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The authors define some secondary characteristic homomorphism for the triple (A, B,∇),

in which B ⊂ A is a pair of regular Lie algebroids over the same foliated manifold and

∇ : L → A is a homomorphism of Lie algebroids (i.e. a flat L-connection in A) where

L is an arbitrary (not necessarily regular) Lie algebroid and show that characteristic

classes from its image generalize known exotic characteristic classes for flat regular Lie

algebroids (Kubarski) and flat principal fibre bundles with a reduction (Kamber, Tondeur).

The generalization includes also the one given by Crainic for representations of Lie

algebroids on vector bundles. For a pair of regular Lie algebroids B ⊂ A and for the special

case of the flat connection idA : A → A we obtain a characteristic homomorphism which is

universal in the sense that it is a factor of any other one for an arbitrary flat L-connection

∇ : L → A.

 2011 Elsevier B.V. All rights reserved.

1. Introduction

From the very beginning the characteristic classes (primary and secondary) are global invariants of geometric struc-

tures on manifolds (more generally on principal fibre bundles on manifolds) determined mainly by connections, reductions

of structure Lie groups, and so on, and having some important topological properties like homotopy independence, func-

toriality or rigidity. N. Teleman [23] showed in 1972 that the Chern–Weil homomorphism of any principal fibre bundle

with a connected structural Lie group is an invariant of its infinitesimal object, i.e. of the Lie algebroid of this bundle.

J. Kubarski [16] showed in 1991 that the condition of the connectedness of the structural Lie group is redundant, which

means that primary characteristic homomorphisms (i.e. the Chern–Weil homomorphism) is really the “algebraic” notion

belonging to the category of Lie algebroids. The crucial role was played by some generalization of the standard concepts of

the representation of Lie groups (and Lie algebras) on vector spaces to the concept of the representation of principal fibre

bundles and of Lie algebroids on vector bundles and comparing the spaces of suitable invariant cross-sections. It turns out

(J. Kubarski [18,19]) that the same holds for the secondary (exotic) characteristic classes, in particular, for the characteristic

classes of flat bundles. In [18] there was constructed a characteristic homomorphism for flat regular Lie algebroids equipped

with some “reduction”, i.e. with some Lie subalgebroid, generalizing this homomorphism for foliated principal fibre bun-

dles given by F. Kamber and Ph. Tondeur [13–15]. Next, a different approaches to secondary classes by M. Crainic and

R.L. Fernandes [4, 2003], [5,8], [6, 2005], appeared in the geometry of Lie algebroids (inspired, for example, by irregular Lie

algebroids important in the Poisson geometry), for example, secondary characteristic classes for representations [4, 2003],

characteristic classes up to homotopy [5] and intrinsic secondary characteristic classes [8], [6, 2005]. The last were lastly

generalized by I. Vaisman [24].

The main goal of the paper is to build an exotic characteristic homomorphism in the category of Lie algebroids, which

generalizes simultaneously the one given by Kubarski [18] and the one given by Crainic [4] and describes in the Lie
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algebroids language the classical case for foliated principal bundles. It is a characteristic homomorphism 1(A,B,∇)# for the

triple (A, B,∇), where B ⊂ A is a pair of regular Lie algebroids, both on the same regular foliated manifold (M, F ), and

∇ : L → A is a flat L-connection in A (i.e. ∇ is a homomorphism of Lie algebroids), where L is an arbitrary (not necessarily

regular) Lie algebroid on M . For a Lie algebroid of a principal fibre bundle, its reduction, and a usual flat connection, we

obtain a homomorphism equivalent to the one by Kamber and Tondeur, mentioned above. Putting L = A and the “trivial”

flat connection ∇ = idA : A → A, we obtain a quite new characteristic homomorphism previously unknown, even in the

context of the principal fibre bundles. In fact, this homomorphism is obtained for a pair of Lie algebroids (A, B), B ⊂ A and

can be denoted by 1(A,B)# . It is in some sense a universal homomorphism. Namely, for any flat L-connection ∇ : L → A we

have

1(A,B,∇)# = ∇# ◦ 1(A,B)# (1)

(we will say that 1(A,B,∇)# is factorized by the universal characteristic homomorphism 1(A,B)#). The classes form the image

of 1(A,B)# (which belongs to the cohomology algebra H
•(A)) are called universal for the pair B ⊂ A.

In the context of the comparison with the Crainic classes (which concern [in our setting] the triple (A(f),A(f, {h}),∇)

where A(f), A(f, {h}) are Lie algebroids of a vector bundle f, its Riemann reduction (f, {h}), and ∇ : L → A(f) is an arbitrary

flat L-connection in f, i.e. a representation of L on f), we present one—based on the Pfaffian—characteristic class for an even

dimensional, oriented vector bundle not considered by Crainic. An example with such a nontrivial universal characteristic

class is presented in Section 3.3.

2. The secondary (exotic) characteristic homomorphism for FS-Lie algebroids and the universal characteristic

homomorphism

In this section we first define a characteristic homomorphism for the triple (A, B,∇), where B ⊂ A is a pair of regular

Lie algebroids, both on the same regular foliated manifold (M, F ), and ∇ : L → A is a flat L-connection in A, where L is

an arbitrary Lie algebroid on a manifold M . Next we compare this homomorphism with characteristic homomorphisms for

regular Lie algebroids and usual flat connections—given by Kubarski [18], and for principal fibre bundles—given by Kamber

and Tondeur [15]. The comparison with the Crainic approach of secondary characteristic classes for representations will be

given in the next section.

2.1. A few words about Lie algebroids

The notion of Lie algebroid (Pradines, 1967) had appeared as an infinitesimal object of Lie groupoids, principal bundles,

vector bundles, TC-foliations, Poisson and Jacobi manifolds, etc. (for the historical approach see [20,21]). A Lie algebroid over

a smooth manifold M is a triple (L, [[·,·]],#L) where L is a vector bundle over M , (Γ (L), [[·,·]]) is an R-Lie algebra, #L : L →

TM is a linear homomorphism of vector bundles such that [[ξ, f ·η]] = f ·[[ξ,η]]+#L(ξ)( f ) ·η for all f ∈ C∞(M), ξ,η ∈ Γ (L).

The anchor #L of (L, [[·,·]],#L) is bracket-preserving, see [12] and [1]. The image F := Im#L ⊂ TM of the anchor #L is an

integrable (non-constant rank in general) distribution whose leaves form a Stefan foliation F of M [22,7]. We say also

that A is a Lie algebroid over the foliated manifold (M, F ). If the anchor #L is of constant rank [an epimorphism], then

the Lie algebroid L is called regular [transitive]. By a homomorphism of Lie algebroids T : L → A on a given manifold we

mean a homomorphism of the underlying vector bundles which commutes with the anchors and preserves Lie bracket. The

Lie algebroids of Lie groupoids, principal bundles, vector bundles and TC-foliations are transitive, but the Lie algebroids of

general differential groupoids, Poisson manifolds, Jacobi manifolds etc. are rather nontransitive (and, in general, irregular).

For details concerning Lie functors on the category of principal fibre bundles P Ã A(P ) and vector bundles f Ã A(f) see, for

example, [16]. A(P ) = T P/G is a Lie algebroid with the real Lie algebra Γ (A(P )) ∼= Xr(P ) and the anchor #A(P ) : A(P ) → TM

determined by the projection π∗ whereas A(f) is the vector bundle whose global cross-sections form a Lie algebra of

covariant derivative operators and the anchor #A(f) : A(f) → TM is defined by the anchors of these operators. Together with

a V -vector bundle f (the vector space V is the typical fibre of f) we associate the GL(V )-principal fibre bundle of frames L(f)

and its Lie algebroid A(L(f)) which is canonically isomorphic to A(f) [16]. For a regular Lie algebroid L we have the exact

Atiyah sequence 0 → g →֒ L
#L−−→ F → 0 (g = ker#L ), the fibre g |x of g at x is a Lie algebra called the isotropy Lie algebra

at x. Over any leaf of the foliation F the vector bundle g is a Lie algebra bundle. A splitting of this sequence ∇ : F → L (i.e.

#L ◦ ∇ = idF ) is called a connection in L. If L = A(P ) (here F = TM), then connections in L correspond one-to-one to usual

connections in the principal fibre bundle P (i.e. a horizontal right-invariant distributions on P ). We consider more general

notion of L-connection in A (where L and A are arbitrary Lie algebroids on the same manifold) understanding as a linear

homomorphism of vector bundles ∇ : L → A commuting with the anchors [1]. If A is a regular Lie algebroid with the

adjoint LAB g , then the curvature tensor R∇ ∈ Ω2(L, g) is defined by R∇(ξ,η) = [[∇ξ,∇η]]−∇([[ξ,η]]), ξ,η ∈ Γ (L). Clearly,

∇ is a homomorphism of Lie algebroids if and only if ∇ is flat, i.e. if R∇ = 0. Any L-connection ∇ : L → A determines the

standard operator d∇ : Ω(L; g) → Ω(L; g) in the space of L-differential forms with values in g by the formula

(
d∇Ω

)
(ξ1, . . . , ξn) =

n∑

i=1

(−1)i−1
[[
∇ξi ,Ω(ξ1, . . . ı̂ . . . , ξn)

]]
A

+
∑

i< j

(−1)i+ jΩ
(
[[ξi, ξ j]]L, ξ1, . . . ı̂ . . . ̂ . . . , ξn

)
. (2)
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The equality d∇d∇Ω = R∇ ∧ Ω holds; in particular, d∇ is a differential operator if ∇ is flat. For an arbitrary Lie algebroid L

there is a derivative dL in the space of real L-forms Γ (
∧

L∗) giving the cohomology algebra H
•(L). For more details about

Lie algebroids we refer the reader, for example, to [21,20].

2.2. The construction of the secondary characteristic classes

Let us consider the triple (A, B,∇), in which we have: a regular Lie algebroid (A, [[·,·]],#A) on a foliated manifold (M, F ),

its regular Lie subalgebroid B ⊂ A, also on the same foliated manifold (M, F ), and a flat L-connection ∇ : L → A in A for an

arbitrary Lie algebroid L. We will call the triple

(A, B,∇)

an FS-Lie algebroid. The characteristic homomorphism for this triple constructed below measures the independence of these

two geometric structures B and ∇ defined for A (in the sense that it is zero when ∇ takes values in B). In the diagram

below λ : F → B is an arbitrary auxiliary connection in B . Then j ◦ λ : F → A is a connection in A. Let λ̆ : A → g be its

connection form.

0 g
i

A
λ̆

#A

L
∇

#L

0 h B

j

#B
F ⊃ F1.

λ

We define the homomorphism

ωB,∇ : L −→ g/h by ωB,∇(w) =
[
−(λ̆ ◦ ∇)(w)

]
.

Observe that ωB,∇ does not depend on the choice of an auxiliary connection λ : F → A and ωB,∇ = 0 if ∇ takes values in B .

Let us define a homomorphism of algebras

1(A,B,∇) : Γ
(∧k

(g/h)∗
)

−→ Ω(L),

(1(A,B,∇)Ψ )x(w1 ∧ · · · ∧ wk) =
〈
Ψx,ωB,∇(w1) ∧ · · · ∧ ωB,∇(wk)

〉
, w i ∈ L|x. (3)

In the special simple case L = A and the flat connection ∇ = idA : A → A we have particular case of a homomorphism for

the pair (A, B):

1(A,B) : Γ
(∧k

(g/h)∗
)

−→ Ω(A),

(1(A,B)Ψ )x(υ1 ∧ · · · ∧ υk) =
〈
Ψx,

[
−λ̆(υ1)

]
∧ · · · ∧

[
−λ̆(υk)

]〉
, υi ∈ A|x.

We assert that 1(A,B,∇) can be written as a superposition 1(A,B,∇) = ∇∗ ◦ 1(A,B) ,

1(A,B,∇) : Γ
(∧

(g/h)∗
)

1(A,B)
−−−−→ Ω(A)

∇∗

−→ Ω(L),

where ∇∗ is the pullback of forms. In the algebra Γ (
∧

(g/h)∗) we distinguish the subalgebra (Γ (
∧

(g/h)∗))Γ (B) of invariant

cross-sections with respect to the representation of the Lie algebroid B in the vector bundle
∧

(g/h)∗ , associated to the

adjoint one adB,h : B → A(g/h), adB,h(ξ)([ν]) = [[[ξ,ν]]], ξ ∈ Γ (B), ν ∈ Γ (g), where A(g/h) is the (transitive) Lie algebroid

of g/h. Clearly, Ψ ∈ (Γ (
∧k

(g/h)∗))Γ (B) if and only if (#B ◦ ξ)〈Ψ, [ν1] ∧ · · · ∧ [νk]〉 =
∑k

j=1(−1) j−1〈Ψ, [[[ j ◦ ξ,ν j]]] ∧ [ν1] ∧

. . . ̂ . . . ∧ [νk]〉 for all ξ ∈ Γ (B) and ν j ∈ Γ (g) (see [16]). In the space (Γ (
∧

(g/h)∗))Γ (B) of invariant cross-sections there

exists a differential δ̄ defined by the formula

〈
δ̄Ψ, [ν1] ∧ · · · ∧ [νk]

〉
=

∑

i< j

(−1)i+ j+1
〈
Ψ, [[[νi,ν j]]] ∧ [ν1] ∧ . . . ı̂ . . . ̂ . . . ∧ [νk]

〉

(see [18]) and we obtain the cohomology algebra

H
•(g, B) := H

•
((

Γ
(∧

(g/h)∗
))Γ (B)

, δ̄
)
.

Theorem 1. The homomorphism 1(A,B,∇) commutes with the differentials δ̄ and dL , where dL is the differential operator in Ω(L) =

Γ (
∧

L∗).
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Proof. Since the pullback of differential forms ∇∗ : Ω(L) → Ω(A) commutes with differentials dL and dA , it is sufficient

to show the commutativity of 1(A,B) with differentials δ̄ and dA . Let ξ0, . . . , ξk ∈ Γ (A), and Ψ be an arbitrary invariant

cross-section of the degree k. The curvature tensor Ω j◦λ of the connection j ◦ λ takes values in the bundle h. Thus, we see

that

Ω j◦λ(#A ◦ ξi,#A ◦ ξ j) = [[λ̆ ◦ ξi, λ̆ ◦ ξ j]] − [[ξi, λ̆ ◦ ξ j]] + [[ξ j, λ̆ ◦ ξi]] + λ̆ ◦ [[ξi, ξ j]] ∈ h.

Therefore, using invariance of Ψ , we have

(dA ◦ 1(A,B))(Ψ )(ξ0, . . . , ξk) =
∑

i< j

(−1)i+ j+1
〈
Ψ, [[[λ̆ ◦ ξi,ω ◦ ξ j]]] ∧ [−λ̆ ◦ ξ0] ∧ . . . ı̂ . . . ̂ . . . ∧ [−λ̆ ◦ ξk]

〉

−
∑

i< j

(−1)i+ j
〈
Ψ,

[
Ω j◦λ(#A ◦ ξi,#A ◦ ξ j)

]
∧ [−λ̆ ◦ ξ0] ∧ . . . ı̂ . . . ̂ . . . ∧ [−λ̆ ◦ ξk]

〉

=
〈
δ̄Ψ, [−λ̆ ◦ ξ0] ∧ · · · ∧ [−λ̆ ◦ ξk]

〉

= (1(A,B) ◦ δ̄)(Ψ )(ξ0, . . . , ξk). 2

Corollary 2. 1(A,B) and 1(A,B,∇) induce the cohomology homomorphisms

1(A,B)# : H
•(g, B) −→ H

•(A)

and

1(A,B,∇)# : H
•(g, B) −→ H

•(L).

The significance of 1(A,B)# follows from the fact that 1(A,B,∇)# , for every flat L-connection ∇ : L → A, is factorized

by 1(A,B)#:

1(A,B,∇)# : H
•(g, B)

1(A,B)#
−−−−→ H

•(A)
∇#

−−→ H
•(L). (4)

The map 1(A,B,∇)# we will call the characteristic homomorphism of the FS-Lie algebroid (A, B,∇). We call elements

of a subalgebra Im1(A,B,∇)# ⊂ H
•(L) the secondary (exotic) characteristic classes of this algebroid. In particular, 1(A,B)# =

1(A,B,idA)# is the characteristic homomorphism of the Lie subalgebroid B ⊂ A. We define the last homomorphism as the

universal exotic characteristic homomorphism and the characteristic classes from its image as the universal characteristic classes

of the pair B ⊂ A.

2.3. The case for regular Lie algebroids and usual flat connections

Given a regular Lie algebroid (A, [[·,·]],#A) over a regular, foliated manifold (M, F ), consider two geometric structures:

– a flat connection ω : F → A,

– a Lie subalgebroid j : B →֒ A over (M, F ).

Let ω̆ : A → g be the connection form of ω. Let us consider an auxiliary connection λ : F → B , its extension j ◦ λ to A

and let λ̆ : A → g be its connection form. Since i ◦ ω̆ + ω ◦ #A = idA , it follows that i ◦ ω̆ ◦ j ◦ λ = −i ◦ λ̆ ◦ ω. Hence, we

conclude that

(1(A,B,ω)Ψ )|x(w1 ∧ · · · ∧ wk) =
〈
Ψx,

[
−(λ̆ ◦ ω)(w1)

]
∧ · · · ∧

[
−(λ̆ ◦ ω)(wk)

]〉

=
〈
Ψx,

[
ω̆x(w̃1)

]
∧ · · · ∧

[
ω̆x(w̃k)

]〉
,

where w̃ i = λ(w i). Since #B(w̃ i) = w i ,

1(A,B,ω)# : H
•(g, B) −→ H

•(F )

is the characteristic homomorphism for the regular flat Lie algebroid (A, B,ω), which was considered in [18].

2.4. The particular case: The classical Kamber–Tondeur homomorphism and universal characteristic homomorphism factorizing the

classical one

Consider any G-principal fibre bundle P over a smooth manifold M , a flat connection ω ⊂ T P in P and a connected

H-reduction P ′ ⊂ P , where H ⊂ G is a closed Lie subgroup of G (we do not assume either connectedness or compactness

of H). Applying the Lie functor for principal fibre bundles we can consider Lie algebroids A(P ) and A(P ′) as well as the

induced flat connection ωA : TM → A(P ) in the Lie algebroid A(P ) and the secondary characteristic homomorphism

1(A(P ),A(P ′),ωA)# : H
•
(
g,A

(
P ′

))
−→ H

•
dR(M)
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for the FS-Lie algebroid (A(P ),A(P ′),ωA). This homomorphism is “equivalent” to the standard classical homomorphism on

principal fibre bundles

1(P ,P ′,ω)# : H
•(g, H) −→ H

•
dR(M)

given by F. Kamber and Ph. Tondeur [15], where H
•(g, H)—called the relative Lie algebra cohomology of (g, H) (see [15,3])—is

the cohomology space of the complex (
∧

(g/h)∗H ,dH ) where
∧

(g/h)∗H is the space of invariant elements with respect to

the adjoint representation of the Lie group H (see [15, 3.27]) and the differential dH is defined by the formula:

〈
dH (ψ), [v1] ∧ · · · ∧ [vk]

〉
=

∑

i< j

(−1)i+ j
〈
ψ, [[v i, v j]] ∧ [v1] ∧ . . . ı̂ . . . ̂ . . . ∧ [vk]

〉

for ψ ∈
∧k

(g/h)∗H and v i ∈ g. The equivalence of these two characteristic homomorphisms lies in the fact that there exists

an isomorphism of algebras κ : H
•(g, H)

≃−→ H
•(g,A(P ′)) such that

1(A(P ),A(P ′),ωA)# ◦ κ = 1(P ,P ′,ω)# (5)

(see [18, Theorem 6.1]). Therefore, the obtained algebras of characteristic classes are identical. We recall that the iso-

morphism κ on the level of cochains is defined via the isomorphism κ̃ : (
∧

(g/h)∗)H → (Γ (
∧

(g/h)∗))Γ (B) given by

κ̃(ψ)(x) = Ad∧
P ′,g(z)(ψ), z ∈ P ′

|x , where the representation Ad∧
P ′,g of P ′ on

∧k
(g/h)⋆ is induced by AdP ′,g : P ′ → L(g/h),

z 7→ [ẑ], and ẑ : g
∼=−→ g|x , v 7→ [Az⋆v ] (Az : G → P , a 7→ za). The fact that κ̃ is an isomorphism is obtained by Propo-

sition 5.5.3 from [16] (just here the assumption that P ′ is connected is needed). We recall briefly the definition of

the homomorphism 1(P ,P ′,ωA)# and reasoning giving (5). Let ω̆ : T P → g denote the connection form of ω. There ex-

ists a homomorphism of G-DG-algebras ω̆∧ :
∧

g∗ → Ω(P ) (in view of the flatness of ω) induced by the algebraic

connection ω̆ : g∗ → Ω(P ), α 7→ αω̆ = 〈α, ω̆〉. The homomorphism ω̆∧ is given by the formula ω̆∧(φk)z(v1, . . . , vk) =

〈φ;ωz(v1)∧· · ·∧ωz(vk)〉 and can be restricted to H-basic elements ω̆H : (
∧

g∗)H → Ω(P )H . According to the isomorphisms

(
∧

g∗)H ∼=
∧

(g/h)∗H and Ω(P )H ∼= Ω(P/H) it gives a DG-homomorphism of algebras ω̆H :
∧

(g/h)∗H → Ω(P/H). Compos-

ing it with s∗ : Ω(P/H) → Ω(M), where s : M → P/H is the cross-section determined by the H-reduction P ′ , we obtain

a homomorphism of DG-algebras 1P ,P ′,ω :
∧

(g/h)∗H
ω̆H−−→ Ω(P/H)

s∗−−→ Ω(M). Passing to cohomology we obtain 1(P ,P ′,ω)# .

Because of the algebraic formula for ω̆∧ we see that this homomorphism on the level of forms is given by

(
1P ,P ′,ω(ψ)

)
x
(w1 ∧ · · · ∧ wk) =

〈
ψ,

[
ω̆z(w̃1)

]
∧ · · · ∧

[
ω̆z(w̃k)

]〉
,

where z ∈ P ′
|x , w i ∈ TxM , w̃ i ∈ T z P

′ , π ′
∗ w̃ i = w i , with π ′ : P ′ → M . Therefore, the equality (5) holds (for details see [18,

Theorem 6.1]).

Using the universal exotic characteristic homomorphism 1(A(P ),A(P ′))# for the pair of transitive Lie algebroids (A(P ),A(P ′)),

A(P ′) ⊂ A(P ), we can define the universal exotic characteristic homomorphism

1(P ,P ′)# := 1(A(P ),A(P ′))# ◦ κ : H
•(g, H) −→ H

•
(
A(P )

)
−→ H

r•
dR(P )

for the reduction of a principal fibre bundle P ′ ⊂ P (where H
r•
dR

(P ) is the space of cohomology of right-invariant differential

forms on P ; we recall that H
r•
dR

(P ) := H
•(Ωr(P )) ≃ H

•
dR

(P ) if G is compact and connected).

Theorem 3. The homomorphism 1(P ,P ′)# on the level of differential forms is given by the following formula:

(1P ,P ′ψ)z(w1 ∧ · · · ∧ wk) =
〈
ψ,

[
−λz(w1)

]
∧ · · · ∧

[
−λz(wk)

]〉
,

where λ is the form of any connection on P extending an arbitrary connection on P ′ .

The commutativity of the diagram

H
•(g, H)

1(P ,P ′)#

κ ∼=

H
r•
dR

(P )

ω#

H
•
dR

(P )

H
•(g,A(P ′))

1(A(P ),A(P ′))#
H

•(A(P ))
ωA#

H
•
dR

(M)

where ω# on the level of right-invariant differential forms Ωr(P ) is given as the pullback of differential forms:

ω∗ : Ωr(P ) −→ Ω(M), ω∗(φ)x(u1 ∧ · · · ∧ uk) = φz(ũ1 ∧ · · · ∧ ũk),

where z ∈ P |x , ũi is the ω-horizontal lift of ui , yields the following
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Theorem 4. The homomorphism 1(P ,P ′,ω)# is factorized by 1(P ,P ′)# , i.e. the diagram below commutes

H
r•
dR

(P )

ω#

H
•(g, H)

1(P ,P ′,ω)#

1(P ,P ′)#

H
•
dR

(M).

From the above we get a corollary on the existing of the new universal exotic characteristic homomorphism for a

G-principal fibre bundle P and its H-reduction P ′ .

Corollary 5. If G is a compact, connected Lie group and P ′ is a connected H-reduction in a G-principal bundle P , H ⊂ G, then there

exists a homomorphism of algebras

1(P ,P ′)# : H
•(g, H) −→ H

•
dR(P )

(called a universal exotic characteristic homomorphism for the pair P ′ ⊂ P ) such that for arbitrary flat connection ω in P , the charac-

teristic homomorphism 1(P ,P ′,ω)# : H
•(g, H) → H

•
dR

(M) is factorized by 1(P ,P ′)# , i.e. the following diagram is commutative

H
•
dR

(P )

ω#

H
•(g, H)

1(P ,P ′,ω)#

1(P ,P ′)#

H
•
dR

(M).

3. Comparison with the Crainic classes

3.1. The Crainic approach

We briefly explain the Crainic approach to characteristic classes of a representation [4]. Primarily we notice that arbitrary

representation ∇ξν of an arbitrary Lie algebroid L (not necessarily regular) in a vector bundle f can be described by

a homomorphism of Lie algebroids ∇ : L → A(f) (i.e. a flat L-connection in A(f)). The Crainic classes of ∇ live in the

cohomology algebra H
•(L) of the Lie algebroid L. In the simplest case of the trivial vector bundle f = M × V (dim V = n)

they are constructed as follows: For a frame (e1, . . . , en) of f we introduce a matrix ω = [ωi
j] ∈ Mn×n(Ω(L)) of 1-forms on L

such that ∇ξ e j =
∑

i ω
i
j(ξ) · ei for all ξ ∈ Γ (L). Clearly, tr(ω) = tr(ω̃), where ω̃ = ω+ωT

2
is the symmetrization of ω, and the

flatness condition implies that for all natural numbers k,

tr
(
ω̃2k−1

)
(6)

are closed forms on L. Their cohomology classes are independent of the choice of frames. These classes vanish if ∇ is

a Riemannian connection with respect to some Riemannian metric h in f. A Riemannian connection is a connection in

a Riemannian reduction L(f, {h}) of the principal fibre bundle of frames L(f). For an arbitrary vector bundle f Crainic uses

a local construction (a suitable cocycle) and the Čech double complex Č∗(U ,C∗(L)) together with the Mayer–Vietoris ar-

gument. For L = TM the usual exotic characteristic classes of flat vector bundles f are obtained. An explicit formula for

an arbitrary L-flat real vector bundle (f,∇) is based on the observation that in a local orthonormal frame (e1, . . . , en) of

(f, {h}) the symmetrization ω̃ of ω is equal to the matrix of the symmetric-values form ω(f,h) = 1
2
(∇ − ∇h), where ∇h

is the adjoint L-connection induced by the metric h. The adjoint connection ∇h remains flat. The classes will be given as

in (6), with ω̃ replaced by ω(f,h). One explicit formula up to a constant uses the Chern–Simons transgression differential

forms csk for suitable two connections and is given by (see [6])

u2k−1(f) =
[
u2k−1(f,∇)

]
∈ H

2k−1(L),

where

u2k−1(f,∇) = (−1)
k+1
2 csk

(
∇,∇h

)
(7)

and k is an odd natural (u2k−1(f) is trivial if k is even). We recall that

csk
(
∇,∇h

)
=

1∫

0

chk
(
∇aff

)
∈ Ω2k−1(L),
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( 1∫

0

chk
(
∇aff

)
)

ξ1,...,ξ2k−1

=

1∫

0

chk
(
∇aff

)
∂
∂t ,ξ1,...,ξ2k−1

∣∣
(t,•)

dt, ξi ∈ Γ (L),

where ∇aff = (1 − t) · ∇̃ + t · ∇̃h : TR × A → A(pr∗2 f) is the affine combination of the connections ∇̃ and ∇̃h whereas

chk(∇) = Tr((R∇ )k). The connection ∇̃ : TR × L → A(pr∗2 f), ∇̃(vt ,ξx)(ν ◦ pr2) = ∇ξx (ν), is the lifting of the connection ∇

through the projection pr2 : R × M → M . If ∇ is flat, then ∇̃ is flat, too.

3.2. The secondary characteristic homomorphism for Riemannian reductions

Let (f, {h}) denote a vector bundle of the rank n over a manifold M with a Riemannian metric h. The metric h yields [17]

the Lie subalgebroid B = A(f, {h}) of the algebroid A(f) of the vector bundle f and the reduction L(f, {h}) of the frames

bundle Lf of f; (u : Rn → f|x) ∈ L(f, {h}) if and only if u is an isometry. Taking the canonical isomorphism Φf : A(Lf) → A(f)

of Lie algebroids [16] we have A(f, {h}) = Φf[A(L(f, {h}))]. We observe that α ∈ Γ (A(f)) belongs to Γ (A(f, {h})) if and only if

for any cross-sections ν,µ ∈ Γ (f) the formula h(α(ν),µ) = (#α)(h(ν,µ))−h(ν,α(µ)) holds. The Atiyah sequences for A(f)

and A(f, {h}) are

0 −→ End(f)
i−→ A(f)

π
−−→ TM −→ 0,

0 −→ Sk(f) −→ A
(
f, {h}

)
−→ TM −→ 0,

where Sk(f) ⊂ End(f) is the vector subbundle of h-skew symmetric endomorphisms. Let L be a Lie algebroid over M and

∇ : L → A(f) any flat L-connection in f. Let us consider FS-Lie algebroids ((A(f),A(f, {h})),∇) and (A(f),A(f, {h}), idA(f)) and

theirs secondary characteristic homomorphisms denote, for shortness, by

1# : H
•
(
End f,A

(
f, {h}

))
−→ H

•(L),

1o# : H
•
(
End f,A

(
f, {h}

))
−→ H

•
(
A(f)

)
,

respectively, and take into the consideration the isomorphism

κ : H
•
(
gl(n,R), O (n)

) ∼=−−→ H
•
(
End f,A

(
f, {h}

))

of algebras described in Section 2.4. If the vector bundle f is nonorientable, then

H
•
(
End f,A

(
f, {h}

)) κ
∼= H

•
(
gl(n,R), O (n)

)
∼=

∧
(y1, y3, . . . , yn′),

where n′ is the largest odd integer 6 n (n′ = 2[n+1
2

] − 1) and y2k−1 ∈ H
4k−3(End f,A(f, {h})) for k ∈ {1,2, . . . , [n+1

2
]} are

represented by the multilinear trace forms ỹ2k−1 ∈ Γ (
∧4k−3

(End f/Sk f)∗), see [15, 6.31, p. 142].

In the case of an oriented vector bundle f with a volume form v, the metric h and v induce an SO(n,R)-reduction

L(f, {h,v}) of the frames bundle Lf of f; (u : Rn → f|x) ∈ L(f, {h,v}) if and only if u is an isometry keeping the orientation.

Clearly, A(f, {h,v}) = A(f, {h}), and hence H
•(End f,A(f, {h})) ∼= H

•(End f,A(f, {h,v})). If f is orientable and odd rank (see [9]),

H
•
(
gl(n,R), SO(n)

)
∼= H

•
(
gl(n,R), O (n)

)
.

If the vector bundle f is orientable of even rank n = 2m, then

H
•
(
End f,A

(
f, {h,v}

))
∼= H

•
(
gl(2m,R), SO(2m)

)
∼=

∧
(y1, y3, . . . , y2m−1, y2m),

where y2k−1 ∈ H
4k−3(End f,A(f, {h,v})) are defined as above and

y2m ∈ H
2m

(
gl(n,R), SO(n)

)
∼= H

2m
(
End f,A

(
f, {h,v}

))

is represented by

ỹ2m ∈ Γ
(∧2m

(End f/Sk f)∗
)
,

ỹ2m
(
[A1], . . . , [A2m]

)
= d(z2m−1)( Ã1, . . . , Ã2m), (8)

A1, . . . , A2m ∈ Γ (End f), and where Ã j denotes the symmetrization of A j , d is the usual differential on the algebra
∧

(End f)∗

and z2m−1 ∈ Γ (
∧2m−1

(End f)∗) is given by

z2m−1(A1, . . . , A2m−1) = c(m)
∑

σ∈S2m−1

sgnσ
(
e,αAσ1 ∧ α[Aσ2 , Aσ3 ] ∧ · · · ∧ α[Aσ2m−2 , Aσ2m−1 ]

)
,
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where c(m) = (−1)m−1(m−1)!

2m−1(2m−1)!
∈ R, e is a non-zero cross-section of

∧2m
f and α : End f →

∧2
f is given by (α(A),ν ∧ µ) =

1
2
((Aν,µ) − (ν, Aµ)), A ∈ Γ (End f), ν,µ ∈ Γ (f). We add that z2m−1 is the image of the Pfaffian for a pair (f, e) by the

Cartan map for End f (for the Cartan map see for example [10, Ch. VI, 6.7, 6.8]).

We shall show that 1#(y2 j−1) is (up to a constant) equal to the Crainic class u4 j−3(f) for all j ∈ {1,2, . . . , [n+1
2

]}. Let

∇0,∇1 : L → A(f) be arbitrary two L-connections in f and let ∇aff = (1 − t)∇̃0 + t∇̃1 : TR × L → A(pr∗2 f) be their affine

combination. Observe

R∇1 = R∇0 + d∇0θ + [θ, θ ], (9)

where

θ = ∇1 − ∇0 ∈ Ω1(L;End f) (10)

and [θ, θ] = θ2 = θ ∧θ ∈ Ω2(L;End f), [θ, θ](ξ,η) = [θ(ξ), θ(η)]. The 1-form θ we can lifted to θ̃ ∈ Ω1(TR× L;End f) putting

θ̃(vt ,ξx) = θξx . The cross-section (0, ξ) of TR × L will be denoted by ξ and ( ∂
∂t

,0) by ∂
∂t
. Observe that ∇aff = ∇̃0 + Ξ , where

Ξ|(t,x) = t · θ̃x and (d∇̃1 θ̃ )ξ,η(ν ◦pr2) = (d∇1θ)ξ,η(ν) ◦pr2 for any ξ,η ∈ Γ (L), x ∈ M , t ∈ R. The affine combination ∇aff of flat

connections cannot be flat even if ∇0 is flat: by (9) for flat ∇0 we have

R∇aff
= d∇̃0Ξ + [Ξ,Ξ ]. (11)

Lemma 6. The curvature tensor R∇aff
of the affine combination ∇aff of two flat L-connections ∇0 , ∇1 has the following properties

(
R∇aff)

∂
∂t ,ξ

(ν ◦ pr2) = θξ (ν), (12)

(
R∇aff)

ξ,η
(ν ◦ pr2)|(t,·) =

(
t2 − t

)
· (θ ∧ θ)ξ,η(ν), (13)

((
R∇aff)k

∂
∂t ,ξ1,...,ξ2k−1

)
|(t,·)

= k · tk−1 · (t − 1)k−1 · θ2k−1
ξ1,...,ξ2k−1

. (14)

Proof. Formula (12) is clear. To see (13), we need only to observe (because of (11), (9) and the flatness of ∇0 and ∇1) that

(
d∇̃0Ξ

)
ξ,η

(ν ◦ pr2)|(t,·) = t · R
∇1
ξ,η(ν) − t · (θ ∧ θ)ξ,η(ν) = −t · (θ ∧ θ)ξ,η(ν),

[Ξ,Ξ ]ξ,η(ν ◦ pr2)|(t,·) = t2 · (θ ∧ θ)ξ,η(ν).

Formula (14) can be proved by induction with respect to k. Indeed, from (12) we have the step k = 1. Let n ∈ N. Assume

that (14) holds for all k 6 n. From this, (13), (12) and the associativity of the algebra (End f,◦) we get

((
R∇aff)n+1

∂
∂t ,ξ1,...,ξ2n+1

)
|(t,·)

=
(((

R∇aff)n
∧ R∇aff)

∂
∂t ,ξ1,...,ξ2n+1

)
|(t,·)

=
∑

σ∈S(2n−1,2)

sgnσ ·
((
R∇aff)n

∂
∂t ,ξσ1 ,...,ξσ2n−1

◦ R∇aff

ξσ2n ,ξσ2n+1

)
|(t,·)

+
∑

σ∈S(2n,1)

sgnσ ·
((
R∇aff)n

ξσ1 ,...,ξσ2n
◦ R∇aff

∂
∂t ,ξσ2n+1

)
|(t,·)

=
∑

σ∈S(2n−1,2)

sgnσ ·
(
n · tn(t − 1)n · θ2n−1

ξσ1 ,...,ξσ2n−1
◦ (θ ∧ θ)ξσ2n ,ξσ2n+1

)

+
∑

σ∈S(2n,1)

sgnσ ·
(
tn(t − 1)n · θ2n

(aσ1
,...,aσ2n

) ◦ θaσ2n+1

)

= ntn(t − 1)n · θ2n+1
ξ1,...,ξ2n+1

+ tn(t − 1)n · θ2n+1
ξ1,...,ξ2n+1

= (n + 1)t(n+1)−1(t − 1)(n+1)−1 · θ
2(n+1)−1
ξ1,...,ξ2n+1

. 2

From the above we have the following theorem.

Theorem 7. The Chern–Simons transgression differential form csk(∇0,∇1) for two flat L-connections ∇0 , ∇1 , is equal to

csk(∇0,∇1) = (−1)k+1 k! · (k − 1)!

(2k − 1)!
· tr θ2k−1, (15)

where θ is defined by (10).
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The above formula is well known in the classical cases on principal fibre bundles (see, for example, the papers by Chern

and Simons [2], Heitsch and Lawson [11, 1974]).

Let ˜: End f → End f, v 7→ ṽ := 1
2
(v + v∗) denote the symmetrization. Let us consider idA(f) as an A(f)-connection in f

and take its adjoint idhA(f) induced by the metric h. Let λ : TM → A(f) be any h-Riemannian connection (i.e. a connection

such that Imλ ⊂ A(f,h), or equivalently λh = λ) and λ̆ : A(f) → End f be its connection form. Since i ◦ λ̆ + λ ◦ π = idA(f) , for

any cross-section α of A(f) we have

−˜̆
λ(α) =

1

2

(
idhA(f) − idA(f)

)
(α). (16)

Using (16), (15) and (7) we get that

1o (̃y2k−1) = (−1)k · 23−4k ·
(4k − 3)!

(2k − 1)! · (2k − 2)!
· u4k−3(f, idA(f)).

Since csk(∇,∇h) = ∇∗(csk(idA(f), id
h
A(f))) and u4k−3(f,∇) = ∇#u4k−3(f, idA(f)),

1#(y2k−1) =
[
∇∗1o (̃y2k−1)

]
=

(−1)k · (4k − 3)!

24k−3 · (2k − 1)! · (2k − 2)!
· u4k−3(f).

From the above formulae we can explain the relation between the characteristic homomorphism 1# : H
•(End f, A(f, {h})) →

H
•(L) of (A(f), A(f, {h}),∇) and the family of the Crainic classes {u4k−3(f)}.

Theorem 8. Let f be a real vector bundle over a manifold M and

1# : H
•
(
End f, A

(
f, {h}

))
−→ H

•(L)

the secondary characteristic homomorphism corresponding to the FS-Lie algebroid (A(f), A(f, {h}),∇), where ∇ : L → A(f) is a flat

L-connection in A(f).

(a) If the vector bundle f is nonorientable or orientable and of odd rank n, then the image of 1# is generated by u1(f),u5(f), . . . ,

u4[ n+3
4 ]−3(f).

(b) If the vector bundle f is orientable and of even rank n = 2m, then the image of 1# is generated by u1(f),u5(f), . . . ,u4[ n+3
4 ]−3(f)

and additionally by 1#(y2m), where y2m is given in (8).

3.3. Example of a nontrivial universal characteristic class determined by the Pfaffian

Let M be an oriented, connected manifold, dimM > 1, and g = End(R2). Given a transitive Lie algebroid (A, [[·,·]],#A)

over M , where A = TM ⊕ End(R2) ∼= A(M × R2) and #A = pr1 is the projection on the first factor, and
[[
(X1,σ1), (X2,σ2)

]]
=

(
[X1, X2], X1(σ2) − X2(σ1) + [σ1,σ2]

)

for all X1, X2 ∈ X(M), σ1,σ2 ∈ C∞(M;End(R2)), we have the Atiyah sequence 0 → M × End(R2) ∼= End(M × R2)
i

→֒ A
pr1−−→

TM → 0. Let B ⊂ A be the Riemannian reduction of A, i.e. B = TM ⊕ Sk(R2) is a transitive subalgebroid of A. Observe that

in the domain of the universal characteristic homomorphism 1o# : H
•(M × g, B) → H

•(A) is [̃y2] ∈ H
2(M × g, B), where

ỹ2([σ1], [σ2]) = Pf([[σ̃1, σ̃2]]) for all σ1,σ2 ∈ Γ (ker#A) ∼= C∞(M;g). 1o#([̃y2]) ∈ H
2(A) is represented by 1o (̃y2) ∈ Ω1(A)

given by

1o (̃y2)
(
(X1,σ1), (X2,σ2)

)
= Pf

(
[σ̃1, σ̃2]

)
.

Theorem 9. 1o#(̃y2) 6= 0.

Proof. Suppose that 1o (̃y2) is exact. Let 1o (̃y2) = dA(ζ ) for some ζ ∈ Ω1(A). Thus we get that for all (X1,σ1), (X2,σ2) ∈

X(M) × C∞(M;g), Pf([σ̃1, σ̃2]) is equal to

X1

(
ζ(X2,σ2)

)
− X2

(
ζ(X1,σ1)

)
+ ζ

(
[X1, X2], X1(σ2) − X2(σ1) + [σ1,σ2]

)
.

Observe that ζ = 1⊗ ζ1 + ζ2 ⊗ 1 for some ζ1 ∈ Γ (M × g∗) and ζ2 ∈ Ω1(M). For this reason, for σ1 = σ2 = 0, we obtain that

ddR(ζ2) = 0. Moreover, for X1 = 0 and σ2 = 0 we have

X2

(
ζ1(σ1)

)
= −ζ1

(
X2(σ1)

)
(17)

for all X2 ∈ X(M), σ1 ∈ C∞(M;g). Let {E1, E2, E3, E4} be a base of g. Fix X ∈ X(M), σ ∈ C∞(M;g), and let ζ1 =
∑

j ζ
j
1 E j for

some ζ
j
1 ∈ C∞(M). Note that X(ζ1(σ )) = ζ1(X(σ )) + X(ζ1)(σ ). Combining this with (17) we deduce that

2ζ1
(
X(σ )

)
+ X(ζ1)(σ ) = 0. (18)
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Taking in (18) constant functions σ j = 1 · E j ∈ C∞(M;g), j ∈ {1,2,3,4}, we see that X(ζ1) = 0 for all X ∈ X(M). It follows

that ζ1 is a constant function. Let σ̃ j = σ j E j ∈ C∞(M;g) for some non-constant functions σ j ∈ C∞(M;g). (18) now implies

X(σ j)ζ
j
1 = 0 for all X ∈ X(M) and j ∈ {1,2,3,4}. Hence ζ

j
1 = 0. Since ζ1 = 0 and ddR(ζ2) = 0, Pf([σ̃1, σ̃2]) = 0 for all

σ1,σ2 ∈ C∞(M;g). On the second hand Pf([σ̃1, σ̃2]) is not a zero function for all σ1 , σ2 . Indeed, let {e1, e2} be a base of R2

and {e∗1, e∗2} the associated dual base of (R2)∗ . Let E1, E2, E3 ∈ Sym(R2) ⊂ End(R2), E4 ∈ Sk(R2) ⊂ End(R2) be defined by

E1(x) = 〈e∗1, x〉e1 , E2(x) = 〈e∗2, x〉e2 , E3(x) = 〈e∗1, x〉e2+〈e∗2, x〉e1 , E4(x) = 〈e∗1, x〉e2−〈e∗2, x〉e1 . Observe that Pf([E1, E3]) =

Pf(E4) = 1 6= 0. Thus 1o#([̃y2]) ∈ H
2(A) is a nontrivial secondary characteristic class for (TM ⊕ End(R2), TM ⊕ Sk(R2), id)

of even rank. 2
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