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ABSTRACTWe brie�y introduce our concept of a Pradines-type groupoid
over a foliation [7]. Examples of such groupoids can be found in the theory of
foliations. Next, we de�ne a cohomology module H (A; f) of the Lie algebroid
A of a Pradines-type groupoid � over a foliation, with values in some vector
bundle f, with respect to a given representation of � in f. It is shown that
H (A; f) depends only on the derivative of this representation. Afterwards, the
theory of connections in A and in is built. The last part �the main purpose
of this paper �is devoted to de�ning the Chern-Weil homomorphism h� of �
and to proving its independence of the choice of connection. As an application
of the introduced characteristic classes we give some generalization of the Bott
Vanishing Theorem.
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2 Pradines-type groupoids over foliations and
their Lie algebroids

There is well-known de�nition of a di¤erential groupoid (see for example [10])
as groupoid

� = (�; �; �; V; �) (1)

in which � and V are C1-manifolds, the mappings �; � : � ! V (called
a source and a target) are submersions, and �1 : � ! �; h 7! h�1; u :
V ! �; x 7! ux; (ux � the unity over x) and � : � � � ! �; (h; g) 7!
h�g; (� � � := f(h; g) ; �h = �gg is a proper submanifold of �� �) are smooth
(i.e. of the class C1).
A transitive di¤erential groupoid is called a Lie groupoid. Each Lie groupoid

is isomorphic to a Lie groupoid of Ehresmann PP�1 [1] for some principal �bre
bundle P .
In the theory of foliations one can observe groupoids which do not possess

any natural structures of di¤erential groupoids (the spaces of these groupoids
need not be manifolds).

Example 1 The equivalence relation R � V � V determined by a foliation F
of a manifold V (x � y () y 2 Lx; Lx � the leaf of F through x ) is hardly
ever regular [11].

Example 2 The subgroupoid �F of a Lie groupoid �; consisting of all elements
of � for which the source and the target lie on some leaf of a given foliation F
of V; is not � in general �a submanifold. This situation is a description (in a
language of groupoids) of some important object consisting of a principal �bre
bundle and a foliation on the base, studied, for example, by Kamber and Tondeur
[5].

It turns out that the spaces of the groupoids R and �F ; considered above,
can be equipped with the structures of di¤erential spaces in the sense of Sikorski
in order to obtain smooth groupoids according to the de�nition below [7]. First,
we recall that by a di¤erential space (in the sense of Sikorski) (for brevity: d.s.)
[12] we mean the pair (M;C) consisting of a set N and a nonempty family C of
real functions on M; such that

(i) ' (f1 (�) ; :::; fs (�)) 2 C for all s 2 N; f1; :::; fs 2 C and ' 2 C1 (Rs) ;

(ii) g :M ! R belongs to C if, for each x 2M; there exists its neighbourhood
� 2 �C (�C �the weakest topology on M in which all functions from C
are continuous) and a function f 2 C such that f jU = gjU:

For any d.s.�s (M;C) and (N;D) ; the mapping f :M ! N is called smooth
if g � f 2 C for each g 2 D: If (M;C) is a d.s. and A � M is any subset, then
(A;CA) is a d.s., too, where

g 2 CA ()
^
x2A

_
x2U2�C

_
f2C

(f jU \A = gjU \A) :
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Returning to examples 1 and 2, we introduce on the sets R and �F the
di¤erential structures equal to C1 (V � V )R and C1 (�)�F ; respectively. It
is easy to see that all operations in these groupoids are then smooth (in the
category of d.s.�s, of course).

De�nition 3 By a smooth groupoid [7] we mean groupoid (1) in which V is a
C1-manifold, � is a d.s. and the mappings �; �;�1 ; u and � : ���! � (where
� �� denotes the proper d.subsp. of ���) are smooth and, moreover, for each
point x 2 V on the set ��1 (x) ; there exists a di¤erential structure � such that
�x :=

�
��1 (x) ; �

�
is a Hausdor¤ C1-manifold and

(i) for each h 2 ��1 (x) ; there exists its neighbourhood U open in the manifold
�x; such that CU = C1 (�x)U where C is the di¤erential structure of �;

(ii) for each locally arcwise connected topological space X and each continuous
mapping f : X ! � such that f [X] � ��1 (x) ; the mapping f : X ! �x
is continuous, too.

The manifolds �x; x 2 V; are called leaves of the groupoid �:
The mapping

Dh : ��h ! ��h; g 7�! g � h;

h 2 �; are di¤eomorphisms.
With each smooth groupoid (1) we associate

(i) a di¤erential subspace of the "tangent bundle" (T�; TC) [6] ( T� =F
h2�

Th�; TC is the smallest of all di¤erential structures containing the

set ff � �; f 2 Cg [ fdf ; f 2 Cg where � : T� ! � is the natural pro-
jection and df : T�! R; v 7�! v (f) ) equal to�

A (�) ; (TC)A(�)

�
where A (�) =

F
x2V

Tux�x;

(ii) a projection
p : A (�)! V; p (v) = x, v 2 Tux�x:

A smooth vector �eld X on � [12] is called right-invariant if (i) Xh 2
Th (��h) ; (ii) (Dh)�g (Xg) = Xgh: The Lie bracket of right-invariant vector
�eld is such a �eld, too. Each right-invariant vector �eld X determines a smooth
section X0 of the projection p by the formula X0 (x) = X (ux) : Conversely:

Proposition 4 For each smooth section � : V ! A (�) of p; there exists exactly
one smooth right-invariant vector �eld �0 on � such that �0ux = �x; x 2 V:
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Proof. Of course, �0h = (Dh)�u�h
�
��h
�
: To show the smoothness of �0; we

must prove that �0 (f) 2 C for each f 2 C: Let f 2 C: For h 2 �; we have
�0h (f) = � � � (h) (��h 3 g 7�! f � (�) (g; h)) : From the assumption about � we
have f �(�) 2 (C � C)��� :We �x h0 2 � and �nd a neighbourhood 
 2 �C�C of
(u�h0 ; h0) and a function ~f 2 C�C such that f �(�) j
\(� � �) = ~f j
\(� � �) :
Thus, for h from some neighbourhood of h0; we have �0h (f) = ��� (h)

�
~f � (�)

�
:

The function h 7�! ��� (h)
�
~f (�; h)

�
belongs to C; which is not di¢ cult to show.

For two sections �; � of p; we put

[[�; �]] :=
��
�0; �0

��
0
:

Then the system (SecA (�) ; [[�; �]]) is a Lie algebra, where SecA (�) denotes the
vector space of all global sections of p:
The mapping

~�� : A (�)! TV; v 7�! �� (v) ;

has the property: Sec ~�� : SecA (�) ! X (V ) is a homomorphism of Lie alge-
bras. Besides, the following equality

[[�; f � �]] = f � [[�; �]] +
�
~�� � �

�
(f) � �

holds for �; � 2 SecA (�) and f 2 C1 (V ) : In general, the system

(A (�) ; p; V ) (2)

is not a vector bundle for lack (among other things) of the equalities of dimen-
sions of �bres of p:
In the case of a di¤erential groupoid, A (�) �= u�T�� is a vector bundle

( T�� :=
S
h

Th��h � T� is then equal to ker�� ) and A (�) is equal to the

space of the so-called Lie algebroid of � de�ned by Pradines [8], [9]. There are
smooth groupoids not being di¤erential for which system (2) is a vector bundle.
For example, the above-mentioned examples R and �F are such groupoids (

A (R) �= TF ; A
�
�F
� �= ~��1� [TF ] ).

De�nition 5 By a groupoid of Pradines type [7] we mean smooth groupoid (1)
for which system (2) is a vector bundle. The system

�
A (�) ; [[�; �]]; ~��

�
is then

a Lie algebroid called a Lie algebroid of �:

In the sequel, we shall be occupied with a groupoid � of Pradines type for
which

(i) the family of abstract classes of the equivalence relation

R� :=

(
(x; y) 2 V � V ;

_
h2�

(�h = x; �h = y)

)
is a foliation, say F ;
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(ii) �x : �x ! Lx; h 7�! �h; x 2 V; are submersions ( Lx is the leaf of F
through x equipped the natural structure of an immerse submanifold of
V ).

This groupoid is called a groupoid of Pradines type over the foliation F [7].
(1) and (2) are examples of such groupoids.
Let � be a �xed groupoid of Pradines type over a foliation F ; and

A = (A; [[�; �]]; 
)

� its Lie algebroid. Then

(i) �x is a principal �bre bundle with the projection �x and the structural
Lie group Gx = ��1x (x) ;

(ii) E := Im 
 is equal to TF :

We put
g = ker 
:

g is a vector bundle whose each �bre gjx possesses a natural structure of a
Lie algebra (([v; w] := [[�; �]] (x) for any �; � 2 SecA such that � (x) = v and
� (x) = w; v; w 2 gjx ). gjx is called the isotropy Lie algebra at x and it is the
Lie algebra of the Lie group Gx:
Now, we put �Lx := fh 2 �; �h = xg ; x 2 V: By means of the bijection

�1 : �x ! �Lx we de�ne on �
L
x some structure of a C

1-manifold. Then Lh :
�L�h ! �L�h; g 7�! h � g; h 2 �, are di¤eomorphisms; with their help left-
invariant vector �elds are de�ned. It is easy to see that

Tux�x \ Tux�Lx = TuxGx;

so each section � 2 Secg extends not only to the right-invarint vector �eld �0
but also to the left-invariant vector �eld �0L (also smooth). �0L is an �-�eld (i.e.
is tangent to all manifolds �x ) and �

0
Lj�x is a usual fundamental vector �eld

on the principal �bre bundle �x: The left-invariant vector �eld �
0
L generated by

a section � 2 Secg is called fundamental vector �eld on �:

3 Cohomology of Pradines-type groupoids over
foliations.

By an �-form of degree q on � with values in a vector bundle (f; p; V ) we mean

an assignment 	 of some covector 	(h) 2
qV
(T �h (��h))

N
fj�h to each element

h 2 �: 	 is called smooth if, for any smooth vector �-�elds X1; :::; Xq on �; the
mapping

� 3 h 7�! 	(h) (X1h; :::; Xqh) 2 f
is smooth. If f is the trivial bundle f = V � R, then 	 is called an �-form of
degree q on �: The set 
� (�; f) of all smooth �-forms on � with values in f
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constitutes a graded module over then ring C (C = the di¤erential structure of
� ); besides it is a left module over the algebra 
� (�) of smooth �-forms on �:
Of course, for 	 2 
� (�; f) and x 2 V; we have

	jx := ��x	 2 

�
�x; fjx

�
where �x : �x ,! �:
By a representation (in other words, a (covariant) action) of � in a vector

bundle f we mean an assignment T of some linear isomorphism T (h) : fj�h ! fj�h
to each element h 2 � in such a way that

(i) T (g � h) = T (g) � T (h) ;

(ii) T (ux) = idfjx ,

(iii) the mapping ~T : � � f; (h; v) 7! T (h) (v) ; is smooth, where,

� � f = f(h; v) 2 �� f; �h = pvg

denotes the proper d.subsp. of �� f:

Example 6 (i) the trivial representation T (h) = idR in the trivialbundle V �R,
(ii) the adjoint representation Ad in the vector bundle g of Lie algebras,

de�ned by the formula:

Ad (h) = (�h)�u�h : gj�h ! gj�h

where �h : G�h ! G�h; a 7�! hah�1:

To give some representaion T is just the same as to give some (strong)
smooth homomorphism of groupoids T : � ! GL (f) where GL (f) denotes the
Lie groupoid of all linear isomorphisms between �bres of f:
Let T be a �xed representation of � in f. 	 2 
� (�; f) is called equivariant

with respect to T if, for each h 2 �; the equality (Dh)
� �
	j�h

�
= T

�
h�1

�
�
�
	j�h

�
holds. The graded vector space


�T (�; f)

of all smooth �-forms on � with values in f equivariant with respect to T is

(i) a graded module over the ring C1 (V ) ; with respect to the multiplication
f �	 := f � � �	;

(ii) a module over the algebra 
�R (�) of all right-invariant �-forms on �; i.e.
equivariant with respect to the trivial representation.

Each element of 
 (A; f) :=
qL

q (A; f) where


q (A; f) := Sec

 
q̂

A�
O

f

!
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is called a smooth form on the Lie algebroid A with values in f, while, for the
trivial bundle f = V �R, brie�y: a smooth form on the Lie algebroid A: 
 (A; f)
is a graded module over C1 (V ) and a module over the algebra 
 (A) of all
smooth forms on A:

Proposition 7 The mapping

�T : 

�
T (�; f)! 
 (A; f) ; �T (	) (x) = 	 (ux) ; x 2 V;

is an isomorphism of graded C1 (V )-modules.

Proof. It is easy to see that

(i) �T (	) is a smooth form on A with values in f,

(ii) �T is a monomorphism of graded C1 (V )-modules.

To prove that �T is epimorphic, we take any � 2 
q (A; f) and put

	(h) (w1; :::; wq) = T
�
h�1

�
(��h; :::; (Dh�1)�h wi; :::) ; h 2 �:

Then 	 is a smooth equivariant �-form on � with values in f; such that �T	 =
�:
The isomorphism from the above proposition for the trivial representation

is denoted by �R: The formula

�T ( ^	) = �R ( ) ^ �T (	)

holds for any  2 
�R (�) and 	 2 
�T (�; f) ; in particular, �R is an isomorphism
of algebras.

Theorem 8 Let X be any smooth vector vector �-�eld on �: There exists
uniquely determined endomorphisms ��;fX ; ��;fX ; d�;f of the vector space 
� (�; f)
such that, for each x 2 V; the following diagrams commutes:


� (�; f)
��;fX (��;f

X ;d�;f)
�! 
� (�; f)

# ��x # ��x


�
�x; fjx

� �Xj�x (�Xj�x ;d)�! 

�
�x; fjx

�
If X is, in addition, a right-invariant vector �eld, then the subspace 
�T (�; f) is
stable with respect to all the three endomorphisms.
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Proof. The uniqueness is evident. To prove the existence, we de�ne the endo-
morphisms by the formulae (for a form 	 of degree q ):�
��;fX 	

�
(X1; :::; Xq�1) = 	 (X;X1; :::; Xq�1) ; (3)�

��;fX 	
�
(X1; :::; Xq) = X (	 (X1; :::; Xq))�

qX
j=1

	(X1; :::; [X;Xj ] ; :::; Xq)

�
d�;f	

�
(X0; :::; Xq) =

qX
j=0

(�1)j Xj

�
	

�
X0; :::

^

Xj :::; Xq

��

+
X
i<j

(�1)i+j 	
�
[Xi; Xj ] ; :::

^

Xi:::
^

Xj :::

�

where Xi are vector �-�elds on �: The expresion X (	 (X1; :::; Xq)) has the
following sense: it denotes the smooth function � ! f de�ned by h 7�!
Xh

�
	j�h (X1j��h; :::; Xqj��h)

�
: Let us notice that the homomorphisms so de-

termined are C-linear skew-symmetric and possess values at each points. Be-
sides, the diagrams above commute.
For the trivial vector bundle f = V � R; the index f in the symbols of

endomorphisms above (and below) is omitted.

De�nition 9 We take � 2 SecA: We de�ne endomorphisms

�A;f� ; �A;f� ; dA;f

of the vector space 
 (A; f) in such a way that the following diagrams commute:


 (A; f)
�A;f� (�A;f

� ; dA;f)
�! 
 (A; f)

�=" �T


�T (�; f)
��;fX (��;f

X ;d�;f)
�! 
�T (�; f)

The fundamental properties of these endomorphisms are given below.

Theorem 10 For any forms  2 
q (A) ; 	 2 
 (A; f) and sections �; � 2
SecA; the following formulas hold:

(10) �A;f� ( ^	) = �A�  ^	+ (�1)
q
 ^ �A;f� 	;

(20) �A;f� ( ^	) = �A�  ^	+  ^�
A;f
� 	;

(30) dA;f ( ^	) = dA ^	+ (�1)q  ^ dA;f	;

(40) �A;f[[�;�]] = �
A
� � �A;f� � ::::

(50) �A;f[[�;�]] = �
A;f
� ��A;f� ��A;f� ��A;f� ;
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(60) �A;f� = �A;f� � dA;f + dA;f � �A;f� ;

(70) dA;f � dA;f = 0;

(80) dA;f ��A;f� = �A;f� � dA;f:

The endomorphisms �A;f� ; �A;f� ; dA;f are de�ned (on forms of degree q ), by
the following formulae, where T 0 : A ! A (GL (f)) denotes the derivative
of T; i.e. some homomorphism of Lie algebroids, while, for a section
� 2 Sec f, ~� denotes the mapping

~� : GL (f)! f; h 7�! h�1 (��h) ; (4)

(90)
�
�A;f� 	

� �
�1; :::; �q�1

�
= 	

�
�; �1; :::; �q�1

�
;

(100)
�
�A;f� 	

� �
�1; :::; �q

�
= (T 0 � �)

�
	
�
�1; :::; �q

�~��Pq
j=1	

�
�1; :::; [[�; �j ]]; :::; �q

�
;

(110)
�
dA;f	

� �
�0; :::; �q

�
=
Pq

j=0 (�1)
j �
T 0 � �j

��
	
�
�0; :::�̂j :::; �q

�~�
+
P

i<j (�1)
i+j
	
�
[[�i; �j ]]; �0; :::�̂i:::�̂j :::; �q

�
where �i 2 SecA: In particular, for the trivial representation,

(120)
�
�A�  

� �
�1; :::; �q

�
= (
 � �)

�
 
�
�1; :::; �q

��
�
Pq

j=1  
�
�1; :::; [[�; �j ]]; :::; �q

�
;

(130)
�
dA 

� �
�0; :::; �q

�
=
Pq

j=0 (�1)
j �

 � �j

� �
 
�
�0; :::�̂j :::; �q

��
+
P

i<j (�1)
i+j

 
�
[[�i; �j ]]; �0; :::�̂i:::�̂j :::; �q

�
;

while, for the Lie algebroid A equal to the tangent bundle E = TF ,

(140)
�
�E�  

�
(X1; :::; Xq) = X ( (X1; :::; Xq))�

Pq
j=1  (X1; :::; [X;Xj ] ; ::; Xq) ;

(150)
�
dE 

�
(X0; :::; Xq) =

Pq
j=0 (�1)

j
Xj

�
 
�
X0; :::X̂j :::; Xq

��
+
P

i<j (�1)
i+j

 
�
[Xi; Xj ] ; :::X̂i:::X̂j :::; Xq

�
for Xi 2 SecE:

Proof. Formulae (10)�(80) are proved as follows: for example (10). First, we
prove analogous formula for ��;fX :

(100) ��;fX ( ^	) = ��X ( ^	) + (�1)
q
 ^ ��;fX 	

for  2 
�;q (�) ; 	 2 
� (�; f) and X �an �-�eld.
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For the purpose, we show the equality, for any x 2 V :

��x

�
��;fX ( ^	)

�
= ��x

�
��X ( ^	) + (�1)

q
 ^ ��;fX 	

�
:

Next, in order to prove (10), we take any  2 
q (A) and 	 2 
 (A; f) as well as
 0 2 
�R (�) and 	0 2 
�T (�; f) ; such that �R

�
 0
�
=  and �T (	0) = 	: Then

�A;f� ( ^	) = �A;f�

�
�R
�
 0
�
^ �T (	0)

�
= �A;f�

�
�T
�
 0 ^	0

��
= �T

�
��;f�0

�
 0 ^	0

��
= �T

�
���0 

0 ^	0 + (�1)q  0 ^ ��;f�0 	
0
�

= �R
�
���0 

0� ^ �T	0 + (�1)q �R 0 ^ �T ���;f�0 	0�
= �A;f�  ^	+ (�1)q  ^ �A;f� 	:

Formulae (20)�(80) are proved analogously, while (90)�(110) are proved by
making successive use of formulae (10). E.g.:�

�A;f� 	
� �
�1; :::; �q

�
= �A;f� (�T	

0)
�
�1; :::; �q

�
= �T

�
��;f�0 	

0
� �
�1; :::; �q

�
=

�
��;f�0 	

0
� �
�01; :::; �

0
q

�
� u

=

24�0 �	0 ��01; :::; �0q��� qX
j=1

	0
�
�01; :::;

�
�0; �0j

�
; :::; �0q

�35 � u
= �

�
	
�
�1; :::; �q

�~ � T�� qX
j=1

	
�
�1; :::;

�
�; �j

�
; :::; �q

�
= (T 0 � �)

�
	
�
�1; :::; �q

�~�� qX
j=1

	
�
�1; :::;

�
�; �j

�
; :::; �q

�
:

Corollary 11 Formulae (90)�(110) states that �A;f� depends only on A and f;

while �A;f� and dA;f �on the derivative T 0 of T: In particular, the space H (A; f)
of cohomology of the complex

�

 (A; f) ; dA;f

�
depends only on T 0: H (A; f) forms

a graded module over the graded cohomology algebra of A; i.e. over the coho-
mology of the complex

�

 (A) ; dA

�
:

Remark 12 If the Lie algebroid A is equal to the trivial Lie algebroid (TV; [�; �] ; id) ;
then dA stands for the usual exterior di¤erentiation of smooth forms. If the
manifold V is one-point, then any Lie algebroid is simply a Lie algebra. In this
case, for any vector space F understood as a trivial bundle over this point, the
di¤erentiation dA;F is equal to the classical operator (see for example [3, Vol.III,
p.211]).
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4 Connections

With the Lie algebroid A = (A; [[�; �]]; 
) we associate a short exact sequence of
vector bundles (over the manifold V )

0! g
j
,! A


! E ! 0

called an Atiyah sequence assigned to the Lie algebroid A (or a fundamental
sequence assigned to A ).

De�nition 13 By a connection in A we mean a splitting of the Atiyah-sequence
for A; i.e. a morphism

� : E ! A

such that 
 �� = idE : The corresponding subbundle h := Im� � A is called hor-
izontal, while the uniquely determined morphism ! : A ! g such that !jg = id
and !jh = 0 �a connection form of �: The morphism V := j � ! : A ! A is

so-called connection homomorphism of �: The isomorphism �� : SecE
�=�! Sec h

is called an isomorphism of horizontal lifting.

The equality �� ([X1; X2]) = H� ([[��X;��X2]]) holds, where H := id�V:
With the groupoid � we associate another short exact sequence, this time,

of the so-called vector bundles over the d.s. �; of the form

0! g�
j�

,! T��

�! ��E ! 0 (5)

in which

(i) T�� is a (proper) di¤erential subspace of T� with the set of points equal
to

F
h2�

Th��h;

(ii) 
� (v) = (��V; ��v) where �
� : T��! � is the natural projection,

(iii) g� = ker 
�:

Let us explain that a vector bundle over a d.s. is de�ned identically as over
a manifold (the property of local triviality is assumed). It is not di¢ cult to see
(basing on [7] that, for a groupoid � of Pradines type, T�� is a vector bundle
over �:
We de�ne, for a connection � : E ! A; a mapping

�� : ��E ! T��; (h; v) 7�! (Dh)�u�h � �j�h (v) :

�� is a strong homomorphism of vector bundles over � satisfying

(i) 
� � �� = id��E ;

(ii) ��jgh = (Dh)�g � �
�
jg where �

�
jh : Ej�h ! Th (��h) ; v 7�! �� (h; v) :

12



Conversely, for each smooth strong homomorphism � : ��E ! T�� of vector
bundles over � ful�lling (a) 
� �� = id��E ; (b) �jgh = (Dh)�g ��jg; there exists
exactly one connection � in A such that �� = �:
Each homomorphism � : ��E ! T�� ful�lling (a) and (b) is called a con-

nection in the groupoid �: By a connection form of � we mean the uniquely
determined strong homomorphism � : T�� ! g� of vector bundles over �; for
which � � j� = id and �j Im� = 0: All connection forms are characterized by the
properties

(i) � � j� = id;

(ii) (Dh)�g � � jg = � jgh � (Dh)�g :

The assignment � 7�! �� establishes a bijection between connections in A
and in �: One can verify that in the groupoid �F (example 2) where � �= PP�1

(P � some principal �bre bundle) connections are in the 1-1 correspondence
with partial connections in P [5] which project onto the tangent bundle to the
foliation F .

Proposition 14 The mapping

k : ��g! g�; (h; v) 7�! (Ah)�uah (v) ;

where Ah : G�h ! ��h; a 7�! ha; is a strong isomorphism of vevtor bundles
over �:

Proof. Since kjh : gj�h ! g�jh is an isomorphism of vector spaces, it is su¢ cient
to see the smoothness of k; but to prove this �the smoothness of the section
k�� of g� � T�� � T�; where � (h) = (h; ��h) ; h 2 �; � 2 Secg. As k�� = �0L
and the left-invariant vector �eld generated by � is smooth, k � � is a smooth
vector �eld.

Remark 15 (a) Ah = LhjGx; so �0L (h) = (Ah)�u�h (��h) for � 2 Secg:
(b) Sequence (5) can be modi�ed to the following diagram

0 ! g�
j��! T��


��! ��E ! 0
k %�=

g
~� � ��g # # #

# #
V

� � � = � = � = �

where ~� (h; v) = v; which is called a fundamental diagram for �:

Let � : T��! g� be any connection form in �: Then the homomorphism

�� := ~� � k�1 � � : T��! g

of bundles over � : �! V is called a connection �-form of �: This is a smooth
�-form of degree 1 on � with values in the bundle g. We show without di¢ culty
the following

13



Proposition 16 �� has the properties:

(a) ��;g�0L �
� = � � � (i.e. ��jh

�
(Ah)�u�h v

�
= v ),

(b) (Dh)
�
�
��j�h

�
=
�
Adh�1

�
�

�
��j�h

�
(i.e. �� 2 
�;1Ad (�;g) ).

Conversely, for each homomorphism �� : T��! g of vector bundles over
�; ful�lling (a) and (b) above, there exists exactly one connection form
� : T��! g� such that �� := ~� � k�1 � �:

We now take any connection form ! in the Lie algebroid A: ! determines
some connection in a A which de�nes, in turn, some connection in �: The �-form
of this last connection is given by the formula ��jh =

�
Adh�1

�
�!�h � (Dh�1)�h :

The restriction ��jx of �
� to the manifold �x is a usual connection form in the

principal �bre bundle �x: Besides �Ad�
� = !:

Now, we �x a connection � : E ! A in the Lie algebroid A = (A; [[�; �]]; 
)
with a connection form!; a connection homomorphism V; and also some vector
bundle f and a representation T of � in f: A form 	 2 
 (A; f) ( 2 
 (A) ) is
called horizontal if �A;f� 	 = 0 (�A�  = 0 ) for each � 2 Secg: All horizontal forms
constitute a vector space 
i (A; f) (
i (A) ). Moreover, 
i (A) is an algebra and

i (A; f) �a submodule of the 
i (A)-module 
 (A; f) : We de�ne a horizontal
projection

HA;f
� : 
 (A; f)! 
 (A; f)

by the formula (for a form 	 of degree q)�
HA;f
� 	

�
(x; v1; :::; vq) = 	 (x;Hv1; :::;Hvq)

where H = id�V: For the trivial bundle f = V � R, the index f is omitted. We
show without di¢ culty that:

(i) HA;f
� is linear,

(ii) HA;f
� j
i (A; f) = id;

(iii) ImHA;f
� = 
i (A; f) ;

(iv)
�
HA;f
�

�2
= HA;f

� ;

(v) HA;f
� ( ^	) = HA

�  ^H
A;f
� 	;

(vi) HA;g
� ! = 0:

The endomorphism
rA;f := HA;f

� � dA;f

is called an exterior covariant derivative in the Lie algebroid A (with values in f
) associated with the connection �: For the trivial bundle f, the endomorphism
rA;f is denoted by rA: It is easy to see the following properties of rA;f :

14



(i) rA;f is linear,

(ii) ImrA;f � 
i (A; f) ;

(iii) rA;f ( ^	) = rA ^ HA;f
� 	 + (�1)qHA

�  ^ rA;f	 for  2 
q (A) ;
	 2 
 (A; f) :

The last property results from property (30) of dA;f (see Theorem 10).
Now, we de�ne 
�f� 2 
q (A; f) for � 2 
q (E; f) by the formula�


�f�
�
(x; v1; :::; vq) = � (x; 
v1; :::; 
vq) :

Analogously, ��f	 2 
q (E; f) for 	 2 
q (A; f) by the formula�
��f	

�
(x;w1; :::; wq) = 	 (x;�w1; :::; �wq) :

It is easy to see that

(i) 
�f� 2 
i (A; f) for any form � 2 
 (E; f) ;

(ii) the mappings


�f : 
 (E; f)! 
i (A; f) ; � 7�! 
�f�;

and
��f : 
i (A; f)! 
 (E; f) ; 	 7�! ��f	;

are mutually inverse isomorphisms such that (� ^�) = 
�� ^ 
�f� and
��f ( ^	) = �� ^ ��f	: Particularly, �� and 
� are (de�ned for the
trivial bundle f) isomorphisms of algebras.

De�nition 17 We de�ne an endomorphism rf of the vector space 
 (E; f) as

rf := ��f � rA;f � 
�f

and call it an exterior covariant derivative in the bundle f along leaves of the
foliation F associated with the connection �:

Theorem 18 (a) rf = ��f � dA;f � 
�f ;

(b) for the trivial bundle f = V � R; the equality rf = dE holds, i.e. dE =
�� � dA � 
�;

(c) rf (� ^�) = dE� ^�+ (�1)q � ^rf� for � 2 
q (E) ; � 2 
 (E; f) ;

(d)
�
rf�

�
(X0; :::; Xq) =

Pq
j=0 (�1)

j rfXj

�
�
�
X0; ::: ~Xj :::; Xq

��
+
P

i<j (�1)
i+j
�
�
[Xi; Xj ] ; ::: ~Xi::: ~Xj :::; Xq

�
;
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(e) rf restricted to Sec f; i.e. rf : Sec f! 1 (E; f) ; is de�ned by the formula
rfX (�) = (T 0 � ��X) (~�) for � 2 Sec f and X 2 SecE (for ~�; see 4), and
has the properties:

(i) rf is linear,
(ii) rffX� = frfX�;
(iii) rfX (f�) = X (f)� + frfX� for f 2 C1 (V ) ; � 2 Sec f:

Proof. (a) follows from the equality ��fH
A;f
� 	 = ��f	 for any 	 2 
 (A; f) ;

while (b) �from the suitable properties (mentioned above) of ��f i 

�
f as well as

from property (30) of dA;f: (b) is shown by a direct calculation with the use of
formulae (130) and (150), (c) follows from (30), as to (d): by (110), we have�

rf�
�
(X0; :::; Xq)

= ��f � dA;f � 
�f�(X0; :::; Xq)

=

qX
j=0

(�1)j (T 0 � ��Xj)
�

�f�(��X0; :::|̂:::; ��Xq)

�
+
X
i<j

(�1)i+j
�

�f�

�
([[��Xi; ��Xj ]]; :::̂{:::|̂:::)

=

qX
j=0

(�1)j rfXj
(� (X0; :::|̂:::; Xq)) +

X
i<j

(�1)i+j �([Xi; Xj ] ; :::̂{:::|̂:::) :

(e) is easy to see.

Remark 19 rf restricted to any leaf of the foliation F , i.e. rf : Sec
�
fjL
�
!


1
�
TL; fjL

�
; is a usual covariant derivative. Operators having the above prop-

erty appeared in the work by Kamber and Tondeur [5] as partial connections in
a vector bundle.

By a curvature form of � we mean the form


 := rA;g! 2 
2 (A;g) :

This form has the following properties:

(i) 
 2 
2i (A;g) ;

(ii) 
 (�1; �2) = �! ([[H��1;H��2]]) for �j 2 SecA:

Indeed, (i) follows from property (iii) of the horizontal projection HA;f
� ; while

(b) from the calculation:


 (�1; �2)

=
�
rA;g!

�
(�1; �2) =

�
dA;g!

�
(H��1;H��2)

(110)
= (ad �H��1)

�
! (H��2)

~
�
� (ad �H��2)

�
! (H��1)

~
�
� ! ([[H��1;H��2]])

= �! ([[H��1;H��2]])
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where ad denotes the derivative of the adjoint representation Ad :
by a curvature base-form of � we mean the form


B = ��g
 2 
2 (E;g) :

This form has the properties:

(i) 
B (X1; X2) = �! ([[��X1; ��X2]]) ;

(ii) [[��X1; ��X2]] = �� [X1; X2]| {z }
horizontal part

�
B (X1; X2)| {z }
vertical part

;

(iii) 
 = 0 () 
B = 0;

(iv) 
B = 0 i¤ the Lie bracket of two horizontal vector �elds (i.e. sections of
h = Im� ) is such a �eld.

It remains to examine two classical equations:

(a) the structure equation of Maurer-Cartan


 = dA;g! +
1

2
[!; !] ;

(b) the Bianchi identity

rA;g
 = 0 (also rg
B = 0). (6)

In equation (a), we take the connection � in �; determined by �: Let �� be
its connection �-form. The classical Maurer-Cartan equation for the connection
��jx in the principal �bre bundle �x has the form

d
�
��jx

�
+
1

2

h
��jx; �

�
jx

i
= H (x)� d

�
��jx

�
where H (x)� denotes here the horizontal projection in �x associated with �

�
jx:

Let us denote by V � the connection homomorphism of �; i.e.

V � : T��! T��; v 7! � (v) ;

where � is a connection form of �; and next, de�ne the horizontal projection

H�;g
� : 
� (�;g)! 
� (�;g)

by the formula

(H�;g
� 	) (h; v1; :::; vq) = 	 (h;H

�v1; :::;H
�vq)

where H� = id�V �: Of course,

H (x)� = (H
�;g
� )jx

17



and both the horizontal projections H�;g
� and HA;g

� commute with �Ad: De�ning
[��; ��] analogously as [!; !] ; we get�
d�;g�� +

1

2
[��; ��]

�
x

= d
�
��jx

�
+
1

2

h
��jx; �

�
jx

i
= H (x)� d

�
��jx

�
= (H�;g

� d�;g��)jx ;

so
d�;g�� +

1

2
[��; ��] = H�;g

� d�;g��

which further gives

dA;g! +
1

2
[!; !] = dA;g�Ad�

� +
1

2
[�Ad�

�; �Ad�
�]

= �Ad

�
d�;g��

1

2
[��; ��]

�
= �AdH

�;g
� d�;g��

= HA;g
� dA;g! = rA;g! = 
:

The Bianchi identity easily follows from the Maurer-Cartan equation.
The form 
� := H�;g

� d�;g�� is called a curvature �-form of the connection
� in �: It is the so-called basic form, i.e. equivariant and horizontal at the same
time, where the horizontality of a form 	 2 
� (�; f) states that ��;fX 	 = 0 for
each vertical vector X (i.e. each section X of the bundle ga ). The space of all
basic forms is denoted by 
�B (�; f) : 


�
B (�) (for the trivial bundle f ) forms an

algebra. The isomorphism �T restricts to the isomorphism �T;i : 

�
B (�; f) !


i (A; f), moreover, �R;i : 
�B (�) ! 
i (A) is, of course, an isomorphism of
algebras. Besides, �Ad
� = 
:

5 The Chern-Weil homomorphism of groupoids
of Pradines-type over foliations

Let f1; :::; fk; f be any vector bundles over V: For a smooth k-linear homomor-
phism

� : f1 � :::� fk ! f

of vector bundles, we de�ne

(i) for forms 	i 2 
�;qi (�; fi) ; i � k; the form

��� (	1; ; ; ;	k) 2 
�;q (�; f) ; q =
X

qi;

by the formula

��� (	1; ; ; ;	k) (h; v1; :::; vq)

=
1

q1! � ::: � qk!
X
�

sgn� � �j�h
�
	1
�
h; v�(1); :::

�
; :::;	k

�
h; :::v�(q)

��
:

Of course
��� (	1; ; ; ;	k)jx =

�
�jx
� �
	1jx; ; ; ;	kjx

�
:

18



(ii) for forms 	i 2 
�;qi (A; fi) ; i � k; the form

�A� (	1; ; ; ;	k) 2 
q (A; f)

�by the analogous formula; in particular

�E� (�1; :::;�k) 2 
q (E; f)

is de�ned for �i 2 
qi (E; fi) :

It is easy to see that the following formulae (~� f : 
� (�; f) ! 
 (A; f) ; ~�
�
f :


 (A; f) ! 
 (E; f) denote here the mappings 	 7�! 	(ux) and 	 7�! ��f	;
respectively) hold:

(i) �A� (~� f1 � :::� ~� fk) (	1; ; ; ;	k) = ~� f (��� (	1; ; ; ;	k)) ;

(ii) �E� �
�
~�
�
f1
� :::� ~��fk

�
(	1; ; ; ;	k) = ~�

�
f

�
�A� (	1; ; ; ;	k)

�
:

Besides,

(a) ��;fX (��� (	1; ; ; ;	k)) =
P

i (�1)
q1+:::+qi�1 ���

�
	1; ; ; ; �

�;fi
X 	i; :::;	k

�
for

any �-�eld X;

(b) �A;f�

�
�A� (	1; ; ; ;	k)

�
=
P

i (�1)
q1+:::+qi�1 �A�

�
	1; ; ; ; �

A;fi
� 	i; :::;	k

�
for

any � 2 Secg,

(c) d�;f (��� (	1; ; ; ;	k)) =
P

i (�1)
q1+:::+qi�1 ���

�
	1; ; ; ; d

�;fi	i; :::;	k
�
:

Formulae (a) and (c) can be proved by the method "for each point x on
the manifold �x ", used bedore, while (b) follows from (a) and the equality
�A;f� � ~� f = ~� f � ��;f�0 .
Assume that T1; :::; Tk; T are representations of � in the bundles f1; :::; fk; f,

respectively. A k-linear homomorphism � : f1�:::�fk ! f is called (T1; :::; Tk;T )-
invariant if, for each h 2 �; the diagram

f1jx � :::� fkjx
�jx�! fjx

T1 (h)� :::� Tk (h) # # T (h)
f1jy � :::� fkjy

�jy�! fjy

commutes, where x = �h; y = �h: All invariant sections of the bundle
kN
f�i
N
f

(considered as k-linear homomorphisms) are denoted by 
Sec

kO
f�i
O

f

!
I

:

We notice that
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(i) the value �jx of an invariant section � is an invariant element with re-
spect to induced representations of the Lie group Gx in the vector spaces
f1jx; :::; fkjx; fjx;

(ii) for an invariant section �; knowing the value �jx; one can calculate the
value �jy for each y 2 Lx (Lx �the leaf of F through x ).

Denote by
�

kN
f�ijx
N
fjx

�
I

the space of invariant homomorphisms f1jx �

::: � fkjx ! fjx (invariant with respect to the above-mentioned representation

of Gx ) and take the "bundle"
�

kN
f�i
N
f

�
I

:=
S
x2V

��
kN
f�ijx
N
fjx

�
I

�
(with

the di¤erential structure induced from
kN
f�i
N
f ). This "bundle" is (i) a usual

trivial vector bundle over each leaf of F ; while (ii) invariant homomorphisms
are some of its sections.
For the groupoid �F (Example 2), each element of this "bundle" is a value

of a certain invariant homomorphism. More exactly, the bundle
�

kN
f�i
N
f

�
I

possesses then a global, canonical teleparallelism and each invariant homomor-
phism has the form

P
i f

i � �i for some smooth functions f i constant along
the leaves of F and some homomorphisms �i "constant" with respect to this
telepallelism.
A representation T : �! GL (f) de�nes the 2-linear (Ad;T )-invariant homo-

morphism Ti : g� f! f; (v; w) 7�! T (x)
0
(v) (w) ; where T (x) : Gx ! GL

�
fjx
�

denotes the induced representation and T (x)0 �its derivative. In particular, for
the adjoint representation Ad : � ! GL (g) ; we have the (Ad;Ad)-invariant
homomorphism [�; �] = AdI : g � g! g; (k; l) 7�! [k; l] :
Let � : f1 � :::� fk ! f be an invariant homomorphism. Then

(i) for 	j 2 
�Tj (�; fj) ; j � k; we have �
�
� (	1; :::;	k) 2 
�T (�; f) ;

(ii) for 	j 2 
�i (A; fj) ; j � k; ��A� (	1; :::;	k) 2 
i (A; f) ;

(iii) the formula

dA;f�A� (	1; :::;	k) =
X
j

(�1)q1+:::+qj�1 �A�
�
	1; :::; d

A;fj	j ; :::;	k
�

holds for 	j 2 
qj (A; fj) :

Furthemore

rf
�
�E� (�1; :::;�k)

�
=
X
j

(�1)q1+:::+qj�1 �E�
�
�1; :::;rfj�j ; :::;�k

�
for �j 2 
 (E; fj) ; in particular, for the trivial bundle f; we have

dE
�
�E� (�1; :::;�k)

�
=
X
j

(�1)q1+:::+qj�1 �E�
�
�1; :::;rfj�j ; :::;�k

�
(7)
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for �j 2 
 (E; fj) :
For a k-linear (Ad; :::;Ad)-invariant homomorphism � : g � ::: � g ! R we

put

(i) ��� := �A� (

�; :::;
�) 2 
�;2k (�) ;

(ii) �A� := �A� (
; :::;
) 2 
2k (A) ;

(iii) �E� := �E� (
B ; :::;
B) 2 
2k (E) ;

where 
�; 
; 
B are the curvature �-form, the curvature form and the
curvature base-form of a given connection, respectively.
It is easy to show that

��� 2 
�;2kB (�) and �A� 2 
2ki (A) :

We de�ne in an evident manner) the mappings ��; �A; �E from the space
kL��

Sec
kN
g�
�
I

�
into 
�B (�) ; 
i (A) and 
 (E) ; respectively, and notice

the following equations

�R � �� = �A and �� � �A = �E :

The space
kL�

Sec
kN
g�
�
of all sections is an algebra (in the natural manner),

while the subspace
kL�

Sec
kN
g�
�
I

of invariant sections is, of course, its subal-

gebra. �� is a homomorphism of algebras, whence �A and �E ; too (the formula
�� (�1 � �2) = ���1 ^ ���2 follows from the fact that it holds "for each point x
on the manifold �x "). We de�ne a smooth homomorphism

�kS :
kO
g� !

k_
g�; t1 
 :::
 tk 7�! t1 _ ::: _ tk

of vector bundles.

� We identify
kN
g� �= Lk (g;R) via the isomorphism

t1 
 :::
 tk 7�! ((v1; :::; vk) 7�! t1 (v1) � ::: � tk (vk))

while
kW
g� �= Lks (g;R) via �

t1 _ ::: _ tk 7�!
 
(v1; :::; vk) 7�!

1

k!

X
�

t�(1) (v1) � ::: � t�(k) (vk)
!
;

therefore the embedding

k_
g� �= Lks (g;R) � Lk (g;R) �=

kO
g�
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is de�ned by the formula

t1 _ ::: _ tk 7�!
1

k!

X
�

t�(1) � ::: � t�(k):

Further, we treat
kW
g� as a subspace of

kN
g� (of course, with its own

algebra structure). With such an interpretation,

�kS j
k_
g� = id :

We understand Sec
kW
g� � Sec

kN
g� analogously. 
�; 
A; 
E are de�ned

as restrictions of ��; �A; �E to the subspace
kL�

Sec
kW
g�
�
I

: To prove

the equation 
� � Sec�kS = and the fact that 
� is a homomorphism of
algebras, it is su¢ cient to show

(i) the commutativity of the diagram

kN
g�jx

�kSjx # &��(x)

kW
g�jx


�(x)�! 
 (�x) ;

where �� (x) and 
� (x) are de�ned by � 7�! ��

�

�jx; :::;


�
jx

�
;

(ii) the fact that 
� (x) is a homomorphism of algebras.

But it follows from the suitable properties of the commutative algebra Im�� (x)
[2]. The above implies


A (�) = �A� (
; :::;
) and 
E� = �E� (
B ; :::;
B)

and the commutativity of the fundamental diagram

kL�
Sec

kW
g�
�
I


��! 
�B (�)
d��! 
�R (�)

H�
��! 
�B (�)

&
A �=# �R;i �=# �R # �R;i

i (A)

dA�! 
 (A)
HA
��! 
i (A)


E & �=# �� # �� �= .��


 (E) 
 (E)

Theorem 20 dE � 
E = 0:

Proof. It is an immediate consequence of (7) and the Bianchi identity (6) (in
brackets).
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De�nition 21 The superposition

h� :
kM 

Sec
k_
g�

!
I


E! Z (E)! H (E)

is called the Chern-Weil homomorphism of �: The image of h� is a graded
subalgebra of H (E) called the Pontryagin algebra of � and denoted

Pont (�) :

Remark 22 Proceeding in the same way, we may build the Chern-Weil ho-

momorphism hf� :
kL�

Sec
kW
g�
N
f

�
I

! Hr (E; f) with values in any vector

bundle f; with respect to any representation T : � ! GL (f) ; where Hr (E; f)

is the space of Vaisman cohomology of the false complex
�

 (E; f) ;rf

�
: For

f =g; T = Ad and � = idg : g! g; we get the universal Halperin-Lehman
characteristic class of curvature (see [4]).

Theorem 23 The Chern-Weil homomorphism h� is independent of the choice
of connection.

Lemma 24 Let � and �0 be any groupoid of Pradines type over foliations F
and F 0 of manifolds V and V 0; while A = (A; [[�; �]]; 
) and A = (A0; [[�; �]]0; 
0)
their Lie algebroids. If F : � ! �0 is any smooth homomorphism of groupoids
over f : V ! V 0 (i.e. �0 � F = f � �; � � F = f � � ), and ! : A ! g and
!0 : A0 ! g0 are any connection forms in A and A0; respectively, for which the
diagram

g
! � A

~F 0� # #
g0

!0 � A

commutes (where ~F� and ~F 0� denote the suitable restrictions of F� : T�! T�0),
then the Chern-Weil homomorphism h� and h�0 , built by using the forms ! and
!0; give the commuting diagram

kL�
Sec

kW
g0�
�
I

h�0�! H (E0)

Sec
�
~F 0�

�_
# # f#

kL�
Sec

kW
g�
�
I

h��! H (E)

where E := TF and E0 := TF 0:

Proof of the lemma. First, we notice (by the meyhod "for each point x on
the bundles �x and �0f(x) ") that, for the curvature forms 
 and 


0 associated

23



with ! and !0; the following diagram

gjx

jx � Ajx �Ajx

~F 0�jx # # ~F�jx � ~F�jx

g0jx

0jf(x) � Ajf(x) �Ajf(x)

commutes. Next, we show that, for the corresponding curvature base-forms

B 2 
2 (E;g) and 
0B 2 
2 (E0;g) the diagram

gjx

Bjx � Ejx � Ejx

~F 0�jx # # ~f�jx � ~f�jx

g0jx

0Bjf(x) � E0jf(x) � E0jf(x)

commutes ( ~f� : E ! E0 denotes here the di¤erential of f restricted to E ).
Using this diagram, we can easily prove that the diagram below also commutes:


 (E0)
( ~f�)

�

�! 
 (E)
� 7�! �� (


0
B ; :::;


0
B) " " � 7�! �� (
B ; :::;
B)

kL�
Sec

kW
g0�
�

Sec( ~F 0
� )�!

kL�
Sec

kW
g�
�

To end the proof, it is su¢ cient to show that

dE �
�
~f�

��
=
�
~f�

��
� dE

0
;

which implies the possibility of de�ning f� : H (E)! H (E0) :
Using theorem 18(b) and the relationship between dA and d�; one can reduce

this equality to the commutativity of the usual operations of di¤erentiation and
pull-back of di¤erential forms on the manifolds �x and �0f(x):

Proof of theorem 23. We consider the Pradines-type groupoid �� = �� R2
(in which �� (h; x; y) = (�h; x) ; � (h; x; y) = (�h; y) ). �� is over the foliation
F�R := fL� R; L 2 Fg : The sequence

0! g � 0 ,! A� TR 
�id�! E � TR! 0

is the Atiyah sequence associated with the Lie algebroid A� TR (i.e. with the
Lie algebroid of ��): The homomorphism epr1 : ��R2 ! � of groupoids de�nes
some homomorphisms (over pr1 : V � R! V ) of vector bundles:

0 ! g � 0 ,! A� TR 
�id�! E � TR ! 0

# # ( epr1)~� #
0 ! g ,! A �! E ! 0
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A connection form ! in A determines a connection form ~! = !�0 : A�TR!g�
0 in the Lie algebroid A� TR, for which the following diagram commutes:

g � 0 ~! � A� TR
# #
g

! � A

Now, we take two connection forms !i : A! g; i = 0; 1; and the connection
forms ~!i in A�TR, corresponding to them. These last together de�ne a certain
connection form ~! : A� TR!g � 0 by the formula:

~!j(x;t) (v; w) =
�
!0jx (v) � (1� t) + !1jx (v) � t; 0

�
:

We now consider the homomorphism F� : � ! � � R2; h 7�! (h; (�; �)) ;
� = 0; 1; of groupoids over i� : V ! V � R; x 7�! (x; �) : Then we get the
commuting diagram

0 ! g
!� �
,! A ! E ! 0�

~F�

�0
�
#

�
~F�

�
�
# #  hom.�s over i�

0 ! g � 0
! �
,! A� TR ! E � TR ! 0

According to lemma 24, we get the diagram

kL�
Sec

kW
(g � 0)�

�
I

h��R2�! H (E � TR)

Sec
�
~F�

�0_
�
# # i#�

kL�
Sec

kW
g�
�
I

h��! H (E)

To notice the equality
i#0 = i#1

will be the next step of the proof.

Lemma 25 Let V and V 0 be any manifolds with arbitrary foliations F and F 0;
respectively. If f; g : V ! V 0 are any smooth mappings and H : V � R! V 0 is
an homotopy between them, such that, for each leaf L of F and for t 2 R; the
set H (�; t) [L] is contained in some leaf of F 0; then

f� = g� : H (E)! H (E0)

where E = TF and E0 = TF 0:

Proof of the lemma. We de�ne some cochain homotopy operator

h : 
q (E0)! 
q�1 (E) ;
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q = 0; 1; 2; ::; by the formula

h (�) (x; v1; :::; vq�1) =

Z 1

0

(h��)j(x;t)

�
v1; :::; vq�1;

@

@t

�
dt

for � 2 
q (E0) : The correctness of this de�niyion follows from the fact that

H�(x;t)
�
Ejx � TtR

�
� E0jH(x;t);

which is a consequence of the assumptions. The condition

f� � g� = h �DE0
+ dE � h

can be checked in a standard way.
Continuation of the proof of the theorem.. Applying lemma 24 to the
homotopy H := idV�R; we get the equality i

#
0 = i#1 :

Finally, we consider the homomorphism

g � 0 p1�! g; (v; 0) 7�! v;

over pr1 : V � R! V: Of course, p1 �
�
~F�

�o
�
= idV�R; so

id =

 
Sec

k_
g�

Sec(p1)
_

�! Sec
k_
(g � 0)�

Sec( ~F�)
o_
��! Sec

k_
g�

!
:

Thus, considering the diagram

Sec
kW
(g � 0)�

h��R2�! H (E � TR)
Sec (p1)

_ "# Sec
�
~F�

�o_
�

# i#0 = i#1

Sec
kW
g�

h��! H (E)

we obtain

h� =

�
h� � Sec

�
~F�

�o_
�

�
� Sec (p1)_ = i#� � h��R2 � Sec (p1)

_
:

The right-hand side of this equality is the same for both connections !0 and !1;
which proves the independence of h� of the choice of connection.

Remark 26 The equivalence of the Chern-Weil homomorphism h� of the Lie
groupoid of Ehresmann � = PP�1 determined by a principal �bre bundle P;
with the Chern-Weil homomorphism hP of P (see, for example, [3, Vol II])
follows from the commutativity of the diagram

p
�
kW
~g�
�
I

��!
�
Sec

kW
g�
�
I

q

j 
P # # 
A j

B j 
B (P )

{ � 
i (A) j
TV
j -�� 
� %.�� j
x ���� �! 
 (V )  � ������ y

in which
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(i) ~g is the Lie algebra of structural Lie group G of P;

(ii) g is the bundle of Lie algebras of the Lie algebroid A of �:

(iii) � (�)jx = � �
�
(Hz)

�1
� � :::� (Hz)

�1
�

�
where (Hz)� : ~g!gjx is the deriv-

ative of the homomorphism of Lie groups Hz : G ! Gx; a 7�! [z; za] ;
z 2 Pjx;

(iv) { (	) (z; v1; :::; vq) = 	 (�z; ('z)�z vq) where 'z : P
�=�!
�
PP�1

�
x
; t 7�!

[z; t] ; x = �z:

Remark 27 Let � be any Pradines-type groupoid over a foliation F . We take
L 2 F and x 2 L: Then the Chern-Weil homomorphism h� of � and h�x of
the principal �bre bundle �x are connected by the commuting diagram

kL�
Sec

kW
g�
�
I

h��! H (E)

� 7! �jx # # [�] 7! [�jL]
kL�

Sec
kW
g�jx

�
I

h�x�! H (TL) :

Remark 28 For the groupoid �F (from example 2) in which � �= PP�1; the
Chern-Weil homomorphism hP ; h�F ; and h�x are connected by the commuting
diagram (~g is the Lie algebra of structural Lie group G of P ):

p ���� (
W
~g�)I

hP�! H (TV )
j # #

�= j
kL�

Sec
kW
g�
�
I

h�F�! H (E)

j # #
x ��� �!

�W
g�jx

�
I

h�x�! H (TL)

As an application of the introduced characteristic classes we have the fol-
lowing theorem (see [13]):

Theorem 29 (Some generalization of the Bott Vanishing Theorem) Let
fF ;F 0g be a �ag of foliation on a manifold V ; suppose that

TF = T F 0
M

f;

q = rank f; then

Pontk
�
GL (f)

F
�
= 0;

for k > 2q:
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