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ABSTRACT We briefly introduce our concept of a Pradines-type groupoid
over a foliation [7]. Examples of such groupoids can be found in the theory of
foliations. Next, we define a cohomology module H (A,f) of the Lie algebroid
A of a Pradines-type groupoid ® over a foliation, with values in some vector
bundle f, with respect to a given representation of ® in f. It is shown that
H (A,f) depends only on the derivative of this representation. Afterwards, the
theory of connections in A and in is built. The last part — the main purpose
of this paper — is devoted to defining the Chern-Weil homomorphism hg of ®
and to proving its independence of the choice of connection. As an application
of the introduced characteristic classes we give some generalization of the Bott
Vanishing Theorem.
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2 Pradines-type groupoids over foliations and
their Lie algebroids

There is well-known definition of a differential groupoid (see for example [10])
as groupoid
¢ = ((I),Oé,ﬂ,v,') (1)

in which ® and V are C'*°-manifolds, the mappings a,5 : & — V (called
a source and a target) are submersions, and ~! : & — ®, h — h7l u :
V - & x — ug, (up — the unity over z) and - : ® x ® — &, (h,g) —
heg, (®+®:={(h,g); ah =g} is a proper submanifold of ® x ®) are smooth
(i.e. of the class C*).

A transitive differential groupoid is called a Lie groupoid. Each Lie groupoid
is isomorphic to a Lie groupoid of Ehresmann PP~! [1] for some principal fibre
bundle P.

In the theory of foliations one can observe groupoids which do not possess
any natural structures of differential groupoids (the spaces of these groupoids
need not be manifolds).

Example 1 The equivalence relation R C 'V x V determined by a foliation F
of a manifold V. (x ~y <=y € L,, L, — the leaf of F through xz ) is hardly
ever regqular [11].

Example 2 The subgroupoid ®% of a Lie groupoid ®, consisting of all elements
of ® for which the source and the target lie on some leaf of a given foliation F
of V, is not — in general — a submanifold. This situation is a description (in a
language of groupoids) of some important object consisting of a principal fibre
bundle and a foliation on the base, studied, for example, by Kamber and Tondeur

[5]-

It turns out that the spaces of the groupoids R and ®7, considered above,
can be equipped with the structures of differential spaces in the sense of Sikorski
in order to obtain smooth groupoids according to the definition below [7]. First,
we recall that by a differential space (in the sense of Sikorski) (for brevity: d.s.)
[12] we mean the pair (M, C') consisting of a set N and a nonempty family C of
real functions on M, such that

(i) o(fi (), fs(-)) €C forall s e N, f1,..., fs € C and ¢ € C> (R?),

(ii) g : M — R belongs to C if, for each x € M, there exists its neighbourhood
T € 7¢ (T¢ — the weakest topology on M in which all functions from C
are continuous) and a function f € C such that f|U = g|U.

For any d.s.’s (M, C) and (N, D), the mapping f : M — N is called smooth
if gofeCforeachge D.If (M,C)is ads. and A C M is any subset, then
(A,C,) is a d.s., too, where

geCas= N \/ \V (FlUNnA=glUNA).

z€AzeUerc feC



Returning to examples 1 and 2, we introduce on the sets R and ®7 the
differential structures equal to C*> (V x V), and C* (®)4+ , respectively. It
is easy to see that all operations in these groupoids are then smooth (in the
category of d.s.’s, of course).

Definition 3 By a smooth groupoid [7] we mean groupoid (1) in which V is a
C*°-manifold, ® is a d.s. and the mappings o, 3,71 ,u and - : P — & (where
O« @ denotes the proper d.subsp. of ® x ®) are smooth and, moreover, for each
point x € V on the set a~! (z), there exists a differential structure o such that
P, := (o' (2),0) is a Hausdorff C*°-manifold and

(i) for each h € a~1 (z), there exists its neighbourhood U open in the manifold
.., such that Cy = C* (®,),, where C is the differential structure of ®,

(ii) for each locally arcwise connected topological space X and each continuous
mapping f : X — ® such that f[X] C a~ ! (x), the mapping f : X — @,
18 continuous, too.

The manifolds ®,, z € V, are called leaves of the groupoid ®.
The mapping
Dy, : @, — Pan, g—g-h,

h € ®, are diffeomorphisms.
With each smooth groupoid (1) we associate

(i) a differential subspace of the "tangent bundle" (T'®,TC) [6] ( T® =

L] Th®, TC is the smallest of all differential structures containing the
hed

set {fom feCtu{df; feC} where 7 : T® — ® is the natural pro-
jection and df : T® — R, v — v (f) ) equal to

(4(@),(TC) 4a))

where A (®) = || Ty, P,
zeV
(ii) a projection
p:A®) =V, pv)=axsveT,,,.

A smooth vector field X on ® [12] is called right-invariant if (i) X, €
Th (®an), (i) (Dn),, (Xy) = Xgn. The Lie bracket of right-invariant vector
field is such a field, too. Each right-invariant vector field X determines a smooth
section X of the projection p by the formula X, (z) = X (u;). Conversely:

Proposition 4 For each smooth sectionn : V — A (D) of p, there exists exactly
one smooth right-invariant vector field n' on ® such that 7, =mn,, x€V.



Proof. Of course, 1}, = (Dn),,,, (n1) - To show the smoothness of 7/, we
must prove that 7' (f) € C for each f € C. Let f € C. For h € ®, we have
n, (f) =nopB(h)(®sn > g+ fo()(g,h)). From the assumption about ® we
have fo(-) € (C' x C)g,q - We fix hy € ® and find a neighbourhood Q € 7¢ ¢ of
(ughy, ho) and a function f € C'x C such that fo(-)|QN(® * &) = f|QN (P « D).

Thus, for A from some neighbourhood of kg, we have 7}, (f) = nof (h) (f o ()) .
The function h — nof (h) (f (- h)) belongs to C, which is not difficult to show.

]
For two sections &, n of p, we put

[0l == ([¢',7]), -

Then the system (Sec A (®), [-,-]) is a Lie algebra, where Sec A (®) denotes the
vector space of all global sections of p.
The mapping

B A(®) > TV, vi— B, (v),
has the property: Secf, : Sec A (®) — X (V) is a homomorphism of Lie alge-
bras. Besides, the following equality
[§,f-nl =f-[&n]+ (3*05) (f)-m
holds for &, € Sec A(®) and f € C* (V). In general, the system
(A(®),p,V) 2)

is not a vector bundle for lack (among other things) of the equalities of dimen-
sions of fibres of p.

In the case of a differential groupoid, A (®) = «*T*® is a vector bundle
(T°® := Tp®Pup C TP is then equal to kera, ) and A (P) is equal to the

h
space of the so-called Lie algebroid of ® defined by Pradines [8], [9]. There are
smooth groupoids not being differential for which system (2) is a vector bundle.
For example, the above-mentioned examples R and &7 are such groupoids (

A(R)=TF, A(®F) =3, [TF]).

Definition 5 By a groupoid of Pradines type [7] we mean smooth groupoid (1)
for which system (2) is a vector bundle. The system (A (@), [, ]],B*) is then
a Lie algebroid called a Lie algebroid of ®.

In the sequel, we shall be occupied with a groupoid ® of Pradines type for
which

(i) the family of abstract classes of the equivalence relation

Rg = {(m,y) eV xV; \/ (ah =z, Bh:y)}

hed

is a foliation, say F,



(ii) B8, : @ — Ly, h — Bh, x € V, are submersions ( L, is the leaf of F
through x equipped the natural structure of an immerse submanifold of
V).

This groupoid is called a groupoid of Pradines type over the foliation F [7].
(1) and (2) are examples of such groupoids.
Let @ be a fixed groupoid of Pradines type over a foliation F, and

A= (Aa [['7 ]]77)
— its Lie algebroid. Then

(i) @, is a principal fibre bundle with the projection 8, and the structural
Lie group G, = 3, (z),

(ii) F :=1Im~ is equal to TF.

We put
g = ker~.

g is a vector bundle whose each fibre g, possesses a natural structure of a
Lie algebra (([v,w] := [&,n] () for any &,n € Sec A such that £ (z) = v and
n(r) =w, v,w € g, ). g is called the isotropy Lie algebra at x and it is the
Lie algebra of the Lie group G,.

Now, we put ®% := {h € ®; Bh =2}, = € V. By means of the bijection
“1:®, - ®L we define on ®L some structure of a C*°-manifold. Then Ly, :
oL, — @éh, g — h-g, h € ® are diffeomorphisms; with their help left-
invariant vector fields are defined. It is easy to see that

T, ®.NT, ®L =T, G,,

so each section ¢ € Secg extends not only to the right-invarint vector field &
but also to the left-invariant vector field ¢ (also smooth). &’ is an a-field (i.e.
is tangent to all manifolds ®, ) and & |®, is a usual fundamental vector field
on the principal fibre bundle ®,. The left-invariant vector field £} generated by
a section £ € Secg is called fundamental vector field on ®.

3 Cohomology of Pradines-type groupoids over
foliations.

By an a-form of degree ¢ on ® with values in a vector bundle (f, p, V') we mean

an assignment ¥ of some covector ¥ (h) € ;\(T;Lk (®an)) @ flan to each element
h € ®. ¥ is called smooth if, for any smooth vector a-fields Xy, ..., X, on ®, the
mapping

®35h— U (h) (Xip, ..., Xqn) €

is smooth. If § is the trivial bundle f = V x R, then ¥ is called an «-form of
degree q on ®. The set Q (P, §) of all smooth a-forms on ® with values in f



constitutes a graded module over then ring C' (C' = the differential structure of
® ); besides it is a left module over the algebra Q* (®) of smooth a-forms on ®.
Of course, for ¥ € Q% (¥, f) and x € V, we have

\If|x =0V e ((I):m flx)

where ¢, : &, — D.

By a representation (in other words, a (covariant) action) of ® in a vector
bundle f we mean an assignment 7" of some linear isomorphism 7" (h) : fjan — f|gn
to each element h € ® in such a way that

(i) T(g-h)=TI(g)oT (h),
(i) T (ug) =idy,,
(iii) the mapping T': ® « f, (h,v) — T (h) (v), is smooth, where,
O xf={(h,v) € ®xf; ah=pv}
denotes the proper d.subsp. of ® X f.

Example 6 (i) the trivial representation T (h) = idg in the trivialbundle V xR,
(ii) the adjoint representation Ad in the vector bundle g of Lie algebras,
defined by the formula:

Ad(h) = (Th).y,, * 8Blah — 8|pn
where Ty, : Gon — Ggh, a — hah~1.

To give some representaion 7' is just the same as to give some (strong)
smooth homomorphism of groupoids T : ® — GL (f) where GL (f) denotes the
Lie groupoid of all linear isomorphisms between fibres of f.

Let T be a fixed representation of ® in f. ¥ € Q* (®,§) is called equivariant
with respect to T if, for each h € @, the equality (Dp)" (¥jan) =T (), (Y1)
holds. The graded vector space

QF (@, §)
of all smooth a-forms on ® with values in f equivariant with respect to T is

(i) a graded module over the ring C*° (V') , with respect to the multiplication
fel:=fofB-U,

(ii) a module over the algebra Q% (®) of all right-invariant a-forms on @, i.e.
equivariant with respect to the trivial representation.

q
Each element of Q (A4, f) := @ Q7 (A4, f) where

Q7 (A,f) := Sec (/\A* ®f>



is called a smooth form on the Lie algebroid A with values in f, while, for the
trivial bundle f = V xR, briefly: a smooth form on the Lie algebroid A. Q (A,f)
is a graded module over C*° (V) and a module over the algebra Q (A) of all
smooth forms on A.

Proposition 7 The mapping
Q5 (@) - QA o () (2) = U (u,), zEV,
is an isomorphism of graded C* (V)-modules.
Proof. It is easy to see that
(i) 77 (¥) is a smooth form on A with values in f,
(ii) 77 is a monomorphism of graded C*° (V')-modules.
To prove that 77 is epimorphic, we take any © € Q4 (A4, f) and put
U (h) (w1, ....,wq) =T (h_l) (©8h, ey (Dp=1) ,p, Wiy ...), h € P.

Then V is a smooth equivariant a-form on ® with values in f, such that 70U =
0. n

The isomorphism from the above proposition for the trivial representation
is denoted by 7. The formula

T (YAY) = TR (¥) AT (P)

holds for any ¢ € Q% (®) and ¥ € QF (®,§); in particular, 7 is an isomorphism
of algebras.

Theorem 8 Let X be any smooth vector vector a-field on ®. There exists
untquely determined endomorphisms L()X(’f, @;Y(’f, d*F of the vector space Q% (®, )
such that, for each x € V, the following diagrams commutes:
o, f @u,[’da,f
v YT geay

L L

Q ((bwv f\m) i (—gﬁ‘l’w Vd) Q ((bwv f\m)

If X is, in addition, a right-invariant vector field, then the subspace Q. (®,f) is
stable with respect to all the three endomorphisms.



Proof. The uniqueness is evident. To prove the existence, we define the endo-
morphisms by the formulae (for a form ¥ of degree ¢ ):

(L;l(jf\ll> (X17...7Xq—1) = \I’(X7X1a""Xq_1)7 (3)

(@ggfxp) (X1, Xy) = X (U(X1,. X)) — zq: U (X1 oo [X, X))oy Xy

(d*F0) (X, ..., X,) = Zq: ( (XO");J'""XQ»

Jj=0

+> ()T ( (Xi, X,], ...Xi...Xj...>

1<J

where X; are vector a-fields on ®. The expresion X (¥ (Xy,...,X,)) has the
following sense: it denotes the smooth function ® — | defined by h +—
X, (\Il‘ah (X1|®an, ...,Xq|®ah)) . Let us notice that the homomorphisms so de-
termined are C-linear skew-symmetric and possess values at each points. Be-
sides, the diagrams above commute. m

For the trivial vector bundle f = V x R, the index { in the symbols of
endomorphisms above (and below) is omitted.

Definition 9 We take £ € Sec A. We define endomorphisms

AT @At gAf
Le's @E , d

of the vector space Q (A,f) in such a way that the following diagrams commute:

Il (@i‘*i, a*h)

Q45 ¢ Q(A,f)
= 7r
2 (O )
QF (2, 1) — Q7 (2,1)

The fundamental properties of these endomorphisms are given below.

Theorem 10 For any forms v € Q4(A), U € Q(A,f) and sections £,n €
Sec A, the following formulas hold:

(1) T (W AY) = fp AT+ (D) AT,
() O8T (Y ANT) = Ofp AT+ A O,
() dM (P AW) = dAp AT + (=1)? 9 A dATD,
() tfehy = O 0" =

Af A, A, Af
(5°) 6[[577] =0,"00; f—@,] fo@g ,



(6°) @?’f = L?’f odM 4+ dtf o L?7f,
(P) dAf o d?t =0,
(8°) d* o = O o d.

The endomorphisms L?’f, @?’f, dY are defined (on forms of degree q ), by
the following formulae, where T' : A — A(GL(f)) denotes the derivative
of T, i.e. some homomorphism of Lie algebroids, while, for a section
o € Secf, & denotes the mapping

G:GL(f)—f, br—b""(opm), (4)
(90) (LEAJ\IJ) (517“"6(]—1) = \Il (5’517"‘7§q71)7

(10°) (@g"f@) (€1,008,) = (T" 0 €) (fo (gl,...,gq)”)— U6 [6,6], )

(11°) (dM10) (&g, n€y) = S0 o (—1) (T 0)) (xp (go,...gj...,gqy)
+ Ty (D (160851 o i &)

where &; € Sec A. In particular, for the trivial representation,

(12) (O29) (€15€,) = (10.€) (1 (€1, €0)) = 0oy ¥ (0, s 6. €51, €,)

(13°) (d49) (€0s- ) = Sioo (<1 (y0&,) (4 (€008,

+ e (—1)"* g ([[gi7§j]]7§0, ...éi...éj...fq) :
while, for the Lie algebroid A equal to the tangent bundle B = TF,

(1£0) (88 (X1, -0 Xy) = X (1 (X1, X)) =0, 0 (K, [X, X X,

(15°) (dE) (Ko, Xg) = 200 (<1) X, (¢ (Xo, XJXq))

+ Zi<j (_1)i+j P ([Xi,Xj] , ...Xi...Xj...7Xq)
for X; € SecE.

Proof. Formulae (1°)+(8°) are proved as follows: for example (1°). First, we
prove analogous formula for L()"(’f :

(1) T @ AT) =1 (W AT) + (DT A
for ¢p € Q¥9(D), ¥ € Q* (P, f) and X — an a-field.
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For the purpose, we show the equality, for any x € V :
o (ngf (W A q/)) _ (Lg; (W A D) + ()% A L;;»f\y) .

Next, in order to prove (1°), we take any ¢ € Q9 (A) and ¥ € Q (A, §) as well as
¢’ € Q% (@) and ¥ € QF (®,§), such that 7 (¢') = ¢ and 77 (V') = U. Then

ST OAT) = T (e () A (W) = T (rr (@ AT))
R (L?,’f (&' A \p’)) — 7 (ng/ AT+ (1) A L‘g;f\p’)
= TR (V) AT + (1) e Arr (i)
= AT+ (1)1 AT,

Formulae (2°)=+(8%) are proved analogously, while (9°)+(11°) are proved by
making successive use of formulae (10). E.g.:

(027w) (61,6,
@5’ (r70") (€1, s &g) =T (@?,,fq,/) (€1, 8,)
af\I/) (51,. .,f;) ou

q
Sl CCAGERTR SISt oot B

q
5 glv' agq ) qu gla"' é.g]jl 'agq)
J=1

q
= o) (V(6 &) ) =D W (Enn [66]106,)
j=1

Corollary 11 Formulae (9 )+ (11°) states that L?’f depends only on A and f,
while 6%“ and d4' — on the derivative T' of T. In particular, the space H (A, ¥)

of cohomology of the complex (2 (A, f), dA’f) depends only on T'. H (A, §) forms
a graded module over the graded cohomology algebra of A, i.e. over the coho-
mology of the complez (2 (A),d").

Remark 12 If the Lie algebroid A is equal to the trivial Lie algebroid (TV,[-,-],id),
then d* stands for the usual exterior differentiation of smooth forms. If the
manifold V' is one-point, then any Lie algebroid is simply a Lie algebra. In this
case, for any vector space F' understood as a trivial bundle over this point, the
differentiation d* is equal to the classical operator (see for example [3, Vol.III,

p.211)).
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4 Connections

With the Lie algebroid A = (A, [,],y) we associate a short exact sequence of
vector bundles (over the manifold V')

0—>gi>Al>E—>0

called an Atiyah sequence assigned to the Lie algebroid A (or a fundamental
sequence assigned to A ).

Definition 13 By a connection in A we mean a splitting of the Atiyah-sequence
for A, i.e. a morphism
A E— A

such that yo X = idg . The corresponding subbundle h := Im X\ C A is called hor-
izontal, while the uniquely determined morphism w : A — g such that w|g =id
and wlh = 0 — a connection form of A. The morphism V := jow : A — A is

so-called connection homomorphism of A. The isomorphism A, : Sec E =, Sech
1s called an isomorphism of horizontal lifting.

The equality A, ([X1, X2]) = H. ([AX, A X2]) holds, where H :=id —V.
With the groupoid ® we associate another short exact sequence, this time,
of the so-called vector bundles over the d.s. ®, of the form

0-g 10 g'E 0 (5)
in which
(i) T*® is a (proper) differential subspace of T'® with the set of points equal

to I_l Thq)ah,
hed

(ii) v* (v) = (7*V, B,v) where 7 : T*® — & is the natural projection,
(i) g* = ker~v*.

Let us explain that a vector bundle over a d.s. is defined identically as over
a manifold (the property of local triviality is assumed). It is not difficult to see
(basing on [7] that, for a groupoid ® of Pradines type, T*® is a vector bundle
over ®.

We define, for a connection A : E — A, a mapping

A BE —-T®, (h,v) — (Dh)*uﬁh o Ngn (v).
A is a strong homomorphism of vector bundles over ® satisfying
(i) ¥ o A" =idg-p,

(ii) )\fgh = (Dh)*g o Aj, where )\fjl cBigp — Th (Pan), vi— A" (h,v).

12



Conversely, for each smooth strong homomorphism p : 8*E — T*® of vector
bundles over @ fulfilling (a) v*opu =idg-g, (b) pg, = (Dr),, 0 f1)4, there exists
exactly one connection A in A such that A® = p.

Each homomorphism p : 8*E — T*® fulfilling (a) and (b) is called a con-
nection in the groupoid ®. By a connection form of p we mean the uniquely
determined strong homomorphism ¢ : T*® — g of vector bundles over ®, for
which (o0j* =1id and ¢|Im g = 0. All connection forms are characterized by the
properties

(i) Coj* =id,
(i) (Dn)yg©Clg = Clgn© (Dn)yg -

The assignment A —— A% establishes a bijection between connections in A
and in ®. One can verify that in the groupoid ® (example 2) where ® = PP~1
(P — some principal fibre bundle) connections are in the 1-1 correspondence
with partial connections in P [5] which project onto the tangent bundle to the
foliation F.

Proposition 14 The mapping
k:a'g—g% (hv)r— (4n),,,, (v),

where Ay @ Gon — Pon, a — ha, is a strong isomorphism of vevtor bundles
over ®.

Proof. Since &y, : gjan — gﬁl is an isomorphism of vector spaces, it is sufficient
to see the smoothness of k, but to prove this — the smoothness of the section
ko of g® C T*® C T®, where & (h) = (h,£,,), h € ®, € € Secg. Asko& =¢;
and the left-invariant vector field generated by £ is smooth, k o £ is a smooth
vector field. m

Remark 15 (a) Ay, = Ly|G., 50 £}, (h) = (An),,, (§an) for & € Secg.
(b) Sequence (5) can be modified to the following diagram

el

0 - g 25 e 2L gE o 0

ko
g «— a'g l ! !
| 1
Vv &9 = & = o = P
where & (h,v) = v, which is called a fundamental diagram for ®.

Let ¢ : T*® — g® be any connection form in ®. Then the homomorphism
(“:=daok lol:T®—g

of bundles over o : ® — V is called a connection a-form of . This is a smooth
a-form of degree 1 on ® with values in the bundle g. We show without difficulty
the following
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Proposition 16 (% has the properties:
(a) L?f{a =¢oa (ie (f, ((Ah)*uah v) =v ),

(0) (D) (¢on) = (AdhY), (o) (ie. ¢ € Q51 (@) ).

Conwersely, for each homomorphism (% : T*® — g of vector bundles over
a, fulfilling (a) and (b) above, there exists exactly one connection form
C:T*® — g such that (* :=aok™'o(.

We now take any connection form w in the Lie algebroid A. w determines
some connection in a A which defines, in turn, some connection in ®. The a-form
of this last connection is given by the formula C‘“h = (Ad hil) owgp 0 (Dp-1),y, -
The restriction C‘O; of ¢ to the manifold ®, is a usual connection form in the
principal fibre bundle ®,. Besides 744¢% = w.

Now, we fix a connection A : E — A in the Lie algebroid A = (A, [, ],7)
with a connection formw, a connection homomorphism V, and also some vector
bundle f and a representation T of ® in f. A form ¥ € Q(A,f) (v € Q(A) ) is
called horizontal if L?’f\I’ =0 (L?'Lp =0 ) for each £ € Secg. All horizontal forms
constitute a vector space Q; (A, ) (2; (A) ). Moreover, §; (A4) is an algebra and
Q; (A, ) — a submodule of the ; (4)-module Q (A, f). We define a horizontal
projection

HAT - Q(A,]) — Q(A)
by the formula (for a form ¥ of degree q)

(Hf’flll) (x;v1,...,v9) = ¥ (x; Hug, ..., Hyy)

where H = id —V. For the trivial bundle f = V' X R, the index f is omitted. We
show without difficulty that:

(i) HM is linear,
(i) HTQ; (A, ) = id,
(i) Im HMF = Q; (A, §),
(iv) (H:ﬁ"f)2 = HM,
(v) H (p AW) = HAY A HETW,
(vi) HE8w = 0.

The endomorphism
vAT .= H:Lf o di

is called an exterior covariant derivative in the Lie algebroid A (with values in f
) associated with the connection A. For the trivial bundle f, the endomorphism
VAT is denoted by VA It is easy to see the following properties of VAT
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(i) VAT is linear,
(i) Im VA c Q; (4,7),

(i) VAT (0 A W) = VAY A HTW 4 (=) HAY A VAT for ¢ € Q1(4),
UeQ(Af).

The last property results from property (3°) of d*f (see Theorem 10).
Now, we define 77© € Q7 (4,§) for © € Q7 (E,§) by the formula

('y}k@) (X301, 0, 0g) = O (5901, .0, YU,) -
Analogously, \f W € Q9 (E, ) for ¥ € Q7 (A,f) by the formula
()\}k\I/) (w1, .oy wy) = U (25 Awy, ooy Awg) .
It is easy to see that
(i) 77O € Q; (A,f) for any form © € Q(E,f),
(ii) the mappings
7: : Q(Eaf) - Qi (Avf)v Or— 'y’fkea

and
)\;‘:Qi(A,f)—>Q(E7f)7 \IJH)\;‘\IA

are mutually inverse isomorphisms such that (0 A©) = "0 A 77O and
A (Y AT) = X9 A XU, Particularly, A* and v* are (defined for the
trivial bundle f) isomorphisms of algebras.

Definition 17 We define an endomorphism V' of the vector space (E,f) as
V= Af o vAfo ¥

and call it an exterior covariant derivative in the bundle f along leaves of the
foliation F associated with the connection .

Theorem 18 (o) VI =X\ od*f oy,

(b) for the trivial bundle §f = V x R, the equality V' = d¥ holds, i.e. d¥ =
M oddonr,

() VI(OAO)=dP0N 0+ (~1)10AV'O for 6 € Q4 (E), © € Q(E,T),
(d) (vf@) (Xov e Xg) = X (—1) ¥l (@ (XO,...Xj...,Xq))

+ Zi<j (—1)i+j C) ([Xi, Xj] s XZX],Xq) s
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(e) V' restricted to Secf, i.e. V' : Secf— ' (E,f), is defined by the formula
VE( () = (T" o A\ X) (6) for o € Secf and X € Sec E (for &, see 4), and
has the properties:

(i) V' is linear,
(ii) V;XO' = foXU,
(iii) Vs (fo) = X (f) o + fVio for f € C(V), o € Sec}.

Proof. (a) follows from the equality )\f*Hf’f\I/ = AV for any ¥ € Q(4,§),
while (b) — from the suitable properties (mentioned above) of A{ i 7} as well as

from property (3°) of d4f. (b) is shown by a direct calculation with the use of
formulae (13°) and (15°), (c) follows from (3%), as to (d): by (11°), we have

(vf@) (Xoy ooy Xy)
= A od" oqrO (X, ..., X,)

= D (=D (T o MX;) (170 (MXo, oo A X))
j=0
+Z (1) (470) (INXi, M X], it

= D (1Y Vi (O(Xo,.jos X)) + D (=)™ O (X3, X1, i)
=0 1<j

(e) is easy to see. m

Remark 19 V' restricted to any leaf of the foliation F, i.e. V' : Sec (f‘L) —
Ol (TL,f|L) , s a usual covariant derivative. Operators having the above prop-
erty appeared in the work by Kamber and Tondeur [5] as partial connections in
a vector bundle.

By a curvature form of A we mean the form
Q:=Vrue0?(Ag).
This form has the following properties:
(i) Qe 9 (4,8),
(i) Q(&1,82) = —w ([H.&y, Hi&y]) for §; € Sec A.

Indeed, (i) follows from property (iii) of the horizontal projection H. 27 while
(b) from the calculation:

Q (51752)
= (VAgW) (£1,&2) = (dAgw) (Hi&y, Hi&y)
(11°)

=) (adoH.&) ( (H.8) ) = (adoH.&) (w (H.8)) ) —w ([H.&y, Hoo])
—w ([H.&y, Hi&o])
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where ad denotes the derivative of the adjoint representation Ad.
by a curvature base-form of A we mean the form

* 2
Qp =20€ Q7 (E,g).
This form has the properties:
(i) Qp (X1, X2) = —w ([MX1, A X2]),
(H) II)‘*le)\*XZ]] - /\* [Xl,XQ} —QB (X17X2),

horizontal part vertical part
(i) =0 < Qp=0,

(iv) Qp = 0 iff the Lie bracket of two horizontal vector fields (i.e. sections of
h=ImA) is such a field.

It remains to examine two classical equations:

(a) the structure equation of Maurer-Cartan
A 1
QO=d ’gw+§[w7w],

(b) the Bianchi identity

VABQ =0 (also VEQp = 0). (6)

In equation (a), we take the connection p in ®, determined by A. Let ¢ be
its connection a-form. The classical Maurer-Cartan equation for the connection
q’; in the principal fibre bundle ®, has the form

0(c) + 5 i) = H @, a ()

where H (), denotes here the horizontal projection in ®, associated with (J, .
Let us denote by V* the connection homomorphism of p, i.e.

Ve:TY® - T®, v ((v),
where ( is a connection form of y, and next, define the horizontal projection
HIE:Q%(2,8) — Q% (D, 8)
by the formula
(HX8W) (hyv1,...,vq) = ¥ (h; H%q, ..., H%g)
where H® = id —V®. Of course,

H (), = (H#),

17



and both the horizontal projections Hy"® and H8 commute with Tad- Defining
[¢*, (*] analogously as [w,w], we get

(e + 5 1ene1) =a(cn)g [ohach] = @) 4 (ct) = (rmanece,,

SO
1
4B 4 316 C") = HE®d™B(°

which further gives

1
A48T aqC™ + 3 [TAaC”, TAaC"]

1
TAd (da’gCa2 (G Ca]> = TaaHBdMEC"

= HA8d48, = V48w = Q.

1
d48w + 3 [w,w]

The Bianchi identity easily follows from the Maurer-Cartan equation.

The form Q¢ := H8d*8(* is called a curvature a-form of the connection
w1 in @. It is the so-called basic form, i.e. equivariant and horizontal at the same
time, where the horizontality of a form ¥ € Q* (®,§) states that ng’f\lf =0 for
each vertical vector X (i.e. each section X of the bundle g ). The space of all
basic forms is denoted by Q% (®, ). Q% (®) (for the trivial bundle f ) forms an
algebra. The isomorphism 7 restricts to the isomorphism 7r; : Q% (®,f) —
Q; (A,§), moreover, Tr; : Q% (®) — Q; (A4) is, of course, an isomorphism of
algebras. Besides, 74422 = Q.

5 The Chern-Weil homomorphism of groupoids
of Pradines-type over foliations
Let fi1,...,fx,f be any vector bundles over V. For a smooth k-linear homomor-

phism
Tify X oo X g — f

of vector bundles, we define

(i) for forms ¥; € Q*% (D, ;), i <k, the form

T (Uy,,,,0) € Q™ (D), ¢=_ a
by the formula

F;X (\1117 IR \Ilk) (h;'Ul, ...’Uq)
1

= 7(]1! . qk! ZSgI’IO’ . F|ah (\:[11 (h;va(1)7 ) g eensy \I/k (h, ...'Ua(q))) .

Of course
FS (\1117 IER) lIj}<¢)|1; = (F|m) (\Dl\:m IER) q/k\z) .

18



(ii) for forms ¥; € Q*% (A,f;), i < k, the form

Ff (\Illv 5 77\1116) e (A7f)

— by the analogous formula; in particular
Ff (@17 ey @k) SR (Ea f)
is defined for ©; € Q% (E,§;) .

It is easy to see that the following formulae (7; : Q* (®,f) — Q(4,§) ,5\: :
Q(Af) — Q(E,f) denote here the mappings ¥ +— ¥ (u,) and ¥ —— AV,
respectively) hold:

(i) T2 (Fp, X o X 7)) (1,5, W) = 71 (02 (P4, W),
(H) F*E ° (5‘; X X X:k) (\IJ1’7?7\I’]€) = 5‘: (Ff (\Ijlwwlpk)) :
Besides,

(a) &F (D2 (Uy,,,,0p) = Y, (~1)@F -1 pa (w1,7,7bg§fu1/i,...,\pk) for
any a-field X,

(b) L?’f (Ff (\Illv RN qjk)) = Zq (_1)q1+~~+¢h‘—1 Ff (\:[117 999 LgA’fi \I}iv 8] qjk) for
any £ € Secg,
(C) da’f (Fg (\Ijla 19 \I/k)) = ZZ (71)q1+---+fh—1 F(: (\Ill, IER} da’fi\Ijh ey \Ijk) .

Formulae (a) and (c) can be proved by the method "for each point = on
the manifold ®, ", used bedore, while (b) follows from (a) and the equality

Assume that Ty, ..., Ty, T are representations of ® in the bundles fy, ..., fx, f,
respectively. A k-linear homomorphism I : f; x...Xf; — fis called (11, ..., Tx; T)-
invariant if, for each h € ®, the diagram

f1|a: X X fk|x — ](|3c

Ty (h) % ... x Tj, (h) | LT (h)

Ty
fily X o X Ty — fly

k
commutes, where z = ah, y = Sh. All invariant sections of the bundle @ i @ f
(considered as k-linear homomorphisms) are denoted by

k
(@1 @) -
I
We notice that
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i e value ', of an invariant section I' is an invariant element with re-
i) th lue T'|, of i iant section I i i iant el t with
spect to induced representations of the Lie group G, in the vector spaces

f1|a:7 E) fk|a:7f|ma

(ii) for an invariant section I', knowing the value I'|,, one can calculate the
value I}, for each y € L, (L, — the leaf of F through z ).

k
Denote by <® f;]x ®f1) the space of invariant homomorphisms f;|, x
I

o X fkjz — flo (invariant with respect to the above-mentioned representation

of G, ) and take the "bundle" (é fx ®f) = U <(é sz®f|z) ) (with
I I

zeV

k
the differential structure induced from @) ff @ f ). This "bundle" is (i) a usual
trivial vector bundle over each leaf of F, while (ii) invariant homomorphisms
are some of its sections.
For the groupoid 7 (Example 2), each element of this "bundle" is a value

k
of a certain invariant homomorphism. More exactly, the bundle <® & f)
I

possesses then a global, canonical teleparallelism and each invariant homomor-
phism has the form ), f* - T'; for some smooth functions f* constant along
the leaves of F and some homomorphisms I'; "constant" with respect to this
telepallelism.

A representation T': & — GL () defines the 2-linear (Ad; T')-invariant homo-
morphism T; : g x f — f, (v,w) — T (x)' (v) (w), where T (z) : G, — GL (f‘z)
denotes the induced representation and 7' (z)" — its derivative. In particular, for
the adjoint representation Ad : & — GL(g), we have the (Ad, Ad)-invariant
homomorphism [-,-] = Ad; : g x g — g, (k1) — [k,]].

Let I': f; X ... X f — { be an invariant homomorphism. Then

(i) for U; € QF (®,f;), j < k, we have I'Y (¥y, ..., ¥x) € QF (@, ),
(11) for \I/j € Qla (Aafj) ’ ] S ka - Ff (\1117 "'7\:[]]{5) € Qz (Aaf)a
(iii) the formula

dAITA (B, .., T) = Z (1) BTG P (B, L, dN T, L By
J

holds for ¥, € Q% (A4,§;).
Furthemore

VI (TF(O1,..,00)) = 3 (-1t tur B (@1,...,vfﬂ'@j, ...,@k)

J
for ©; € Q(E,{;); in particular, for the trivial bundle f, we have

¥ (T (O1,...,04)) = 3 (~1)" s (@1,...,vf-f@j, ...,@k) (7)

J
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for ©; € Q(E, ;).
For a k-linear (Ad, ..., Ad)-invariant homomorphism I' : g X ... X g — R we
put

(i) BT :=T2(Q*, ..., Q%) € Q> (),
(ii) BT :=T4(Q,..,Q) € Q% (4),
(iii) A¥I :=TF (Qp,...,0p) € Q% (E),

where Q%, Q, Qp are the curvature a-form, the curvature form and the
curvature base-form of a given connection, respectively.
It is easy to show that

BT € Q% (@) and BT € Q2 (4A).

We define in an evident manner) the mappings 3%, BA, BE from the space
k

k
) ((Sec@g*) ) into Q% (@), Q;(A) and Q(E), respectively, and notice
I

the following equations

TrRoB% =B and N opt=pF.
k k
The space @ | Sec Q) g*) of all sections is an algebra (in the natural manner),

k k
while the subspace P (Sec X g*) of invariant sections is, of course, its subal-
I
gebra. 3“ is a homomorphism of algebras, whence ﬁA and 8%, too (the formula
B (T1-T9) = BTy A BT5 follows from the fact that it holds "for each point
on the manifold ®, "). We define a smooth homomorphism
k k
7T§v : ®g* — \/g*, Q.. Qb — 11 V... Vi
of vector bundles.

k
e We identify ® g* = £* (g,R) via the isomorphism

1 ® .. @tk — (U1, .0y V) — t1 (V1) -+ oon -t (V)
k
while \/ g* = £ (g,R) via -
1
t1 V. Vit — | (v, 05) — i Ztg(l) (V1) + oo tor) (Vr) |

therefore the embedding

k k
Ve =Li(gR) L (gR) = Qe
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is defined by the formula

1
t1 V.V — T Ztg(l) Cee (k)

k k
Further, we treat \/ g* as a subspace of K g* (of course, with its own
algebra structure). With such an interpretation,

k
7r’§|\/g*:id.

k k
We understand Sec\/ g* C Sec @ g* analogously. 7%, ¥4, vF are defined

k k
as restrictions of 3%, %, BF to the subspace &b (Sec\/g*> . To prove

I
the equation v* o Sec 7% = and the fact that 4 is a homomorphism of

algebras, it is sufficient to show

(i) the commutativity of the diagram
k
X s,
ﬂlglx ! \B (z)
Ve 7% ()
where 8% (z) and v* () are defined by ¢ — J., (Qf;, ey QIO;) ,
(ii) the fact that v* (x) is a homomorphism of algebras.

But it follows from the suitable properties of the commutative algebra Im 3% (x)
[2]. The above implies

FAM) =T2(Q,..,Q) and +PI =TF (Qp,..,Q0p)
and the commutativity of the fundamental diagram

k k a o o
o <Sech*> @ Yoan@ oy @)
I

A

N = TR =| TR | TR
24 Loow L o
e N =AY LAY =
Q(E) Q(E)

Theorem 20 d¥ o ¥ = 0.

Proof. It is an immediate consequence of (7) and the Bianchi identity (6) (in
brackets). ®
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Definition 21 The superposition

k k B
he : P (Sec\/g*) L, Z(E)— H(E)

is called the Chern-Weil homomorphism of ®. The image of he is a graded
subalgebra of H (E) called the Pontryagin algebra of ® and denoted

Pont (D) .

Remark 22 Proceeding in the same way, we may build the Chern-Weil ho-
k k
momorphism hl = @ <Sec\/g* ®f> — HY (E,§) with values in any vector
I

bundle §, with respect to any representation T : ® — GL(f), where HY (E,f)
1s the space of Vaisman cohomology of the false complex (Q (E,f),Vf> . For

f=g, T = Ad and I’ = idg : g — g, we get the universal Halperin-Lehman
characteristic class of curvature (see [4]).

Theorem 23 The Chern-Weil homomorphism he is independent of the choice
of connection.

Lemma 24 Let ® and ®' be any groupoid of Pradines type over foliations F
and F' of manifolds V and V', while A = (A,[-,-],7) and A = (A", [-,"]",7)
their Lie algebroids. If F : ® — ®' is any smooth homomorphism of groupoids
over f:V = V' (iie. / oF = foa,BoF =fop ), andw: A — g and
w' : A" — g’ are any connection forms in A and A’, respectively, for which the
diagram

g & A
Ll !
g <A

commutes (where F, and F° denote the suitable restrictions of F, : T® — Td'),
then the Chern-Weil homomorphism he and hg:, built by using the forms w and
W', give the commuting diagram
k k A
) (Sec\/g’*) -2 H(E"
I
~\V
Sec (F,?) ! Wi
k

k
fany <Sec\/g*> e, H(B)
I
where B :==TF and £’ :=TF'.

Proof of the lemma. First, we notice (by the meyhod "for each point = on
the bundles ®, and <I>'f(z) ") that, for the curvature forms Q and ' associated
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with w and w’, the following diagram
g\ — AlL XNA‘.'L' 5
Q
8l —  Aip@) X Ajf@)

commutes. Next, we show that, for the corresponding curvature base-forms
QOp € Q% (E,g) and Q5 € O? (E',g) the diagram

QB
B g\a: (i E|m X~E|a: B
Qg
/ I /A
8l Elp) % Elpa)

commutes ( f* : E — FE’ denotes here the differential of f restricted to F ).
Using this diagram, we can easily prove that the diagram below also commutes:
F)"

QB () Q(E)
I'— T (Q%,....,%)1 T Tr—T.(Qp,...,0B)

k k Sec(F?) K k
® (secver) ") @ (secler)
To end the proof, it is sufficient to show that
a0 () = (£) od”.

which implies the possibility of defining f*: H (E) — H (E’).

Using theorem 18(b) and the relationship between d# and d®, one can reduce
this equality to the commutativity of the usual operations of differentiation and
pull-back of differential forms on the manifolds @, and @}(z). [

Proof of theorem 23. We consider the Pradines-type groupoid d =& x R2

(in which & (h,z,y) = (ah,z), B (h,z,y) = (Bh,y) ). ® is over the foliation
FxR:={L xR; L € F}. The sequence

0-gx0 = AxTRZE Ex TR -0

is the Atiyah sequence associated with the Lie algebroid A X TR (i.e. with the
Lie algebroid of ®). The homomorphism pr; : ® x R? — & of groupoids defines
some homomorphisms (over pr; : V x R — V) of vector bundles:

0 — gx0 < AxTR % ExTR — 0
»J, l(ﬁrl)* l
0 — g — A — E — 0

24



A connection form w in A determines a connection form @ = wx0: AXTR —gx
0 in the Lie algebroid A x TR, for which the following diagram commutes:

gx0 <& AxTR
l !
g & A

Now, we take two connection forms w; : A — g, i = 0,1, and the connection
forms @; in A x TR, corresponding to them. These last together define a certain
connection form @ : A x TR —g x 0 by the formula:

B|(aty (0, W) = (o () - (1 =) + W (v) - 1,0) .

We now consider the homomorphism F, : ® — & x R?, h —— (h,(v,v)),
v = 0,1, of groupoids over i, : V — V x R, z — (z,v). Then we get the
commuting diagram

0 — g — A — E — 0
~\0 ~
(Fu> ! (Fu) l ! «— hom.’s over i,
0 — gx0 — AxTR — ExTR — 0

According to lemma 24, we get the diagram

é <Sec\k/ (g x 0)*) Poxsz (E x TR)
~ ov I
Sec (Fu) 1 1i#

& (Sec\k/g*)I e g (E)

To notice the equality
ot
0= U
will be the next step of the proof.

Lemma 25 Let V and V' be any manifolds with arbitrary foliations F and F’,
respectively. If f,g: V — V' are any smooth mappings and H : V xR — V' is
an homotopy between them, such that, for each leaf L of F and for t € R, the
set H (-,t) [L] is contained in some leaf of F', then

fr=g"+H(E)— H(E')
where E =TF and E' = TF'.
Proof of the lemma. We define some cochain homotopy operator

h:QUE) - Q1 (E),
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q=0,1,2,.., by the formula

! 0
h(O) (2501, .y Vg :/ h*0)., <v,...,v_,>dt
(©)( 1 q 1) 0 ( )\( )\ V1 q—1 It

for © € Q9 (E’). The correctness of this definiyion follows from the fact that
Hy(at) [Ele X TR] C Elg, 1),
which is a consequence of the assumptions. The condition
f*—g*:hODEl‘i‘dth

can be checked in a standard way. m
Continuation of the proof of the theorem.. Applying lemma 24 to the
homotopy H :=idy xgr, we get the equality i# = zfﬁ

Finally, we consider the homomorphism

gx0-5g (v,0)— v,

~ o
over pry : V xR — V. Of course, p; o (Fy) = idy xR, sO

Sec(ﬁ},)iv

k y k k
id= (Sec\/g* Sec(py) Sec\/ (gx0) — SeC\/g*> .

Thus, considering the diagram

k 2
SecV/ (g x 0)* "5 H(E x TR)
~ \ oV
Sec (pl)v 11 Sec (Fl,)* 1 io# = z?&
k
Sec\/ g* ha, H(E)

we obtain

he = (hq> o Sec (]51,)

oV

) oSec(p1)” =i o hgxr2 o Sec (p1)"” .

*

The right-hand side of this equality is the same for both connections wgy and w1,
which proves the independence of hg of the choice of connection. m m

Remark 26 The equivalence of the Chern-Weil homomorphism he of the Lie
groupoid of Ehresmann ® = PP~ determined by a principal fibre bundle P,
with the Chern-Weil homomorphism hp of P (see, for example, [3, Vol II])
follows from the commutativity of the diagram
k
(Sec\/g*) 1
T

- (),

l[ll

| "l ‘ L4 |
vl Qs (P) ~ 0, (4) ATV

| N TS N |

Lo s Q(V) ————— e J

in which
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(i) § is the Lie algebra of structural Lie group G of P,
(ii) g is the bundle of Lie algebras of the Lie algebroid A of ®.

(i) E(I'), =To ((Hz)*_1 X oo X (Hz)*_l) where (H), : § —g|, is the deriv-
ative of the homomorphism of Lie groups H, : G — G, a — [z, za],
€ Py,

() 2 (V) (z;01,...,09) = ¥ (72; (¢,),, vq) where ¢, : P =, (PPfl)w, t—
[2,t], v = 7z.

Remark 27 Let ® be any Pradines-type groupoid over a foliation F. We take
L € F and x € L. Then the Chern-Weil homomorphism he of ® and he, of
the principal fibre bundle ®, are connected by the commuting diagram

é(Sec\k/g*)I e, H(E)
Pt | L (6]~ [©lL]

k

@(Sec\k/grm)l Mo g(TL).

Remark 28 For the groupoid ® (from example 2) in which ® = PP~1, the
Chern-Weil homomorphism hp, her, and he, are connected by the commuting
diagram (g is the Lie algebra of structural Lie group G of P ):

T (VE), M H(TV)

| N !
h<1>-7:

> | @(s@vg)I "% (B

| . !

L 777—>(\/g|*x)1 —2e H(TL)

As an application of the introduced characteristic classes we have the fol-
lowing theorem (see [13]):

Theorem 29 (Some generalization of the Bott Vanishing Theorem) Let
{F,F'} be a flag of foliation on a manifold V'; suppose that

TF =TF @,

q = rank {, then
Pont” (GL (f)]:) =0,

for k> 2q.

27



References

[1]

2]

Ch.Ehresmann, Les connezxions infinitesimales dans un espace fibre differ-
entiable, Colloq. Topologie (Bruxelles 1950), Liege 1951.

W.Greub, Multilinear Algebra, Springer-Verlag, Berlin and New York,
1967.

W.Greub, S.Halperin, R.Vanstone, Connections, curvature, and cohomol-
ogy, Vol. 11, Academic Press, New York and London 1973; Vol. III, Acad-
emic Press, New York, San Francisco, London 1976.

S.Halperin, D.Lehmann, Cohomologies et classes caracteristiques des chox
de Bruzelles, Lectures Notes in Mathematics 484, Differential Topology
and Geometry, Springer-Verlag 1975.

F.Kamber, Ph.Tondeur, Foliated bundles and Characteristic classes,
Springer-Verlag, Lecture Notes in Math. 493.

A .Kowalczyk, Tangent differential spaces and smooth forms, Dem. Math.
Vol. XIIT (1980) No 4, p.893-905.

J.Kubarski, Smooth groupoids over foliations and their algebroids, the con-
cept of Pradines-type groupoids, Preprint Nr 1, Institute of Mathematics,
Technical University of L6dz, L6dz, Poland, May 1986.

J.Pradines, Theorie de Lie pour les groupoides differentiables. Calcul dif-
ferential dans la categorie des groupoides infinitesimauz, C. R. Acad. Sc.
Paris, t.264, (1967), p.245-248.

—, Theorie de Lie pour les groupoides differentiables, Atti del Convegno
Internazionale di Geometria Differenziale (Bologna, 28-30, IX, 1967).

N.V.Que, Duprolongement des espaces fibres et des structures infinitesi-
males, Ann. Inst. Fourier, Grenoble, 17, 1 1967, p.157-223.

J.P.Serre, Lie algebras and Lie groups, New-York-Amsterdam-Benjamin,
1965.

R.Sikorski, Abstract covariant derivative, Colloq. Math. 18 (1967), p.251-
272.

J.Kubarski, Characteristic classes of some Pradines-type groupoids and a
generalization of the Bott Vanishing Theorem, Differential Geometry and
Its Applications, Proc. Conf., August 1986, Brno (Czechoslovakia), to ap-
pear

28



