,, 0, € F(g), W; e F(TMU>,

D, (v @ Xu ® ¢u)
=L, (v @ Xv) ® pu
=Ly (01 Ao NOg AXWLA ANV, @ o

=Y 1 A Ao ] A Aoy AAWLA A AW, ® gy

7

= tr (ada) ey ® XU (%9 DU -

(b) Follows immediately from Proposition 3.2.

The vector bundle A"g* ® ()4 is trivial. Indeed, the classical homomorphism

c: A"g* @ Qu = A"g* @ A"g @ A"TM @ A" T*M — M x R

(32)
ce"®e®@X®p)=(e) (X, )
is an isomorphism. Therefore
c®id: A"g* @ QY — or (M). (33)

Let A(c) : A(A"g* @ Qa) — A(M x R) be the induced isomorphism of Lie algebroids
[12],
A(e) (u) (f)=c(u(ctof)),
uel' (AA"g* ®Qa)), f € C®(M). Let
VP TM — A(Hp. (9.Qa)) = A(A"9" © Qa)

be the induced flat adjoint covariant derivative (27) for D. Analogously we have VP :
TM — A(A"g* @ Q%) .

Lemma 7.2. The compositions

VP TM — A(A"g" © Qa) “2 A(TM x R),
VT TM — AN @ QF) "D A or (M),
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are trivial representations 0 and 0°", respectively, so
J )

(Hng (g) QA) )VD) ~ (TM X R, 6) s
(Hpors (9,Q%) VDM) ~ (or (M),d").

Proof. It is necessary to check it locally. Take locally defined nonsingular sections
ey € I'(A"gy), Xy € T'(A"TMy) and theirs duals €7, € ' (A"gy;), gu € I'(A™T*My),
(ef,ev) = 1, (Xu,pu) = 1. On the set U arbitrary section of the bundle A"g* ® Q4 =
A"g* @ A"g @ A™TM @ AN™T*M is of the form [ e, ® ey @ Xy @ gy, [ € C(U).
For X € X (My), Xy = Wi A .. AW, (Wi, ..., W, is a base of vector fields on U) and
o = Wi A AW W is the dual basis, and ey = o1 A ... A g, (0; is a base of the

vector bundle g on U), we write [AX,0;] = >, gl oj, DX =0 hE o ab g,
so [X,W;] = af - Wj. Then

D)\X (€U (029 XU X SDU)
= Lix (ev ® Xu) ® pu + v @ Xu @ Lxpu

= (Y giond X)@puton (Y - AX)@er o AAX® Y (—dl) gy
:ngfU@XU@ng.

Therefore

VE(f e @er @ Xy @ pv) (ev)
=Dix(f-ev®Xu®epy) —
—Zf-éf*U(O'l/\.../\[[)\X,O'i]]/\.../\Un)wSU@XU@(pU

)

:3Xf'€U®XU®90U+f'DAX(€U®XU®90U)—f'zgfo@XU@sOU

:axf'€U®XU®SOU
=0xf (e ®@evy @ Xy @ ov) (ev) -

Finally

(A(C)OV)%) (f):C(Vg(f'5*U®€U®XU®¢U))
=c(Oxf-(ep ®ev ® Xy @ pv))
=0Ox f.

For the proof of the second part we notice that for local 0°"-constant section o of or (M)
one has

(Ac®id)o V") (f ® 00) = (A(c) o VB) () & 0o
= 0Oxf® oy
= 8}’}" (f ® 0’0) .
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Theorem 7.3. For an arbitrary transitive Lie algebroid A
Hpor't (A,Q%) =R,
and the Evens-Lu- Weinstein cohomology pairing
HY (A) x Hpo" 7 (A,QF) — Hpd" (A,Q%) =R

1s nondegenerate, 1.e.

HY () = (Hp (A,.Q7))"
Proof. Theorem 3.4 and Lemma 7.1 show that the pairing

H'(g) x Hyp!\ (9. Q%) — Hpors (9. Q%)

is nondegenerate. On account of Theorem 2.3 and Conclusion 6.1 we assert that the
pairing

HL, (M, H' (9)) x HZ:? (M, HpyLl (9,Q%)) — Hepor . (M, Hpri (9,Q%)) — R,

R |

is nondegenerate. Equivalently, this is a multiplication of the second terms of the Hochshild-
Serre spectral sequences of graded filtered differential spaces 2 (A) with the trivial diffe-
rential and Q. (A, Q%) with the differential D°". The fundamental Theorem 4.4, see also
mentioned above Conclusion 6.1, completes the proof.

7.2 Remarks on the top group of cohomology

Analyzing the proof of Theorem 4.4 and composing isomorphism (33) with isomorphism
(4) we can define the isomorphism I : Hj3" (A, Q%) — R as a composition

m,n

I HE3m (A,Q%) = Hpt' (A, Q%) = Eg™™ (Hpor o« (A, Q%)) g g _

Ac,00

m,n

v
o e 0,5 0,00 -

m n % or (C®id)# m ;C;,#
- HVDOT’C (MyA g ® QA) ? Hao'r,c (M, or (M)) e R.

o

We compare this isomorphism with the one defined by direct formula in [E-L-W]
resctricting our interest to transitive Lie algebroids. Immediately from the definition of

WL, (see Theorem 5.10), W [f] = (—=1)™" [fn] , and definition of o7y we observe
that

m,n m,n

ag
I HBdn (A,QF) = B & ERT = EXY =% Hpor (M, A"g" ® QF)

is given by the formula looking analogously to W'y, I [f] = (—1)™" [f] , or equivalently
(under the identification A™™"A* = A"™T*M ® A™g* given by the help of a connection
A:TM — A) by

Llp@e)@q) = (-1)"[pa (" @q)]
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where ¢ € Q' (M), e € I'(A"g*), ¢ € I'(QY). Therefore if ¢ = e @ X @ p R e,
eel'(A"g), X e '(A™TM), pe T (A"T*M) =Q"™ (M), e eI (or(M)) then

(c@id) ol (p@e)@e@X@uee)=(=1)""[p-(e,¢) (X, u) ®¢].

So, for f=(pRe*)Re®@ X @ u® e we get

or

1] = (~1™ / e X e e = (—1)™ / (e e) (X, o) pe

M M

:(—1>’""/ (p@e" X ®e) - n®e
M

which is concordant up to the sign with the definition of Evens-Lu-Weinstein [4] given
by them only for oriented compact manifold (but for any Lie algebroid, not necessary
transitive).

The fact Hpo", (A, Q%) =5 R for transitive Lie algebroids is not proved in [4]. Below
we prove this immediately without use of the spectral sequences.

(a) on oriented manifolds. The authors of [4] introduced an isomorphism of vector
bundles

51 AP AT @ AP A @ AP s AYPTH ),
pPYRY ®u)=(V.Y) u

and proved a version of Stokes Theorem (to be sure for compact manifold but without
troubles we can extend it to differential forms with compact support on arbitrary oriented
manifold).

Theorem 7.4 (Stokes Theorem [4]). Let rank A = r. Forr — 1-form W' € T' (A" "1 A*) we
have

pldp (V@Y @p)) = (1) dar (ty, w1yl
Consequently, if the form W' ® Y ® u has compact support then

| ptanw ey ew o

Put
FATIAT @ Qu— AMTITM, (WY @ 1) (1) i ey

and notice the commutativity of the diagram

~r—1

U(A,Qa) B QT (M)

| [

Q(A,Qa) —— Qp(M).
From this we deduce that p. induces an R-linear homomorphism in cohomology

ﬁc7# : HB,C (A7 QA) - H;m (M> :



696 J. Kubarski, A. Mishchenko / Central European Journal of Mathematics 2(5) 2004 663-707

Since p is an isomorphism p. 4 is an epimorphism.
Lemma 7.5. If A is transitive Lie algebroid, then p. 4 is an isomorphism.

Proof. One can easily see the lemma provided that 5" ! is an epimorphism. It is a simple
matter to show that g7 ~! is an epimorphism at every point x € M using transitivity of the
Lie algebroid A i.e. using the fact that the anchor (#4), : A, — T, M is an epimorphism.
This finishes the proof that

. - m I
e iy (A,Qu) — HI'(M) 25 R
is an isomorphism.

(b) on nonoriented manifolds. We prove this analogously multiplying the vector bun-
dles by or (M) and use the Stokes theorem for densities [1].

7.3 Exceptional property of the Evens-Lu-Weinstein representation

Assume A is a transitive Lie algebroid. Before the next theorems we must give algebroid’s
equivalent of some lemmas from Chapter 1. For any A-connection V : A — A ({) and a
I-form w € Q' (A) we define a new A-connection

VeiA—A®E), Vov=Vwv+uw(y) v

The curvature tensors RV, RY € Q% (A, £) of the connections V¥ and V are related via
the formula
RV = RY + dw ®id.

Therefore, if V is flat (it means, V is a representation) then V¥ is flat if and only if w is
closed. Each A-connection V : A — A (M x R) in the trivial vector bundle M x R is of
the form 04, indeed, we need to put w(y) =V, (1).

For a line bundle ¢ and a representation V : A — A (&) the differential equation
Vv = 0 is locally uniquelly integrable provided that it is locally integrable.

Lemma 7.6. For a line bundle £ and a representation V : A — A (&) the differential
equation Vv = 0 is locally integrable if and only if VT = 0. This last condition is
equivalent to the projectability of V, i.e. that V =N o #4 for some usual flat covariant
derivative V on M in the vector bundle .

Proof. "=—” Assume that Vv = 0 is locally integrable. If v is locally defined nonsingular
V-constant section of £ then arbitrary section is equal to 11 = f - v for a smooth function
f and for o0 € I' (g)
VI(f-v)=0u,f v+ [ Ver=0.
7<=" Assume that V' = 0. Take o € M and u € &,,. Locally (zg € U = R™)
Vu=0%,: Av — A(&y) = A(U x R) for a closed 1-form w € Q' (Ay) . By assumption
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Vt=0,w(o)-v=0foralloc € T'(g9) and v € T'(§), so w(o) = 0 and w is projectable
on U, w = #% (@) for some © € Q' (U). Since the anchor #, is an epimorphism, the
pullback of the differential forms #7% is a monomorphism. Therefore, since 0 = dyw =
da (#5 (@) = #5 (darw) we get dgrw = 0. Clearly, then w = df for some function
f € C=(U). It is easy to see that the section o = e~/ of the bundle U x R 2 &, is
Vy-constant.

Similar considerations show that for trivial vector bundle £ = M x R and a re-
presentation 04 the following conditions are equivalent (1) V* = 0, (2) w is projec-
table (ie. w = #% (@) for some @ € Q' (M). On the other hand, if w is exact, i.e.
0= [w], € H" (A), then VT = 0, which impies that the differential equation Vv = 0 is
locally uniquelly integrable.

By the definition the 0-group of cohomology can be written similarly to (1).

Hg (A,§) ={v eT'(§); Vv =0}.

Proposition 7.7. (1) HS (A, €) = 0 if £ is nontrivial.
(2) For the trivial vector bundle £ = M xR and V = 84 for closed 1-form w € Q' (A)
we have

Hg (A8 #0 <= [w],=0.
In particular, if HS (A, &) # 0 then VT =0,
Proof. (1) Evidently, since each section of nontrivial line bundle ¢ is singular and by
Lemma 7.6 the set {z; Vv = 0} is open-closed.

(2) This result may be proved in the same way as in the case of A =TM, i.e. as the
formula (3), see also Example 2.6 from Chapter 1.

Proposition 7.7(1) generalizes observation (ee) from section 2.1.

Proposition 7.8. Let £ be a line bundle and fix an isomorphism ¢ : £ Q& — M x R. Let
us assume that ¢ transforms a given A-representation V : A — A (§) to A-representation

04 for a closed 1-form w € Q' (A) . Then there exists a linear isomorphism
Hiyorow (A, QY ® &) = HE T (A, 6)"

In particular
Hporgy—o (A, Q% @ &) = Hy " (A, 6)".

Proof. Consider the multiplication by reals
p:QY X (M xR)— Q.
p is compatible with (D" 9%, (D")*). The canonical nondegenerate pairing

FrQieixE—Q7 08¢
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is compatible with (D" ®@ V,V, D @ V ® V), so the composition
n or F or WdRp ~or P or
FoQie@éx—=Qi @l — Q% @ (M xR) = Q4
is compatible with (D" @ V,V, (D°")*) which implies that it is also compatible with
(D" ® V=, V, D). Therefore, for each point = € M, the pairing F, : Q% , ® &, X { —
%+ is compatible with the representations ((DO’" ® V*“’)I , Vi, D;’”*) of the isotropy
Lie algebra g, in the vector spaces Q% , ® &;, &z, QY ., respectively. From this it follows

that the differentials dporgy-w)t, dot, dpory+ fulfil condition (6) from Lemma 3.1. Of
course, d( poryt = diraq ® 1d satisfies condition (3) from the mentioned lemma. Since

AN:Ngr @ (QF, ®&) x A" gl @& — A'gh @ Q% ,
is nondegenerate, the generalized Chern-Hirzebruch-Serre Lemma 3.1 asserts that induced

pairing in cohomology

i or n—i n ory 1-(7:2)
H(Dor®vfw)+ (g7 QA ® 5) X HV"F (g7 E) - HDOTJ" (g7 QA) — or (M)

is nondegenerate at every point x € M. The fundamental Theorem 4.4, see also Conclu-
sion 6.1, shows that the pairing

Héor(g)vfw (A7 QZT ® f) X Hg:gnij (A7 6) - HEOJ’;?C (A7 Q%)

is nondegenerate. This ends the proof.

Conclusion 7.9. If¢ is not isomorphic to Q% (i.e. £ is not isomorphic to A"g®or (M),
see (31), then for an arbitrary connection V : A — A (§) we have HG ™ (A, &) = 0.

Proof. If ¢ is not isomorphic to Q9 the vector bundle Q9 ®¢ is not trivial so Proposition
7.7 gives Hor oo (A, Q% ® &) = 0. Proposition 7.8 proves our theorem.

The next theorem is one of the importest theorems of the paper. Compare this
theorem and Theorem 7.3 with Theorem 5.4 form [10].

Theorem 7.10. For a line bundle & and a representation V : A — A (&) the following

conditions are equivalent:

(a) HZ™ (4,€) 0, |

(b) HZT" (A, &) = R and the pairing H7 (A) x HZ "7 (A§) — HZI (A &) 2 R is
nondegenerate, i.e. H7 (A) = (H@l’i"_j (A4,9)",

(c) (&V)~(QF, D).

Proof. (¢) = (b) by Lemma 7.2, (b) = (a) is evident.
(a) = (c). Let Hy " (A, &) # 0. By Conclusion 7.9 £ = Q9. It remains to compare
the representations. Consider then a flat bundle (£ = Q%, V) and any linear isomorphism

QA®QY - M xR, VOV~
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By Proposition 7.8
Hyry-o (A, Q% © QF) = HEE" (A.QF) # 0,

therefore there exists a nonsingular global section v € I' (QY ® Q%) which is D" @ V~¢-
constant. Additionally, V®V ~ ¢4 implies V® V™ ~ d4 which means that there exists
a second nonsingular section v/ € I' (QY ® Q%) which is V ® V~“-constant. The bundle
Q% ® QY is 1-dimensional, so v/ = f - v for a nonsingular function f € C* (M) . Write
locally v = v, ® v, for nonsingular sections v/, v, of Q% . Then

0= (D" V*‘”)V (v) = DI (v,) @ va + 1V, @ V¥ (V)

0= (V@V*“’)V(fm) =V, (f V) @Va+ -V, @V ¥ (V).

Multiplying first equation by f and then substracting the second we get

(f DT () = Vo (f ) @ va = 0.

The nonsingularity of v, yields the equation f - DI (v,,) = V. (f - v/,). The bundle Q%
is 1-dimensional, so

f-D3(v) =V, (f-P) (34)

for all v € T' (Q9%) . Define a linear isomorphism
QY = Q%, v— f 1.

By (34) one has that (Q%,V) ~ (Q%, D).

7.4 Characterization of transitive Lie algebroids with Poincaré duality

The last aim is to characterize two classes of transitive Lie algebroids.
(1) ng:cn (A) # 0 - the top group of real compact cohomology is not trivial.

This condition is equivalent to (Q9%, D) ~ (M x R,04). These classes fulfil the
Poincaré duality: the pairing

HI (A) x H™=9 (A4) — ™" (A) = R

is not degenerate, see Theorem 7.3, i.e. H’ (A) = (H™™ 7 (A))".

(2) Hg%;t? (A,or (M)) # 0 - the top group of or (M)-valued compact cohomology is
not trivial.

This condition is equivalent to (Q9%, D) ~ (or (M),0% ). In this class the multipli-
cation of cohomology classes

HY (A) x Hgol 777 (A or (M) — Hpi (A, or (M) 2 R

is not degenerate, see Theorem 7.3, i.e. H7 (A) = (Hg%iz_j (A4))".
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Before the characterization of these classes we reduce the Evens-Lu-Weinstein re-
presentation (Q9, D°") to equivalent simple form (only for transitive Lie algebroids of
course). We recall that the adjoint representation ads : A — A(g) induces a top-power
representaion ady® : A — A (A'Pg) by

(adifp)v (o1 Ao Noy) = Zal AN AN[v, o] ANy = Zaﬁ o1 N Noy,

% 7
where [v,0:] =3, al - o;.
Lemma 7.11. There exist isomorphisms of flat vector bundles

(Qa, D) = (A*"g, ad")
(Q%, D) = (A*Pg @ or (M) ,ady” © d) .

Proof. It is necessary to show the first assertion, because the second follows from first
by tensor product with or (M). Fix arbitrary a connection A : TM — A and a linear
isomorphism

K: A" A® AT M <2 A"g @ A"TM @ A"T*M - A"g
EANAMX Qe X Rpr—e- (X, ).

Taking a local basis oy, ...,0, of g, Wi, ..., W, of T'M and the duals Wy, ..., W we
see that K (oy A . Aoy AMWLA L AMV,, @WENA .. AW) =01 A...Aa,. To prove our

lemma it is necessary to show the compatibility D S ad’y on these nonsingular sections
only, i.e.

(ady), (01 Ao Now) =K (Dy (01 Ao Aoy AXWLA o AXW, @ WA o ATV))

Let [y,0i] = X0l - 05, [v, AW;] = 32,05 - o + 35,05 - AW, then [#4 (7), W] =
>, U5 - AW,.. The right side of the above equation is equal to
IC(Za§-al/\.../\an/\Awl/\.../\AWm®Wf‘/\.../\W§L+
FOrA LA AY DAV A L AAW, @ WA AW+
0L A AT AN A AAW, @ (= D B WA LA W,;';)
:/6(Za;i-0—1A...Ao—nmwlA...AAWm®W;‘A...AW,;)
= al- (K(o1 A AGy AXWIA L AAW, @ WE A AW))
= (adZ)ﬁ/ co1 N N Oy

Conclusion 7.12. (1)

HI (A £0 <  (Ag@or(M),ady®07) ~ (M x R,d4),

da,c
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(2)
Hé”%if’g (Ajor (M)) #0 <— (A"g®or(M),ady® dY) ~ (or(M),07).

The following proposition generalizes Proposition 2.2. The proof is analogous.

Proposition 7.13. For a representation V : A — A (&) in a line vector bundle £ the
following conditions are equivalent:

(a) (§,V) ~ (or (M), 0%),

(b) (E@or (M), V®IF)~ (M XR,04).

In the sequel we need the notion of a modular class of a Lie algebroid [19], [4]. Firstly,
we recall the characteristic classes of a representation V : A — A({) in a line vector
bundle . If ¢ is trivial as a line bundle and s € I' (£) is a nonsingular section of £ we
define a 1-cocycle § € Q' (A) with respect to da defined by V. v = 6, () - s. The class
Oy = [0] € H' (A) is independent on the choice of s and is called characteristic class of
A associated to the representation V. For a general &, we define 0y = %wa (Ve Vv
is a flat representation in trivial line bundle £ ® £). We add that if £ is trivial, the last
equation holds.

For next propositions and theorems we need the following lemma.

Lemma 7.14. If £ is a line bundle and {¢.} is a collection of local trivialiations with
the transition functions Aog : Uy X Ug — R, @ = @4 - A\ap, then there exist functions
fa > 0 such that the local trivializations

%Z%'fa

(Paw = Paw* fa(T)) have transition functions A,s = sgn Aags.

In conclusion, each line bundle & possesses a system of local trivializations with trans-
ition functions equaling to £1 and then a family {s,} of nonsingular £sections i.e. with
transition functions equaling just to £1.

Proof. Consider a line bundle ¢ with a collection of local trivialiations {¢,} and trans-
ition functions A\,g. The tensor product £ ® ¢ is a trivializable vector bundle with local
system of trivializations {¢, ® ¢, }. Choice a global trivialization p : ¢ ® £ — M x R
such that p, := p (¢a @ o (1 ® 1)) > 0. We put

1
V/Pa

> 0.

fa:

We show that {f,} is a required family. The transition functions A,z for the collection
fs

of new local trivializations {@, := ¢, - fa} are equl to Xag = Aog - o 80 that sgn Xm =

- 2
sgN Agg. On the other hand, pg = p (s @ s (1@ 1)) = X2;- pa 50 X235 = <)\a5 : ;—5) =

)\iﬁ . Z—; = 1 and next ‘5\065‘ = 1. Finally \o5 = sgh Aos = g Augs.
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Lemma 7.15. For an arbitrary line bundle & the characteristic class 6g of a representa-
tion V : A — A (&) can be computed via any family of local nonsingular +sections {s.}
(see Lemma 7.14) of € in the following way: the 1-differential A-form 6 € Q' (A) defined

by
0 (7)|UQ Sa = VW (Sa)

1s a correctly defined da-cocycle and its cohomology class is equal to Oy. Oy = 0 if and
only if there exists a family of local nonsingular V-constant +sections {s,}, Vso = 0.
For transitive Lie algebroid A if Oy = 0 then V™ =0, so the isotropy Lie algebras g, are
unimodular.

The simple proof will be omitted.

We have 0per = 0. The modular class of a Lie algebroid A is by definition the charac-
teristic class 64 of the associated representation D : A — A(Q4). According to Lemma
7.11 for a transitive Lia algebroid A we have 04 = 0447 where ad : A — A(A"g) is the
representation induced by the adjoint one ady : A — A(g) .

For real coefficients we have the following characterization of Lie algebroids in the
case of the nontriviality of the top group of cohomology. Let {(U,,z,)} be a coordinate
open cover for the manifold M, with transition functions g,3 = 24 © x;l. Each map x,
determines canonically a local trivialization z, of the line bundle A™T M and the family
{Z,} has the transition functions J (gag) .

Theorem 7.16. The following conditions are equivalent

(a) Hy' ! (A) # 0,

d4,c

(b) Hgl}c" (A) 2R and H (A) is a Poincaré algebra, i.e. the pairing H? (A)x H™ "7 (A)
— H™" (A) 2 R is nondegenerate, HI (A) = (H™ "7 (A))",

() (QF, D) ~ (M x B,0),

(d) (AN"g@or(M),ad} @ 0Y) ~ (M xR,04),

(e) (A"g,ad) ~ (or (M),09), that is the holonomy homomorphism of (A"g,ad’}) is
the same as for the orientation bundle (or (M) ,0%) .

(f) A is orientable vector bundle and 64 = 0 (in particular, g, are unimodular).

Proof. (a) <= (b) <= (c) follows immediately from Theorem 7.10 for
(&,V)=(M xR,0,),

(¢) <= (d) by Lemma 7.11,

(d) <= (e) see Proposition 7.13,

(e) = (f) indeed, 04 = Ouan = Opor = 0. The bundle A" A = A"g @ A"TM =
or (M)® A™T M is trivial line bundle because it possesses a local system of trivializations
with positive transition functions |J (gas)| -

(f) = (e) It is necessary to find a local system of nonsingular ad’j-constant sections
{04} of A™g with transition functions sgn J (gas) -

Fix a system of local trivializations {1, } of A™*"A with positive transition functions
Yap > 0. We can choose a system of local trivializations {p,} of the line bundle A"g
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in such a way that ¢, ® z, form a system of local trivializations of the line bundle
AT A > A"g @ AT M compatible with {1}, i.e. such that

SDa@i'a:ga'wom ga>0-

This implies that the transition functions A,z of the system {¢, } have the sign of J (gaz) -
Indeed,
_ 90a®ja')\aﬁ'<](gaﬁ):¢a'ga'Aaﬁ'J(gaﬁ)a
s &I =
Vg 98 = Vo Yap * Ip-

Therefore, since g,, gg and 7,4 are positive we have o5 - J (gap) > 0, i.e.

sgn )‘aﬂ = sgn J (gaﬁ) :

By Lemma 7.14 there exists functions f, > 0 such that the local trivializations
Pa = Pao - f a

(Pae = Paz * fo (z)) have transition functions A,s = sgn Aus = sgn J (gas) . The family
of +sections 7, = @, (1) determine a 1-cocycle § € Q! (A) with respect to da defined
by 0 (V) y,, - 0a = (ad}), (04) whose cohomology class is the characteristic class of the
adjoint representation ad’, [0] = Oadz. Since Hadﬁ =04 = 0 one has 6 = d,f for some
function f € C* (M), i.e.

0(7) = (daf) (7) = Ogaen [

Put o, = ¢/ - 5,. Then the transition functions of {o,} are equal to sgn J (g,s) and the
sections o, are ad’j-constant.

In case of oriented manifold the above theorem yields:

Theorem 7.17. If M is a oriented manifold then the following conditions are equivalent

(a) Hy' " (A) # 0,

dac
(b) Hg“}cn (A) 2R and H (A) is a Poincaré algebra, i.e. the pairing H? (A)x H™ "7 (A)
— H™7 (A) 2 R is nondegenerate, H7 (A) = (H™ "7 (A))",
(c) (A"g,ad’) ~ (M x R,04), i.e. there exists a global nonsingular section ¢ € T (A"g)
which is ad’y-constant, that is, A is a TUIO-Lie algebroid, see [13],

(d) g is orientable and 04 = 0.

The independent proof of the implication (¢) = (b) one can be found in [13].
Finally we give a characterization of Lie algebroids whose the top group of cohomology
with coefficients in the orientation bundle or (M) is not trivial.

Theorem 7.18. The following conditions are equivalent:
(a) H2 (Asor (M) 0,
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(b) Hg?,? (A,or (M)) =2 R and the pairing
HY (A) x Hgp ™7 (A, or (M) — Hpi (A,or (M) = R

is not degenerate, i.e. H7 (A) = (Hg;?*j (A or (M))),

(¢) (QF, D7) ~ (or (M), 07),

(d) (A"g @ or (M), ady @ 0F) ~ (or (M), 07),

(e) (A"g,ad}) ~ (M xR,0,4),

(f) g is orientable and there exists a global nonsingular section ¢ € T (§) which is ad’-
constant (i.e. A is a TUIO-Lie algebroid, see [15]),

(g9) g is orientable and 0,4 = 0.

Proof. Only the implication (d) = (e) needs a proof. Since
(or (M)®or(M),09 ®0%) ~ (M xR,04)
one has

(A"g,ad’y) ~ (A"g @ or (M) ®or (M) ,ad} @ 0F ® 0F)

W (or (M) & or (M), 07 © 07)

N(MXR,@A).

For an orientable manifold we get Theorem 7.17.

7.5 Remarks on Example 5.3 from [4].

In the cited paper there is an example of nonregular Lie algebroid for which the E-L-W
cohomological pairing is not necessary nondegenerate. In the text of Example 5.3 from [4]
there are some inaccuracies (concerning dimensional of the group of cohomology) which
we remove here. We prove additionally that there is no line representation for which
the cohomological pairing is nondegenerate and we prove that the E-L-W representation
is not exceptional. The example is the Lie transformation algebroid A = gx M — M
associated with the infinitesimal action v : g — X (M) of a finitely dimensional Lie
algebra g on a manifold M. The anchor is given by p (v,2) = v (v), , and Lie bracket by

[a,0] (z) = [a (), b(2)] + 7 (a (2)), (b) =7 (b(z)), (n),

a,b € C*(M,g) =T (gx M) and € M. The vector field X = 2V on R (N € N)
defines an action of the 1-dimensional Lie algebra ¢ = R on M = R by v : R —
X(R), v(t) =t-X. Let A be the transformation Lie algebroid associated with . Then
[(A) =C*R), #, : Ay, =R > T,M, t —t- -2V L Ja,b] =2V (a-V—b-d),
0% (4) =C*(R),

QM (A) =T (A") =C>* (R,R*) = Q' (R) 2 C* (R), fdx+ f, (35)
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and, clearly, Q2 (A) = 0.
Lemma 7.19. H' (A) 2 RY.

Proof. By definition d4 : C® (R) — Q' (A) 2 C* (R), da (f) (a) = # (a) (f) = a2V f/,
and therefore d (f) = 2™ - f' and

o'(A) =0 (R)/{IN.J“, receomy = €7 (R>/xN-C°<>(R) ~R".

Indeed, the classes of functions 2°, 2!, ..., 2V ! form a basis of C* (R) /e oo (w) DeCAUSE the

classes are linearly independent and for any f € C* (R) the equality [f] = Zf\gol ay [x"”}
_ M0

holds where aj, = 7.

Proposition 7.20. For each linear representation V : A — A (§) we have (1) HY . (A, €) =
0, (2) HY, (A,€) £ 0.

Therefore, for each representation V of A in a line bundle & the cohomological pairing
H'(A) x HY (A, &) — HY (A, £) is not nondegenerate even in a weak mannert.

Proof. (1): The line bundle £ over R is trivial £ = M xR (M = R) so each representation
V:A— A€ is of the form V = 94 for some 1-form w € Q' (A). Let w(a) = g-a for
g € C*(R). Then (0%), (f) = (0a), (f) +w(a) - f=a 2™ f'+a-g-fand

HE (A8 ={feC®R); a" f+g-f=0}=0.

by the uniqueness of the Cauchy problem for the differential equation y’ = —% .

(2) Hy (A, €) = CF (R) run o1 g p ey 7 0- To prove this we find a compactly
supported function h € C2° (R). such that the differential equation

Ny +g-y=nh (36)

has no global solution y € C° (R).

Case g (0) = 0. For any h such that h (0) # 0 there is no solution of (36).

Case ¢ (0) # 0. Let |g (z)] > 0 > 0 for |z] < e, e > 0. Take any function h € C2° (R)
such that h > 0, h # 0 and supph C [«, 5] C (g,00). The elementary theory of linear
differential equations [the formula solving the Cauchy problem in the form of denoted
integrals| yields easily that no global compactly supported solution of (36) exists.

Consider the E-L-W representation D : A — A (Q4) .. We see that Q4 = A ®@ T*R =
MxR[M=R]sol(Qa) =T(A)@Q(R) =2 C®(M) by 1® fdr — f and that
D is equivalent to 94 for w = (2 ), (with respect to isomorphism (35)). According to
Proposition (7.20) the top group of cohomology of A for trivial and for E-L-W repre-
sentations are nontrivial. We prove that this representations are not isomorphic so the

E-L-W representation is not exceptional.

¥ A pairing F : V x W — U is called weakly non-degenerated if both null spaces Ny = {v € V; F (v,-)}
and Ny = {w € W; F (,w)} are zero
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Proposition 7.21. The A-flat line bundles (M x R,04) and (Qa, D) [M = R] are not
1somorphic.

Proof. Let ¢ : M xR —@Q 4 be a linear homomorphism compatible with d4 and D. ¢ is of
the form ¢ (f) = 1®g- f-dx for some g € C* (M) . The equality D, (¢ (f)) = ¢ ((0a), [f)
yields a - (2 - fg)/ =a-aV - f'- g, therefore (2% - g), = (0 which produces ¢ = 0 and that
© is not an isomorphism.
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