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1. Many problems of the classical global differential geometry can be consid-
ered from the unifying point of view of the theory of connections in principal fibre
bundles. Differential geometry of higher order has been developing since the begin-
ning of the 50’s. It examines objects which locally depend on partial derivatives of
higher order, for example: higher order connections, G-structures of higher order,
pseudogroups. The first construction of higher order was the osculating spaces to a
curve f : (a,b) — R3. Many notions describing these objects have the form of differ-
ential operators, called now the Lie equations. Inquiries made by Ehresmann, Que,
Spencer, Pradines, Kolaf, Kumpera and others gave one view including all these
problems, namely, the theory of the Lie groupoids and the Lie algebroids. The
useful and indispensable technique is the jet theory. Notion of the Lie groupoid
associated with a principal fibre bundle was introduced by Ehresmann in 1950.

2. The differentiable groupoids are from the formal point of view the general-
ization of the Lie groups. Many ideas and methods are derived from this fact. For
example, the algebraization similar to that one of Lie groups is possible.

According to Ehresmann’s idea every principal fibre bundle P (M, G) determines
a certain Lie groupoid consisting of the diffeomorphism of a fibre into another
fibre. The algebraic structure in the groupoid is automatically determined by the
composition of these diffeomorphisms. This groupoid is denoted by PP~1. A Lie
groupoid consisting of linear isomorphisms of a fibre into a fibre can be associated
with any vector bundle E. This groupoid is denoted by 7 (E). Ngo Van Que in
1967 formulated a precise abstract definition of the Lie groupoid.

Definition 1. Lie groupoid is a collection ® = (i’, (a, B), M, ) in which we have:

a) the space of the groupoid, <i>, it is a manifold of class C'*° with countable basis,

b) the connected manifold of units, M,

c) the mapping "sources”, « : d — M, and "target”, B : d — M, they are
surmersions (surmersion=submersionéonto),

d) the partial multiplication, - : D — &, where D = {(h,g);3(g) =« (h)} is a
submanifold of the manifold d x <i>,

e) the algebraic structure is a structure of the groupoid in the sense of Ehres-
mann,

f) condition of transitivity that means: (a, 3) : & — M x M is surjective.
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The set ®(, . of the elements h € & such that o (h) = B (h) =  is called the
isotropy group of the Lie groupoid ® over z. It is a Lie group.

The unit of the Lie group @, ,) is called the unit of Lie groupoid over the
point z. The Lie group is the Lie groupoid with one-element manifold of the units.

For every x € M Lie groupoid ® = (i’, (o, 8), M, ) determines a principal fibre

bundle &, in the following way: the set ®, consists of the element h € & such that
a(h) = z. ®, is a submanifold of M. The projection v : &, — M is determined by
the formula v = 3|®,, the Lie group ®(, ,) is taken and the action of this group
on ®, is determined by the formula - (h,g) = h - g. One of the most important Lie
groupoids is ¥ (M), the Lie groupoid of all invertible k-th order jets of manifold M.
This groupoid determines a principal fibre bundles L* (M) of the k-order frames of
manifold M.

a) G-structure on the manifold M is a subbundle of the bundle L' (M). It de-
termines a Lie subgroupoid of the Lie groupoid 7! (M). Similarly G-structure
of higher order are defined.

b) Let I’ be a pseudogroupe of a local diffeomorphisms of the manifold M. Let
j*T be a set of the k-order jets of elements of T'. If a natural number k exists,
for which the set j*T is an analytic Lie subgroupoid of the Lie groupoid 7% (M)
and T is the set of all solutions of j*T', then I is called a Lie pseudogroup.

3. Miss Libermann in 1959 showed essential relations between the Lie groupoid
7% (M) and a vector bundle J*¥ (T M) of k-order jets of the vector field on the
manifold M.

There is one-to-one relation between the cross-sections of the vector bundle
J¥ (T M) and right-invariant vector fields on the Lie groupoid 7% (M). The right-
invariant vector fields are determined on every Lie groupoid. It is easy to state that
a right-invariant vector field is uniquely determined by the values at the units.

4. The structures on the vector bundle .J* (T'M):

a) We take the vector space C*° (J* (T'M)) consisting of all global sections of the
bundle J* (TM). We take two sections ¢ and n belonging to C*° (J* (T'M)).
These & and 7 determines a right-invariants vector fields £’ and ' on the mani-
fold 7% (M). The bracket [¢’,1'] of this vector fields is a right-invariant vector
field, too. This determines a global section of the vector bundle J* (T M),
which is denoted by [£,n]. We obtain the R-Lie algebra structure in the
space C* (J* (TM)).

b) We define the morphism B, : Jk (TM) — TM by the formula B, (j§9) =
6 (x). Then

(1) B, is an epimorphism,
(ii) C* (B*) : C® (JH(TM)) — C>(T'M) is a R-Lie algebra homomor-
phism. Which means that

(3.0 Beon| = Bolg] for &neC™ (S5 (TID),

(i) [&,f - n] = £ - L&) + (B-0€) (f) - m for & € C (J* (TAD)) and
fec™®(M).
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The object (Jk (T™m), [, ']],5*) is called the Lie algebroid of the Lie groupoid
7% (M) (the notion was defined by J.Pradines).

5. J.Pradines constructed a similar object for an arbitrary Lie groupoid & =
((ia(aaﬁ) 7M7 )
Let us consider the vector bundle ¢* (T“é), it is first — the vector subbundle

T*® C T of the tangent bundle T consisting of the a-vertical vectors and pull
it back by imbedding i : M — ®. Algebraic structures can be introduced easier
than in the case of 7% (M).

a) a global section of the vector bundle i* (T“é) is an a-vertical vector field

which is defined on the units 1., z € M. The vector field is uniquely extended
to globally defined right-invariant vector field on the ®. We introduce the R-

Lie algebra structure on the vector space C*° (i* (T“é)) consisting of the

global sections of the vector bundle i* (Ta(i). Let us consider two sections
&,n and we take the bracket [¢',n'], where &', are the right-invariant vector
fields for which ¢’ (1,) = ¢ (z) and 0’ (1) = n(z). We put [¢,7] = [¢', '] | M.
b) We define the morphism £, : i* (T“é) — TM by the formula 3, (v) = . (v),
where 3 : d— Misa mapping ”target” in the Lie groupoid ®.
We obtain the object (i* (T“é) I -]],B*). It is a Lie algebroid of the Lie
groupoid ®.

Definition 2. [Transitive] Lie algebroid is a collection (E,[-,-],7) in which

a) E is a vector bundle over the manifold M,

b) [,] : C®(E) x C®(E) —» C*® (E) and (C* (E),[-,]) is a R-Lie algebra,

c) v:E — TM is an epimorphism such that C*® (y) : C® (E) — C* (T'M) is
R-Lie algebra homomorphism,

d) if o,7 € C® (E) and f € C*® (M), then

[o.f-ml=f-lo,rl+(yeo)(f) T

6. Let us consider ® a Lie subgroupoid of the Lie groupoid 7% (M). It de-
termines a certain subbundle of the principal fibre bundle L* (M). We take the
linear isomorphism A, : .J* (TM)‘I — Ty, (7* (M),) defined by Libermann by the
formula X, (j%0) = 6* (1,) where 6% is k-th prolongation of . We put E, =
Aa) [Tlm (ti)], we obtain the vector subbundle E of J* (T'M). The right-

invariants vector field on the groupoid 7% (M) tangent to submanifold  determines
a global section of the bundle E and conversely. The bundle E has the following
properties:
(a) B*|E : E — TM is an epimorphism,
b) [¢,n] € C* (E) for £,n € C*® (E), that is C* (E) is a Lie subalgebra of the
Lie algebra C> (J* (T M)).
Conversely, if E C J* (T M) is a vector subbundle which has properties a) and
b) then there exists exactly one the Lie subgroupoid of the Lie groupoid 7% (M)
such that it determines the subbundle E. The vector subbundle E C J* (T M) for
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which the property b) hold is called a Lie equation. Their theory is a well developed
owing to work of Malgrange, Kumpera, Spencer, Goldschmidt, Que and others.

Example 1. (1) Let A be m-dimensional vector subbundle of the tangent bundle
TM and let us assume n = dim M. It determines a G-structure consisting of
frames (v1,...,Vm, Vmy1,..,Vn) € L (M), for which (vy,...,vy,) is the basis A,
x € M. This G-structure determines a certain Lie subgroupoid of the Lie groupoid
7t (M). This Lie subgroupoid determines the vector subbundle E C J' (T M) for
which

B = {ja0; (Lo€) () € Ay, £, € C®(TM), z € M}.
(2) Let q be a metric tensor on the manifold M and P be a corresponding to it
O (n)-structure. Thus

E = {ji0; (Loq)(z) =0,0€ C™(TM)}.

7. Let us consider a connection I' in principal fibre bundle L (M). T" determines
a covariant derivative, V, in the vector bundle TM. V determines the differential
operator of the order one by the formula

V(e)=(r—V,0), for 1,0 € C* (TM),
so V determines a linear morphism
§:JY(TM) — Hom (TM,TM).
It is a splitting of the exact sequence

0 — Hom (T'M,TM) — JH(TM) — TM — 0.
8

§ determines a splitting C': TM — J! (T'M), which is an interpretation of connec-
tion in terms of jets. C' is a homomorphism of the Lie algebroid if and only if a
covariant derivative V has a curvature 0.

8. The Lie groupoid ® determines the second very important object, namely,
the groupoid S-admissible a-sections 'y 10c (M, ®). It consists of such local sections

o: My — $ of the surmersion & %+ M for which U’ = B0 ¢ [U] C M is an open
set and B oo : Mjy — My is a diffeomorphism.

The set of the unit of the groupoid I'y 1oc (M, ®) is a topology of manifold M. The
unit 1y over the point U € Top M is a mapping 1y = (M|U S 1, € é) Let
Ty (M, ®) be a isotropy group of the groupoid Iy j0c (M, ®) over the unit M. The
partial multiplication is defined by the following way: if o : M|y — d, r: M, = d
belonging to I'y 1oc (M, ®) and Bo o [U] = U’, then 7-0 : M;y — ® is defined by
the formula

(r-0), = TBoc(z) " Ozs T € U.
The importance of the notion of the groupoid 'y 10c (M, @) is based on the fact that

9

there is one-to-one correspondence between a local sections of the bundle 7* (T“(P)

and a local smooth 1-parameter subgroups of the groupoid I'y 1oc (M, ®).
Let us explain it on the example of global complete sections of the bundle

i (T‘l(i)). Let £ : M — * (T“i)) be a global complete section of the bundle
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. (T“é). A global section £ of the bundle i* (T‘“i)) is complete if the correspond-

ing right-invariant vector field £ on the groupoid @ is complete. Let ; : ® — d be
a global one-parameter subgroup of diffeomorphisms, which generates the vector
field ¢'. We put Expté = ¢ro0i: M — 3.

Exp ¢ is a f-admissible a-section. It is an element of the group 'y (M, ®). It
has the following properties:

(i) R>t— Expté € Ty (M, ®) is a homomorphism of the additive group R into
the group I'y, (M, ®).
(i) M x R 3 (z,t) = (Exptf) (z) € & is a smooth mapping.
Conversely, every group homomorphism = : R — Ty, (M, ®) such that the map-
ping M x R 3 (z,t) — = (t) () € ® is smooth is determined by exactly one global

9

complete section of the bundle * (T“<I>). Then E= is called a global smooth one

parameter subgroup of the groupoid 'y joc (M, @).

v

9. Let C§° (i* (T“@)) be a set of global section with compact support. Every
such section is complete. The exponential mapping on the Lie groupoid is the
mapping

Expg = (030 (z (T%)) 5 ¢ Explé € T (M, <I>)) :

This mapping was defined by Kumpera in 1971. The following theorem can be
proved:

Theorem 1. Let&y,...,&m € C§° (i* (T“i’)) be sections such that they are a basis

of bundle i* Te®) over an open set U contained in M. Then, for every point xg €

U, there exist: open neighbourhood U,, C R™ containing 0 and open neighbourhood
U' C U containing xo such that the mapping

m
Exp = (Um xU'> (al, ..,am,z) — (Epoai §z> (z) € <i>>
i=1
is a diffeomorphism onto an open set in d.

10. Using this theorem it can be proved that

Theorem 2. A Lie subgroupoid ¥ of the Lie groupoid ® is a topological subspace
if and only if ¥ is a closed set.

Besides, the following theorem holds.

Theorem 3. If A is the Lie algebroid of the Lie groupoid ®, then every Lie subalge-
broid A’ C A determines exactly one connected Lie subgroupoid of the Lie groupoid
D,

Using the properties of the exponential mapping the following theorems can be
proved:

Theorem 4. If ¥ is a Lie subgroupoid of the Lie groupoid ® then
o (z (T“\if)) - {5 € O (z (T“(f))) . (Exptt) (2) € U for (z,t) € M x ]R} .



6 JAN KUBARSKI

The following theorem was proved in a quite complicated way by N.V.Que in
1969.

Theorem 5. If A and A’ are the Lie algebroids of trivial Lie groupoids ® and
@', then every homomorphism o : A — A’ of these algebroids determines local
homomorphism of the Lie groupoids F' : ®|; — ®', where U is some open set
containing all units.

Using the above theorems one can prove a stronger theorem for any Lie groupoids
(non necessary trivial). The proof is simpler.

Let v: A — A’ be a homomorphism of the Lie algebroids and let A = i* (T‘l(i)),

A =q* (TO‘@'). We put
A={(v,y(v)) e ABA"; ve A}
where A B A’ is the Whitney product of the Lie algebroids A and A’. Let ¢ be
a connected Lie subgroupoid of the Lie groupoid ® H ®' (where ® B &' is the
Whitney product of the Lie groupoids) such that its Lie algebroid is equal to .
The projection wy : ® B ® — & is a homomorphism of the Lie groupoids. We put
wy =wile. If v €d* (T‘I(i))l then wi (v, (v)) = v, so
T

(@ile)a, :To (&) — T, (&)

is a linear isomorphism.
It is easy to see that

(W), 1, (8) — T, (q»)

is a linear isomorphism. Therefore w| is a diffeomorphism in a neighbourhood
of every unit 1., z € M. Consequently, there exists a neighbourhood ©® C £
which contains all units and such that «! : © — & is a diffeomorphism onto
an open set 0 C 3. wi is a local isomorphism of the Lie groupoids. We put

F =wyo(w))™" : Q0 — & It is the required local isomorphism of the Lie groupoids.

11. In the Lie group theory is known Yamabe’s theorem. It is interesting
whether the analogous theorem in the Lie groupoid theory holds. Namely:

Conjecture 1. Let ® be a Lie groupoid and U its subgroupoid (in an algebraical
sense). Then the subset H C ® consisting of the elements h € d for which there
ezists a global smooth 1-parameter subgroup = of the groupoid Ty 10c (M, ®) for
which 2 (t) (z) € ¥ for (z,t) € M x R and E(to) (xo) = h for certain zo € M,
to € R, is a Lie subgroupoid.

It seems that the technique necessary to examine this hypothesis will be a suitable
version of Campbel-Hausdorff’s formula.

In the Lie algebra theory is known the theorem of Ado: Every Lie algebra admits
the linear exact and finitely dimensional representation. It is interesting whether
the analogous theorem in the Lie algebroid theory holds.
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