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Abstract

The purpose of the paper is to present the algebraic aspect of the
Hodge theory and Hirzebruch signature operator originally given for smooth
and L2 manifolds and vector bundles. Finally, we give some aplications
to transitive Lie algebroids.

Let h�j�i be a real pairing [Kronecker pairing, in the terminology of L. I.
Nicolaescu [N]] on a graded di¤erential (in�nite dimensional) real vector space�
W =

MN=2n

k=0
W k; d =

�
dk
��
; where d is linear operator od degree 1 such that

hdwjui = (�1)jwj+1 hwjdui : The existence of an isomorphism � : W ! W such
that (vjw) :=



vj ��1 w

�
is an inner product and � is an isometry is very useful in

examining the cohomology pairingH (W )�H (W )! R; especially the signature
[therefore the assumption N is even is necessary]. Signature is calculated via the
index of a suitable Hirzebruch operator. The fundamental example is of course
the Hodge theory for graded di¤erential space of di¤erential forms on a compact
orientable Riemannian manifold. The second example is obtained for transitive
Lie algebroids [K3]. The next two important examples (on the base of Lusztig
example [L] and Gromov one [Gro]) concern the cohomology of a manifold with
coe¢ cients in �at symmetric or symplectic vector bundle [K-M-4]. The last
two examples prove to be very important for Lie algebroids according to some
spectral sequence argument [K-M-4]. In [K-M-4] we presented algebraic aspects
of the Hirzebruch signature operator - and we obtain the general point of view
on the above four examples de�ning and examining the so called Hodge spaces.
N.Teleman [T2] in 1983 de�ned and examined the signature operator on Lip-

schitz compact manifoldsM for L2-di¤erential forms L2 (M). The space L2 (M)
(in opposite to smooth di¤erential forms) is Hilbert, but de-Rham derivative of
such di¤erential forms (determined in distributional manner) is not de�ned on
the whole space L2 (M) (but only on some dense subspace). The fundamental
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(in my opinion) observation by N.Teleman is that the Poincaré duality property
- which is obtained via algebraic topology methods - is su¢ cient to obtain (in
L2-theory) the Hodge theory (i.e. Hodge isomorphism and the strong Hodge
decomposition) and the calculation of the signature via the index of the suitable
Hirzebruch operator (the convolution L2-argument and the L2-Poincaré Lemma
is all what it is needed).
In our paper we provide an algebraic point of view on (abstract) graded

Hilbert Hodge spaces with derivative de�ned on some dense subspace. The
Poincaré duality (or even less - the weak nondegeneracy of the cohomology
pairing) is su¢ cient to obtain a strong Hodge decomposition theorem and the
Hodge isomorphism (Th. 2.2.6). Therefore the suitable (abstract) Hirzebruch
operator has index equaling to the signature.
For non-Hilbert case W we can do Hilbert completion �W and extend the

derivative in a distributional sense. The diagram (3.1.2) joins two Hodge homo-
morphisms for W and �W: The conditions under which all four homomorphisms
in this diagram are isomorphisms are given. Then the signature can be calcu-
lated via Hirzebruch operator forW and for �W and we obtain the same number.
As an application we examine the completion of the space of di¤erential forms for
our four fundamental examples (classical, Lie algebroid, Lusztig, Gromov). The
mentioned above conditions giving all isomorphisms in Diagram (3.1.2) are full-
�lled. Among them there is an L2-convolution argument and the Weyl Lemma
is used. Also we must check that H (W ) = H

�
�W
�
which generally follows from

the so-called abstract Hodge theory of elliptic complexes ([L]) but for our four
examples we can prove it without elliptic theory using the Mayer-Vietoris or
spectral sequences arguments and sheaves argument.

1 Graded di¤erential Hodge spaces

All vector spaces will be over the �eld R. A pairing between two vector spaces
V and W is a bilinear map B : V �W ! R: The pairing B is called a weakly
nondegenerated, i.e. the both null spaces are zero (i.e. if B (v; �) = 0 then v = 0;
and analogously for the second variable). The pairing B is called a duality (or
strongly nondegenerated) if the adjunction morphism V ! W �; v 7! B (v; �) ;
associated to the pairing B is an isomorphism. If B : V � V ! R is a duality
then V �= V � whence dimV < 1: If V and W are �nitely dimensional and
B : V �W ! R is a weakly nondegenerated, then dimV = dimW and B is a
duality.
In [K-M-4] there is an abstract de�nition of a Hodge space which generalize

classical examples for Riemannian manifolds, Lusztig [L] and Gromov [Gro]
examples and one given for the theory of Lie algebroids [K3]. The main purpose
of [K-M-4] is to de�ne an abstract Hirzebruch operator for graded di¤erential
Hodge spaces. Here we present a review of this approach.
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1.1 Hodge spaces

For details see [K-M-4]. Let W be a real vector space of an arbitrary dimension
(�nite or in�nite).

De�nition 1.1.1 [K-M-4] By a Hodge space we mean the system

(W; h�j�i ; (�j�) ; �W )

where h�j�i ; (�j�) :W �W ! R are 2-linear homomorphisms such that

(1) (�j�) is symmetric and positive de�nite (i.e. it is an inner product),

(2) �W :W �!W (called �-Hodge operator) is a linear mapping such that,

(2a) �W is an isometry with respect to (�j�) ;
(2b) hvjwi = (vj �W (w)) for all v 2W:

Clearly, the pairing h�j�i is weakly nondegenerated.
Remark: The unitary space (W; (�j�)) is not a Hilbert space in general. If it
is Hilbert then we call it a Hilbert Hodge space. The �-Hodge operator �W
ful�lling (2b) is uniquely determined (if exists) for given tensors h�j�i ; (�j�) :

De�nition 1.1.2 By the tensor product of Hodge spaces (V; h�j�iV ; (�j�)V ; �V )
and (W; h�j�iW ; (�j�)W ; �W ) we mean the following Hodge space

(V 
W; h�j�iV 
 h�j�iW ; (�j�)V 
 (�j�)W ; �V 
 �W )

(i.e. �V
W = �V 
 �W ).

The tensor (�j�)V 
 (�j�)W is symmetric and positive de�nite (the dimensions
of V and W can be in�nite) according to [Gre].
Let (W; h�j�i) be a �nite dimensional real vector space equipped with a 2-

linear tensor h�j�i :W �W ! R: Then there exist an inner product (�j�) and an
operator �W such that the system (W; h�j�i ; (�j�) ; �W ) is a Hodge space if and
only if there exists a basis of W in which the matrix of h�j�i is orthogonal.
The inner product and the �-Hodge operator play an auxiliary role in the

study of properties of the pairing h�j�i :
Now we give some examples of �nite dimensional Hodge spaces.

Example 1.1.3 (Classical) Let (V;G) be a real N -dimensional oriented vec-
tor space with an inner product G : V � V ! R: We identify

VN
V = R via

arbitrary positive ON-base feigNi=1 of V . We have the classical Hodge space ^
V =

NM
r=0

^r
V; h�j�i ; (�j�) ; �

!
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where for vr 2
Vr
V

hvrjvsi =
�
vr ^ vs 2

VN
V = R; if r + s = N;

0 if r + s 6= N; ;

whereas for vi; wi 2 V

(v1 ^ :::: ^ vrjw1 ^ ::: ^ wr) = det [G (vi; wk)] :

The subspaces
Vr
V are orthogonal and

� (ei1 ^ ::: ^ eir ) = "(j1;:::;jN�r) � ej1 ^ ::: ^ ejN�r ;

where the sequence j1 < ::: < jN�r is complementary to i1 < ::: < ir and
"(j1;:::;jN�r) = sgn (j1; :::; jN�r; i1; :::; ir) (it is a small modi�cation with respect
to the classical theory on Riemann manifold).

Example 1.1.4 (Lusztig example, 1972) [L] Let h�j�i : E�E ! R be a sym-
metric (inde�nite in general) nondegenerated scalar product on a �nite dimen-
sional vector space E: Let G be an arbitrary inner product in E (i.e. symmetric
positive): Then there exists exactly one direct sum decomposition E = E+�E�
which is ON with respect to the both scalar products h�j�i and G and such that
h�j�i is positive de�nite on E+ and negative de�nite on E�. We denote by �E
the involution �E : E ! E such that

�E jE+ = id; �E jE� = �id:

Then the quadratic form

(�j�) : E � E �! R; (v; w) 7�! (vjw) := hvj �E wi

is symmetric and positive de�nite. The involution �E is an isometry, therefore
the system

(E; h�j�i ; (�j�; ) ; �E)
is a �nite dimensional Hodge-space.

Example 1.1.5 (Gromov example, 1995) [Gro] Let h�j�i : E � E ! R; be
a symplectic form on a �nite dimensional vector space E [i.e. skew-symmetric
and nondegenerated]. There exists an anti-involution � in E, �2 = �id (i.e. a
complex structure) such that

h�vj�wi = hvjwi ; v; w 2 E;

hvj�vi > 0 for all v 6= 0:
Then the tensor

(�j�) : E � E �! R (v; w) 7�! (vjw) := hvj�wi

is symmetric and positive de�nite and (�vj�w) = (vjw) : The system

(E; h�j�i ; (�j�) ;��)

is a �nite dimensional Hodge-space since �� is an isometry and hvjwi = (vj � �w).
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Example 1.1.6 (Trivial Hodge space) Let (E; (�j�)) be a real p-dimensional
Euclidean space (a vector space with an inner product (�j�)). Then the system
(E; h�j�i = (�j�) ; (�j�) ; � = Id) is called a trivial Hodge space.

In�nite dimensional Hodge structures can be given on the space of cross-
sections of a vector bundle.

De�nition 1.1.7 [K-M-4] By the Hodge vector bundle (or a vector bundle of
�nitely dimensional Hodge spaces) we mean a system

(�; h�j�i ; (�j�) ; ��)

consisting of a Riemann vector bundle (�; (�j�)) and smooth tensor �eld h�j�i 2
Sec

�

2�

��
and linear isomorphism �� : � ! � such that for each x 2 M the

system �
�x; h�j�ix ; (�j�)x ; ��x

�
is a �nitely dimensional Hodge space. If �� = Id, i.e. h�j�i = (�j�) then � is called
trivial Hodge vector bundle.

Remark 1.1.8 In all considered four examples below (see Subsection 1.4.1 be-
low) the Hodge vector bundle is a �-bundle (in the sense of [G-H-V, Ch. VIII]).
We recall that it is equivalent to the existence of a covariant derivative in the
vector bundle � such that all three tensors h�j�i ; (�j�) ; �� are parallel. There-
fore with a �-Hodge vector bundle we can associate a suitable structure Lie
group, a principal �bre bundle (also a Lie groupoid and a Lie algebroid), and
the characteristic Chern-Weil homomorphism [G-H-V, Ch. VIII].

Lemma 1.1.9 If (�; h�j�i ; (�j�) ; ��) is a Hodge vector bundle over a compact ori-
ented Riemannian manifold M; then the system

(Sec �; hh�j�ii ; ((�j�)) ; �)

where hh�j�ii ; ((�j�)) : Sec � � Sec � ! R are pairings de�ned via the integral
operator

hh�j�ii =
Z
M

h�xj�xi dM; ((�j�)) =
Z
M

(�xj�x) dM;

is a Hodge space (in�nite dimensional if dimM > 0) induced by the Hodge
vector bundle �: If M is not compact, then the system as above for the subspace
Secc � of cross-sections with compact supports forms a Hodge space as well. For
arbitrary M (compact or not) passing to L2-theory we obtain a Hodge space on
L2-cross-sections L2 (�) :

Example 1.1.10 The following are examples of Hodge vector bundles:

� � =
^
T �M for a Riemannian manifold M ; we use the classical Hodge

space
^
T �xM for the cotangent space T �xM:
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� Lusztig example of a vector bundle � with nondegenerated inde�nite sym-
metric 2-linear tensor �eld h�j�i [and equipped with a �at covariant deriv-
ative r such that the tensor h�j�i is parallel],

� Gromov example of a vector bundle � with a symplectic form h�j�i [and
equipped with a �at covariant derivative such that h�j�i is parallel],

� Tensor product
^
T �M 
 � of a Riemann manifold M with an arbitrary

Hodge vector bundle �: Particularly, this concerns a trivial Hodge vector
bundle �: (Remark: with this structure we really have to deal - in the
category of Lipschitz manifolds - in the second and third part of the paper
by Teleman [T4]).

� � =
^
A� for an invariantly oriented transitive Lie algebroid A, see [K3].

The Lusztig and Gromov examples of Hodge vector spaces are very impor-
tant for the calculation of the signature of transitive Lie algebroids, thanks to
some spectral sequence argument [K-M-4], see Subsection (1.4.1).

1.2 Graded di¤erential Hodge spaces

To de�ne a signature we introduce a gradation and a derivative to the de�nition
of Hodge space. We are interested only in the case when the top degree is even
(because then the middle degree can be considered).

De�nition 1.2.1 [K-M-4] By a graded anticommutative di¤erential Hodge
space of even degree N = 2n we mean a system�

W =
MN=2n

r=0
W r; h�j�i ; (�j�) ; �; d

�
where (W; h�j�i ; (�j�) ; �) is a Hodge space (�nitely or in�nitely dimensional) and

(1) h�j�i jW k �W r = 0 if k + r 6= N;

(2) W r are orthogonal with respect to (�j�) ;

(3) the operator d; called derivative, is homogeneous of degree +1; i.e. d :
W r !W r+1; and d2 = 0;

(4)


dwrjuN�r�1

�
= (�1)r+1



wrjduN�r�1

�
for wr 2W r; uN�r�1 2WN�r�1;

(5) the tensor h�j�i is anticommutative in the sense

vrjvN�r

�
= "r



vN�rjvr

�
;

where
"r := (�1)n (�1)r(N�r) = (�1)n (�1)r :

Denote h�j�ir := h�j�i jW r �WN�r. Clearly,
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a) "n = +1 so the tensor h�j�in on Wn is symmetric,

b) � [W r] �WN�r; and � :W r !WN�r is an isomorphism,

c) the induced cohomology pairing

h�j�irH : H
r (W )�HN�r (W ) �! R; ([u] ; [v]) 7�! h[u] j [w]irH := hujwi

r
;

is correctly de�ned,

d) the condition (5) above enables us to consider the cohomology pairing in
the middle degree

h�j�inH : H
n (W )�Hn (W ) �! R

which is symmetric, therefore if dimHn (W ) < 1 then we can consider
the signature of the quadratic form h�j�inH :

De�nition 1.2.2 If dimHn (W ) < 1 we de�ne the signature of W as the
signature of h�j�inH

Sig (W ) := Sig h�j�inH :

The above condition (4) in the classical geometrical examples on an N -
dimensional compact manifold M without boundary follows from the Stokes
theorem.

Remark 1.2.3 The �niteness of the dimension of the cohomology spaceHr (W )
(in all dimensions) can be obtained after assuming that the Poincaré dual-
ity holds. For standard cohomology algebra of di¤erential forms on compact
smooth oriented manifold M the Poincaré duality is easily to obtain by a sim-
ple argument in algebraic topology: via the so-called Mayer-Vietoris sequences.
For the cohomology algebra of elliptic complexes on M the Poincaré duality is
a result in the so-called abstract Hodge theory of elliptic complexes [N] (which
use L2-analysis).

Proposition 1.2.4 [K-M-4] Let
�
W =

LN
r=0W

r; h�j�i ; (�j�) ; �; d
�
be a graded

anticommutative di¤erential Hodge space of even degree. Then

1) � � (wr) = "r � wr;

2) the linear operator � :W r !W r�1 [called coderivative] de�ned by

�r (wr) = "r (�1)r � d � (wr) ; wr 2W r;

is the adjoint operator, i.e.

(� (w1) jw2) = (w1jd (w2)) ;

3) the Laplacian � := (d+ �)
2
= d� + �d is homogeneous of degree 0; self-

adjoint (�vjw) = (vj�w) ; and nonnegative (�vjv) � 0:
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De�nition 1.2.5 A vector v 2W is called harmonic if

dv = 0 and �v = 0.

Denote by H (W ) the space of harmonic vectors and Hr (W ) = H (W )\W r

the space of harmonic vectors of degree r.
The following are easy to verify:

� the harmonic vectors form a graded vector space H (W ) =
LN

r=0Hr (W ) ;

� Hr (W ) = ker�r and

H (W ) = ker� = (Im�)? ;

� the spaces ker�r and Im dr�1 are orthogonal, therefore the inclusion

Hr (W ) = ker�r ,! ker dr

induces a monomorphism (called the Hodge homomorphism)

xr : Hr (W ) = ker�r � Hr (W ) := ker dr= Im dr�1:

The following is the fundamental problem.

Problem 1.2.6 When the Hodge homomorphism xr is an isomorphism? I.e.
when in each cohomology class there is (exactly one) a harmonic vector?

Theorem 1.2.7 [K-M-4] If

W = Im�
M

(Im�)
? (1.2.1)

[it means if W = Im�
L
ker� = Im�

L
H (W )] then

� W k = ker�r
L
Im dr�1

L
Im �r+1 (strong Hodge decomposition),

� ker dr = ker�r
L
Im dr�1; in particular, the Hodge homomorphism is an

isomorphism

xr : Hr (W ) = ker�r
�=�! ker dr= Im dr�1 = Hr (W ) ;

(particularly, in each cohomology class there is exactly one harmonic vec-
tor).

� (Poincaré Duality Theorem) The cohomology pairing h�j�irH : Hr (W ) �
HN�r (W ) ! R for k = 0; 1; :::; N; is a duality, H (W ) �= H (W )

�
;

(whence dimH (W ) <1 and Hr (W ) ' HN�r (W )).

Remark 1.2.8 In important examples on manifolds (standard, Lie algebroid,
Lusztig�s and Gromov�s examples, see Subsection 1.4.1 below) the condition
W = Im�

L
(Im�)

? holds thanks to the fact that Laplacian � is an elliptic
operator.
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1.3 Signature and the Hirzebruch operator

Consider a graded anticommutative di¤erential Hodge space of even degree�
W =

MN=2n

r=0
W k; h�j�i ; (�j�) ; �; d

�
:

We restrict the positive de�nite product (�j�)r :W r�W r ! R and the tensor h�j�i :
W r �WN�r ! R to the space of harmonic vectors

(�j�)rH : H
r (W )�Hr (W ) �! R;

Br = h�j�irH : H
r (W )�HN�r (W ) �! R:

To de�ne the Hirzebruch operator we can use a new operator � being a small �
sign-modi�cation of the �-Hodge operator.

Theorem 1.3.1 There exists exactly one operator � :W !W such that

i) � (ur) = ~"r � �W (ur) ; ur 2W r; for some ~"r 2 f�1;+1g ;

ii) � � � = Id;

iii) � = �� � d � � ;

iv) �n = �jWn; i.e. ~"n = 1:

If � ful�ls i)-iv) then

~"r 2 (�1)
r(r+1)

2 (�1)
n(n+1)

2 :

In particular,

� if N = 4p then "r = (�1)r and ~"r = (�1)
r(r+1)

2 (�1)p ;

� if N = 4p+ 2 then "r = � (�1)r and ~"r = � (�1)
r(r+1)

2 (�1)p :

Remark 1.3.2 The operator � can be considered also for odd N; but then
we should allow complex numbers ~"r 2 f�1;�ig and consider the complexi�-
cation W 
 C: More precisely (see [K-M-4]) for a quite arbitrary sequence of
the coe¢ cients of anticommutativity



vrjvN�r

�
= "r



vN�rjvr

�
; "r = �1; the

complex valued operator � ful�lling i) for (~"r)
2 2 f+1;�1g ; ii) and iii) exists

[assuming nontriviality condition dr 6= 0 for all r] if and only if the sequence
"r is equal to "r = "0 (�1)r(N�r) where "0 = �1: For each of these sequences
"r there is exactly two solution ~"r 2 f�1;�ig ; namely given by the formula
~"r = (�1)r�

2N�r�1
2 �~"0 where (~"0)2 = "0 (�1)

N(N+1)
2 . The case of even N , N = 2n

and conditions "n = 1 = ~"n = 1 yields the unique solution "r = (�1)n (�1)r and
unique (real) solution ~"r 2 (�1)

r(r+1)
2 (�1)

n(n+1)
2 described above.
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Consider the symmetric and nondegenerated quadratic forms in the middle
degree h�j�in, h�j�inH and h�j�i

n
H :

Remark 1.3.3 Under the assumption (1.2.1), W = Im�
L
(Im�)

?
; we have

Hn (W )
xn�= Hn (W ) ; therefore Bn = h�j�inH = h�j�i

n
H. Then we have

Sig (W ) = Sig h�j�inH = SigB
n:

We put
W� = fw 2W ; �w = �wg ;

the eigenspaces corresponding to the eigenvalues +1 and �1 of � ; respectively.
Denote the operator

D = d+ �

and notice that D [W+] �W�:

De�nition 1.3.4 The operator

D+ = DjW+ :W+ �!W�

is called the Hirzebruch operator (or the signature operator).

Take the adjoint to D+;

D� = D
�
+ = DjW� :W� �!W+:

Clearly, the spaces ker (D+) and ker (D�) are contained in kerD = H (W ) :

Remark 1.3.5 For arbitrary graded anticommutative di¤erential Hodge space
of even degree if dimH (W ) <1 then the index

IndD+ := dimR ker (D+)� dimR ker (D�)

is correctly de�ned (the dimensions are �nite).

Simple algebraic arguments give the fundamental theorem on the index of
Hirzebruch operator [K-M-4].

Theorem 1.3.6 (Hirzebruch Signature Theorem) If dimH (W )<1, then

IndD+ = SigBn:

If, additionally the condition (1.2.1) holds, then

IndD+ = SigBn = Sig h�j�inH = SigW:
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(Sketch of the proof) PutHn
� (W ) = f� 2 Hn (W ) ; �� = ��g : ThenHn (W ) =

Hn
+ (W )

L
Hn
� (W ) : The subspaces Hs (W ) +H2n�s (W ) are � -stable for s =

0; 1; :::; n�1 and '� : Hs (W )!
�
Hs (W ) +H2n�s (W )

�
� ; X 7�! 1

2 (X � �X) ;
is an isomorphism of real spaces. The subspaces W s + W 2n�s are also � -
invariant, therefore W� =

Ln�1
s=0

�
W s +W 2n�s�

�
L
Wn
� which yields

kerD� =W� \H (W ) =
Mn�1

s=0

�
Hs (W ) +H2n�s (M)

�
�

M
Hn
� (W )

and in consequence

dimkerD+ � dimkerD�
+

=
n�1X
s=0

dimR
�
Hs (W ) +H2n�s (W )

�
+
+ dimRHn

+ (W )

�
n�1X
s=0

dimR
�
Hs (W ) +H2n�s (W )

�
� � dimRH

n
� (W )

= dimRHn
+ (W )� dimRHn

� (W )

= Sig (Bn) :

1.4 Four fundamental examples and their general setting
[K-M-4]

1.4.1 Four examples

The above general algebraic approach to the Hirzebruch signature operator can
be used to the four fundamental examples.
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W r =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

[manifold, classical example],
(
r (M) ; ddR) ; dimM = N = 4p;

here "r = (�1)r(N�r) = (�1)r

[Lie algebroid example]
(
r (A) ; dA) ; A - TUIO-Lie algebroid

rankA = N = m+ n = 4p;
here "r = (�1)r

[Lusztig example]

(
r (M ;E) ; dr) ;
(E; h�j�i) - �at vector bundle,
h�j�i - symmetric nondegenerated parallel tensor,
dimM = N = 4p;

here "r = (�1)r

[Gromov example]

(
r (M ;E) ; dr) ;
(E; h�j�i) - �at vector bundle,
h�j�i - symplectic parallel tensor,
dimM = N = 4p+ 2;

here "r = � (�1)r ;

The Lusztig anf Gromov examples are important for the Lie algebroid case
thanks the following spectral sequence argument:

Theorem 1.4.1 [K-M-2] Let (B;Br;[; D;Bj) be any DG-algebra with a de-
creasing �ltration Bj and

�
Ej;is ; ds

�
its spectral sequence. Assume the following

regularity B0 = 0 of the �ltration Bj and that there exist natural numbers m
and n with the following conditions:

� Ej;i2 = 0 for j > m and i > n;

� E2 is a Poincaré algebra with respect to the total gradation and the top
group E(m+n)2 = Em;n2 :

Then H (B) =
Lm+n

r=0 H
r (B) is a Poincaré algebra, dimHm+n (B) = 1; and

SigE2 = SigH (B) :
If m and n are odd, then SigE2 = 0: If m and n are even, then

SigE2 = Sig(E
m
2 ;

n
2

2 � E
m
2 ;

n
2

2 �! E
(m+n)
2 = Em;n2 = R):

Using Hochschild-Serre spectral sequence of the Lie algebroid A we have
Ej;i2 = Hj

rq (M ;Hi((ggg) ) [K-M-3], where ri is an suitable �at structure in the
vector bundle of i-group of cohomology of isotropy Lie algebras Hi (ggg) : The
multiplication of values Hi (ggg) � Hi0 (ggg) ! Hi+i0 (ggg) is taken with respect to
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multiplication of cohomology classes of isotropy Lie algebras, in particular for
the middle degree n

2 we have

h�j�i : Hn
2 (ggg)�Hn

2 (ggg) �! Hn (ggg) =M � R;

and we need to consider two di¤erent cases:

� if m2 and
n
2 even, then the above form is symmetric and we can use Lusztig

type example,

� if m2 and
n
2 are odd, then the above is symplectic and we can use Gromov

type example.

In both cases we obtain the Hirzebruch signature operator

D+ = dr
n
2
+ �r

n
2
: 
+(M ;H

n
2 (g)) �! 
�(M ;H

n
2 (g)):

1.4.2 General setting, graded anticommutative di¤erential Hodge
vector bundles

The above four examples can be considered simultaneosly from the general point
of view of graded vector bundle of Hodge spaces over a connected compact
oriented Riemannian manifold M [K-M-4].

De�nition 1.4.2 [K-M-4] Let M be a connected compact oriented Riemannian
manifold. By a graded anticommutative di¤erential Hodge vector bundle of
even degree N = 2n over the manifold M we mean a system�

� =
MN=2n

r=0
�r; h�j�i ; (�j�) ; �; d

�
such that

1) (�; h�j�i ; (�j�) ; �) is a Hodge vector bundle and the induced in�nitely dimen-
sional Hodge space

�
Sec � =

LN
r=0 Sec �

r; hh�j�ii ; ((�j�)) ; �; d
�
(see Lemma

1.1.9) is a graded anticommutative di¤erential Hodge space of even de-
gree,

2) the complex d = fdrg ; dr : Sec �r ! Sec �r+1; is a complex of di¤erential
operators of �rst order.

The operator � : Sec � �! Sec � de�ned by � (�r) = "r (�1)r � d � (�r) is the
adjoint operator to d; ((�j��)) = ((d�j�)).
If
�
dk
	
is an elliptic complex, then the Laplacian � = (d+ �)

2 is a selfad-
joint, nonnegative and elliptic operator. In consequence the condition (1.2.1)
holds, i.e. Sec � = Im� � (Im�)? ; whence (Th. 1.2.7) we have H (Sec �) �=
H (Sec �; d) and dimH (Sec �) <1: Therefore, we get the Hirzubruch operator
D+ = (d+ �)+ : Sec �+ ! Sec �� and the equality (Th. 1.3.6)

Sig (Sec �) = Sig hh�j�iinH = IndD+:

13



The ellipticity of � follows from [W, Remark 6.34] since the symbol � (�)(x;v)
of the adjoint operator of a �rst order operator d equals �� (d)�(x;v) :
The above four examples (Subsection 1.4.1) can be obtained from the above

general setting by putting � =
^
T �M;

^
A� or

^
T �M

O
E; respectively

(E is Lusztig or Gromov case). In the above four examples the derivative d is
a di¤erential operator of �rst order with constant coe¢ cients (with respect to
some suitable local trivializations).

2 Graded Hilbert subdi¤erential Hodge spaces

Teleman [T2] noticed that the consideration of the Lipschitz structure on a com-
pact manifold and L2-di¤erential forms leads to the Hodge theory in an easy
algebraic manner (we need only some convolution argument and L2-Poincaré
duality). The cause is that all suitable unitary spaces are then Hilbert. There is
only one important di¤erence. On Lipschitz manifolds the derivative of di¤er-
ential L2-forms is not de�ned on all space of L2-di¤erential forms. This is the
source of the new algebraic notion of the graded Hilbert subdi¤erential Hodge
spaces (Subsection 2.2).
Firstly, we brie�y describe the suitable de�nitions and facts concerning the

Lipschitz manifolds given by Teleman [T2].

2.1 Lipschitz manifolds and distributional exterior deriv-
ative (subderivative)

De�nition 2.1.1 (Teleman 1983) [T2] A Lipschitz structure on a topological
manifold M of dimension n is a maximal atlas U = fU�; ��g�2� ; where �� :
M � U� ! V� � Rn (U�; V� - open subsets) are homeomorphisms such that
the changes coordinates (i.e. transition functions)

��� = �� � ��1� ; �; � 2 �

are Lipschitz mappings.

Of course, a C1-manifold possesses a canonical Lipschitz structure.

Theorem 2.1.2 (D.Sullivan, 1977 [S]) Any topological manifold of dimension
6= 4 admits a Lipschitz structure, and that structure is essentially unique.

Sullivan�s theorem makes then possible to construct signature operators not
only on a compact Lipschitz manifold, but on an arbitrary compact, topological
manifold of even dimension 6= 4 [T3].
The crucial role is played by Rademacher�s theorem:

Theorem 2.1.3 (Rademacher�s theorem [Hei]) If U ! R is a Lipschitz func-
tion on an open subset U � Rn, then

14



� the partial derivatives @f
@xi exist almost everywhere,

� @f
@xi are measurable and bounded.

De�nition 2.1.4 We say that a Lipschitz manifold with the atlas U = fU�; ��g�2�
is orientable if there exists a subatlas �0 � � for which the homeomorphisms
��� have positive jacobian (in all points of di¤erentiability). If such an atlas is
given we call M oriented.

Since the partial derivatives of a Lipschitz function exists in general not
everywhere (only almost everywhere), therefore we can not de�ne traditionally
a tangent space at a point to a Lipschitz manifold M and we must use other
algebraic ways to de�ne a di¤erential form on M .
Let Lk2 (U) denote the space of k-di¤erential forms of class L2 on an open

subset U � Rn (i.e. the space of di¤erential forms on U with measurable
coe¢ cients of square integrable). For the standard Riemannian metric on U
the space Lk2 (U) with integral norm (i.e. L2-norm k!k =

p
((!j!)); where

((!j!)) =
R
U
(!j!)), is Hilbert.

De�nition 2.1.5 Let M be a compact Lipschitz manifold with the atlas U =
fU�; ��g�2� : By L2-di¤erential form on M we mean a system

! = f!�g�2�

where !� is a [real] L2-di¤erential form on the open subset V� = �� [U�] � Rn;
� 2 �; such that the following condition of compatibility holds

����!� = !�:

Denote by L2 (M) the vector space of L2-di¤erential forms on M (modulo
equality almost everywhere). A 0-di¤erential form determines a measurable
function on M:
For an oriented Lipschitz manifold, using a Lipschitz partition of unity, we

de�ne the integral
R
M
! for ! 2 Ln2 (M) (n = dimM) in a standard way.

De�nition 2.1.6 A Lipschitz Riemannian metric on M is a collection

� = f��g�2�

where �� is a Riemannian metric on V� = �� [U�] � Rn with measurable
components, which satis�es

� compatibility condition
(���)

�
�� = ��;

� L2-norms on V� determined by �� and by the standard metric are equiv-
alent.

15



Theorem 2.1.7 (Teleman, 1983) [T2] Any compact Lipschitz manifold M
has a Lipschitz Riemannian metric.

Clearly, any Lipschitz Riemannian metric determines a measure on M:
Let ��;x be a Hodge star isomorphism in

^
(Rn)� de�ned by the metric ��

at x 2 Rn

��;x (ei1 ^ ::: ^ eir ) = "(j1;:::;jn�r) � ej1 ^ ::: ^ ejn�r ;

feigni=1 is �� (x)-ON frame and we take "(j1;:::;jn�r) identically as in Example
1.1.3.

De�nition 2.1.8 For a Lipschitz Riemannian metric � = f��g on a compact
Lipschitz manifold M and ! 2 Lr2 (M) ; ! = f!�g ; we de�ne

� L2-di¤erential form ��! = f��!�g� ;

� for !; � of the same degree we de�ne the inner product (!j�)� := f(!�j��)�g
(it is a 0-form, i.e. a measurable function on M).

� the unitary structure ((!j�))� :=
R
M
(!j�)�

Theorem 2.1.9 (Teleman 1983) [T2] The space Lk2 (M) with unitary struc-
ture ((�j�))� is Hilbert, two Lipschitz Riemannian metrics de�ne equivalent norms
in Lk2 (M) :

Introducing the pairing of di¤erential forms in complementary degrees by
integration of the wedge product

hh!j�ii =
Z
M

! ^ �

we have hh!j�ii = ((!j �� �))� which means that (L2 (M) ; hh�j�ii ; ((�j�)) ; �) is a
Hilbert Hodge space (Def. 1.1.1).

De�nition 2.1.10 Let � 2 Lr2 (U) be any L2-di¤erential form on U � Rn of
degree r < n: We say that � has distributional (or weak) exterior derivative in
the class L2 if there exists an L2-di¤erential form of degree r + 1

�d� 2 Lr+12 (U)

such that for any C1-di¤erential form ' of degree n�1�r with compact support
in U Z

U

�d� ^ ' = (�1)r+1
Z
U

� ^ d':

If r = n; we put �d� = 0 for each � 2 Ln2 (U) :
Distributional exterior derivative �d� is uniquely determined and �d� has

zero distributional exterior derivative, �d
�
�d�
�
= 0: If � is of the form � =
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�i1<::::<ir�
i1:::irdxi1 ^ ::: ^ dxir 2 Lr2 (U) ; the distributional exterior derivative

�d� (if exists) looks exactly as in the smooth case: �d� = �j�i1<::::<ir
@�i1:::ir

@xj
dxj^

dxi1^:::^dxir ; where @�
i1:::ir

@xj
is the usual distributional derivative of the function

�i1:::ir ; and although the components of �d� in the base dxi1 ^ :::^ dxir ^ dxir+1
are required to belong to L2; it is not true, in general, that each distributional
derivative @�i1:::ir

@xj
belongs to L2 [T2].

Via the convolution argument and a mollifying sequence (see Remark 3.2.1
below adopted for the exterior derivative of di¤erential forms and vector bundles

� = Sec
^r

T �U; � = Sec
^r+1

T �U) we have (compare [T4]):

Theorem 2.1.11 A form � = ��i1:::irdxi1 ^ :::^dxir 2 Lr2 (U) of degree r < n
has distributional exterior derivative �d� 2 Lr+12 (U) if and only if there exists a
sequence �n 2 Lr2 (U) \ 
r (U) of smooth L2-di¤erential forms on U such that

�n
L2�! � and d�n is convergent in L2 (then limn!1 d�n is independent of the

chooice of the sequence �n and limn!1 d�n = �d�). For �n we can take the
di¤erential form �n = ��

i1:::ir
n dxi1 ^ ::: ^ dxir such that

�i1:::irn = � 1
n
� �i1:::ir (2.1.1)

where � 1
n
��i1:::ir is the convolution operation (see Subsection 3.2.1) of � 1

n
and

�i1:::ir when for t > 0 �t (x) = 1
t'
�
x
t

�
and ' 2 C10 (Rn) ; ' � 0;

R
Rn ' (x) dx =

1; supp' = B (0; 1) :

Proposition 2.1.12 [T2] If ! = f!�g�2� is an L2-di¤erential form on M of
degree r and �d!� 2 L2 (V�) is the distributional exterior derivative of !�; then

�d! :=
�
�d!�
	
�2�

is an L2-di¤erential form on M of degre r + 1.

Denote by 
rd (M) � Lr2 (M) the subspace of L2-di¤erential forms of degree
r possessing the distributional exterior derivative


rd (M) =
�
! 2 Lr2 (M) ; �d! 2 Lr+12 (M)

	
:

It is easy to see that
�
�d
�2
= 0 na 
d (M) : We obtain a cohomology complex

0 �! 
0d (M) �! ::: �! 
rd (M)
�d�! 
r+1d (M) �! ::: �! 
nd (M) = L

n
2 (M) �! 0:

Theorem 2.1.13 (Teleman 1983, L2-Poincaré duality) [T2] For a com-
pact oriented Lipschitz manifold M of dimension n the pairing

h�; �irH;d : H
r (
�d (M))�Hn�r (
�d (M)) �! R; ([!] ; [�]) 7�!

Z
M

! ^ �

is strongly nondegenerated, i.e. Hr (
�d (M)) = (Hn�r (
�d (M)))
�
: Therefore

H (
�d (M)) = (H (

�
d (M)))

�
; whence dimH (
�d (M)) <1.
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The �rst step of Teleman�s proof demonstrates that the inclusion L� (M) ,!

�d (M) of the Whitney subcomplex L

� (M) (consisting of the so-called �at
di¤erential forms, i.e. di¤erential forms ! = f!�g such that !� and �d!� have
bounded measurable components [Wh]) into 
�d (M) induces an isomorphism in
cohomology. It follows from the fact that associated di¤erential sheaves of germs
L� (M) and 
�d (M) are �ne and are resolutions of the R-constant sheaf (thanks
the suitable versions of the Poincaré lemmas). The second step demonstrates
the Poincaré duality for L� (M) which is easy to see by the Whitney�s theory
[Wh].

Theorem 2.1.14 (Teleman 1983) [T2] (1) Suppose that ! 2 
rd (M) and
� 2 
n�r�1d (M) ; r < n; then we can switch the distributional derivatives



!j �d�
��
= (�1)r+1




�d!j�

��
:

(2) Let ! 2 Lr2 (M) ; r < n; and if there exist !0 2 Lr+12 (M) such that


!j �d�

��
= (�1)r+1 hh!0j�ii

for all � 2 
n�r�1d (M) ; then ! 2 
rd (M) and !0 is the distributional exterior
derivative of !; �d! = !0 .
In particular, if




!j �d�

��
= 0 for all � 2 
n�r�1d (M) then �d! = 0:

The �rst part of the above theorem is reduced to a local problem where !
is supported in an open set in Rn (using a Lipschitz partition of unity). The
local problem is proved by the convolution argument (see Theorem 2.1.11). We
notice that this argument easily implies that 
d (M) is an algebra and the usual
formula for the derivative of the wedge products holds. The operator �d remains
local.
Notice that Teleman�s considerations [T2] concerning Lipschitz manifolds to

obtain the signature operator has algebraic nature which enables us to give some
generalizations.
In the end we notice that if M is a smooth compact manifold and ML is

corresponding Lipschitz manifold then L2 (M) �= L2 (MF) as Hilbert spaces.

2.2 Hilbert anticommutative graded subdi¤erential Hodge
spaces

We start with the following de�nition.

De�nition 2.2.1 By a Hilbert anticommutative graded subdi¤erential Hodge
space of degree N we mean a system�

W =
MN

r=0
W r; h�j�i ; (�j�) ; �W ; �d :Wd �!Wd

�
(2.2.1)
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consisting of a Hodge space (W; h�j�i ; (�j�) ; �W ) and a subderivative �d de�ned on
some subspace with gradation

Wd =
MN

r=0
W r
d �W; W r

d =W
r \Wd;

satisfying the conditions:

(1H) the unitary space
�
W; k�k =

p
(�j�)

�
is complete, i.e. W is Hilbert, the

subspaces W k are orthogonal with respect to (�j�) ;

(2H) h�j�i jW k �W r = 0 if k + r 6= N and


vr; vN�r

�
= "r



vN�r; vr

�
; where

"r := "0 (�1)r(N�r) for "0 2 f+1;�1g :

(3H) Wd is dense in W;

(4H) �d is degree +1; �dr = djW r
d :W

r
d �!W r+1

d ; and �d � �d = 0;

(5H)


�dwju

�
= (�1)r+1



wj �du

�
for w 2W r

d ; u 2W
N�r�1
d ;

(6H) If for w 2W r there exists w0 2W r+1; such that hw0jui = (�1)r+1


wj �du

�
for each u 2WN�r�1

d ; then w 2W r
d and �dw = w

0:

A Lipschitz manifold M leads to the Hilbert anticommutative graded subd-
i¤erential Hodge space with "0 = +1 for W = Lr2 (M) and Wd = 
d (M) :

Notation 2.2.2 LetW be a Hilbert anticommutative graded subdi¤erential Hodge
space of degree N . We put

WN�r
� := �W [W r

d ] :

This space is dense in WN�r and �W : W r
d ! WN�r

� is an isometry. By a
cosubderivative of degree r we mean the oparator

��
r
:W r

� �!W r�1
�

de�ned by
��
r
(wr) = "r (�1)r � �d � (wr) ; wr 2W r

� :

Standardly, we can prove the following lemma.

Lemma 2.2.3 The operators �d and �� are adjoint

(��
N�r

vjw) = (vj �dN�r�1w); v 2WN�r
� ; w 2WN�r�1

d :

Proof.

(��
N�r

vjw) = ("N�r (�1)N�r � �d � (wr) jw) = ((�1)N�r � �dr
�
��1v

�
jw)

= hwj (�1)N�r �dr
�
��1v

�
i = (�1)N�r



wj �dr

�
��1v

�� (5H )= 

�dN�r�1wj ��1 v

�
= ( �dN�r�1wj � ��1v) = ( �dN�r�1wjv) = (vj �dN�r�1w):
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Notation 2.2.4 W r
1 = W r

d \W r
� =

�
w 2W r : w 2W r

d ; �w 2W
N�r
d

	
- the

Sobolev space of order 1 on the Hilbert anticommutative graded subdi¤erential
Hodge space W:

Lemma 2.2.5 (a) W r
1 is a Hilbert space with respect to the diagonal norm

kwk1:
kwk21 = kwk

2
+


 �dw

2 + 

��w

2 :

(b) The operator
�Dr = �d+ �� :W r

1 �!W r

is a bounded operator (i.e. it is continuous).

Proof. (a) Let wi 2 W r
1 be a Cauchy sequence with respect to the diagonal

norm kwk1 : For arbitrary " > 0 there exists n1 such that kwi � wjk1 < " for

i; j > n1: Then jjwi � wj jj2 < "2;
���� �d (wi � wj)����2 < "2;

������ (wi � wj)����2 < "2:
Whence wi is Cauchy in W: From assumption (1H) there exists a limit w =
limwi 2W: The sequences �dwi and ��wi are Cauchy inW; too. Let wd = lim �dwi
and w� = lim��wi: It is enough to check that wd = �dw and w� = ��w:
a1) wd = �dw: Take arbitrary u 2WN�r�1

d ; then

hwd; ui = lim


�dwi; u

� (5H )= lim (�1)r+1


wi; �du

�
= (�1)r+1



w; �du

�
:

By axiom (6H) we have w 2Wd and wd = �dw:
a2) w� = ��w: To show that w 2 W� it is enough to check that �w 2 Wd:

Firstly, we notice that the sequence �d (�wi) is convergent because �d (�wi) =
� � ��wi ! � � w�: Secondly,

hlim d (�wi) ; ui = lim hd (�wi) ; ui = lim (�1)N�r+1 h�wi; dui = (�1)N�k+1 h�w; dui :

By (6H) we have �w 2 Wd and �d (�w) = lim d (�wi) : Therefore � �d � w =
lim � �d (�wi) ; whence ��w = lim��wi = w�:
(b) evident.
LetHd (W ) =

LN
r=0H

r
d (W ) be the graded cohomology space of the complex�

Wd; �d
�
and let

h�j�irH;d : H
r (W �

d )�HN�r (W �
d ) �! R; ([w] ; [v]) 7�! hwjvi ;

be the pairing induced by the tensor h�j�i ; r = 0; 1; :::; N (thanks (5H)). We
de�ne now the spaces of harmonic vectors

Hr
d =

�
w 2W r

1 ;
�d! = 0 = ��!

	
:

Clearly
� : Hr

d ! HN�r
d

is an isomorphism. Any harmonic vector is a cocycle, therefore there exists a
Hodge homomorphism

xrd : Hr
d �! Hr (W �

d ) :

As in the paper by Teleman (1983) we can prove in an algebraic way the
following theorem
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Theorem 2.2.6 If (2.2.1) is a Hilbert anticommutative graded subdi¤erential
Hodge space of degree N then

(a) the subspaces Hr
d (W ) and Im �dr�1 are perpendicular,

(b) xrd is a monomorphism,

(c) the subspace Ker �dr is closed in W r; therefore Ker �dr is a Hilbert space,

(d) Hr
d (W ) =

�
h 2W r; h 2 Ker dr; h? Im dr�1

	
; i.e. Hr

d =
�
Im dr�1

�?
in

Ker dr;

(e) if the cohomology pairing h�j�irH;d is a weak nondegenerated then the sub-
space Im �dr�1 is closed in W r; therefore Im �dr�1 is a Hilbert space,

(f) (Hodge Theorem) if the cohomology pairing h�j�irH;d is a weak nondegen-
erated then Im �dr�1(� Ker �dr) is a closed subspace of the Hilbert space
Ker �dr and

Ker �dr = Im �dr�1 �
�
Im �dr�1

�?
= Im �dr�1 �Hr

d

which means that

Hr
d (W )

�= Ker �dr= Im �dr�1 = Hr (W �
d ) ;

i.e. the Hodge homomorphism xrd is an isomorphism,

(g) if the cohomology pairing h�j�irH;d is a weakly nondegenerated and the sub-
space of harmonic tensors Hr

d (W ) is �nitely dimensional then

(g1) the cohomology spaceHd (W ) =
LN

r=0H
r
d (W ) of the complex

�
Wd; �d

�
is �nite dimensional and ful�lls the Poincaré duality, i.e. the pairing

h�j�irH;d : H
r (W �

d )�HN�r (W �
d ) �! R; ([w] ; [v]) 7�! hwjvi ;

is a duality, Hr (W �
d )
�=
�
HN�r (W �

d )
��
; for r = 0; 1; :::; N;

(g2) there is a strong Hodge decomposition of closed perpendicular sub-
spaces

W r = Hr
d (W )� �d

�
W r�1
d

�
� ��

�
W r+1
�

�
; (2.2.2)

and
W r = Hr

d (W )� �d
�
W r�1
1

�
� ��

�
W r+1
1

�
: (2.2.3)

Proof. (a) If w 2 Hr
d and v 2W

r�1
d then by Lemma 2.2.3

�
wj �dv

�
=
�
��wjv

�
= 0:

(b) Follows by (a). Independently: if w 2 Hr
d and x

r
d (w) = [w] = 0; i.e.

there exists v 2 Wd such that w = �dr�1 (v) then by Lemma 2.2.3 (wjw) =�
wj �dv

�
=
�
��wjv

�
= 0; so w = 0:
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(c) Assume wi 2 W r
d , �dw

i = 0; and let wi ! w 2 W r: For arbitrary vector
u 2WN�r�1

d we have

wj �du

�
= lim



wij �du

� (5H )= lim (�1)r+1


�dwiju

�
= 0 = (�1)r+1 h0jui :

Axiom (6H) implies that w 2W r
d and �dw = 0:

(d) "�" follows from (a). "�" Let h 2 Ker dr and h? Im dr�1: Then for
arbitrary w 2W r�1

d we have (wjh) = "r hwj � hi ; therefore

0 =
�
�dwjh

�
= "r



�dwj � h

�
:

From Axiom (6H) we have �h 2 Wd and �d (�h) = 0; therefore ��h = "r (�1)r �
�d � h = 0:
(e) Let �dr�1wi ! w 2W r; wi 2W r�1

d : Then �dr�1wi are cocycles. The part
(c) yields that w is a cocycle too. For an arbitrary cocycle h 2 WN�r

d ; �dh = 0;
we see that

hwjhi = lim


�dr�1wijh

� (5H )= (�1)r lim


wij �dh

�
= 0:

The weak nondegenerance of the cohomology pairing implies that [w] = 0; i.e.
w 2 Im �dr�1:
(f) follows from (d) and (e).
(g1) it follows by (f) and the fact that the weakly nondegenerated pairing

for �nitely dimensional vector spaces is a duality,
(g2) (2.2.2) Im �dr�1 is closed from (d), Im��

r+1
= �

�
Im �dN�r+1

�
is closed by

(e) and that � is an homeomorphism. All subspaces are then closed and pair-wise
perpendicular. It remains to check that Hr

d (W ) =
�
�d
�
W r�1
d

�
� ��

�
W r+1
�

��?
:

The inclusion "�" is evident by Lemma 2.2.3. To prove "�" take h 2
�
�d
�
W r�1
d

�
� ��

�
W r+1
�

��?
:

Clearly h ? Im �dr�1 and h ? Im��r+1: According to (d) we need only to notice
that h 2 Ker �dr: But

�
�dhj �dh

�
=
�
hj�� �dh

�
= 0 since �� �dh 2 Im�� and h ? Im��.

Therefore �dh = 0:
To prove that the strong Hodge decomposition (2.2.2) can be presented in

another way (2.2.3) we notice (analogously to Cor. 4.4 from [T1]) that

(i) �d
�
W r�1
d

�
= �d

�
W r�1
1

�
and (ii) ��

�
W r+1
�

�
= ��

�
W r+1
1

�
:

Since Wd \ �� [W�] � Wd \W� = W1 � Wd therefore to check (i) it is su¢ cient
to prove the equality

�d [Wd] = �d
�
Wd \ �� [W�]

�
:

It is clear that �d
�
Wd \ �� [W�]

�
� �d [Wd] : Conversely, suppose w 2 �d [Wd] ; i.e.

w = �du; u 2 Wd: From the �rst decomposition W r = Hr
d (W ) � �d

�
W r�1
d

�
�

��
�
W r+1
�

�
we deduce that there exist h 2 Hd (W ) ; � 2 Wd and � 2 W� such

that u = h+ �d�+ ���: But u; h; �d� 2Wd; it follows that ��� 2Wd too, whence
��� 2Wd \ �� [W�]. We get

w = �du = �d
�
h+ �d�+ ���

�
= �d

�
���
�
2 �d

�
Wd \ �� [W�]

�
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which prove (i). The equality (ii) can be proved similarly.
Analogously as in Teleman�s paper we show

Theorem 2.2.7 The operator �Dr = �d+�� :W r
1 !W r is a continuous Fredholm

operator such that

(1) Ker �Dr = Hr
d (W ),

(2) Im �Dr = �d
�
W r�1
d

�
� ��

�
W r+1
�

�
(so Coker �Dr �= Hr

d ) and index �D = 0:

Proof. (1). The inclusion "�" is evident. To see the opposite inclusion take
h 2 Ker �Dr: Then

0 =
�
�Dhj �Dh

�
=
��
�d+ ��

�
hj
�
�d+ ��

�
h
�
=
�
�dhj �dh

�
+
�
��hj��h

�
therefore �dh = 0 = ��h: In conclusion dimKer �D <1:
(2). The inclusion "�" holds by de�nition. To prove the opposite inclusion

it is su¢ cient to check that �d
�
W r�1
d

�
� Im �Dr and ��

�
W r+1
�

�
� Im �Dr:

a) �d
�
W r�1
d

�
� Im �Dr: Let a 2 Wd � W = Hd (W ) � �d [Wd] � �� [W�] ;

and put a = h + �d� + ���: Since a; h and d� have derivative then ��� has also
the derivative ��� 2Wd. Therefore

�da = �dh+ �d2�+ �d��� = �d��� =
�
�d+ ��

� �
���
�
= �D

�
���
�
2 Im �D:

b) ��
�
W r+1
�

�
� Im �Dr - analogously.

De�nition 2.2.8 A Hilbert anticommutative graded subdi¤erential Hodge space
of degree N will be called regular if it satis�es the following additional properties

(70H) the cohomology pairing h�j�i
r
H;d is weakly nondegenerated,

(700H) the subspaces of harmonic tensors Hr
d (W ) are �nitely dimensional.

Properties (70H)-(7
00
H) are equivalent to the property

(7H) the cohomology space Hd (W ) =
LN

r=0H
r
d (W ) of the complex

�
Wd; �d

�
ful�ls the Poincaré duality (i.e. the pairings

h�j�irH;d : H
r (W �

d )�HN�r (W �
d ) �! R

are dualities).

2.3 The signature operator for regular Hilbert anticom-
mutative graded subdi¤erential Hodge spaces of even
degree

LetW be a regular Hilbert anticommutative graded subdi¤erential Hodge spaces
of even degree N = 2n:

23



Since dimH (
�d) is �nite (from the Poincaré duality) we can de�ne the
signature of W; and

Sig (W ) := Sig h�j�inH = SigB
n
d :

Puting (for the operator � de�ned identically as in Subsection 1.3)

W� = fw 2W ; �w = �wg ; W1� =W� \W1;

we notice that
�D [W1+] �W�; �D [W1�] �W+:

De�nition 2.3.1 The operator

�D+ = �DjW1+ :W1+ !W�

is called the signature operator for W: Also we de�ne the operator

�D� = �DjW1� :W1� !W+

called adjoint to �D+:

The condition of duality holds�
�D+�j�

�
=
�
�j �D��

�
; for � 2W1+; � 2W1�:

By the index of the operator �D+ we mean index �D+ := dimR ker
�
�D+
�
�

dimR ker
�
�D�
�
: Analogously as in Subsection 1.3 (i.e. see [K-M-4]) we prove

the signature theorem

Theorem 2.3.2 For the regular Hilbert anticommutative graded subdi¤erential
Hodge space W of even degree we have

Sig (W ) = index �D+:

3 Hilbert completion of the graded anticommu-
tative di¤erential Hodge space of even degree

3.1 Algebraic setting

For a graded anticommutative di¤erential Hodge space of even degree we de�ne
its completion to the Hilbert space. Then we can obtain two signature operators
and we want to compare them. It is the case of Hodge vector bundles on compact
smooth manifolds and associated L2-theory, and in particular of Lie algebroids.
Consider a graded anticommutative di¤erential Hodge space of even degree�

W =
MN=2n

r=0
W r; h�j�i ; (�j�) ; �; d

�
;
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(i.e. (W; h�j�i ; (�j�) ; �) is a Hodge space and axioms (1)-(5) from De�nition 1.2.1
are satis�ed).
Now, we complete the unitary space (W; (�j�)) to the Hilbert one �W: The

inner product and the norm in �W will be denoted by the same symbol. We
extend the �-Hodge isometry to the isometry � : �W ! �W and the pairing h�j�i
to a new one denoting by the same symbol h�j�i : �W � �W ! R. Of course this
pairing remains continuous. We obtain a new Hilbert graded anticommutative
Hodge space of even degree�

�W =
MN=2n

r=0
�W r; h�j�i ; (�j�) ; �

�
:

Now we extend the derivative dr : W r ! W r+1 to some bigger subspace
�W r
d � �W r in a "distributional manner".

De�nition 3.1.1 We say that a vector w 2 �W r has a distributional derivative
if there exists a vector belonging to �W r+1 denoted by �dw such that for each
vector v 2WN�r�1 the following condition


wjdN�r�1v
�
= (�1)r+1



�drwjv

�
holds.

The derivative �dw is unique (if it exists). The vector space of vectors v
possessing distributional derivative will be denoted by �Wd: Clearly, if w 2 W k

then �dw exists and �dw = dw: If w 2 �W r
d then �d

rw 2 �W r+1
d and �dr+1

�
�dr (w)

�
=

0:
It is evident that

� axioms (1H)-(4H) and (6H) are ful�lled.

� �W is a Hilbert anticommutative graded subdi¤erential Hodge space if
condition (5H) holds,

� �W is a regular if and only if the axioms (5H), (7H) are satis�ed.

Before considering axioms (5H) and (7H) we introduce the fundamental di-
agram joining Hodge homomorphisms for W and its extension �W: First, we
take the subspace �W r

� := �
�
�WN�r
d

�
and the coderivative ��

r
: �W r

� �! �W r�1
� ;

��
r
:= "r (�1)r � �dN�r � : The operator �� is an extension of �:
Consider

�W1 = �Wd \ �W�; (3.1.1)
�D = �d+ �� : �W1 �! �W;

Hd (W ) = ker �D =
�
w 2 �W1; �dw = 0 = ��w

	
:

The inclusion J : W ,! �Wd commutes with derivations therefore induces a
homomorphism in cohomology

J# : H (W ) �! H
�
�Wd

�
:
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We have the commutative diagram joining the Hodge homomorphisms xr and
xrd

Hr (W )
xr� Hr (W )

\ # Jr#
Hr
d (W )

xrd�! Hr
�
�Wd

�
:

(3.1.2)

We recall that Axiom (5H) says that we can

� switch the distributional derivatives �d;


�dwju

�
= (�1)r+1



wj �du

�
for w 2

W r
d ; u 2W

N�r�1
d :

Theorem 2.1.11 suggests that we should add to the set of axioms (1)-(5) the
following

(6) if w 2 �W r
d (r = 0; 1; :::; N) then there exists a Cauchy sequence wi 2 W r

convergent to w; wi ! w; such that dwi is convergent in �W r+1.

Lemma 3.1.2 If W ful¢ lls (6) then (5H) is satis�ed (i.e. �W is a Hilbert an-
ticommutative graded subdi¤erential Hodge space) and xrd : Hr

d (W )! Hr
�
�W �
d

�
is a monomorphism. Then Jr# is a monomorphism too.

Proof. Let Axiom (6) be ful�lled, and let w 2 �W r
d . If wi 2 W r is a sequence

such that wi ! w and dwi is convergent in �W r+1; then lim dwi = �dw: Indeed,
for arbitrary v 2WN�r�1

hwjdvi = lim hwijdvi
(4)
= lim (�1)r+1 hdwijvi = (�1)r+1 hlim dwi; vi ;

therefore, see Def. 3.1.1, lim dwi = �dw: To prove that (5H) is satis�ed take
w 2 W r

d ; u 2 W
N�r�1
d and let wi 2 W r be a sequence such that wi ! w and

dwi is convergent. Then lim dwi = �dw and

�dwju

�
= lim hdwijui = lim (�1)r+1



wij �du

�
= (�1)r+1



wj �du

�
:

For the monomorphicity of the Hodge homomorphism xrd see Theorem 2.2.6.

Conclusion 3.1.3 According to Lemma 2.2.3 (and the pre-sentence) the condi-
tion (6) implies that the operators �d and �� are adjoint. i.e. (��vjw) = (vj �dw); v 2
�W�; w 2 �Wd; whence �D is self-adjoint in the sense that for u;w 2 �W1 the equal-
ity holds �

�Du;w
�
=
�
u; �Dw

�
:

Condition (6) holds on the spaces of crooss-sections of vector bundles on
manifolds and for linear di¤erential operators of �nite rank, see the next sub-
section, see also Theorem 2.1.11.
In the sequel we assume that W ful�ls properties (6).
Now we pass to the problem of the Poincaré duality for H

�
�Wd

�
: In many

problems we have from the beginning that Poincaré duality property holds for
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the cohomology H (W ) (for example we have this in all four examples con-
siderded in Subsection 1.4.1 proved simply by algebraic topology methods [i.e.
without using analytic methods of elliptic operators - although it follows also
by the latter ones].

De�nition 3.1.4 The graded anticommutative di¤erential Hodge space of even
degree W is called regular if:

(7) the Poincaré duality property for H (W ) holds: i.e. h�j�irH : Hr (W ) �
HN�r (W ) ! R; r = 0; :::; N; are dualities, Hr (W ) �=

�
HN�r (W )

��
(particularly, the spaces H (W ) and H (W ) is �nitely dimensional).

Clearly, Lemma 3.1.2 and axiom (7) yield: if

(8) J# : H (W ) �! H
�
�Wd

�
is an epimorphism,

then J# is an isomorphisms and the Poincaré duality for H
�
�Wd

�
holds (as a

consequence of that in H (W )). Condition (8) says that in each cohomology
class in H

�
�Wd

�
there exists a d-cocycle w 2W:

If (8) holds then we have by Theorem 2.2.6 the Hodge isomorphismHr
d (W )

xrd�!�=
Hr
�
�Wd

�
and the Hirzebruch operator �D+ for the signature of �W is de�ned (ac-

cording to the previous section), and

indexD+ = SigBn � Sig (W ) = Sig
�
�Wd

�
= index �D+:

From the point of view of the theory of elliptic operators on manifolds the
following axiom (9), see below, seems to be natural (for elliptic operators on
manifolds (9) follows from the so-called Weyl Lemma (on regularity) [N] for
elliptic operators de�ned on Rn - or on open subsets of Rn). We recall this
lemma

Theorem 3.1.5 (Weyl Lemma)) [N, Th. 10.3.6; Cor. 10.3.11] Let L :
C1 (Rn;Rs)! C1 (Rn;Rs) be an elliptic operator of order k,

Lu =
X
j�j�k

A� (x) @
�u (x)

with smooth coe¢ cients A� (x). Denote by (�j�) the natural metric on Euclidean
spaces. Let p 2 (1;1) :

(1) If u 2 Lp;loc (Rn;Rs), v 2 Lp;loc (Rn;Rs) ; and u is a Lp-weak solution of
the equation

Lu = v; (3.1.3)

i.e.Z
Rn
(u (x) jL�� (x)) dx =

Z
Rn
(v (x) j� (x)) dx; for all � 2 C10 (Rn;Rs) ;
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where L� is a formal adjoint to L; then u is an Lp-strong solution of
(3.1.3), i.e. u 2 Lk;p;loc (Rn;Rs) ; and (3.1.3) hold almost everywhere,
where the partial derivatives of u are understood in generalized [distribu-
tional] sense.

(2) If u 2 Lp;loc (Rn;Rs) is an Lp-weak solution of (3.1.3) and v is smooth,
then u must be smooth (particularly, u must be smooth if Lu = 0).

Finally we can formulate the mentioned above axiom.

(9) H (W ) = Hd (W ) (equivalently ker �D �W ).

Proposition 3.1.6 Assume (1)-(7) and (9). Then the following conditions are
equivalent.

(i) all homomorphisms in the fundamental diagram (3.1.2) are isomorphisms,

(ii) J# is an epimorphism (i.e. (8) holds),

(iii) H
�
�Wd

�
ful�ls Poincaré duality (i.e. (7H) holds),

(iv) the cohomology pairings h�j�irH;d are weakly nondegenerated for each r (i.e.
(70H) holds),

(v) there is a strong Hodge decomposition �W r = Hr
d (W )� �d

�
W r�1
1

�
���
�
W r+1
1

�
for each r;

If some of these conditions hold then

Sig (W ) = Sig
�
�Wd

�
= index �D+ = indexD+

and the strong Hodge decomposition for W is satis�ed, i.e.

W = H (W )� Im d� Im � = H (W )� Im�:

Proof. (i) ) (ii) ) (iii) ) (iv) are evident. For (iv) ) (v) see Theorem 2.2.6
(g2). We prove now that (iv) ) (i). From (iv) together with the condition
dimHd (W ) = dimH (W ) < 1 we obtain that �W is regular Hilbert anticom-
mutative graded subdi¤erential Hodge space of even degree. By Theorem 2.2.6
the Hodge homomorphism xrd is an isomorphism, therefore the remaining ho-
momorphisms in the diagram (3.1.2) are isomorphisms, too.
To complete the proof it is su¢ cient to check that (v) ) (ii). Let P r :

�W ! Hd denote the orthogonal projection with respect to the strong Hodge
decomposition. To prove that Jr# : H

r (W )! Hr
�
�Wd

�
is an epimorphism, take

arbitraly u 2 �Zrd := ker
�
�dr : �W r

d ! �W
�
: Then u � P r (u) 2 �Br = Im

�
�dr�1

�
.

Indeed, using the above decomposition there exists v 2 �W r�1
1 and w 2 �W r+1

1

such that
u = P r (u) + �dr�1 (v) + ��

r+1
(w) :
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Clearly, ��
r+1

(w) = u � P r (u) � �dr�1 (v) 2 �Wd: Applying �dr on both sides of
this equality we get

0 = �dr (u) = �dr (P r (u)) + �dr
�
�dr�1 (v)

�
+ �dr

�
��
r+1

(w)
�

= �dr
�
��
r+1

(w)
�
:

The above implies (see Lemma 2.2.3)

(��
r+1
wj��r+1w) = ( �dr��r+1wjw) = 0;

then ��
r+1
w = 0 and u = P r (u)+ �dr�1v: Therefore [u] = [P r (u)] in the cohomol-

ogy spaceHr
�
�Wd

�
which means that J# : H (W )! H

�
�Wd

�
is an epimorphism,

i.e. (8) holds.

Problem 3.1.7 Assume that the equivalent conditions (i)-(v) hold. Does it
then imply the axiom "sequence compactness" i.e.: for a sequence �n 2W such
that that k�nk < C and k��nk < C for some C > 0 there exists a Cauchy
subsequence �nk?

Thanks to the above Proposition (3.1.6) to prove that indexD+ = index �D+ we
can go (for a given W ) in three equivalent directions:

(I) to prove that J# is an epimorphism, or

(II) to prove the Poincaré duality for H
�
�Wd

�
(or less that the cohomology

pairings h�j�irH;d are weakly nondegenerated), or

(III) to prove the strong Hodge decomposition for �W:

3.2 L2-Hirzebruch operator for graded anticommutative
di¤erential Hodge vector bundles of even degree; ap-
plications to Lie algebroids

Let M be a connected compact oriented Riemannian manifold M: Take into
consideration a graded anticommutative di¤erential Hodge vector bundle of even
degree N = 2n (Def. 1.4.2)�

� =
MN=2n

r=0
�r; h�j�i ; (�j�) ; �; d

�
: (3.2.1)

Put W = Sec � and W r = Sec �r: Let
�
W =

LN
r=0W

r; hh�j�ii ; ((�j�)) ; �; d
�
be the

induced a graded anticommutative di¤erential Hodge space.
We can use L2-theory [N]: �W = L2 (�) : Condition (6) from the previous sub-

section holds thanks to the so-called convolution argument, see below. Whence
�W together with �d is a Hilbert anticommutative graded subdi¤erential Hodge
space of even degree. The operator �d remains local.
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3.2.1 Convolution argument

In local analysis on Rn and global analysis on manifolds condition (6) holds
for di¤erential operators thanks the convolution argument using the so-called
mollifying sequence. We brie�y describe it here. Take any linear di¤erential
operator d : Sec � ! Sec � of rank k (in our considerations we use the case of
k = 1; only) between modules od cross-sections of vector bundles � and �:
First, we look at this locally. In arbitrary local base of the vector bundles

and identifying coordinate neighbourhood U with open set in Rn any di¤erential
operator d : Sec � ! Sec � of rank k can be written in the form (p = rank �;
q = rank � )

dU =
X
j�j�k

A� (x) @
� for A� 2 C1 (U;Hom(Rp;Rq)) :

We exploit the convolution operation

f � g (x) =
Z
Rn
f (x� y) g (y) dy;

and a mollifying sequence

�t (x) =
1

t
'
�x
t

�
; t > 0;

where ' 2 C10 (Rn) ; ' � 0;
R
Rn ' (x) dx = 1; supp' = B (0; 1) : We have the

well known fundamental theorems

Theorem 3.2.1 The convolution operation has the following properties:

� for any f 2 L1;loc (Rn) the convolution �t � f is a smooth, and if f has
the distributional derivative @f

@xi
2 L1;loc (Rn) then

@ (�t � f)
@xi

= �t �
@f

@xi
;

� if f 2 Lp (Rn) ; p � 1; then

�t � f
Lp�!
t!0

f;

� if additionally f has the distributional derivative @f
@xi

2 Lp (Rn) then

@ (�t � f)
@xi

Lp�!
t!0

@f

@xi
:

We will use it for p = 2: Let d be a di¤erential operator of rank k locally
written by dU =

P
j�j�k A� (x) @

� and let A� (x) belong to L2 (restricting U
if needed). Then, according to the above theorem, for a sequence of functions
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! =
�
f1; :::; fp

�
of the class L2 possesing distributional derivative of the class

L2 (i.e. ! 2 L1;2) the elements of the sequence �t �! :=
�
�t � f1; :::; �t � fp

�
are

smooth, and

dU (�t � !) =
X
j�j�k

A� (x) @
� (�t � !)

=
X
j�j�k

A� (x) (�t � @�!)
Lp�!
t!0

X
j�j�k

A� (x) @
� (!) = dU (!) :

On a compact manifold we take a partition of unity �� subordinated to the
suitable �nite covering fU�g of M: Representing a cross-section ! of the vector
bundle � in local trivializations �U�

�= U� �Rp we take �t~�! := ���t �
�
�� � !

�
(it depends on the trivializations) and we have

�t~�!
L2�!
t!0

!

and

d (�t~�!) = d
�
���t �

�
�� � !

��
= ��dU�

�
�t �

�
�� � !

�� L2�!
t!0

��dU�
�
�� � !

�
= d

�
���� � !

�
= d!:

Unfortunately, the operations d (�) and �t~� (�) on a compact manifold do not
commute even if the operator d has locally constant coe¢ cients.

3.2.2 Condition (9)

We continue with our considerations of the graded anticommutative di¤eren-
tial Hodge vector bundle of even degree (3.2.1). The operator D = d + � is
elliptic and the previously de�ned operator �D = �d + �� : �W1 ! �W (3.1.1)
is a continuous Fredholm operator. According to Conclusion 3.1.3 we have
(( �Dujw)) = ((uj �Dw)) for u;w 2 �W1; i.eZ

M

�
�Dujw

�
=

Z
M

�
uj �Dw

�
: (3.2.2)

Let u 2 �W1 and v := �Du 2 �W = L2 (�) : Considering integral equality
(3.2.2) only for all smooth cross-sections w 2 W = Sec � and taking into
account that D is self-adjoint we see that u is a week solution of the equation
�Du = v: Considering w supported in a coordinated neighbourhood we can use
Weyl lemma and check that ker �D � Sec �; i.e. Hd (W ) = ker �D consists only
smooth cross-sections which yields H (W ) = Hd (W ) = ker �D � Sec �. Whence
(9) holds.

3.2.3 Condition (8)

Now, we pass to condition (8).
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Method (III) Let u 2 �W1 and v := �Du 2 �W = L2 (�) : The integral equality
(3.2.2) used for all smooth cross-sections w 2W = Sec � and Theorem [N, Theo-
rem 10.3.6.] (see Theorem 3.1.5) say that u 2 L1;2 (�) ; i.e. �W1 � L1;2 (�) : The
opposite inclusion follows from the more general fact that the so-called analyti-
cal realization of an elliptic operator is de�ned on L1;2 (�) [N, De�nition 10.4.3.].
There is the strong Hodge orthogonal decomposition [N, Th. 10.4.29]:

L2 (�
r) = Hr (W )

M
Im �dr�11

M
Im��

r+1
1

where we view both �d1 and ��1 as bounded operators L1;2 (�) ! L2 (�). The
Theorem 3.1.6 implies that J# : H (W ) ! H

�
�Wd

�
is an epimorphism, i.e. (8)

holds. Finally, in diagram 3.1.2 all arrows are isomorphisms. Hence Sig (W ) =
Sig
�
�Wd

�
= index �D+ = indexD+:

Method (II) or (I) Sometimes we can use simpler algebraic topology meth-
ods (do not require results from elliptic operators). Our aim is to consider the
four examples (see Subsection 1.4.1) W = 
(M) for a manifold M; W =

(A) for a Lie algebroid A or W = 
(M;E) for the Lusztig or the Gro-
mov vector bundle E. We pass to the spaces of L2-di¤erential forms �W =

L2(
^
T �M); L2(

^
A�); L2(

^
T �M 
E) and we obtain graded Hilbert subd-

i¤erential Hodge bundles. First, we start with a classical example.

Example 3.2.2 (classical) N.Teleman has proved (using only algebraic topol-
ogy methods and Whitney�s complex of the so-called �at di¤erential forms) that
the cohomology pairings h�j�irH;d are dualities for the space of L2-di¤erential
forms on Lipschitz (especially on smooth) manifolds [T2, Th. 2.1 (iii)] (see
Theorem 2.1.13 and subsequent sentences), i.e. (II) holds. We can also notice
that J# : H (W ) ! H

�
�Wd

�
is an isomorphism, i.e. (I) holds since the associ-

ated di¤erential sheaves of germs of smooth di¤erential forms from W = 
(M)
and L2-di¤erential forms from �Wd are �ne and are resolutions of the real con-
stant sheaf thanks the usual smooth Poincaré lemma and the L2-Poincaré lemma
given by L.Hörmander [H] in the version by N.Teleman [T1], compare [T2, Th.
2.1 (i)]. This ends the Hodge theory for smooth manifolds (using analysis only in
the convolution argument, Weyl lemma and L2-Poincaré lemma in the version
by N.Teleman).

We recall the L2-Poincaré lemma.

Theorem 3.2.3 (L2-Poincaré lemma) [H], [T1]. If U is a convex domain in
Rn; for any di¤erential form u 2 Lr2;loc (U) such that �du = 0 (in distributional
sense), then exists a di¤erential form v 2 Hr�1

1 (U) such that �dv = u in the
strong sense.

Hr�1
1 (U) denotes the space of all di¤erential forms of degree r � 1 whose

components belong to H1;loc (U) :
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Example 3.2.4 (Lusztig, Gromov) The idea given in Example 3.2.2 can be
used also in Lusztig and Gromov examples since the associated di¤erential sheaves
of germs of smooth and L2-di¤erential forms with values in the �at vector bundle
(E;r) are �ne and are resolutions of the sheaf of local r-constant cross-sections
of E:

In a more general case (including the Lie algebroid example) to prove (I) we
can use the Mayer-Vietoris technique or spectral sequences and the comparison
theorem.
Firstly, we describe an application of the Mayer-Vietoris technique (it is

a simple case of the very general technique in algebraic topology of spectral
sequences or sheaves). The MV-technique has limited application to the case
when the associated presheave of cohomology is locally constant on a good
covering. Hovewer, all four important examples considered in the paper (see
Subsection 1.4.1) are of this nature. The main defect of this method is necessity
to use cohomology on noncompact manifolds.
We set a graded anticommutative di¤erential Hodge vector bundle W =�

� =
LN=2n

r=0 �r; h�j�i ; (�j�) ; �; d
�
(3.2.1) of even degree N = 2n over a connected

�nite type (compact) oriented Riemannian manifold M: Then �W = L2 (�) to-
gether with �d : L2 (�)d ! L2 (�)d is a Hilbert anticommutative graded subd-
i¤erential Hodge space. Since the operators d and �d are local we can de�ne
(using compact support smooth cross-sections) the operators drU : (Sec2 �

r
U )d !�

Sec2 �
r+1
U

�
d
(where (Sec2 (�))d = Sec (�) \ (L2 (�))d - the subspace of smooth

L2-integrated cross-sections u whose derivative du is also L2-integrable) and a
graded subspaces

(L2 (�U ))d =
LN=2n

r=0 (L2 (�
r
U ))d

where (L2 (�
r
U ))d consists of all u 2 L2 (�

r
U ) such that there exists u

0 2 L2
�
�r+1U

�
satisfying Z

U

hu0j�i = (�1)r+1
Z
U

hujdU�i ; � 2 Sec0
�
�N�r�1U

�
and operators

�drU : (L2 (�
r
U ))d �!

�
L2
�
�r+1U

��
d
;

�drU (u) := u
0:

The manifold M as a compact one is of �nite type (i.e. can be covered
by �nite good covering U = fU�g�2f1;::;mg). Now we de�ne a category OM of
open �nite type subsets U �M . The morphisms of this category are inclusions
iU;V : U ,! V: The Mayer-Vietoris principle [N, Theorem 7.1.41] says that
if F and G are two MV-funtors from OM to the category of graded vector
spaces and � is a natural transformation of F and G such that �rU : Fr (U)!
Gr (U) is an isomorphisms (for any r) for each U �= Rn then � is a natural
equivalence. Particularly �rM : Fr (M) ! Gr (M) is an isomorphisms for any
r: In application to our problem consider open subsets U; V; U [ V 2 OM and
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take into consideration two standartly de�ned short Mayer-Vietoris sequences
of cochain complexes (for smooth and L2-category)

0 �! (Sec2 (�
r
U[V ))d �! (Sec2 (�

r
U ))d � (Sec2 (�

r
V ))d �! (Sec2 (�

r
U\V ))d �! 0

0 �! (L2 (�
r
U[V ))d �! (L2 (�

r
U ))d � (L2 (�

r
V ))d �! (L2 (�

r
U\V ))d �! 0

They produce suitable connecting morphisms @r and and therefore two MF-
functors

F (U) =
MN

r=0
Hr ((Sec2 (�

�
U\V ))d ; d) ;

G (U) =
MN

r=0
Hr
�
(L2 (�

�
U\V ))d;c ;

�d
�

for which morphisms are determined by inlusions and restrictions.
There is a natural transformation of functors F and G

� (U) : Hr ((Sec2 (�
�
U ))d ; d) �!

�
Hr
�
(L2 (�

�
U ))d ;

�d
��
; U 2 OM :

The Mayer-Vietoris principle yields the following theorem.

Theorem 3.2.5 The natural transformation � (U) is a natural equivalence (par-
ticularly � (M) : Hr ((Sec (��)) ; d) !

�
Hr
�
(L2 (�

�))d ;
�d
��
is an isomorphism)

provided that � (U) is an isomorphism for each U �= Rn:

Applications to Examples 1-3 from the list given in Subsection 1.4.1 are given
in Examples (3.2.2) and (3.2.4) [via the language of sheaves]. To consider the
last example of a Lie algebroid it is su¢ cient to notice that Künneth smooth
formula for trivial Lie algebroid A = TU � g [K2, Lemat 6.1 and Corollary
6.1] can be written for L2 (A)d-di¤erential forms: L2 (U)d 
 
 (g) = L2 (A)d ;
H (L2 (U)d 
 
 (g)) = H (L2 (A)d) therefore using the case for di¤erential forms
on manidolds we can obtain a results for Lie algebroids. The identical results can
be obtained via the spectral sequence argument and the following comparison
theorem used for the µCech-de Rham double complexes.

� If there exist spectral sequences Ej;ip for W and �Ej;ip for �Wd converging to
H (W ) and H

�
�Wd

�
; respectively, such that the homomorphism J :W !

�Wd induces an isomorphism on the �rst terms Jj;i1 : Ej;i1
�=�! �Ej;i1 then J

induces isomorphism on cohomology J# : H (W )
�=�! H

�
�Wd

�
:

Independently, we can de�ne the Hoshchild-Serre type spectral sequence for
L2-theory on TUIO-Lie algebroids (for smooth case see [K-M-3]) and use the
comparison theorem for the second terms. Consider a graded cochain group

L2 (A)d =
M

r
Lr2 (A)d ; L

r
2 (A)d = L2

�^r
A�
�
d

of L2-di¤erential forms on A possessing derivative of the class L2 with the
distributional derivative operator �dA of degree 1

�drA : L2

�^r
A�
�
d
�! L2

�^r+1
A�
�
d

:
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Each cochain f 2 L2
�^r

A�
�
d
is a measurable r-di¤erential form f : SecA �

:::� SecA! L1 (M) (f
�
v1; :::; vr

�
is a measurable function such thatZ

M

��f �v1; :::; vr��� <1
for vi 2 SecA). In the space L2 (A)d we have the Hochschild-Serre �ltration
Aj := (L2 (A)d)j � L2 (A)d as follows: Aj = (L2 (A)d)j = L2 (A)d for j � 0:

If j > 0; Aj = (L2 (A)d)j =
M

r�j
Arj ; where Arj := (Lr2 (A)d)j consists of

all those r-cochains f for which f
�
v1; :::; vr

�
= 0 whenever r � j + 1 of the

arguments vi belongs to Secggg: In this way we have obtained a graded �ltered
di¤erential R-vector space�

L2 (A)d =
M

r
Lr2 (A)d ;

�dA; Aj

�
and we can use its spectral sequence�

�Ej;is ;
�ds
�
:

Take auxiliarily ~�j;i0 : Aj;ij ! Lj2

�
M ;
^i

ggg�
�
; by de�nition

~�j;i0 (f) (X1; :::; Xj) (�1; :::; �i) = f (�1; :::; �i; �X1; :::; �Xj)

where � : TM ! A is a �xed (smooth) connection in A and put

Lj2

�
M ;
^i

ggg�
�
d

:= Im ~�j;i0 :

The homomorphism

�j;i0 : �Ej;i0 = Aj+ij =Aj+ij+1 �! Lj2

�
M ;
^i

ggg�
�
d

; [f ] 7�! ~�j;i0 (f) ;

is an isomorphism. This generalize the smooth case ([K-M-3]). Through isomor-
phism �j;i0 the di¤erential �dj;i0 becomes a di¤erentiation of values with respect
to the usual Chevalley�Eilenberg di¤erential dg. From the above we obtain
isomorphisms

�j;i1 =
�
�j;i0

�
#
: �Ej;i1 = Hi

�
�Ej;�0 ; �dj;�0

� �=�! Lj2
�
M;Hi (ggg)

�
d

and Lj2
�
M;Hi (ggg)

�
d
is equal to those Lj2-di¤erential forms with values in the

bundle Hi (ggg) for which there exists the distributional derivative �dri where ri
is the standard �at structure in the vector bundle Hi (ggg) (see [K3]). Through
isomorphism �j;i1 the di¤erential �dj;i1 becomes a derivative (�1)i �dr�. In conse-
quence

�Ej;i2
�=�! Hj

�
L�2
�
M;Hi (ggg)

�
d
; �dri

� (Ex. 3.2.4)�!�= Hj
�
M;Hi

ri (ggg)
�

= Ej;i2 (the second term of Hochschild-Serre spectral sequence for smooth case).

Therefore Jj;i2 : Ej;i2
�=�! �Ej;i2 is an isomorphism.
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3.3 Applications to Lie algebroids

For our four examples we have

Conclusion 3.3.1 Consider the four examples W = 
(M) for a manifold
M; W = 
(A) for a Lie algebroid A or W = 
(M;E) for the Lusztig or
the Gromov vector bundle E. Now we pass to the spaces of L2-di¤erential forms
�W = L2(

^
T �M); L2(

^
A�); L2(

^
T �M 
E): We obtain graded Hilbert sub-

di¤erential Hodge bundles.
In consequence, the signature in that four cases can be calculated via two

Hirzebruch signature operators, the usual smooth and second of the L2 class.
So for a Lie algebroid we have four Hirzebruch operators, two smooth using
the space 
 (A) and 
 (M;E) [Lusztig or Gromov subcases] and two L2 Hirze-
bruch operators, using graded Hilbert subdi¤erential Hodge spaces L2(

^
A�);

or L2(
^
T �M 
 E); respectively.
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