Hirzebruch signature operator for transitive Lie algebroids

Jan Kubarski
Institute of Mathematics, Technical University of Łódź, Poland
E-mail: kubarski@p.lodz.pl

Abstract

The aim of the paper is to construct Hirzebruch signature operator for transitive invariantly oriented Lie algebroids.

Keywords: Lie algebroid, Hirzebruch signature operator, *-Hodge operator, elliptic complex, invariantly oriented Lie algebroid. MS classification: 58A14, 58J10.

1. Signature of Lie algebroids

1.1. Definition of Lie algebroids, Atiyah sequence

Lie algebroids appeared as infinitesimal objects of Lie groupoids, principal fibre bundles, vector bundles (Pradines, 1967), TC-foliations and nonclosed Lie subgroups (Molino, 1977), Poisson manifolds (Dazord, Coste, Weinstein, 1987), etc. Their algebraic equivalents are known as Lie pseudoalgebras (Herz, 1953) called also further as Lie-Rinehart algebras (Huebschmann, 1990).

A Lie algebroid on a manifold M is a triple

$$
A=\left(A, \llbracket \cdot, \cdot \rrbracket, \#_{A}\right)
$$

where A is a vector bundle on $M,(\operatorname{Sec} A, \llbracket \cdot, \rrbracket)$ is an \mathbb{R}-Lie algebra,

$$
\#_{A}: A \rightarrow T M
$$

is a linear homomorphism (called the anchor) of vector bundles and the following Leibniz condition is satisfied

$$
\llbracket \xi, f \cdot \eta \rrbracket=f \cdot \llbracket \xi, \eta \rrbracket+\#_{A}(\xi)(f) \cdot \eta, \quad f \in C^{\infty}(M), \xi, \eta \in \operatorname{Sec} A
$$

The anchor is bracket-preserving, ${ }^{12}$

$$
\#_{A} \circ \llbracket \xi, \eta \rrbracket=\left[\#_{A} \circ \xi, \#_{A} \circ \eta\right] .
$$

A Lie algebroid is called transitive if $\#_{A}$ is an epimorphism.
For a transitive Lie algebroid A we have the Atiyah sequence

$$
0 \longrightarrow \boldsymbol{g} \hookrightarrow A \xrightarrow{\#_{A}} T M \longrightarrow 0,
$$

$\boldsymbol{g}:=\operatorname{ker} \#_{A}$. The fiber \boldsymbol{g}_{x} of the bundle \boldsymbol{g} in the point $x \in M$ is the Lie algebra with the commutator operation being

$$
[v, w]=\llbracket \xi, \eta \rrbracket(x), \quad \xi, \eta \in \operatorname{Sec} A, \quad \xi(x)=v, \eta(x)=w, \quad v, w \in \boldsymbol{g}_{x}
$$

The Lie algebra \boldsymbol{g}_{x} is called the isotropy Lie algebra of A at $x \in M$. The vector bundle \boldsymbol{g} is a Lie Algebra Bundle (LAB in short), called the adjoint of A, the fibres are isomorphic Lie algebras.
$T M$ is a Lie algebroid with $i d: T M \rightarrow T M$ as the anchor,
\mathfrak{g}-finitely dimensional Lie algebra - is a Lie algebroid over a point $M=$ $\{*\}$.

1.2. Cohomology algebra, ellipticity of the complex of exterior derivatives $\left\{\boldsymbol{d}_{A}^{k}\right\}$

To a Lie algebroid A we associate the cohomology algebra $\mathbf{H}(A)$ defined via the DG-algebra of A-differential forms (with real coefficients) ($\left.\Omega(A), d_{A}\right)$, where
$\Omega(A)=\operatorname{Sec} \bigwedge A^{*}$, - the space of cross-sections of $\bigwedge A^{*}$

$$
\begin{aligned}
& d_{A}: \Omega^{\bullet}(A) \rightarrow \Omega^{\bullet+1}(A) \\
&\left(d_{A} \omega\right)\left(\xi_{0}, \ldots, \xi_{k}\right)=\sum_{j=0}^{k}(-1)^{j}\left(\#_{A} \circ \xi_{j}\right)\left(\omega\left(\xi_{0}, \ldots \hat{\jmath} \ldots, \xi_{k}\right)\right) \\
&+\sum_{i<j}(-1)^{i+j} \omega\left(\llbracket \xi_{i}, \xi_{j} \rrbracket, \xi_{0}, \ldots \hat{\imath} \ldots \hat{\jmath} \ldots, \xi_{k}\right),
\end{aligned}
$$

$\omega \in \Omega^{k}(A), \xi_{i} \in \operatorname{Sec} A$. The operators d_{A}^{k} satisfy

$$
d_{A}(\omega \wedge \eta)=d_{A} \omega \wedge \eta+(-1)^{k} \omega \wedge d_{A} \eta
$$

so they are of first order and the symbol of d_{A}^{k} is equal to

$$
\begin{aligned}
S\left(d_{A}^{k}\right)_{(x, v)} & : \bigwedge^{k} A_{x}^{*} \rightarrow \bigwedge^{k+1} A_{x}^{*} \\
S\left(d_{A}^{k}\right)_{(x, v)}(u) & =\left(v \circ\left(\#_{A}\right)_{x}\right) \wedge u, \quad 0 \neq v \in T_{x}^{*} M
\end{aligned}
$$

In consequence the sequence of symbols

$$
\bigwedge^{k} A_{x}^{*} \xrightarrow{S\left(d_{A}^{k}\right)_{(x, v)}} \bigwedge^{k+1} A_{x}^{*} \xrightarrow{S\left(d_{A}^{k+1}\right)_{(x, v)}} \bigwedge^{k+2} A_{x}^{*}
$$

is exact if and only if A is transitive and then the complex $\left\{d_{A}^{k}\right\}$ is an elliptic complex.

The exterior derivative d_{A} introduces the cohomology algebra

$$
\mathbf{H}(A)=\mathbf{H}\left(\Omega(A), d_{A}\right)
$$

For the trivial Lie algebroid $T M$ - the tangent bundle of the manifold M - the differential $d_{T M}$ is the usual de-Rham differential d_{M} of differential forms on M whereas, for $L=\mathfrak{g}$ - a Lie algebra \mathfrak{g} - the differential $d_{\mathfrak{g}}$ is the usual Chevalley-Eilenberg differential, $d_{\mathfrak{g}}=\delta_{\mathfrak{g}}$.

1.3. Invariantly oriented Lie algebroids and signature

The following theorem describes the class of transitive Lie algebroids (over compact oriented manifold) for which $\mathbf{H}^{\text {top }}(A) \neq 0$.

Theorem 1.1 (Ref. 5). For each transitive Lie algebroid $\left(A, \llbracket \cdot, \cdot \rrbracket, \#_{A}\right)$ with the Atiyah sequence

$$
0 \rightarrow \boldsymbol{g} \rightarrow A \xrightarrow{\#_{A}} T M \rightarrow 0
$$

over a compact oriented manifold M the following conditions are equivalent ($m=\operatorname{dim} M, n=\operatorname{dim} \boldsymbol{g}_{\mid x}$, i.e. $\operatorname{rank} A=m+n$)
(a) $\mathbf{H}^{m+n}(A) \neq 0$,
(b) $\mathbf{H}^{m+n}(A) \cong \mathbb{R}$ and $\mathbf{H}(A)$ is an Poincaré algebra, i.e. the pairing $\mathbf{H}^{j}(A) \times \mathbf{H}^{m+n-j}(A) \rightarrow \mathbf{H}^{m+n}(A) \cong \mathbb{R}$ is nondegenerate, $\mathbf{H}^{j}(A) \cong$ $\left(\mathbf{H}^{m+n-j}(A)\right)^{*}$,
(c) there exists a global nonsingular cross-section $\varepsilon \in \operatorname{Sec}\left(\bigwedge^{n} \boldsymbol{g}\right)$ invariant with respect to the adjoint representation a_{A}, that is, A is the so-called a TUIO-Lie algebroid, see Ref. 3, (shortly, A is invariantly oriented),
(d) the vector bundle \boldsymbol{g} is orientable and the modular class of A is trivial, $\theta_{A}=0$.

We recall the definition of the isomorphism $\mathbf{H}^{m+n}(A) \cong \mathbb{R}$ (for invariantly oriented transitive Lie algebroids). In Ref. 3 there is defined (for arbitrary transitive Lie algebroids) the so-called fibre integral operator

$$
f_{A}: \Omega^{\bullet}(A) \rightarrow \Omega_{d R}^{\bullet-n}(M)
$$

by the formula

$$
\left(f_{A} \omega^{k}\right)_{x}\left(w_{1}, \ldots, w_{k-n}\right)=(-1)^{k n} \omega_{x}\left(\varepsilon_{x}, \tilde{w}_{1}, \ldots, \tilde{w}_{k-n}\right), \quad \#_{A}\left(\tilde{w}_{i}\right)=w_{i}
$$

where $\varepsilon \in \operatorname{Sec}\left(\bigwedge^{n} \boldsymbol{g}\right)$ is a nonsingular cross-section. The operator δ_{A} commutes with the differentials d_{A} and d_{M} if and only if ε is invariant. Then, the fibre integral gives a homomorphism in cohomology

$$
\int_{A}^{\#}: \mathbf{H}^{\bullet}(A) \rightarrow \mathbf{H}_{d R}^{\bullet-n}(M)
$$

Assume in the sequel that a transitive Lie algebroid A over compact oriented manifold M is invariantly oriented and $\varepsilon \in \operatorname{Sec}\left(\bigwedge^{n} \boldsymbol{g}\right)$ is an invariant crosssection. The scalar Poincaré product

$$
\begin{gathered}
\mathcal{P}_{A}^{k}: \mathbf{H}^{k}(A) \times \mathbf{H}^{m+n-k}(A) \rightarrow \mathbb{R}, \\
([\omega],[\eta]) \longmapsto \int_{A} \omega \wedge \eta \quad\left(:=\int_{M}\left(f_{A} \omega \wedge \eta\right)\right)
\end{gathered}
$$

is defined and is nondegenerated $;{ }^{4}$ in consequence

$$
\begin{aligned}
\mathbf{H}^{k}(A) & \cong \mathbf{H}^{m+n-k}(A), \\
\mathbf{H}^{m+n}(A) & \cong\left(\mathbf{H}^{0}(M)\right)^{*}=\mathbb{R} \\
\operatorname{dim} \mathbf{H}(M) & <\infty
\end{aligned}
$$

and we can consider an isomorphism

$$
\mathbf{H}^{m+n}(A) \cong \mathbb{R}, \quad[\omega] \longmapsto \int_{A} \omega .
$$

The pairing of A-differential forms

$$
\begin{align*}
& \langle\langle\cdot, \cdot\rangle\rangle^{k}: \Omega^{k}(A) \times \Omega^{m+n-k}(A) \rightarrow \mathbb{R} \\
& \langle\langle\omega, \eta\rangle\rangle^{k}=\int_{M} \int_{A} \omega \wedge \eta \tag{1}
\end{align*}
$$

has the property

$$
\langle\langle\omega, \eta\rangle\rangle^{k}=(-1)^{k(m+n-k)}\langle\langle\eta, \omega\rangle\rangle^{m+n-k}
$$

and

$$
\left\langle\left\langle d_{A} \omega, \eta\right\rangle\right\rangle=(-1)^{k+1}\left\langle\left\langle\omega, d_{A} \eta\right\rangle\right\rangle \text { for } \omega \in \Omega^{k}(A), \eta \in \Omega^{m+n-(k+1)}(A) .
$$

If

$$
m+n=4 p
$$

then

$$
\mathcal{P}_{A}^{2 p}: \mathbf{H}^{2 p}(A) \times \mathbf{H}^{2 p}(A) \rightarrow \mathbb{R}
$$

is nondegenerated and symmetric. Therefore its signature is defined and is called the signature of A, and is denoted by
$\operatorname{Sign}(A)$.
The problem is: ${ }^{4}$

- to calculate the signature $\operatorname{Sign}(A)$ and give some conditions to the equality $\operatorname{Sign}(A)=0$. There are examples for which $\operatorname{Sign}(A) \neq 0$ (this is announced in Ref. 6).

2. *- operator and exterior coderivative d_{A}^{*}

2.1. Associated scalar product and $*$-Hodge operator

Consider

- any Riemannian tensor G_{1} in the vector bundle $\boldsymbol{g}=\operatorname{ker} \#_{A}$ for which ε is the volume tensor (such a tensor exists).
- any Riemannian tensor G_{2} on M.

Next, taking an arbitrary connection $\lambda: T M \rightarrow A$ in the Lie algebroid A i.e. a splitting of the Atiyah sequence

$$
0 \longrightarrow \boldsymbol{g} \hookrightarrow A \underset{\lambda}{\#_{A}} T M \longrightarrow 0
$$

and the horizontal space

$$
\begin{aligned}
H & =\operatorname{Im} \lambda \\
A & =\boldsymbol{g} \bigoplus H
\end{aligned}
$$

we define a Riemannian tensor G (called scalar product associated to ε) on $A=\boldsymbol{g} \bigoplus H$ such that \boldsymbol{g} and H are orthogonal, on \boldsymbol{g} we have G_{1} but on H we have the pullback $\lambda^{*} G_{2}$. The vector bundle A is oriented (since \boldsymbol{g} and M are oriented).

At each point $x \in M$ we consider the scalar product G_{x} on $A_{\mid x}$ and the pairing of tensors

$$
\langle,\rangle_{x}^{k}: \bigwedge^{k} A_{x}^{*} \times \bigwedge^{m+n-k} A_{x}^{*} \rightarrow \bigwedge^{m+n} A_{x}^{*} \xrightarrow{\rho_{x}} \mathbb{R}
$$

where ρ_{x} is defined via the volume form for G_{x}.

We can notice that ρ_{x} is equal to the composition

$$
\begin{gathered}
\bigwedge^{m+n} A_{x}^{*} \\
\downarrow(-1)^{(m+n) n} i_{\varepsilon_{x}} \searrow \int_{A_{p}} \quad \stackrel{\rho_{x}}{\longrightarrow} \\
\bigwedge^{m} A_{x}^{*} \\
i_{\varepsilon_{x}} \omega_{x}\left(\left(v_{1}, \ldots, v_{k-n}\right)\right)=\omega_{x}\left(\varepsilon_{x}, v_{1}, \ldots, v_{k-n}\right), \\
\rho_{\lambda x}\left(\omega_{x}\right)\left(w_{1}, \ldots, w_{k-n}\right)=\omega_{x}\left(\varepsilon_{x}, \lambda_{x}\left(w_{1}\right), \ldots, \lambda_{x}\left(w_{k-n}\right)\right) .
\end{gathered}
$$

Standardly, we can extend the scalar product G_{x} in A_{x} to a scalar product $(\cdot, \cdot)_{x}$ in $\bigwedge A_{x}^{*}$. There exists exactly one the so-called $*$-Hodge operator $*_{x}: \bigwedge^{k} A_{x}^{*} \rightarrow \bigwedge^{m+n-k} A_{x}^{*}$ such that

$$
\left\langle\alpha_{x}, \beta_{x}\right\rangle=\left(\alpha_{x}, *_{x} \beta_{x}\right),
$$

and it is given by

$$
{x}\left(e{i_{1}}^{} \wedge \ldots \wedge e_{i_{k}}^{*}\right)=\operatorname{sgn}\left(j_{1}, \ldots, j_{m+n-k}, i_{1}, . ., i_{k}\right) e_{j_{1}}^{*} \wedge \ldots \wedge e_{j_{m+n-k}}^{*}
$$

where $1 \leq i_{1}<\ldots<i_{k} \leq m+n, 1 \leq j_{1}<\ldots<j_{m+n-k} \leq m+n$ and $\left\{i_{1}, \ldots, i_{k}\right\} \cap\left\{j_{1}, \ldots, j_{m+n-k}\right\}=\varnothing$ (for ON positive frame e_{i} in A_{x}). Using all points $x \in M$ we obtain two $C^{\infty}(M)$-linear 2-tensors

$$
\langle,\rangle,(,): \Omega(A) \times \Omega(A) \rightarrow C^{\infty}(M)
$$

defined as above point by point. Integrating along M we get \mathbb{R}-linear 2 tensors

$$
\langle\langle,\rangle\rangle,((,)): \Omega(A) \times \Omega(A) \rightarrow \mathbb{R} .
$$

The first $\langle\langle\rangle$,$\rangle is, clearly, given by (1)$

$$
\langle\langle\omega, \eta\rangle\rangle=\int_{M}\langle\omega, \eta\rangle=\int_{M} \int_{A} \omega \wedge \eta .
$$

The $*$-Hodge operator $*: \Omega(A) \rightarrow \Omega(A)$ is defined point by point

$$
*(\omega)(x)=*_{x}\left(\omega_{x}\right)
$$

and we have

$$
\langle\langle\alpha, \beta\rangle\rangle=((\alpha, * \beta))
$$

2.2. Exterior coderivative

We define exterior coderivative $d_{A}^{*}: \Omega^{k}(M) \rightarrow \Omega^{m+n-k}(A)$ by the formula

$$
d_{A}^{*}(\omega)=(-1)^{k(m+n-k)}(-1)^{k} * d_{A} *(\omega), \quad \omega \in \Omega^{k}(A),
$$

where $*$ is the $*$-Hodge operator in $\Omega(A)$. We have
(a)

$$
\begin{equation*}
* *(\omega)=(-1)^{k(m+n-k)} \cdot \omega, \quad \omega \in \Omega^{k}(A), \tag{2}
\end{equation*}
$$

(b)

$$
\left(\left(d^{*}(\omega), \eta\right)\right)=\left(\left(\omega, d_{A}(\eta)\right)\right),
$$

i.e. d_{A}^{*} is adjoint to d_{A} with respect to the scalar product $(()$,$) in \Omega(A)$.

3. Laplacian and harmonic differential forms

It enables us to introduce the Laplacian

$$
\Delta_{A}=\left(d_{A}+d_{A}^{*}\right)^{2}=d_{A} d_{A}^{*}+d_{A}^{*} d_{A}
$$

Clearly

$$
\operatorname{ker} \Delta_{A}=\left(\operatorname{Im} \Delta_{A}\right)^{\perp}
$$

(with the respect to the scalar product $(())$,$) .$
Proposition 3.1. The Laplacian Δ_{A} is elliptic, self-adjoint and nonnegative operator. In consequence

$$
\begin{equation*}
\Omega(A)=\operatorname{ker} \Delta_{A} \bigoplus \operatorname{Im} \Delta_{A} \tag{3}
\end{equation*}
$$

Proof. The first property follows from the ellipticity of the complex $\left\{d_{A}^{k}\right\}$ (namely: the symbol of the adjoint operator $d_{A}^{* k}$ is equal to the minus of the adjoint symbol of d_{A}^{k} and to prove the ellipticity of the Laplacian we use Remark 6.34 from Ref. 8), the next two properties are trivial consequence of the definition. The last property (3) can be proved in the same way as the Theorem 55 from Ref. 7 using extension $\operatorname{Sec} \bigwedge A^{*}$ to the Hilbert Sobolev spaces $H_{s}\left(\bigwedge A^{*}\right)$, extension Δ to continuous operator $\Delta_{s}: H_{s}\left(\bigwedge A^{*}\right) \rightarrow H_{s-2}\left(\bigwedge A^{*}\right)$ and the fact that $\operatorname{ker} \Delta_{s}$ consists only of smooth sections, $\operatorname{ker} \Delta_{s}=\operatorname{ker} \Delta$.

A A-differential form $\omega \in \Omega(A)$ is called harmonic if $d_{A} \omega=0$ i $d_{A}^{*} \omega=0$. Denote the space of harmonic A-differential forms by $\mathcal{H}(A)$ and harmonic k - A-differential forms by $\mathcal{H}^{k}(A) . \mathcal{H}(A)$ is a graded vector space

$$
\mathcal{H}(A)=\bigoplus_{k=0}^{m+n} \mathcal{H}^{k}(A)
$$

and

$$
\mathcal{H}(A)=\operatorname{ker} \Delta_{A} .
$$

is the eigenspace of the operator Δ corresponding to the zero value of the eigenvalue.

Simple calculations assert that ker Δ^{k} and $\operatorname{Im} d^{k-1}$ are orthogonal, therefore the inclusion

$$
\mathcal{H}^{k}(W)=\operatorname{ker} \Delta^{k} \hookrightarrow \operatorname{ker} d^{k}
$$

induce a monomorphism

$$
\begin{equation*}
\operatorname{ker} \Delta^{k} \hookrightarrow \mathbf{H}^{k}(W) \tag{4}
\end{equation*}
$$

Since $\operatorname{Im} \Delta^{k} \subset \operatorname{Im} d_{A}^{k-1}+\operatorname{Im} d_{A}^{*(k+1)}$, the inclusion (3) yields $\Omega^{k}(A)=$ $\operatorname{ker} \Delta_{A}^{k}+\operatorname{Im} d_{A}^{k-1}+\operatorname{Im} d_{A}^{*(k+1)}$ and easily we can notice that these three subspaces are orthogonal. Therefore

$$
\Omega^{k}(A)=\operatorname{ker} \Delta_{A}^{k} \bigoplus \operatorname{Im} d_{A}^{k-1} \bigoplus \operatorname{Im} d_{A}^{*(k+1)}
$$

and

$$
\operatorname{ker} d^{k}=\operatorname{ker} \Delta^{k} \bigoplus \operatorname{Im} d^{k-1}
$$

which implies the Hodge Theorem for Lie algebroids:
Corollary 3.1. The monomorphism (4) is an isomorphism

$$
\mathcal{H}^{k}(W) \cong \operatorname{ker} d^{k} / \operatorname{Im} d^{k-1}=\mathbf{H}^{k}(W)
$$

It means that in each cohomology class $\alpha \in \mathbf{H}^{k}(A)$ there is exactly one harmonic A-differential form $\omega \in \mathcal{H}^{k}(W)$.

Let $\varepsilon_{k}=(-1)^{k(n+m-k)}$. Simple calculations yields the equality

$$
* \Delta_{A} \omega=\varepsilon_{k-1} \varepsilon_{k}(-1)^{n+m+1} \Delta_{A} * \omega, \quad \omega \in \Omega^{k}(A)
$$

therefore

$$
*\left[\mathcal{H}^{k}(W)\right] \subset \mathcal{H}^{m+n-k}(W)
$$

and (thanks (2))

$$
*: \mathcal{H}^{k}(W) \rightarrow \mathcal{H}^{m+n-k}(W)
$$

is an isomorphism. In consequence we obtain (independently on Ref. 4) the Duality Theorem

$$
\mathbf{H}^{k}(A) \simeq \mathbf{H}^{m+n-k}(A) .
$$

We restrict the scalar product $((\cdot, \cdot)): \Omega^{k}(A) \times \Omega^{k}(A) \rightarrow \mathbb{R}$ to the space of harmonic A-differential forms

$$
((\cdot, \cdot)): \mathcal{H}^{k}(A) \times \mathcal{H}^{k}(A) \rightarrow \mathbb{R}
$$

and we restrict the tensor $\langle\langle\cdot, \cdot\rangle\rangle: \Omega^{k}(A) \times \Omega^{m+n-k}(A) \rightarrow \mathbb{R}$ to harmonic A-differential forms

$$
\mathcal{B}^{k}=\langle\langle\cdot, \cdot\rangle\rangle: \mathcal{H}^{k}(A) \times \mathcal{H}^{m+n-k}(A) \rightarrow \mathbb{R}
$$

Using the isomorphism $\mathcal{H}^{k}(A) \cong \mathbf{H}^{k}(A)$ we see that

$$
\mathcal{B}^{k}=\mathcal{P}_{A}^{k},
$$

therefore, if $m+n=4 p$ then

$$
\operatorname{Sign}(A)=\operatorname{Sign} \mathcal{B}^{2 p}
$$

4. Hirzebruch signature operator

Assume $m+n=4 p$. Considering the direct $\operatorname{sum} \mathcal{H}^{2 p}(A)=$ $\mathcal{H}_{+}^{2 p}(A) \bigoplus \mathcal{H}_{-}^{2 p}(A)$, where

$$
\mathcal{H}_{ \pm}^{2 p}(W)=\left\{\omega \in \mathcal{H}^{2 p}(W) ; * \omega= \pm \omega\right\}
$$

and noticing that $\mathcal{B}^{2 p}$ is positive on $\mathcal{H}_{+}^{2 p}(A)$, and is negative on $\mathcal{H}_{-}^{2 p}(A)$ we see that

$$
\operatorname{Sign}\left(\mathcal{B}^{2 p}\right)=\operatorname{dim}_{\mathbb{R}} \mathcal{H}_{+}^{2 p}(W)-\operatorname{dim}_{\mathbb{R}} \mathcal{H}_{-}^{2 p}(W)
$$

To construction the Hirzebruch signature operator the fundamental role is played by an auxiliary operator

$$
\tau: \Omega(A) \rightarrow \Omega(A)
$$

defined by

$$
\tau^{k}\left(\omega^{k}\right)=\tilde{\varepsilon}_{k} *\left(\omega^{k}\right), \quad \tilde{\varepsilon}_{k} \in\{-1,+1\}, \quad \omega^{k} \in \Omega^{k}(A)
$$

fulfilling the properties
i) $\tau \circ \tau=I d$,
ii) $d_{A}^{*}=-\tau \circ d_{A} \circ \tau$,
iii) $\tau^{2 p}=*$.

Lemma 4.1. The operator τ fulfills axioms i)-iii) if and only if $\tilde{\varepsilon}_{k}=$ $(-1)^{\frac{k(k+1)}{2}}(-1)^{p}$.

Proof. Easy calculations.

We put

$$
\begin{aligned}
& \Omega(A)_{+}=\{\omega \in \Omega(A) ; \tau \omega=+\omega\}, \\
& \Omega(A)_{-}=\{\omega \in \Omega(A) ; \tau \omega=-\omega\},
\end{aligned}
$$

The spaces $\Omega(A)_{+}$and $\Omega(A)_{-}$are eigenspaces of τ corresponding to the eigenvalues $+1 \mathrm{i}-1$ and are spaces of cross-sections of suitable vector bundles.

We notice that

$$
\left(d_{A}+d_{A}^{*}\right)\left[\Omega(A)_{+}\right] \subset \Omega(A)_{-} .
$$

Definition 4.1. The operator

$$
\left(D_{A}\right)_{+}=d_{A}+d_{A}^{*}: \Omega(A)_{+} \rightarrow \Omega(A)_{-}
$$

is called the Hirzebruch operator (or the signature operator) for the Lie algebroid A.

Clearly

$$
\left(D_{A}\right)_{+}^{*}=d_{A}+d_{A}^{*}: \Omega(A)_{-} \rightarrow \Omega(A)_{+} .
$$

Theorem 4.1.

$\operatorname{Sign} A=\operatorname{Ind}\left(D_{A}\right)_{+}=\operatorname{dim}_{\mathbb{R}} \operatorname{ker}\left(\left(D_{A}\right)_{+}\right)-\operatorname{dim}_{\mathbb{R}} \operatorname{ker}\left(\left(D_{A}\right)_{+}^{*}\right)$.
Proof. It is sufficient to prove that Ind $\left(D_{A}\right)_{+}=\operatorname{Sign}\left(\mathcal{B}^{2 p}\right)$. The proof is analogous to the classical case. ${ }^{9}$ Firstly, we notice that subspaces $\mathcal{H}^{s}(A)+$ $\mathcal{H}^{m+n-s}(A)$ are τ-stable and for $s=0,1, \ldots, 2 p-1$

$$
\begin{aligned}
\varphi_{ \pm} & : \mathcal{H}^{s}(A) \rightarrow\left(\mathcal{H}^{s}(A)+\mathcal{H}^{m+n-s}(A)\right)_{ \pm} \\
\omega & \longmapsto \frac{1}{2}(\omega \pm \tau \omega)
\end{aligned}
$$

is an isomorphism of real vector spaces. Secondly $\Omega^{2 p}(A)_{ \pm} \cap \mathcal{H}^{2 p}(A)=$ $\mathcal{H}_{ \pm}^{2 p}(A)$, the space $\Omega^{s}(A)+\Omega^{m+n-s}(A)$ is τ-stable and

$$
\Omega(A)=\bigoplus_{s=0}^{2 p-1}\left(\Omega^{s}(A)+\Omega^{m+n-s}(A)\right) \bigoplus \Omega^{2 p}(A)
$$

therefore

$$
\Omega(A)_{+}=\bigoplus_{s=0}^{2 p-1}\left(\Omega^{s}(A)+\Omega^{m+n-s}(A)\right)_{+} \bigoplus \Omega^{2 p}(A)_{+}
$$

Thirdly, (a)

$$
\begin{aligned}
& \operatorname{ker}\left(D_{A}\right)_{+} \\
& =\Omega(A)_{+} \cap \operatorname{ker}\left(d_{A}+d_{A}^{*}: \Omega(A) \rightarrow \Omega(A)\right) \\
& =\Omega(A)_{+} \cap \mathcal{H}(A) \\
& =\bigoplus_{s=0}^{2 p-1}\left(\Omega^{s}(A)+\Omega^{m+n-s}(A)\right)_{+} \bigoplus \Omega^{2 p}(A)_{+} \\
& \cap \bigoplus_{s=0}^{2 p-1}\left(\mathcal{H}^{s}(A)+\mathcal{H}^{m+n-s}(A)\right) \oplus \mathcal{H}^{n}(A) \\
& =\bigoplus_{s=0}^{2 p-1}\left(\mathcal{H}^{s}(A)+\mathcal{H}^{m+n-s}(A)\right)_{+} \bigoplus \mathcal{H}^{2 p}(A)_{+}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \operatorname{dim} \operatorname{ker}\left(D_{A}\right)_{+}-\operatorname{dim} \operatorname{ker}\left(D_{A}\right)_{+}^{*} \\
& =\sum_{s=0}^{2 p-1} \operatorname{dim}_{\mathbb{R}}\left(\mathcal{H}^{s}(A)+\mathcal{H}^{m+n-s}(A)\right)_{+}+\operatorname{dim}_{\mathbb{R}} \mathcal{H}_{+}^{2 p}(A) \\
& -\sum_{s=0}^{2 p-1} \operatorname{dim}_{\mathbb{R}}\left(\mathcal{H}^{s}(A)+\mathcal{H}^{m+n-s}(A)\right)_{-}-\operatorname{dim}_{\mathbb{R}} \mathcal{H}_{-}^{2 p}(A) \\
& =\operatorname{dim}_{\mathbb{R}} \mathcal{H}_{+}^{2 p}(A)-\operatorname{dim}_{\mathbb{R}} \mathcal{H}_{-}^{2 p}(A) \\
& =\operatorname{Sign}\left(\mathcal{B}^{n}\right) .
\end{aligned}
$$

Thanks the above Theorem, we can use the Atiyah-Singer formula for calculating the signature of A.

References

1. B. Balcerzak, J. Kubarski and W. Walas, Primary characteristic homomorphism of pairs of Lie algebroids and Mackenzie algebroid, In: Lie Algebroids and Related Topics in Differential Geometry (Banach Center Publicationes, Volume 54, IMPAN Warszawa, 2001) 71-97.
2. J.C. Herz, Pseudo-algèbres de Lie,C.R.Acad.Sci.Paris 236 (1953), I, 19351937 and II, 2289-2291.
3. J. Kubarski, Fibre integral in regular Lie algebroids, In: New Developments in Differential Geometry (Budapest 1996, KLUWER ACADEMIC PUBLISHERS, Dordrecht, 1999, Proceedings of the Conference on Differential Geometry, Budapest, Hungary, 27-30 July 1996) 173-202.
4. J. Kubarski, Poincaré duality for transitive unimodular invariantly oriented Lie algebroids, Topology and Its Applications 121 (2002) 333-355.
5. J. Kubarski and A. Mishchenko, Nondegenerate cohomology pairing for transitive Lie algebroids, characterization, Central European Journal of Mathematics 2 (5), pp. 1-45, (2004) 663-707.
6. J. Kubarski and A. Mishchenko, On signature of transitive unimodular Lie algebroids, Doklady Mathematical Sciences 68 (5/1) (2003) 166-169.
7. G. Luke and A.S. Mishchenko, Vector Bundles and Their Applications (Kluwer Academic Publishers, 1998).
8. F.W. Warner, Foundations of differentiable manifolds and Lie groups (Scott, Foresman and Company, Gleniew, Illinois, London, 1971).
9. Y. Yu, Index Theorem and Heat Equation Method (World Scientific, Nankai Tracts in Mathematics, Vol. 2, 2000).
